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Abstract 

The application of state-dependent speciation and extinction (SSE) models to phylogenetic 

trees has revealed an important role for traits in diversification. However, this role remains 

comparatively unexplored on islands, which can include multiple independent clades 

resulting from different colonization events. Here, we perform a robustness study to identify 

how trait-dependence in rates of island colonization, extinction and speciation (CES rates) 

affects the estimation accuracy of a phylogenetic model that assumes no rate variation 

between trait states. We extend the DAISIE (Dynamic Assembly of Islands through Speciation, 

Immigration and Extinction) simulation model to include state-dependent rates, and evaluate 

the robustness of the DAISIE inference model using simulated data. Our results show that 

when the CES rate differences between trait states are moderate, DAISIE shows negligible 

error for a variety of island diversity metrics. However, for large differences in speciation rates, 

we find large errors when reconstructing clade size variation and non-endemic species 

diversity through time. We conclude that for many biologically realistic scenarios with trait-

dependent speciation and colonization, island diversity dynamics can be accurately estimated 

without the need to explicitly model trait dynamics. Nonetheless, our new simulation model 

may provide a useful tool for studying patterns of trait variation.  

Keywords: island biogeography, trait-dependent diversification, phylogenetic inference, 

robustness analysis 
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Introduction 

Evolutionary biologists have long studied how functional traits affect macroevolution (Stanely, 

1975; Cracraft, 1985; Jablonski, 2008; Rabosky and McCune, 2010; Rabosky and McCune, 2010; 

Simpson, 2013; Chevin, 2016). A suite of empirical analyses have demonstrated that a diverse 

set of traits, such as body size (Mattila and Bokma, 2008; Lee et al., 2008), migratory behavior 

(Rolland et al. 2014), sexual conflict (Arnqvist et al., 2000), and diet (Farrell, 1998; Burin et al., 

2016), have significant effects on diversification rates.  

Revealing the role of traits in diversification requires statistical and modeling approaches. 

When a certain trait state occurs more frequently in a speciose clade than in a species-poor 

clade, we may be tempted to conclude that this state promotes speciation or reduces 

extinction. However, such a pattern may be due to the evolutionary conservation of the trait 

(Rabosky and Goldberg 2015). An excess of species with a particular state may also be due to 

asymmetrical transitions between states (Goldberg and Igić, 2012; Burin et al., 2016). The 

increasing availability of molecular phylogenies has stimulated the development of statistical 

methods to detect how traits are associated with diversification (Mitter et al., 1988). The 

earliest methods including sister clade comparisons could only address the variation in net 

diversification rates (speciation minus extinction), but could not distinguish the effect of a 

trait on speciation and extinction separately (Barraclough, 1998; Farrell, 1998; Heilbuth, 2000; 

Maddison et al., 2007). The binary-state-dependent speciation and extinction model (BiSSE), 

a likelihood-based framework, resolved these shortcomings (Maddison et al. 2007a). BiSSE 

inspired a large number of state-dependent diversification models, which are known as the 

SSE (state-dependent speciation and extinction) model family. These models extend BiSSE in 

various ways (e.g. considering more than two trait states, continuous rather than discrete 

states, spatial location as a trait) to enable state-dependent analyses to infer state-dependent 

diversification under a variety of scenarios or to model more complex phenotypic traits 

(Fitzjohn et al., 2009; Fitzjohn, 2010; Goldberg et al., 2011; Goldberg and Igić, 2012). 

Furthermore, models incorporating hidden traits were developed to overcome high type I 

errors with BiSSE (Beaulieu and O’Meara, 2016; Herrera-Alsina et al., 2019). 

One geographical setting where traits have long been proposed to influence diversity are 

islands (Parent et al., 2008; Cowie and Holland, 2008). Oceanic islands are home to some of 

the most extraordinary radiations, such as Darwin’s finches (Losos and Ricklefs, 2009) and a 

key question is whether certain traits or trait states have played a role in the presence or 

absence of rapid radiations. While insular radiations are thought to be mostly driven by 

increased ecological opportunity on islands, it has long been hypothesized that some traits 

may trigger, facilitate or hinder diversification in an insular setting (García-Verdugo et al., 

2014; Zhu et al., 2020). Some characteristics of species, such as seed size in plants and flight 

ability in birds, evidently affect the chances of species colonizing an island or an isolated 

habitat (Onstein et al., 2017). Furthermore, after successful colonization of an island, changes 
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in morphological characteristics occur, facilitated by ecological release (Losos  1997; Millien, 

2006). These character changes have been shown to affect in situ diversification rates of 

species, which are important to address evolutionary assembly on islands (Aleixandre et al., 

2013; Burns, 2016; Biddick et al., 2019).  

Despite the fundamental role of islands in the conceptual development of trait diversification 

theory, investigations of trait diversification dynamics on islands in a phylogenetic context are 

rare compared to large continental radiations. One reason for this is that insular communities 

are typically less diverse than continents, and thus their phylogenies are comparatively small 

and information-poor; therefore they are not amenable to fitting SSE models, which generally 

require relatively large phylogenetic trees (Davis et al., 2013). Thus, most insular radiations 

cannot be studied using classic SSE approaches. Alternatively, one can study multiple 

phylogenetic trees simultaneously. While SSE models were not designed for this purpose, it is 

relatively straightforward to extend them to apply to multiple trees. However, insular 

communities assemble via colonization and potentially subsequent diversification, and thus 

focusing only on trees of clades that have radiated (and not on colonization times or singleton 

lineages that have not diversified) ignores an important part of the processes that form insular 

communities.  

Current inference methods for studying island community assembly and diversification 

ignore rate variation between species with different trait states. For example, the dynamic 

stochastic island biogeography model DAISIE (Dynamic Assembly of Islands through 

Speciation, Immigration and Extinction) (Valente et al., 2015, 2018, 2020) allows estimation 

of colonization and diversification rates from the colonization and branching times of insular 

communities, which can be obtained from the collection of multiple phylogenetic trees 

resulting from several colonizations of an island (e.g. all mammals on an island). However, the 

DAISIE framework is currently silent on the effects of traits of insular species, which may lead 

to erroneous estimates of parameters (colonization, speciation and extinction) if species traits 

help shape the phylogenetic trees on islands. Currently, there is no likelihood-based inference 

model focusing on phylogenetic data from islands that incorporates both trait dynamics and 

their effects on diversification rates (an island version of an SSE model, or an SSE version of 

DAISIE) because deriving the likelihood for a model with both diversity-dependent and trait-

dependent diversification is not trivial. 

In the absence of a method to estimate trait state-dependent colonization, extinction and 

speciation rates (CES rates) from island communities, can we still obtain meaningful results 

regarding island diversification using current island biogeography models? Specifically, 

although DAISIE does not include trait dynamics, can it nevertheless accurately reconstruct 

island diversity dynamics through time? Every model is a simplification of reality, and leaves 

out details that are relatively irrelevant (Friedman 1953). In this spirit we ask: are trait 

dynamics irrelevant for understanding diversification dynamics? Under what conditions of 

trait dynamics can trait-less DAISIE still be used to make accurate predictions of island 
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diversity, distribution of island clade sizes, and diversity changes through time? In this paper 

we present a pipeline to answer these questions. Specifically, we assess i) whether DAISIE is 

able to accurately reconstruct island species assemblage in the presence of asymmetric rates 

between binary trait states, ii) how the performance of the model is influenced by unequal 

rates of transition between trait states, and iii) which CES rate has the largest effect on the 

robustness of DAISIE. If we find that in the presence of trait dependence DAISIE can accurately 

infer island diversity dynamics through time even without explicitly modelling such trait 

dependence, this will suggest that simple models do a good job of explaining island diversity 

and that reliable analyses can be performed even without trait data of island species (which 

are often absent, incomplete, or difficult to obtain), i.e. the model is robust to trait dynamics. 

If, instead, we find that under certain conditions the existence of trait-dependence 

substantially alters the predictions of DAISIE, this will suggest that traits cannot be ignored in 

these cases, and that a new estimation approach is needed. 

 

 

 

 

 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 2, 2022. ; https://doi.org/10.1101/2022.01.01.474685doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.01.474685
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Methods 

State-dependent and state-independent simulation models 

The DAISIE inference framework uses maximum likelihood to estimate colonization and 

diversification rates of insular biota from phylogenetic information. The core version of DAISIE 

assumes that all island species share the same CES rates, and the model is essentially neutral 

at the species-level (Valente et al. 2015). However, dynamics of state-dependent diversification 

and colonization within island clades are not modelled.  

Here, we introduce a trait state-dependent island biodiversity simulation model, an extension 

of the DAISIE simulation model combining it with features of the BiSSE model (Fig. 1). To 

distinguish the two simulation models, the new simulation model is termed state-dependent 

simulation (SDS) model, and the original trait-less DAISIE simulation model is termed state-

independent simulation (SIS) model. Likewise, we will call the standard DAISIE inference 

model the state-independent inference (SII) model. A state-dependent inference (SDI) model 

does not yet exist. In the SDS model, the rates of all evolutionary processes are state-dependent. 

For simplicity, we consider a binary trait with two states, 1 and 2. Species in the same state 

have the same CES rates, while species with different states may differ in one or more rates. 

Mainland species can be regarded as forming two assemblages according to their trait states. 

Immigration of species in each assemblage to the island is determined by the number of 

mainland species in each state (M1 and M2) and their colonization rates (γ1 and γ2). Once an 

immigrant species (which inherits the trait state from its mainland ancestor) successfully 

colonizes the island, it can undergo population divergence from the mainland population (via 

anagenesis λ1a and λ2a,), in situ speciation (via cladogenesis λ1c and λ2c) or extinction (µ1 and 

µ2). Island species can shift between trait states at a certain rate of transition from state 1 to 

state 2 (q12) or from state 2 to state 1 (q21). The transition rates can be equal or different. In 

speciation via anagenesis or cladogenesis, daughter lineages are assumed to inherit the trait 

state of their parent species, which means no state shifts occur during speciation (FitzJohn, 

2010). Furthermore, transitions are regarded as intraspecific changes, which occur 

instantaneously along lineages, thus assuming that the period of time in which two states 

coexist in a polymorphic species is negligible. Transition and speciation events are not allowed 

to occur simultaneously in this model (Maddison et al., 2007). The equations for calculating 

the rates are given in the Supplementary Methods.  

In both SIS and SDS simulations, we considered diversity-dependent (DD) and diversity-

independent (DI) models. In DI models, all the rates are diversity-independent. In DD models, 

colonization and cladogenetic speciation rates are diversity-dependent, while the other rates 

are diversity-independent. We implemented a clade-specific DD model, assuming that 

diversity-dependence only operates between species in the same clade, which descend from 

the same mainland ancestor. We also assumed, for the sake of simplicity, that diversity-
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dependence is not state-dependent, i.e. the diversity-dependent term is the same regardless 

of the trait state of the species undergoing speciation or colonization. It is possible to 

implement the combination of diversity-dependence and trait-dependence in our simulation 

model; however, we do not have strong evidence to indicate it is necessary. We assumed that 

differences in resource utilization due to phylogenetic distance in species belonging to 

different clades are sufficient to prevent competition between clades. We implemented the 

SDS model in the R package DAISIE (Etienne et al., 2021). 

The SDS results record the evolutionary history of island species including their colonization 

and branching times, as well as the richness dynamics of each trait state. We assumed that the 

inference accuracy of the DAISIE model will be poorer for larger inequality between the 

numbers of species in each of the two states. To test this assumption, we used the tip ratio r 

(Davis et al,. 2013), which we denoted by r, as the number of species in the species-rich state 

divided by the number of species in the species-poor state: 

𝑟 =  
max(𝑁1, 𝑁2)

min(𝑁1, 𝑁2)
 

We used seven island diversity metrics to evaluate the simulated phylogenies from the SDS 

and the SIS models. Four metrics were used to measure diversity at the end of the simulation: 

total number of species (NSpec); number of lineages present on the island (NCol) (resulting from 

independent colonization events), standard deviation of clade size (σCS) and standard 

deviation of colonization time among clades (σCT). The other three metrics measured richness 

changes through time: total species richness through time (SRTT); endemic species richness 

through time (ESRTT); non-endemic species richness through time (NESRTT).  

Simulation scenarios 

The mainland pool of 1000 species is assumed to be evenly distributed with 500 species in 

each state. There is no loss of generality depending on the mainland pool because it is the 

difference in total colonization rate (the product of mainland pool size and per capita 

colonization rate) that matters (Valente et al. 2015). In addition, we set a limit of 20 (K’ = 20) 

species for each clade for the diversity-dependent model. To measure the effect of transition 

rates independent of CES rates, we used a symmetric scenario as a control, where all the CES 

rates are symmetric between binary states (Table 1A). We chose two values for each CES rate, 

a low one and a high one, in such a way that the total number of species remains between 

realistic values of 50 to 150. We set four types of transitions between binary states (Table 1B). 

For high and low transition rates we used 0.2 and 0.02, respectively. The symmetric scenario 

consists of 128 combinations of CES rates, transition rates and diversity dependence (Table 

1A). 
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To investigate the effect of trait-dependence, we ran the SDS simulation under a series of 

scenarios with varying degrees of asymmetry in CES rates. In these scenarios, the mean values 

of CES rates between binary states were kept the same as the symmetric scenario, as well as 

two gradients of mean rates for each parameter (low and high, Table 1A). For the analyses with 

asymmetry in rates, only one CES rate was set to be asymmetric per scenario, and all the others 

were kept symmetric (Table 1C). We defined the relative rate differential (RRD) as the 

difference in rates for the two trait states by their mean rate value, to measure the asymmetry 

level between states. 

RRD =
|𝑟𝑎𝑡𝑒2 − 𝑟𝑎𝑡𝑒1|

1
2 (𝑟𝑎𝑡𝑒2 + 𝑟𝑎𝑡𝑒1)

 

 

RRD is 0 when the rates are symmetric for the two states, and larger RRD means a larger rate 

difference between states. For each CES rate, we ran analyses with three different levels of RRD: 

0.5, 1, 1.5 (Table 1C). Therefore, in total we ran 13 scenarios: 1 control plus 3 asymmetric 

scenarios for each of the 4 parameters (rates of cladogenesis, extinction, colonization and 

anagenesis) (Table 1C). We did not consider combinations of asymmetric rates as the number 

of parameter combinations would have been computationally prohibitive. We set CES rate 

values of state 2 to always be higher or equal to the values of state 1 for all the asymmetric 

cases to avoid redundancy. In asymmetric scenarios, transition rates were chosen in the same 

way as for the symmetric scenario, with four transition types (Table 1B).  

Table 1. Parameter space for the state-dependent simulations. A. The symmetric (control) scenario with all the CES rates 

symmetric between binary states, consisting of each combination of the parameters. Numbers separated by comma are the 

low and high values, respectively. B. Four transition types with different combinations of q12 and q21. C. The 13 scenarios of 

asymmetric CES rates (λc, λa, γ, μ). The control scenario contains the parameter sets where all the CES rates are symmetric 

(RRD = 0). For each asymmetric scenario, only one of the four rates is considered to be asymmetric (RRD ≠ 0). The degree of 

asymmetry is represented by the relative rate differential (RRD). Larger RRD value indicates larger rate difference between 

states. 

A. Parameters  Parameter values 

 Time 5 

 M1 500 

 M2 500 

 λc1 = λc2 0.2, 0.4 

 μ1 = μ2 0.1, 0.2 

 γ1 = γ2 0.008, 0.012 

 λa
1 = λa

2 0.2, 0.4 

 q12 0.02, 0.2 

 q21 0.02, 0.2 

 K’ 20, ∞ 
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B. Transition types q12 q21 

 low q12 low q21 0.02 0.02 

 high q12 low q21 0.2 0.02 

 low q12 high q21 0.02 0.2 

 high q12 high q21 0.2 0.2 

 

C． Symmetry of 

rates 

Scenario RRD of 

cladogenesis 

(λc) 

RRD of 

extinction 

(μ) 

RRD of 

colonization 

(γ) 

RRD of 

anagenesis 

(λa) 

 Symmetry 

(control) 

1 0 0 0 0 

 Asymmetry in 

cladogenesis  

2 0.5 0 0 0 

 3 1 0 0 0 

 4 1.5 0 0 0 

 Asymmetry in 

extinction  

5 0 0.5 0 0 

 6 0 1 0 0 

 7 0 1.5 0 0 

 Asymmetry in 

colonization  

8 0 0 0.5 0 

 9 0 0 1 0 

 10 0 0 1.5 0 

 Asymmetry in 

anagenesis  

11 0 0 0 0.5 

 12 0 0 0 1 

 13 0 0 0 1.5 

 

Robustness analysis 

We aimed to test whether ignoring trait dynamics in inference affects the ability of the SII 

model to reconstruct diversity dynamics on islands. We used a robustness computational 

pipeline (Fig. 1) to measure the error of the SII model when real insular diversity dynamics 

involve trait dependence in rates (SDS), adapting the approach of Neves et al. (2021). 

Parameters were estimated on either SDS or SIS phylogenies using the SII in the pipeline. First, 

we simulated 1000 replicates (‘islands’) for each parameter set (Table 1), under the SDS model. 

We converted the SDS results to the SIS output format (i.e. stripped away of trait-related 

information), and estimated CES rates and carrying capacity with the SII model. We then used 

the estimated parameters to simulate with the SIS model, and again estimated the parameters 
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for these simulations with the SII model and used the obtained parameters to simulate a 

second set of SIS results. The difference between the inferences on the two SIS results gives 

the baseline error (E0) in inference that occurs even if the inference model is identical to the 

simulation model (SII = SIS). The difference between the inferences on the SDS results and the 

first SIS results gives the error E that occurs when the simulation and inference model differ 

(SII ≠ SDS) (Fig. 1). 

 

Fig 1: Schematic representation of the robustness pipeline. (1) Simulate phylogenetic data with the SDS model. The binary 

states are represented by two different colors (red and black). (2) Use the data obtained from step 1 to estimate parameters 

with the SII model. (3) Simulate data using the SIS model with parameters estimated in step 2. (4) Use the SII model again 

to estimate parameters. (5) Simulate data using the SIS model with the estimated parameters from step 4.  

We calculated the errors E and E0 of seven metrics for each replicate, which resulted in two 

error distributions for each parameter set. E and E0 for NSpec, NCol, σCS and σCT were calculated 

as the absolute difference between simulations, while for the three diversity-through-time 

metrics (ΔSRTT, ΔESRTT, ΔNESRTT), errors were calculated using the ΔnLTT (normalized 

lineage-through-time) statistic (Janzen et al., 2015), by integrating the absolute distance 

between two diversity-through-time curves (Fig. S1). ΔnLTT is equal to zero only when the 

two simulated nLTT curves are identical. To compare the distributions of the two errors, E and 

E0, we used a metric, ED95 (Neves et al., 2021). ED95 is the percentage of the distribution of E 

that exceeds the 95% percentile of the distribution of E0. Higher ED95 values indicate larger 

differences between E and E0. The ED95 of all the seven island diversity metrics were calculated 

for each parameter set. We ran a total of 1664 parameter sets (128 for each of the 13 scenarios), 

with 1000 replicates for each set. The calculation of metrics and error analysis were 

implemented in the R package DAISIErobustness (Neves et al. 2021). 
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Results 

We find that DAISIE is quite robust to trait-dynamics. The inference errors are negligible for 

all metrics except ΔNESRTT (non-endemic richness through time) and σCS (clade size standard 

deviation), and the latter are only affected when cladogenetic speciation rates are asymmetric. 

In addition, diversity-dependence and state-dependent transition rates have negligible effect 

on the inference errors except under asymmetric cladogenesis. Surprisingly, the inference 

errors are not related to the tip ratio, i.e. the ratio of the maximum and minimum diversities 

of each trait state, but they are positively correlated with the variation in clade sizes. We now 

present these results in more detail. 

State-dependent CES rates and the inference errors 

In general, using the SII model to estimate parameters and subsequently the SIS model to 

simulate with the obtained parameters causes minimal error in reconstructing the SDS 

diversity patterns for most of the parameter sets (Fig. 2). Most metrics measuring the diversity 

at present (NSpec, NCol and σCT) show minimal difference between E and E0 for all scenarios (Fig. 

2). However, σCS shows the largest error difference among all the metrics, and is positively 

correlated to the RRD of the cladogenesis rate. Among the three ΔnLTT statistical metrics, only 

the error in ΔNESRTT is large when there is high asymmetry in cladogenesis rate (RRD = 1.5) 

(Fig. 2).  

Because only asymmetry in the cladogenesis rate has a substantial effect, we zoom in on the 

comparison of the results of the symmetric scenario with the three scenarios that have 

different asymmetry levels in cladogenesis rate. Large inference error in ΔNESRTT only occurs 

when the mean cladogenesis rate is greater than the anagenesis rate (Fig. S2), which leads to 

fewer non-endemic species and more endemic species at present on the island.  
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Fig 2. Distribution of ED95 for seven island diversity metrics. Each point corresponds to a parameter set. The orange points 

correspond to the parameter sets in the control scenario with all CES rates symmetric, and the other colors correspond to the 

12 scenarios with asymmetric rates in different degrees. The x-axis shows the degree of asymmetry (RRD) of each CES rate. 

The dashed line at 0.05, indicates the expected ED95 for the null model.  

Effect of diversity dependence and state-dependent transitions  

Diversity-dependence and state-dependent transitions have negligible effect on the inference 

errors in ΔNESRTT and σCS, except when cladogenesis rates are asymmetric between states 

(Fig. 3 and S3). Among the four transition types, with low or high, symmetric or asymmetric 

transitions, parameter sets with higher transition rate from high rate state to low rate state 

(“low q12 high q21”) cause larger error in σCS than in the reverse direction (“high q12 low q21”) 

(Fig. 3 and S3).   
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Fig 3. ED95 of the seven metrics across all parameter combinations. The parameter sets are grouped by RRD, transition type 

and diversity-dependence. “DD” refers to diversity-dependent models that assume colonization and cladogenesis rates to be 

diversity-dependent, and “DI” refers to diversity-independent models that assume that all the CES rates are diversity-

independent. The colors represent the asymmetry level (RRD) of CES rates between states. The dashed line at 0.05 indicates 

the expected ED95 of the null model.  

 

Tip ratio and clade size variation 

Large cladogenesis rate variation between states in SDS models can result in species richness 

variation between states, but it can also lead to clade size variation. State dependent transition 

rates may reinforce or reduce those variations to some extent. To understand what kind of 

empirical data may cause large errors using the DAISIE model, we checked the relationships 

between the inference errors with the tip ratio and the clade size variation in SDS results. We 

find that larger inference error does not always occur when the species richness is highly 
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different between states, especially with higher rate transfer to lower rate state (“low q12 high 

q21”) (Fig. S4). In other words, tip ratio does not decisively control the robustness of the DAISIE 

model, because the phylogenies can be accurately reconstructed even with large richness 

differences between states (Fig. S4). The clade size variation of SDS results barely affects 

ΔNESRTT, but substantially affect the inference error in σCS (Fig. S5).  

 

Parameter estimation 

When comparing the mean parameter values for simulations using the SDS model and the 

parameters inferred from the SDS results, the colonization and extinction rates are well 

estimated for most of the parameter sets (Fig. S6 and S7). However, nearly all scenarios show 

a systematic bias, with underestimated anagenesis and overestimated cladogenesis rates. The 

inference errors are positively correlated to the bias in cladogenesis and anagenesis when 

cladogenesis rates are largely asymmetric between states (Fig. S6 and S7).  
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Discussion 

Species traits are hypothesized to affect biological assemblages by altering diversification 

rates (Mitter et al., 1988; FitzJohn et al, 2009). Our results indicate that not incorporating the 

effect of trait dynamics on species diversification in the inference model and subsequently 

simulating the model with the obtained parameters allows surprisingly accurate 

reconstruction of the evolutionary history of species on an island under a wide range of 

scenarios. Hence, we conclude that the model is robust to leaving out the details of trait 

dynamics. Only in exceptional cases we see large differences between the simulations of a 

model with trait dynamics and a model without. This is specifically the case for two metrics: 

non-endemic richness through time (ΔNESRTT) and clade size standard deviation (σCS).  

Large differences between endemic species richness and non-endemic species richness may 

lead to large inference errors in ΔNESRTT. Within the parameter space investigated in this 

study, large error in ΔNESRTT occurs only when the mean cladogenesis rate between states 

is much higher than the mean anagenesis rate (Fig. S2). In this case, species with the higher 

cladogenesis rate state can rapidly speciate into a large clade, which leads to the endemic 

species richness being five to ten times the non-endemic species richness. Without accounting 

for trait dynamics, the estimated cladogenesis rate is closer to the higher cladogenesis rate 

than to the mean value of the two states in the SDS model. In contrast, the anagenesis rate is 

underestimated (Fig. S6 and S7). This leads to fewer non-endemic species, and more endemic 

species in the subsequent SIS simulations than in the SDS simulations, resulting in large error 

in ΔNESRTT.  

The other metric whose estimation is affected by trait dynamics is σCS. When trait states are 

conserved, and clades with a certain trait state have higher rates of diversification, clades with 

that trait state will likely become much more species-rich than clades with the other state. 

DAISIE assumes that all lineages diversify with the same rates, which generates balanced 

clades and leads to less clade size variation in the SIS results than in the SDS outputs. In 

addition, when cladogenetic speciation rate is diversity-dependent, competition between 

species in the same clade restricts the increase in species number, preventing clades from 

growing above a certain diversity level. Therefore, clade size cannot become extremely large, 

leading to lower error in σCS in diversity-dependent models than in diversity-independent 

models. However, we emphasize that even though DAISIE cannot accurately model the fine-

scale variation between clades for some exceptional parameter combinations, it can still 

accurately reconstruct the dynamics of the whole community with multiple independent 

clades. 

We attempted to determine the features of the data simulated under trait dependence that led 

to large inference errors in the two metrics where non-negligible error was found (ΔNESRTT, 

σCS). The results indicate that clade size variation, which is the difference in species richness 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 2, 2022. ; https://doi.org/10.1101/2022.01.01.474685doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.01.474685
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

between clades, has a larger impact on the model accuracy than tip ratio, which is the species 

richness difference between states. This means DAISIE may cause error when fitting 

substantially unbalanced phylogenetic data, no matter if the variation between clades is 

caused by state-dependent diversification. In a study that used the DAISIE model to fit 

terrestrial birds of the Galapagos (Valente et al. 2015), the species richness of the clade of 

Darwin’s finches is reported to be much higher than the other clades of birds on the islands. 

The model that best fits the dataset assumes that Darwin’s finches have different cladogenesis 

and extinction rates than non-Darwin’s finches. Spectacular adaptive radiations such as 

Darwin’s finches are well-known on oceanic islands, and obviously lead to large clades. 

However, except for a handful of classic examples of adaptive radiations (Robichaux et al., 1990; 

Losos, 2009; Grant and Grant, 2008; Seehausen, 2006; Emerson, 2002), most island lineages 

do not diversify to form large clades (Patin o et al., 2017). Therefore, for most islands, clade 

size variation will rarely be extremely large when the whole assemblage of species of a given 

taxon is considered, suggesting the performance of models ignoring trait dynamics may not be 

affected for typical islands. 

The power and accuracy of state-dependent biodiversity models has previously been 

evaluated with respect to the accuracy of the ancestral state reconstruction (Holland et al., 

2020) and parameter estimation (Davis, et al., 2013). However, in these models the parameter 

inference model is based on the simulation model, which can generate simulated phylogenies 

for estimation. A statistical approach which does not rely on a formal model for coupling 

between states and diversification is available to detect the correlation between trait states 

and diversification with low type I error (Rabosky and Huang, 2016). However, this method 

cannot be used to reconstruct the ancestral state or to estimate parameters. In our approach, 

we apply a robustness analysis that uses the data from the complex model (SDS model) to 

evaluate the inference power of the simple model (SIS model). Complex models are vulnerable 

to overfitting of the data, and this leads to difficulty in accurately estimating parameters 

(Kelchner and Thomas, 2006). The pipeline used in this study identifies whether the simple 

model can accurately reconstruct diversity and phylogenies on islands without considering 

complex factors. In this way it constitutes a tool to determine whether it is useful to attempt 

to find a likelihood for the complex model or develop some other method to estimate 

parameters for the complex model. While we find that the trait-dependent DAISIE inference 

model seems to be robust to trait dynamics, it may still be meaningful to develop inference 

methods if one is interested in detecting the association between trait states and 

diversification, or in comparing diversification between mainland and island species with 

different traits (Patin o et al., 2017). 
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