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Abstract 26 

 27 

Massive sequencing of SARS-CoV-2 genomes has led to a great demand for adding new samples 28 

to a reference phylogeny instead of building the tree from scratch. To address such challenge, we 29 

proposed an algorithm ‘TIPars’ by integrating parsimony analysis with pre-computed ancestral 30 

sequences. Compared to four state-of-the-art methods on four benchmark datasets (SARS-CoV-2, 31 

Influenza virus, Newcastle disease virus and 16S rRNA genes), TIPars achieved the best 32 

performance in most tests. It took only 21 seconds to insert 100 SARS-CoV-2 genomes to a 100k-33 

taxa reference tree using near 1.4 gigabytes of memory. Its efficient and accurate phylogenetic 34 

placements and incrementation for phylogenies with highly similar and divergent sequences 35 

suggest that it will be useful in a wide range of studies including pathogen molecular 36 

epidemiology, microbiome diversity and systematics. 37 

  38 
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Introduction 39 

 40 

Next generation sequencing (NGS) technologies enable large-scale exploration of diversity and 41 

monitoring temporal evolution of organisms, which often involve generating and analyzing large 42 

numbers of sequences from new organisms on an ongoing basis. For instance, over 5 million of 43 

SARS-CoV-2 genomes have been sequenced within two years of the pandemic (Shu & 44 

McCauley, 2017), largely facilitating transmission tracking and disease control. Conventional 45 

methods of phylogeny inference from scratch such as those implemented in  IQ-TREE2 (Minh et 46 

al., 2020) and FastTree2 (Price, Dehal, & Arkin, 2010) could hardly cope with such rapidly 47 

growing huge sequence datasets. Therefore, determining the evolutionary position of new 48 

sequences as they become available by placing or inserting them into the reference tree becomes a 49 

more efficient alternative. Such ‘phylogenetic placement’ has been useful for taxonomic 50 

classification, while accumulative addition of sequences (incrementing the phylogeny as a result) 51 

allow efficient update of the growing phylogeny in a global context. 52 

 53 

Previously published methods such as PhyClass (Filipski, Tamura, Billing-Ross, Murillo, & 54 

Kumar, 2015), EPA-ng (Barbera et al., 2019) and pplacer (Matsen, Kodner, & Armbrust, 2010) 55 

utilize minimum evolution or maximum likelihood criteria to infer the evolutionary position of 56 

the query sequence and place it directly onto a pre-built phylogeny. These algorithms require 57 

relatively large computer memory or long runtime which makes massive sequence insertion 58 

difficult. Recently, in respect of tracking the diversity of the large amount of SARS-CoV-2 virus 59 

genomes, UShER (Yatish Turakhia et al., 2021) was developed to tackle this problem by 60 

calculating the ‘branch parsimony score’ to search for positions of taxa placement only based on 61 

sequence mutations to a particular reference. It is extremely fast as compared to the other existing 62 

programs. Although the performance of UShER on the SARS-CoV-2 genomes is promising, the 63 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 3, 2022. ; https://doi.org/10.1101/2021.12.30.474610doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.30.474610
http://creativecommons.org/licenses/by-nc-nd/4.0/


placement performance for genome sequences with greater divergence is not well studied.  64 

 65 

We hereby introduce a new approach TIPars, which inserts sequences into a reference phylogeny 66 

based on parsimony criterion with the aids of a full multiple sequence alignment of taxa and pre-67 

computed ancestral sequences. The ancestral sequences are useful and efficient in assisting the 68 

search of the best placed position because these ancestral sequences often contain rich 69 

information in the evolution context of a phylogenetic tree (Loytynoja, Vilella, & Goldman, 70 

2012). Recent ancestral sequence reconstruction methods such as PastML (Ishikawa, Zhukova, 71 

Iwasaki, & Gascuel, 2019) and RASP4 (Y. Yu, Blair, & He, 2020) have improved speed and 72 

accuracy to become feasible in the huge SARS-CoV-2 phylogeny. TIPars searches the position 73 

for insertion by calculating the triplet-based minimal substitution score for the query sequence on 74 

all branches (Fig. 1A). To compare the performances of different phylogenetic 75 

placement/insertion methods including TIPars, UShER, EPA-ng, IQ-TREE2 and PAGAN2 76 

(Loytynoja et al., 2012), we applied them on four benchmark datasets (SARS-CoV-2, Influenza 77 

virus, Newcastle disease virus and 16S rRNA genes). The first test is single taxon placement. We 78 

pruned one taxon from a given phylogenetic tree and applied the methods to place it back. The 79 

second is multiple taxa insertion in which a set of taxa was removed and sequentially inserted 80 

back. We compared the topology and log likelihood for the trees before pruning and after 81 

reinsertion. Our evaluation tests aimed to assess the robustness of the methods on both highly 82 

similar sequences and divergent sequences, and whether the phylogenetic tree could be efficiently 83 

updated with new sequences that are continuously generated. 84 

  85 

Results  86 

 87 

Computational performance of TIPars and other methods 88 
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A number of approaches have been proposed for phylogenetic placement or insertion, but dealing 89 

with the vast number of SARS-CoV-2 genome sequences has rendered most of these methods 90 

impractical or computationally prohibitive. Based on a reference SARS-CoV-2 phylogenetic tree 91 

(SARS2-100k) generated from 96,020 unmasked SARS-CoV-2 sequences of high quality (details 92 

in Methodology), we evaluated our proposed program TIPars with UShER, EPA-ng, IQ-TREE2 93 

and PAGAN2 by sequentially inserting 100 new sequence samples. Only TIPars and UShER 94 

were practicable in terms of running time and memory usage. PAGAN2 were not able to 95 

complete the insertion within 96 hours and hence no data was available. Although IQ-TREE2 96 

used a lower peak memory than EPA-ng, the running time was the highest among all programs. In 97 

contrast, EPA-ng achieved a faster running time than IQ-TREE2 but the peak memory usage was 98 

around 1 terabyte (TB) which would not be practicable for general users. As for TIPars, it took 99 

only 21 seconds (excluding the input loading time) on a 64-cores server and required about 1.4 100 

gigabytes (GB) peak memory usage (Table 1). Another computational performance comparison 101 

on smaller dataset with 800 bacterial 16S rRNA sequences (16S) can be checked in table S1 in 102 

which PAGAN2 was runnable. Overall, in the SARS2-100k phylogenetic tree, TIPars ran 10-300 103 

folds faster than EPA-ng and PAGAN2 with 98.5% to 99.9% less memory used, an efficiency 104 

that is comparable to that of the leading program UShER. 105 

 106 

Single taxon placement 107 

 108 

Adding a single sequence sample (query) into a reference tree is useful to obtain the phylogenetic 109 

placement of the new data, and can be the basic step for expanding the phylogeny with new 110 

sequences. We tested TIPars, UShER and EPA-ng on four datasets, including the SARS-CoV-2 111 

genomes (SARS2-100k), 16S ribosomal RNA genes (16S), hemagglutinin genes of human 112 

seasonal influenza A viruses (H3N2), and Newcastle disease virus genomes (NDV) where the 113 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 3, 2022. ; https://doi.org/10.1101/2021.12.30.474610doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.30.474610
http://creativecommons.org/licenses/by-nc-nd/4.0/


average pairwise genetic distances (substitutions per site) of SARS2-100k and H3N2 are less than 114 

0.04 (similar sequences) while those of 16S and NDV are greater than 0.12 (divergent sequences) 115 

(details in Methodology; table S2). For the SARS2-100k dataset, EPA-ng was not applied due to 116 

impractically large memory requirement and long runtime. 117 

 118 

Based on the postorder traversal, between every 10 taxa we selected one sequence from the 119 

SARS2-100k sequence alignment resulting in 9,602 sequences, i.e., 10% of the total taxa in the 120 

tree. These selected sequences were individually removed from the reference tree and multiple 121 

sequence alignment (MSA) one at a time and used as the query sample for single taxon 122 

placement. In datasets of 16S, H3N2 and NDV, all taxa were removed individually and used for 123 

the placement test. 124 

 125 

To evaluate the accuracy of each single taxon placement, we calculated the Robinson-Foulds (RF) 126 

distance (Robinson & Foulds, 1981) between the reference tree before the taxon removal and the 127 

resulting tree after the placement using corresponding programs. An RF distance measures the 128 

topological clustering difference between two trees. A zero RF distance indicates that the two 129 

trees are topologically identical, and hence the single taxon placement position is exactly the same 130 

as the original position, i.e. a true positive. 131 

 132 

With the aid of ancestral information and MSA of full sequences, TIPars performed accurately on 133 

phylogenies made of highly similar (SARS2-100k and H3N2) and divergent (16S and NDV) 134 

sequences (Fig. 1B). However, a drop in accuracy on more divergent sequences was observed 135 

from UShER, perhaps because UShER was only based on the sequence mutations to a particular 136 

reference sequence as input, which may lose the insertion information (Yatish Turakhia et al., 137 

2021). In addition, we noted that due to the massive sequencing of SARS-CoV-2 by different 138 
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research groups, sequencing quality varies and ambiguity bases often occur in the consensus 139 

genome sequence data, which could affect the placement accuracy. To account for ambiguity data 140 

in sequencing, we used a specific substitution scoring table based on the IUPAC nucleotide 141 

ambiguity codes (table S3) for the taxon placement and insertion process (details in 142 

Methodology), which achieved a robust performance in sequences of different qualities. 143 

 144 

Notably, when searching through the whole phylogeny for the best position to place a taxon, there 145 

may be cases where multiple branches achieve equal minimum substitution scores, and thus the 146 

placement will be uncertain. As demonstrated in Fig. 1C, TIPars produced the least number of 147 

multiple ambiguously optimal placements in all testing datasets. For example, TIPars generated 148 

23% fewer multiple placements than UShER in the SARS2-100k dataset. 149 

 150 

A possible reason for the relatively poor performance of EPA-ng could be that RF distance may 151 

not be a reliable metric to compare binary trees derived from the phylogeny with polytomy 152 

because there is a very skewed distribution of RF distance when comparing two random binary 153 

trees (Bryant & Steel, 2009; Lin, Rajan, & Moret, 2012; Moon & Eulenstein, 2019). It is notable 154 

that EPA-ng only processes binary trees. To address this issue, a relaxed criterion for true positive 155 

was applied based on whether there are common sister taxa for the removed and re-placed single 156 

taxon, as previously used (Yatish Turakhia et al., 2021). With the adjusted true positive 157 

measurement, TIPars achieved the highest accuracy in all datasets (fig. S1). While the accuracy of 158 

EPA-ng was substantially improved, it was still the lowest among the three tested programs. 159 

 160 

To assess the practicability for extremely large phylogenies, we applied TIPars and UShER in 161 

single taxon placement test over the global SARS-CoV-2 phylogenetic tree with 659,885 masked 162 

genome sequences (SARS2-660k) downloaded from the Global Initiative on Sharing All 163 
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Influenza Database (GISAID) (Shu & McCauley, 2017) on the 6th September 2021. A total of 164 

65,989 sequences (10% of the total taxa in the tree) were removed and re-inserted individually. 165 

Cumulative proportion of single taxon placement result with different RF distance cutoff was 166 

shown in Fig. 1D. TIPars produced trees with significantly higher topological similarity to the 167 

reference tree with a median RF distance of 0.5 and mean of 5.8 (99% confidence interval (CI) = 168 

[5.5-6.1]) as compared to UShER (median RF distance is 3.0 and mean is 31.2 (99% CI = [30.0-169 

32.4])) at 99% significance level (p-value < 10-10). 170 

 171 

Multiple taxa insertion 172 

 173 

Multiple taxa insertion was an alternative method in determining the phylogenetic position of new 174 

sequences over conventional complete phylogeny construction from scratch. TIPars and other 175 

three programs (IQ-TREE2, PAGAN2 and UShER) were applied on the four datasets to conduct a 176 

comprehensive evaluation of performance.  177 

 178 

In the SARS2-100k dataset, we performed multiple taxa insertion for 100 sets of 102 and 103 179 

randomly selected sequences (an example is shown in Fig. 2A) (random100 and random1000) 180 

and 100 sets of 102 and 103 successively selected sequences (i.e., a set of successive taxa 181 

following the tree postorder traversal; an example is shown in Fig. 2B) (successive100 and 182 

successive1000). In the 16S, H3N2 and NDV datasets, 100 sets of 50 sequences were randomly 183 

selected. The selected sequences are pruned from the corresponding reference tree and become 184 

multiple taxa to be reinserted for each testing set. 185 

 186 

RF distance and tree log-likelihood (LL) were used to evaluate the performance of the multiple 187 

sequence insertion. To evaluate the topology accuracy, the resulting tree produced by the four 188 
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programs were compared to the original reference tree (leaf taxa unpruned) to obtain the RF 189 

distance. At the same time, Gamma20 log-likelihoods of the reference tree and the resulting tree 190 

after optimizing the branch length were also computed using FastTree2 (double-precision version) 191 

and their differences were used for evaluation.  192 

 193 

For the random100 and random1000 datasets, only analyses using TIPars and UShER were able 194 

to complete within a reasonable computation time, hence no result from IQ-TREE2 and PAGAN2 195 

was present. The resulting trees from multiple taxa insertion using TIPars had a significantly 196 

smaller RF distance than those generated using UShER (Fig. 3A). In addition, the log-likelihood 197 

of the resulting trees from TIPars was significantly higher than that of UShER (Fig. 3B). 198 

Moreover, TIPars resulting trees tended to be very close to the reference tree with smaller log-199 

likelihood differences (fig. S2, A and B). A demonstration of the taxa-insertion was illustrated in 200 

Fig. 2A by adding 1000 samples. We observed there were more crossing lines from reference tree 201 

to UShER resulting tree indicating more misplaced insertions. 202 

 203 

As to 16S, H3N2 and NDV datasets, TIPars mostly outperformed IQ-TREE2, PAGAN2 and 204 

UShER with a significantly lower RF distance and a higher log-likelihood of resulting trees (Fig. 205 

3, E to H; fig. S3). In the H3N2 dataset, there was no significant tree log-likelihood difference 206 

between TIPars and UShER (Fig. 3G), and in NDV dataset, TIPars performed better than IQ-207 

TREE2 with higher mean log-likelihood but without statistical significance (Fig. 3H). The 208 

demonstrations of the taxa-insertion result were visualized in Fig. 2C where UShER, IQ-TREE2 209 

and PAGAN2 were less accurate than TIPars. 210 

 211 

For the successive100 and successive1000 datasets, TIPars resulting trees had a significantly 212 

larger RF distance than those of UShER (Fig. 3C). However, the log-likelihood of the TIPars 213 
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resulting trees was significantly higher than that of UShER (Fig. 3D; fig. S2, C and D). By 214 

comparing the trees generated from TIPars and UShER (Fig. 2B), the difference is that TIPars 215 

inserted some of query taxa (green lines in Fig. 2B; successive taxa pruned from the reference 216 

tree) into two subtrees where one of them (the one containing over half the queries) had the same 217 

topology as the one in the reference tree. Whereas UShER inserted those queries mostly within a 218 

monophyletic clade but it was different from the reference tree. As a result, UShER retained the 219 

local topology (better RF distance) (Lin et al., 2012; Smith, 2021) but missed the global topology 220 

(worse log-likelihood). Through a RF distance comparison specifically to each query taxon 221 

instead of all query taxa, we found that the RF distance resulted from UShER was not 222 

significantly higher than that of TIPars (table S4).  223 

 224 

On the other hand, we may suppose that in the situation of random100 and random1000 tests, RF 225 

distance would be a suitable metric for comparing the performance of taxa insertions as they are 226 

similar to the case of single taxon placements, where most removed taxa are within different 227 

monophyletic clades due to randomness (Bryant & Steel, 2009).  228 

 229 

To make the log-likelihood of the resulting trees comparable, we applied FastTree2 to reoptimize 230 

the branch lengths with fixed topology (Price et al., 2010). However, compared to the efficiency 231 

of taxa insertion (Table 1), the re-optimization is time-consuming. For example, the optimization 232 

for a SARS2-100k tree took 10 to 12 hours and required around 125 GB memory (table S5). 233 

Therefore, we also computed the log-likelihoods with fixed branch lengths (FLL) using IQ-234 

TREE2, and TIPars still outperformed UShER significantly (fig. S4) by achieving a higher log-235 

likelihood in the resulting tree output directly from the program.  236 

 237 

Inserting novel sequences 238 
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To verify practicability of TIPars in adding novel sequences into a given phylogeny, we further 239 

performed an experiment to insert novel real-world SARS-CoV-2 samples into the SARS2-100k 240 

reference tree. We randomly selected SARS-CoV-2 samples from GISAID which were not 241 

included in the SARS2-100k dataset. Twenty sets of 100, 1000, 5000 and 10000 genome 242 

sequences were generated as the queries for taxa insertion using TIPars and UShER. 243 

 244 

Log-likelihoods of the resulting trees from each program were calculated and their pairwise 245 

differences between TIPars and UShER were used to evaluate the performance. RF distance was 246 

not a suitable metric in this experiment as a comparable reference tree was not available. TIPars 247 

provided a resulting tree with a significantly better log-likelihood than UShER in all situations (p-248 

values <0.05; Fig. 4A).  249 

 250 

In addition to tree log-likelihood, we also compared the PANGO lineages (PANGOlins) 251 

assignment of the added samples (Rambaut et al., 2020) to validate the accuracy. Only 252 

PANGOlins that existed in the reference tree were considered. We assigned each newly inserted 253 

sequence with the lineage name of the subtree under the parental node of the inserted position. 254 

The subtree was annotated by its descendant reference taxa if all of them were monophyletic 255 

(McBroome et al., 2021). A true positive was defined as when the assigned lineage of a query 256 

sequence was identical to its original PANGOlins label. In case of queries within unannotated 257 

subtrees, we ignored them in the calculation. TIPars outperformed UShER by achieving higher 258 

true positive samples on the 100, 1000, 5000 and 10000 insertion datasets with an average of 92% 259 

PANGOlins accuracy. The superiority of TIPars was statistically significant under a right-tailed 260 

paired t-test (p-values < 0.001) on the 1000, 5000 and 10000 datasets (Fig. 4B and table S6).  261 

 262 

Discussion  263 
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TIPars showed promising taxa placement and insertion accuracy in the phylogenies with 264 

homogenous (H3N2 and SARS2-100k) and divergent (16S and NDV) sequences, and in 265 

extremely large phylogeny (SARS2-660k) with reasonable runtime and memory usage. Although 266 

UShER has a lower accuracy in the divergent sequence datasets (16S and NDV), it ran faster than 267 

TIPars (Table 1).  268 

 269 

Reconstruction of ancestral sequences are associated with all taxa across the phylogenetic tree, 270 

which could be done using maximum likelihood statistical models or other advanced techniques 271 

(Ishikawa et al., 2019; Kosakovsky Pond et al., 2020; Pupko, Pe'er, Shamir, & Graur, 2000; Y. 272 

Yu et al., 2020). So ancestral sequences may reveal more accurate (especially intermediate) 273 

evolutionary information than the consensus mutation lists along each individual lineage as 274 

UShER does. The evolutionary information can be used to distinguish insertion, deletion and 275 

substitution events in the searching of taxon placement (Löytynoja & Goldman, 2005), which 276 

may help TIPars to be robust on more divergent phylogenies (Loytynoja et al., 2012). Overall, 277 

compared to existing phylogenetic placement programs, TIPars is a robust method for a variety of 278 

datasets with densely sampled and highly similar sequences of a single species which are 279 

common in tracking pathogen epidemiology and transmission, as well as the sequences with 280 

greater intraspecific divergence such as the genome datasets at genus, families or higher 281 

taxonomic levels for systematics studies. 282 

 283 

Although we showed that TIPars resulting trees with higher tree log-likelihood compared to other 284 

programs, a general limitation of the phylogenetic placement method is that errors from incorrect 285 

placements accumulate as multiple sequences are inserted sequentially. In order to minimize the 286 

error due to large numbers of sequence insertions, it is suggested to conduct tree refinements on 287 

not only branch length but also tree topology using different techniques such as nearest-neighbor 288 
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interchanges (NNIs) and subtree-pruning-regrafting (SPRs) (Price et al., 2010). Furthermore, 289 

starting such optimization process with an initial tree of higher log-likelihood may achieve a final 290 

tree with better log-likelihood using certain of time (Price et al., 2010). As demonstrated in table 291 

S7, for the resulting trees of equal RF distance from both TIPars and UShER (n=28), the branch 292 

length optimized trees for TIPars had higher (n=14) or equal (n=12) tree log-likelihoods than the 293 

ones resulted from UShER. 294 

 295 

TIPars could facilitate the future development of sequence analysis methods that make use of the 296 

phylogenetic placement information. For instance, genome assembly of NGS read data from the 297 

metagenome can use phylogenetic positions of the short-read sequences to distinguish between 298 

related microbial strains or lineages. With the aid of TIPars, NGS sequences could be inserted to 299 

the branches of specific strains or lineages in a reference phylogeny. This can be used in 300 

calculating the proportion of strains in mixed infection even when one of the strains is at low 301 

abundance in which de novo assembly may generate incomplete contigs. 302 

 303 

Since the start of the COVID-19 pandemic, over 5 million SARS-CoV-2 genome sequences have 304 

been made publicly available (Shu & McCauley, 2017). With the reduction in cost, the rate of 305 

genome sequencing is expected to skyrocket in the future. By providing rapid and memory 306 

efficient taxa insertions at high accuracies, TIPars may improve real-time tracing and monitoring 307 

of SARS-CoV-2 transmission through the large-scale global phylogenetic analysis of the ever-308 

increasing SARS-CoV-2 genome sequences. 309 

 310 

Materials and Methods 311 

 312 

Implementation of TIPars 313 
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After assigning the ancestral sequences at every internal node and taxa sequences at external 314 

nodes, TIPars inserts a set of new samples into the reference phylogenetic tree sequentially based 315 

on parsimony criteria. 316 

 317 

For a query sequence Q, TIPars computes the minimal substitution score against every branch in 318 

the tree. While inserting query Q into to the branch A-B (parent node - child node) at a potential 319 

newly added node P (Fig. 1A), the minimal substitution score is the sum of substitution scores 320 

that sequence Q differs from both sequence A and sequence B based on a specific substitution 321 

scoring table based on the IUPAC nucleotide ambiguity codes (table S3). The single branch with 322 

the minimum substitution score   is reported as the best placement.  323 

 324 

However, in terms of multiple placements where more than one branch have the same minimum 325 

substitution score, TIPars applies simple but practical rules to filter them to a single best 326 

placement such that multiple queries would be inserted sequentially based on one resulting tree. 327 

The first priority is to select the branch with node A containing the most numbers of child nodes. 328 

The second priority is to select the branch with node A of the lowest node height, that is the total 329 

branch length on the longest path from the node to a leaf (Suchard et al., 2018). Finally, in the 330 

case where the ambiguity cannot be resolved by the first two priorities, TIPars just turns to a pick 331 

up randomly. Even though TIPars will filter out multiple placements, these potential placements 332 

will also be printed out for user notice. 333 

 334 

We proposed a local estimation model to calculate the pendant length of the newly introduced 335 

branch P-Q ( P Ql − ) which is considering the branch lengths of the local triplet subtree (A,(B,Q)) 336 

(Fig. 1A). Pendant length is defined as / ( )P Q A B A Bl l  − −= +  , where A  and B  are the unique 337 

mismatch substitution scores of Q to A and B, and A Bl −  is the original length of branch A-B.  The 338 
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location of P on branch A-B is determined by the ration of  A  and B ,  i.e., Distal length: 339 

/ ( )*A P A A B A Bl l  − −= + , and Sibling length: / ( )*B P B A B A Bl l  − −= + . The ancestral sequence 340 

of node P is estimated by majority vote of the nucleotide bases of sequence A, B and Q. To retain 341 

the topology of reference tree, a potential nucleotide base of Q will be only derived from A or B. 342 

For a special case of A Bl −  is zero but  is not, TIPars will consider upper branch of A’s parent to 343 

A for scaling.  344 

 345 

We implemented TIPars using Java with BEAST library (Suchard et al., 2018). Both FASTA and 346 

VCF formats are acceptable for loading sequences while NEWICK format is for the tree file. 347 

FASTA file is the default setting, but VCF file is more memory efficient for large dataset of high 348 

similar sequences, e.g. SARS-CoV-2 virus. To convert a FASTA file to VCF file with all 349 

sequence mutations, i.e. insertion, deletion and substitution, we used a Python package 350 

PoMo/FastaToVCF.py (Schrempf, Minh, De Maio, von Haeseler, & Kosiol, 2016).  351 

 352 

Benchmark datasets preparation 353 

 354 

Unmasked SARS-CoV-2 MSA from GISAID was downloaded on 6th July 2021. Then all SARS-355 

CoV-2 viral genome sequences collected before 1st January 2021 were extracted from the MSA. 356 

In order to ensure the sequences used for downstream analysis were complete, SARS-CoV-2 357 

genomes with sequence length < 29,000 bp and > 0.5% Ns were removed (namely 358 

GISAID202101). To ensure that the global phylogenetic diversity is well represented in the sub-359 

sampled dataset, sequences from all lineages as designated by the PANGO nomenclature system 360 

(Rambaut et al., 2020) were sub-sampled. Where fewer than 50 sequences of a given lineage were 361 

found in the global dataset, all sequences of the lineage were included. This resulted in a final 362 

sub-sampled dataset of 96,020 sequences from 1,249 PANGO lineages, with hCoV-363 
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19/Wuhan/WIV04/2019/EPI_ISL_402124 included as the reference genome (namely SARS2-364 

100k). The SARS2-100k reference tree was then built using IQ-TREE2 with GTR model using 365 

the EPI_ISL_402124 as root. Ancestral sequences of each internal node were estimated using 366 

PastML with the MSA and the IQ-TREE2 generated tree as input.  367 

 368 

Three small but representative nucleotide sequence datasets namely, bacterial 16S rRNA (16S), 369 

hemagglutinin genes of human seasonal influenza A viruses (H3N2), and Newcastle disease virus 370 

genomes (NDV), were prepared for programs performance comparison. The 16S dataset was 371 

downloaded from Genomes OnLine Database (Mukherjee et al., 2019) and randomly down-372 

sampled to 800 sequences. HA sequences of 800 H3N2 viruses were randomly extracted from 373 

Influenza Research Database (Zhang et al., 2017). The 235 NDV sequences were downloaded 374 

from GenBank. Alignments were constructed using MUSCLE (Edgar, 2004). Reference trees of 375 

these datasets were built using RAxML (Stamatakis, 2014) standard hill-climbing heuristic search 376 

with 100 multiple inferences and GTRGAMMA model. Ancestral sequences were estimated 377 

using ML joint method (Pupko et al., 2000).  378 

 379 

Novel SARS-CoV-2 query sequence dataset  380 

 381 

To generate novel query sequences for the 20 sets of 100, 1000, 5000 and 10000 sequences, 382 

SARS-CoV-2 genomes that were not included in the SARS2-100k dataset were randomly 383 

selected from the GISAID202101 dataset. Selected sequences were then aligned to the SARS2-384 

100k sequences alignment by opening necessary gaps to obtain the full-length MSA. The newly 385 

selected sequences were extracted to obtain the final query sample sets. Corresponding new gaps 386 

were also added back to the ancestral sequence alignment for each dataset generated. PANGO 387 
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lineages data for the novel SARS-CoV-2 query sequences and the taxa of reference tree was 388 

downloaded from GISAID on 6th July 2021. 389 

 390 

Benchmark programs 391 

 392 

We compared TIPars to four state-of-the-art phylogenetic placement tools, namely UShER, EPA-393 

ng, IQ-TREE2 and PAGAN2 while EPA-ng only works for single taxon placement and IQ-394 

TREE2 and PAGAN2 were only used for multiple taxa insertion. 395 

 396 

For the SARS2-100k dataset, only TIPars and UShER were considered as the other programs 397 

were not able to complete the computation within a reasonable runtime (Table 1). For the three 398 

smaller datasets, we compared all of them comprehensively. Details of the commands used for 399 

different programs could be found in table S8.  400 

 401 

TIPars, UShER and EPA-ng would report multiple placements for single taxon insertion. The 402 

marked best placements of TIPars and UShER by themselves were used for our accurac 403 

evaluation. EPA-ng reports its results sorted by log-likelihood, so the placement with the highest 404 

log-likelihood was applied for assessment.  405 

 406 

For any tools that accept only binary tree, i.e., EPA-ng and PAGAN2, we first converted the 407 

original polytomous tree to a binary tree using the Ape R package (Paradis & Schliep, 2019). 408 

 409 

When adding unaligned query samples, it is suggested to align them to the MSA of taxa and 410 

ancestral sequences in the reference tree using MAFFT (‘--add’ option) (Katoh & Standley, 411 

2013).   412 
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Evaluation metrics 413 

 414 

For single taxon placement evaluation, we first pruned one taxon from the reference tree and re-415 

inserted it back. To assess the consistency between placement algorithms and the typical tree-416 

constructing approach, we proposed using Robinson–Foulds (RF) Distance as a measure of the 417 

tree topology accuracy, as calculated by TreeCmp (Bogdanowicz, Giaro, & Wróbel, 2012). When 418 

the RF distance between a hypothetical tree and the reference tree is zero, the topology of the 419 

hypothetical tree is the same as the reference tree which means the algorithm inserts the query 420 

sample into the reference tree topological correctly. Another performance comparison with 421 

different true positive definition was conducted for binary trees derived from trees with polytomy 422 

using the measurement of whether sister node sets are identical to reference (Y. Turakhia et al., 423 

2020).  424 

 425 

For multiple taxa insertion evaluation, we randomly pruned a set of taxa from the reference tree 426 

and re-inserted them back. In addition to using RF distance to compare the hypothetical tree 427 

against the reference tree, we also calculated the log-likelihood of the hypothetical tree as a 428 

measurement of the accuracy of the taxa insertions. We applied two methods to compute log-429 

likelihoods including FastTree2 (double-precision version) (Gamma20 Log-Likelihood) (Price et 430 

al., 2010) for optimized branch length, and IQ-TREE2 (Log-Likelihood (Fixed Br)) for fixed 431 

branch length.  432 

 433 

EPA-ng outputs the placement information (placed branch, distal length, and pendant length) for a 434 

query without the construction of the final tree. In order to compute the RF distance, we assisted 435 

EPA-ng in inserting the query into the reference tree to generate the hypothetical tree. 436 

 437 
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IQ-TREE2 and PAGAN2 support initial tree, but they are not exactly based on the input tree 438 

topology for construction, so RF distance to original reference tree is not suitable for them. 439 

Note that UShER outputs the final constructed tree using the number of mutations as branch 440 

length (otherwise no branch length would be specified at branches modified), so we modified its 441 

branch length as number of mutations divided by alignment length in calculation of log-likelihood 442 

with fixed branch length model. 443 

 444 

Statistics 445 

 446 

99% t-test confident intervals and 99% paired t-test p-value (right tail) for the results of TIPars 447 

against other programs were computed by Matlab R2013b. All violin graphs were generated by R 448 

4.1.1 using the package ggstatsplot (Patil, 2021). Illustration and annotation of phylogenetic trees 449 

were done using the R package ggtree (G. Yu, Smith, Zhu, Guan, & Lam, 2017). 450 

 451 

Data and materials availability 452 

 453 

SARS2-CoV-2 data used in this work were all downloaded from GISAID 454 

(https://www.gisaid.org/). TIPars is available at https://github.com/id-bioinfo/TIPars. 455 
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Figures and Tables 576 

 577 

 578 

 579 

Fig. 1. Illustration of phylogenetic placement and single taxon placement performance. (A) 580 

Illustration of the placement for a query sequence. “Q” indicates the query sequence, “A” and “B” 581 

represent the existing nodes in the reference tree. “P” represents the parental node of “Q” 582 

generated by TIPars. Minimum substitution score is calculated based on the triplet formed by A-583 

B-Q. (B) Bar charts represent the accuracy of single taxon placement on 16S, H3N2, NDV and 584 

SARS2-100k datasets using TIPars, UShER and EPA-ng respectively. Accuracy is indicated on 585 

top of each bar and the highest accuracy in each dataset is highlighted in red. (C) Stacked bar 586 

charts show the proportion of single and multiple taxon placement result for TIPars (Green), 587 

UShER (Orange) and EPA-ng (Blue) on the 16S, H3N2, NDV and SARS2-100k datasets. 588 

Proportion with > 1% is indicated within the bar. (D) Cumulative proportion of single taxa 589 
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placement on the SARS2-660k dataset with different RF distance cutoff. Highlighted area 590 

represents the difference between TIPars and UShER. 591 

  592 
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 593 

 594 

Fig. 2. Taxa insertion visualization. (A) A demonstration of TIPars resulting tree (Left) and 595 

UShER resulting tree (Right) paired with the reference SARS2-100k reference tree (Left tree in 596 

both figures) for the insertion of randomly selected 1000 taxa sequences. Red lines link the 597 

corresponding positions of inserted taxa between reference and resulting tree. (B) A 598 

demonstration of TIPars resulting tree (Left) and UShER resulting tree (Right) paired with the 599 

reference SARS2-100k reference tree (Left tree in both figures) for the insertion of successively 600 

selected 1000 taxa sequences. Green lines indicate different taxa insertion positions between 601 

TIPars and UShER. Averaged RF-distance per sequence (aRF/seq) comparing to the reference 602 

tree is shown at the bottom. (C) Demonstrations of the resulting trees for randomly selected 50 603 
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taxa in NDV, 16S (Midpoint rooted) and H3N2 datasets. From the left to the right are trees of 604 

reference, TIPars, UShER, IQ-TREE2 and PAGAN2. RF distance (RF) compared to the reference 605 

tree and the Gamma20 log-likelihood (LL) are shown at the bottom of each resulting tree. 606 

  607 
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 608 

 609 

Fig. 3. Multiple sequences insertion performance. (A-D) Violin graphs show the distribution of 610 

paired differences of the RF distance and the Gamma20 log-likelihood between the optimized 611 

resulting trees generated by TIPars and UShER (TIPars - UShER) for the random 100, 1000 and 612 

successive 100 and 1000 multiple sequences insertions. (E) Distribution of the paired difference 613 

of the RF distance between the optimized resulting trees generated by TIPars and UShER (TIPars 614 

- UShER) on 16S, H3N2 and NDV random 50 multiple sequences insertions. (F-H) Distribution 615 

of the paired difference of the Gamma20 log-likelihood between the optimized resulting trees 616 

generated by TIPars and the three other programs (TIPars - Others) on 16S (F), H3N2 (G) and 617 
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NDV (H) random 50 multiple sequences insertions. P-value for the right-sided paired t-test is 618 

indicated by the asterisk on top of each violin diagram, where p<0.05 is indicated by one pink 619 

asterisk (*), p<0.01 by two orange asterisks (**) and p<0.001 by three red asterisks (***). 620 
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 622 

 623 

Fig. 4. Performance of inserting actual novel sequences. (A, B) Violin graph represents the 624 

distribution of the paired differences between the Gamma20 log-likelihood (LL) (A) and the 625 

absolute number of true PANGO-lineages insertion (TP) (B) of TIPars over UShER. p-value for 626 

the right-sided paired t-test was indicated by the asterisk on top of each violin diagram, where 627 

p<0.05 indicated by one pink asterisk (*), p<0.01 by two orange asterisks (**) and p<0.001 by 628 

three red asterisks (***). 629 

  630 
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Table 1. Average running time and memory used through 10 repeated runs of 631 

inserting/placing 100 genome samples into SARS2-100k reference tree. Tests were running on 632 

a server of 64 Intel Xeon Gold 6242 CPU cores and 1500 GB RAM. We also compared TIPars 633 

with UShER on a general computer with 8 CPU cores. TIPars ran with a JAVA setting of 634 

Xmx1G. The running time of UShER contains its necessary computation of ‘mutation-annotated 635 

tree’. PAGAN2 was not runnable for this dataset. N/A indicates that data are not applicable. 636 

 637 

Tools CPU cores 

assigned 

Mean insertion 

time (HH:MM:SS) 

Mean running 

time (HH:MM:SS) 

Mean peak 

memory (GB) 

TIPars 64 0:00:21 0:00:52 1.39  

TIPars 8 0:00:31 0:01:03 1.18  

UShER 64 0:00:02 0:03:14 0.84  

UShER 8 0:00:05 0:05:14 0.16  

EPA-ng 64 0:04:45 0:10:25 1022.14  

IQ-TREE2 64 N/A 5:49:10 101.10  

PAGAN2 64 N/A N/A N/A 

 638 
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