Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

The SARS-CoV-2 variant, Omicron, shows rapid replication in human primary nasal epithelial cultures and efficiently uses the endosomal route of entry

View ORCID ProfileThomas P. Peacock, View ORCID ProfileJonathan C. Brown, View ORCID ProfileJie Zhou, View ORCID ProfileNazia Thakur, Joseph Newman, View ORCID ProfileRuthiran Kugathasan, Ksenia Sukhova, View ORCID ProfileMyrsini Kaforou, View ORCID ProfileDalan Bailey, View ORCID ProfileWendy S. Barclay
doi: https://doi.org/10.1101/2021.12.31.474653
Thomas P. Peacock
1Department of Infectious Disease, Imperial College London, UK, W2 1PG
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Thomas P. Peacock
Jonathan C. Brown
1Department of Infectious Disease, Imperial College London, UK, W2 1PG
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Jonathan C. Brown
Jie Zhou
1Department of Infectious Disease, Imperial College London, UK, W2 1PG
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Jie Zhou
Nazia Thakur
2The Pirbright Institute, Woking, Surrey, UK, GU24 0NF
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Nazia Thakur
Joseph Newman
2The Pirbright Institute, Woking, Surrey, UK, GU24 0NF
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ruthiran Kugathasan
1Department of Infectious Disease, Imperial College London, UK, W2 1PG
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Ruthiran Kugathasan
Ksenia Sukhova
1Department of Infectious Disease, Imperial College London, UK, W2 1PG
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Myrsini Kaforou
1Department of Infectious Disease, Imperial College London, UK, W2 1PG
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Myrsini Kaforou
Dalan Bailey
2The Pirbright Institute, Woking, Surrey, UK, GU24 0NF
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Dalan Bailey
Wendy S. Barclay
1Department of Infectious Disease, Imperial College London, UK, W2 1PG
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Wendy S. Barclay
  • For correspondence: w.barclay@imperial.ac.uk
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Abstract

At the end of 2021 a new SARS-CoV-2 variant, Omicron, emerged and quickly spread across the world. It has been demonstrated that Omicron’s high number of Spike mutations lead to partial immune evasion from even polyclonal antibody responses, allowing frequent re-infection and vaccine breakthroughs. However, it seems unlikely these antigenic differences alone explain its rapid growth; here we show Omicron replicates rapidly in human primary airway cultures, more so even than the previously dominant variant of concern, Delta. Omicron Spike continues to use human ACE2 as its primary receptor, to which it binds more strongly than other variants. Omicron Spike mediates enhanced entry into cells expressing several different animal ACE2s, including various domestic avian species, horseshoe bats and mice suggesting it has an increased propensity for reverse zoonosis and is more likely than previous variants to establish an animal reservoir of SARS-CoV-2. Unlike other SARS-CoV-2 variants, however, Omicron Spike has a diminished ability to induce syncytia formation. Furthermore, Omicron is capable of efficiently entering cells in a TMPRSS2-independent manner, via the endosomal route. We posit this enables Omicron to infect a greater number of cells in the respiratory epithelium, allowing it to be more infectious at lower exposure doses, and resulting in enhanced intrinsic transmissibility.

Competing Interest Statement

The authors have declared no competing interest.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license.
Back to top
PreviousNext
Posted January 03, 2022.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
The SARS-CoV-2 variant, Omicron, shows rapid replication in human primary nasal epithelial cultures and efficiently uses the endosomal route of entry
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
The SARS-CoV-2 variant, Omicron, shows rapid replication in human primary nasal epithelial cultures and efficiently uses the endosomal route of entry
Thomas P. Peacock, Jonathan C. Brown, Jie Zhou, Nazia Thakur, Joseph Newman, Ruthiran Kugathasan, Ksenia Sukhova, Myrsini Kaforou, Dalan Bailey, Wendy S. Barclay
bioRxiv 2021.12.31.474653; doi: https://doi.org/10.1101/2021.12.31.474653
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
The SARS-CoV-2 variant, Omicron, shows rapid replication in human primary nasal epithelial cultures and efficiently uses the endosomal route of entry
Thomas P. Peacock, Jonathan C. Brown, Jie Zhou, Nazia Thakur, Joseph Newman, Ruthiran Kugathasan, Ksenia Sukhova, Myrsini Kaforou, Dalan Bailey, Wendy S. Barclay
bioRxiv 2021.12.31.474653; doi: https://doi.org/10.1101/2021.12.31.474653

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Microbiology
Subject Areas
All Articles
  • Animal Behavior and Cognition (4235)
  • Biochemistry (9136)
  • Bioengineering (6784)
  • Bioinformatics (24001)
  • Biophysics (12129)
  • Cancer Biology (9534)
  • Cell Biology (13778)
  • Clinical Trials (138)
  • Developmental Biology (7636)
  • Ecology (11702)
  • Epidemiology (2066)
  • Evolutionary Biology (15513)
  • Genetics (10644)
  • Genomics (14327)
  • Immunology (9483)
  • Microbiology (22841)
  • Molecular Biology (9090)
  • Neuroscience (48995)
  • Paleontology (355)
  • Pathology (1482)
  • Pharmacology and Toxicology (2570)
  • Physiology (3846)
  • Plant Biology (8331)
  • Scientific Communication and Education (1471)
  • Synthetic Biology (2296)
  • Systems Biology (6192)
  • Zoology (1301)