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Abstract 
Neuronal responses to similar stimuli change dynamically over time, raising the question of 

how internal representations can provide a stable substrate for neural coding. While the drift 

of these representations is mostly characterized in relation to external stimuli or tasks, 

behavioural or internal state of the animal is also known to modulate the neural activity. We 

therefore asked how the variability of such modulatory mechanisms can contribute to 

representational drift. By analysing publicly available datasets from the Allen Brain 

Observatory, we found that behavioural variability significantly contributes to changes in 

stimulus-induced neuronal responses across various cortical areas in the mouse. This effect 

could not be explained by a gain model in which change in the behavioural state scaled the 

signal or the noise. A better explanation was provided by a model in which behaviour 

contributed independently to neuronal tuning. Our results are consistent with a view in which 

behaviour modulates the low-dimensional, slowly-changing setpoints of neurons, upon which 

faster operations like sensory processing are performed. Importantly, our analysis suggests 

that reliable but variable behavioural signals might be misinterpreted as representational 

drift, if neuronal representations are only characterized in the stimulus space and 

marginalised over behavioural parameters.  
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Introduction 
Neuronal responses to stimuli, contexts or tasks change over time, creating a drift of 

representations from their original patterns1–6. This representational drift can reflect the 

presence of intrinsic noise or plasticity in the circuitry and, depending on its origin, can be 

detrimental to or beneficial for the neural code7,8. Understanding the mechanisms 

contributing to the emergence of representational drift can therefore shed light on its 

relevance for neural computation2,8.  

Representational drift can arise from bottom-up mechanisms, like changes in the 

feedforward input to neurons or from a dynamic reorganization of recurrent interactions in 

the network. Another important source of variability that can contribute to representational 

drift is changes in the behavioural state of the animal. Spontaneous behaviour has in fact 

been shown to heavily modulate responses in awake behaving animals9–11. Drift of 

behavioural state – e.g. changes in attention, arousal or running – can therefore change the 

way neural activity is modulated by top-down mechanisms9,12 over different timescales.  

The exact manner in which such top-down mechanisms modulate the neural activity13–17 

would in turn determine how the behavioural drift affects the representational drift. One 

possibility is that stimulus-evoked responses are just scaled by arousal or running, as 

suggested by gain models18. Under this scenario, the behavioural state of the animal can 

modulate the similarity of sensory representations across multiple repeats of the same 

stimulus (representational similarity), by increasing or decreasing the signal-to-noise ratio. 

Another possibility is that the behaviour contributes independently to neuronal activity, and 

hence representational similarity is better described in a parameter space where internal and 

external parameters conjointly define the neural code. Under the latter scenario, variability in 

behavioural “signal” could be perceived as noise from the viewpoint of sensory 

representations, and could therefore be mistaken as representational drift.   

To delineate the contribution of behavioural variability to representational drift and to shed 

light on the involved mechanisms, we analysed publicly available datasets from the Allen 

Brain Observatory19,20. First, we found that behavioural variability strongly modulates 

similarity of neuronal representations in response to multiple repeats of the same stimulus. 

In fact, our results suggest that a significant fraction of what has been described as 

representational drift in a sensory cortex can be attributed to behavioural variability. Second, 

we found evidence for independent contribution of behaviour to neuronal responses. Our 

analysis suggests that the contribution of external and internal parameters to 

representational similarity would be better understood when representations are described in 

a multidimensional parameter space which is not marginalised over behavioural parameters. 
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Results 

Representational similarity depends on the behavioural state of the animal 

We analysed publicly available, large-scale, standardized in vivo physiology datasets 

recently published by the Allen Brain Observatory19. The electrophysiology data obtained via 

Neuropixels probes21 provides the possibility of studying the spiking activity of a large 

number of units to visual stimuli (see Methods). We studied similarity of neural activity in 

response to multiple repeats of the same natural movie (Fig. 1). This was quantified by a 

measure of representational similarity, which was characterized as the similarity of 

responses, at the population level, to multiple repeats of the stimulus (Methods and 

Extended Data Fig. 1). 

The analysis was performed in two datasets with different structure of stimulus presentations 

(Fig. 1a,e; see Supplementary Table 1). In each dataset, the natural movie (30 second long) 

is presented multiple times in each block of presentation (10 and 30 repeats for dataset1 

and dataset2, respectively). We analysed the data for two blocks of presentation separated 

by more than an hour (Fig. 1a,e). For each presentation of the natural movie, we calculated 

a population vector of responses from the average activity of all neurons in the primary 

visual cortex (V1), in bin widths of 1 second starting from the onset of movie presentation 

(Methods). Representational similarity between two repeats of the natural movie was 

quantified by the correlation coefficient of the population vectors (Extended Data Fig. 1c and 

Methods).  

Previous analysis has shown that such representational similarity is higher within a block of 

presentation, and decreases significantly between different blocks, both in Neuropixels and 

calcium imaging datasets5. Our results confirmed this observation, but we also found that 

representational similarity is strongly modulated by the behavioural state of the animal. This 

was most visible in sessions where the behavioural state (as assayed by pupil diameter and 

the average running speed) changed clearly between the two repeats of the movie (Fig. 

1a,e). We observed that, firstly, change in the behavioural state strongly reduced the 

representational similarity between the two blocks (Fig. 1b,f), reminiscent of the 

representational drift which has been reported over the scale of hours to days4–6. Secondly, 

increased pupil diameter and running during the second block of presentation in fact 

increased the similarity of responses to the same movie within that block (Fig. 1b,f, left). 

Overall, there was a significant drop of representational similarity between the movie repeats 

in which the animal experienced the most changes in the average pupil size (Fig. 1b,f, right). 

These results indicate that the behavioural state of the animal can bidirectionally modulate 

the representational similarity across repeats of the same stimulus. 
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We found similar dependence of representational similarity on the pupil change for other 

sessions (Fig. 1c,g) and across all animals (Fig. 1d,h). The effect was more prominent when 

focusing on movie repeats with significant changes in the average running (Fig. 1d,h, left, 

black lines). Similar trend was also observed when considering units from all recorded 

regions, instead of only focusing on V1 units (Extended Data Fig. 2a). We also observed the 

same trend when repeating the analysis within blocks (Fig. 1d-h, right, grey lines, and 

Extended Data Fig. 2), although the drop of representational similarity across blocks was 

more prominent due to more drastic behavioural changes between the blocks, which is 

expected from the slow timescale of changes in the behavioural state. 

 

 

Fig. 1: Representational similarity depends on the behavioural state of the animal.  
a, Responses of units measured in an example session to different stimuli denoted on the top. Spiking 
activity of units is averaged in bins of 1 second and z-scored across the entire session for each unit. 
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Units in primary visual cortex (V1) and the two blocks of presentation of natural movie 1 (NM1) are 
highlighted by the black lines. Pupil size and running speed of the animal (z-scored) shown on the 
bottom. b, Representational similarity between different presentations of natural movie 1. It is 
calculated as the correlation coefficient of vectors of population response of V1 units to movie repeats 
(see Methods). Left: The matrix of representational similarity for all pairs of movie repeats within and 
across the two blocks of presentation. Right: Representational similarity as a function of the pupil 
change, which is quantified as the normalized absolute difference of the average pupil size during 
presentations (see Methods). The best fitted regression line (using least squares method) and the R 
squared value (R2) are shown. Filled circles show the average values within and between blocks. c, 
Same as (b, right) for four other example recording sessions. Session numbers and the number of V1 
units (#) in each case, respectively: 762602078 (#75), 750332458 (#63), 760345702 (#72), 
751348571 (#49). Only sessions with #>40 are included in the analysis. d, Same as (b, right) for all 
recording sessions. Left: Data similar to (c, grey dots) are concatenated across all mice and the best 
fitted regression line to the whole data is plotted. Black line shows the fit when movie repeats with 
significant change in the average running speed of the animal is considered (80th percentile). Right: 
The average values within and between blocks (filled circles in (c)) are plotted for all mice and the 
fitted regression line to these average values is plotted. Grey lines and R2 values indicate the fit to 
within-block data only. N: number of mice. e-h, Same as (a-d) for a different dataset. Session 
numbers and the number of V1 units (#) in (g), respectively: 766640955(#52), 787025148(#68), 
771990200(#54), 829720705(#52). 
 

In the above analysis, we considered the actual spiking activity of the units to build the 

population vectors. Calculating the representational similarity from these vectors can 

potentially bias the estimate by increasing the impact of highly active neurons. For instance, 

if the units which are firing higher remain consistently active, they may lead to some 

similarity of population vectors even independent of stimulus-evoked responses. To control 

for variance in the average activity of units, we repeated our analysis for population vectors 

composed of z-scored responses (as shown in Fig. 1a,e; see Methods). Overall, 

representational similarity diminished when calculated from the z-scored activity (Extended 

Data Fig. 2b). However, we observed the same trend in terms of dependence on the 

behavioural state, whereby larger changes in pupil size were correlated with larger changes 

in representational similarity (Extended Data Fig. 2b). 

Our previous analyses were performed on wild-type mice as well as mice from three 

different transgenic lines (Pvalb-IRES-Cre × Ai32, n=8; Sst-IRES-Cre × Ai32, n=12; and Vip-

IRES-Cre × Ai32, n=8; see Supplementary Table 1)19. Inclusion of multiple cell types may 

distort our estimate of representational similarity, especially as different cell classes can be 

differentially modulated by behaviour14,16. To control for this, we repeated our analysis for 

recording sessions in wild type mice only and observed similar results (Extended Data Fig. 

3a). Our results also held when analysing female and male animals separately (female mice 

comprised a smaller fraction of the datasets; ~20%) (Extended Data Fig. 3b). Taken 

together, these results suggest that, in awake behaving animals, variability of the 

behavioural state is an important factor contributing to the modulation of representational 

similarity. 
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Evidence for independent modulation of responses by stimulus and behaviour 

What is the mechanism by which behavioural state modulates representational similarity? 

Changes in pupil area are correlated with the level of arousal22, which can modulate the 

neuronal gain17. We therefore studied a possible gain model in which changes in pupil size 

modulate the neuronal responses to sensory inputs (Fig. 2a; Methods). Alternatively, rather 

than scaling the stimulus-induced signal, behaviour can contribute independently to neuronal 

activity16,23. We therefore compared the gain model to a model in which the neural tuning 

was obtained by an independent mixing of stimulus and behavioural signals (Fig. 2b; 

Methods).  

In each model, we calculated representational similarity from the neuronal responses to 

presentations of the same stimulus, and plotted that against the relative behavioural 

parameter (B) across the repeats (��/�� , for the �-th and �-th repeats) (Fig. 2c,d). Both 

models showed, on average, a similar dependence of representational similarity on relative 

behaviour (Fig. 2c,d; the gain model only showed the same pattern if the signal was scaled 

by the behaviour; we observed different patterns, if behaviour scaled the noise, or both the 

signal and the noise; Extended Data Fig. 4a,b).  

To compare different models with the experimental results, we took the relative pupil size as 

a proxy for relative behaviour and plotted the representational similarity of all units against it 

(Fig. 2e). This revealed a similar average dependence as the signal-gain model and the 

independent-mixing model (Fig. 2c-e). We observed a similar dependence for both datasets, 

and for most individual recording sessions within each dataset (Extended Data Fig. 4c-f). 

Similar results were observed when representational similarity was calculated from V1 units 

or all recorded units (Extended Data Fig. 4c-f).  

We then asked how, at the level of individual units, the modulations of responses by 

stimulus and behaviour are related to each other (Fig. 2f,g). To this end, instead of 

calculating representational similarity at the population level, we quantified the similarity of 

individual units’ responses to multiple repeats of the stimulus (stimulus reliability; see 

Methods and Extended Data Fig. 1d). In the signal-gain model, stimulus reliability was highly 

correlated with behavioural modulation of units (Fig. 2f). This is a consequence of the 

scaling of the signal by the behaviour, which implies that neurons with higher signal 

component also show higher modulation with the behavioural parameter (see Methods). The 

signal-gain model therefore predicts that neurons which are strongly modulated by the 

stimulus also show strong modulation by the behaviour (Fig. 2f). In contrast, the 

independent-mixing model predicted an independent relationship between stimulus and 

behavioural modulation of individual units (Fig. 2g).  
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We tested these predictions in experimental data, by calculating behavioural modulation and 

stimulus reliability of individual units in all mice across both datasets. Behavioural 

modulation was calculated as the correlation of each unit’s activity with pupil size, and 

stimulus reliability was obtained as the average correlation of each unit’s activity vectors 

across multiple repeats of the natural movie (Methods and Extended Data Fig. 1d). As 

opposed to the signal-gain model, we did not observe a correlation between stimulus and 

behavioural modulation (Fig. 2h). In fact, a regression analysis suggested that the two 

modulations are independent of each other in both datasets (Fig. 2h), consistent with the 

independent-mixing model.  

Overall, there was a wide distribution of stimulus reliability (Extended Data Fig. 5a) and 

behavioural modulation (Extended Data Fig. 5c) across recorded units, with patterns highly 

consistent across the two datasets. Most V1 units showed variable responses to repeats of 

the natural movie, as indicated by the peak of the distribution at low stimulus reliability 

(Extended Data Fig. 5a). However, the distribution had a long tail composed of units with 

high stimulus reliability, which showed highly reliable responses across repeats of the movie 

(Extended Data Fig. 5a,b). There was a wide spectrum of behavioural modulation too, with 

most units showing positive correlations with pupil size (Extended Data Fig. 5c,d), and a 

smaller population of negatively modulated units (Extended Data Fig. 5c).  

The units that showed significant modulation with the stimulus were not necessarily 

modulated strongly with the behaviour parameter, and vice versa; in fact, it was possible to 

find example units from all four combinations of weak/strong x stimulus/behavioural 

modulations (Extended Data Fig. 5e,f). A clear example of the segregation of stimulus and 

behavioural modulation was observed in CA1, where the units showed, on average, very 

weak stimulus reliability across movie repeats, consistently across different mice and 

datasets (Extended Data Fig. 6a). However, they were largely modulated by behaviour, to 

an extent comparable to V1 units (Extended Data Fig. 6a-c). Taken together, these results 

suggest that, rather than simply scaling the stimulus-evoked responses, behaviour 

modulates the activity in a more independent and heterogeneous manner. 
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Fig. 2: Independent modulation of activity by stimulus and behaviour. 
a, Schematic of a signal-gain model in which behaviour controls the gain with which the stimulus-
driven signal is scaled. Individual units are driven differently with the stimulus, leading to different 
tuning curves which determines their stimulus signal, �. Behavioural parameter, B, sets the gain, �, 
with which the stimulus signal is scaled, before being combined with the noise term, N, to give rise to 
the final response. S is the same across repetitions of the stimulus, while N is changing on every 
repeat (see Extended Data Fig. 4a and Methods). b, An alternative model (independent-mixing) in 
which the response of a unit is determined by the summation of its independent tuning to stimulus and 
behaviour (Methods). c, Representational similarity of population responses to different repeats of the 
stimulus as a function of the relative behavioural parameter (��/��) in the signal-gain model. Black 
line shows the average (in 20 bins). d, Same as c, for the independent-mixing model. e, Same as 
(c,d) for the experimental data from Neuropixels dataset1 (red) or dataset2 (blue). For each pair of 
movie repeats, the average representational similarity of population responses (left: V1 units; right: all 
units) are plotted against the relative pupil size (��/��). (f,g) Relation between behavioural modulation 
and stimulus reliability of units in different models. The stimulus signal-gain model predicts a strong 
dependence between behavioural modulation and stimulus reliability of units (f), whereas the 
independent-mixing model predicts no correlation between the two (g). Best fitted regression lines 
and R2 values are shown for each case. h, Data from V1 units in the two datasets show no 
relationship between the stimulus reliability of units and their absolute behavioural modulation, as 
quantified by the best fitted regression lines and R2 values. Stimulus reliability is computed as the 
average correlation coefficient of each unit’s activity vector across repetitions of the natural movie, 
and behavioural modulation is calculated as the correlation coefficient of each unit’s activity with the 
pupil size (see Methods). Marginal distributions are shown on each axis.  
 

V1 units All units

dataset1 dataset2

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 2, 2022. ; https://doi.org/10.1101/2022.01.02.474731doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.02.474731
http://creativecommons.org/licenses/by/4.0/


 9 

Behavioural variability modulates the low-dimensional components of 

population activity independent of stimulus reliability 

If the behavioural state of the animal modulates the neuronal responses independently of 

the stimulus, it should be possible to see its signature in the low-dimensional space of neural 

activity. To test this, we analysed the principal components (PCs) of population responses in 

individual sessions (Fig. 4). For the two example sessions we analysed previously (shown in 

Fig. 1a,f), the first two PCs explained a significant fraction of variance (Fig. 4a,g). Low-

dimensional population activity showed a distinct transition between two behavioural states, 

which were corresponding to low versus high arousal, as quantified by different pupil sizes 

(Fig. 4b,h). The first PC, which explained most of the variance was, in fact, strongly 

correlated with both pupil size and running speed (Fig. 4c,i). These results suggest that 

behavioural modulation contributes significantly to the low-dimensional variability of neural 

activity.  

To link the low-dimensional modulation of activity by behaviour to single neurons, we next 

analysed the projection of units’ activity over the PCs. PC projections in the neural space 

indicated a spectrum of weakly- to highly-active units (Extended Data Fig. 7a). In fact, neural 

projections over the first two PCs were correlated with the average activity of neurons 

(Extended Data Fig. 7b). In contrast to the average activity, the PC projections did not reveal 

any relationship with the stimulus reliability of units (Fig. 4d,j), suggesting that the low-

dimensional neural activity is modulated independently of stimulus-evoked responses. 

These results were remarkably consistent across different datasets and across difference 

mice (Fig. 4e,f,k,l). The first two PCs explained similar levels of variance across more than 

20 mice in each dataset (Fig. 4e,k). In both datasets, the regression analysis revealed no 

relationship between the two PC projections and the stimulus reliability of units (Fig. 4f,l; see 

Extended Data Fig. 7c for individual sessions). We therefore conclude that behaviour 

significantly modulates the low-dimensional components of neural activity, but this 

modulation does not specifically enhance the activity of neurons which are more reliably 

representing the stimulus.  
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Fig. 3. Behavioural variability 
modulates the low-dimensional 
components of population activity 
independent of stimulus 
reliability.  
a, Relative contribution of the first 10 
principal components (PCs) of 
population responses to the 
variability of activity (quantified by 
the fraction of explained variance by 
each PC) for an example session 
(same as shown in Fig. 1a). b, 
Population activity in the low-
dimensional space of the first three 
PCs. Pseudo colour code shows the 
pupil size at different times, 
indicating that the sudden transition 
in the low-dimensional space of 
activity is correlated with changes in 
the behavioural state. c, Strong 
correlation between PC1 and the 
behavioural state of animal (assayed 
by either pupil size or running 
speed). d, Projection of units’ activity 
over PC1/PC2 versus stimulus 
reliability of the unit reveals no 
correlation between the two (as 
quantified by best fitted regression 
lines in each case). The best fitted 
regression lines and R2 values in 
each case are shown. e, Fraction of 
variance explained by the first and 
second PCs for all sessions. f, Same 
as (d) for all units from all sessions 
in dataset1. g-l, Same as (a-f) for 
dataset2. 

 

Behaviour modulates the setpoint of responses 

To gain further insight into how the behaviour modulates the low-dimensional pattern of 

population activity, we analysed the relation between behavioural parameters and the 

average activity of units. In the two example sessions analysed previously (shown in Fig. 1), 

there was a transition in the average pupil size and running speed in the second block, 

which was correlated with an overall increase in the average population activity (Fig. 5a,e 

and Extended Data Fig. 8a). In general, change in the pupil size explained a significant 

fraction of changes in population activity of V1 units in all sessions (Extended Data Fig. 8b).  

Neuropixels dataset1
All sessionsExample session

Neuropixels dataset2
All sessionsExample session

a c e

b d f

g i k

h j l

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 2, 2022. ; https://doi.org/10.1101/2022.01.02.474731doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.02.474731
http://creativecommons.org/licenses/by/4.0/


 11

We also looked at the average activity of individual units across all movie frames and 

repetitions (their setpoints). Units had a wide range of setpoints, which were relatively stable 

within each block (small variance across repetitions relative to the mean) (Extended Data 

Fig. 8c). However, the setpoints changed upon transition to the next block, with most units 

increasing their setpoints, without an apparent link to their previous setpoint levels 

(Extended Data Fig. 8d). The population vectors composed of setpoints in each repeat can 

be further used to quantify setpoint similarity (Fig. 5b,f). Within-block correlations were high, 

indicating the stability of setpoints when behavioural changes were minimum – although 

occasional, minor changes of pupil size still modulated these correlations (Fig. 5b,f). Most 

changes in setpoint similarity, however, appeared between the blocks, when the animal 

experienced the largest change in its behavioural state.  

Quantifying the dependence of setpoint similarity on changes in pupil size revealed a strong 

relationship, both for V1 units and for all recorded units (Fig. 5c,g). The relationship was 

rather stable when calculated from responses to single frames of movie presentation, 

instead of the average activity across the entire movie (Extended Data Fig. 8e). We obtained 

similar results when the dependence was calculated from the average block activity across 

all mice, from both datasets (Fig. 5d,h). These results, therefore, suggest that the 

behavioural signal can modulate the setpoint of neural activity independent of stimulus, and, 

in doing so, induce a similarity (/dissimilarity) of population responses when behaviour is 

stable (/changing).  

Note that an unintuitive connotation of this finding is that quantifying response similarity from 

population vectors (see e.g.5) may reveal “representational drift” upon behavioural changes, 

even independent of stimulus-evoked modulation of activity. This is because the constancy 

of setpoint activity of units would lead to some degree of similarity between population 

vectors, even if the stimulus-evoked component is different (Extended Data Fig. 6d). The 

behaviourally-induced component of similarity changes more slowly, leading to a drop in 

representational similarity on a longer timescales (e.g. between blocks of stimulus 

presentation, rather than within them). In line with this reasoning, we observed a similar drop 

of “representational similarity” in CA1 (Extended Data Fig. 6e), although individual units in 

this region had, on average, no reliable visual representations (Extended Data Fig. 6a). 

Modulation of setpoint activity – and hence setpoint similarity – by the behaviour can, 

therefore, contribute to representational similarity, independent of stimulus-evoked 

responses. 
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Fig. 4: Behaviour 
modulates the setpoint of 
responses. 
a, Average population 
activity and behavioural 
parameters (pupil size and 
running speed) during the 
first and second blocks of 
presentation of natural movie 
1 (same examples sessions 
as Fig. 1). Grey, first block; 
black, second block; each 
point corresponding to the 
average in one repeat of the 
movie. b, Setpoint similarity 
is calculated as the 
correlation coefficient of 
population vectors 
composed of average activity 
of units during each repeat of 
movie presentation. Change 
in the behavioural state (as 
quantified by the pupil size) 
between the two blocks is 
correlated with a drastic 
decrease in the average 
between-block setpoint 
similarity. Note that transient 
changes of pupil within each 
block also modulate the 
setpoint similarity. c, 
Setpoint similarity (as in b) 
as a function of change in 
pupil size between the movie 
repeats, when the population 
vectors of setpoints are 

composed of V1 units (left) or all recorded units (right). d, Dependence of setpoint similarity on pupil 
change for all sessions, calculated from within-block and across-block averages in each session. e-h, 
Same as (a-d) for dataset2. 
 

Behaviour reliably modulates responses during active states  

What distinguishes an independent behavioural signal from a modulatory component or from 

noise is that it brings about reliable responses for different states of behaviour. That is, there 

should exist a reliable and independent tuning of units with behavioural parameters (like 

pupil size or running speed). We therefore investigated more precisely how the neural 

activity is modulated by behaviour (Fig. 6). We used the correlation of units’ activity with 

running as a metric for behavioural tuning. To obtain a measure of significance of 

Neuropixels dataset1

1st block 2nd blocka

c d

b

Example session All sessions
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.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 2, 2022. ; https://doi.org/10.1101/2022.01.02.474731doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.02.474731
http://creativecommons.org/licenses/by/4.0/


 13

correlations, we calculated bootstrapped correlations (see Methods). More than half of the 

units showed significant modulation by running, and the fraction and distribution of 

significant correlations were similar between the two blocks and across the two datasets 

(Extended Data Fig. 9).  

Another way to assay the reliability of behavioural tuning is to test whether the correlation of 

units with behaviour remains stable between the two blocks of presentation (Fig. 6a,d). 

Random correlations with running should be uncorrelated across the two repeats. In 

contrast, regression analysis revealed a good correlation between the two blocks (Fig.6a,d, 

left). The distributions of correlations with behaviour were also similar between the two 

blocks (Extended Data Fig. 9). Notably, focusing on sessions with similar levels of running 

between the two blocks (Fig. 6b,e), and on units with significant behavioural modulation, 

improved the similarity of tuning between the two repeats (Fig. 6a,d, right). Specifically, most 

units which were positively (/negatively) modulated during the first block remained positively 

(/negatively) modulated in the second block (Fig. 6a,d, right). These results therefore 

suggest that a significant fraction of the population shows reliable modulation by running – 

similar result is expected for pupil, as we observed a high correlation between modulation of 

units with running and pupil in both datasets (Fig. 6b,e, lower). 

Our results held when repeating the analysis for all units instead of V1 units only (Fig. 6c,f 

and Extended Data Fig. 9). We also observed similar results when quantifying the reliability 

of tuning between two blocks of presentation of another stimuli (drifting grating; Extended 

Data Fig. 10). Notably, the tuning of units remained stable from one stimulus type to another: 

modulation of units during presentation of drifting gratings had a good correlation with their 

modulation during natural movie presentations for both blocks (Extended Data Fig. 10d,h). 

The tuning with running was even reliable between the first (30-90 mins) and second (90-

150 mins) parts of the entire session, with each part containing different stimuli (Extended 

Data Fig. 11). We did a region-specific analysis of this reliability and found that reliable 

tuning exists in various regions (Extended Data Fig. 11). Overall, these analyses suggest 

that behaviour reliably and independently modulates neuronal responses.  
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Fig. 5: Behaviour reliably 
modulates responses during 
active states. 
a, Correlation of activity with 

running during second block 

against the first block for all V1 

units (left), and for selected 

sessions and units (right). In the 

latter case, only sessions with 

similar average running 

between the two blocks, and 

units with significant correlation 

with running, are selected (see 

Extended Data Fig. 9 and 

Methods for details). b, Upper: 

Average z-scored value of 

running in the first (1st) and the 

second (2nd) block across all 

units/sessions (all; red) and for 

selected ones (sel; magenta). 

Lower: Correlation of all V1 

units with pupil size against 

their correlation with running in 

first (grey) and second (black) 

blocks. Magenta: regression fits 

for selected units/sessions only. 

c, Same as (a) for recorded 

units from all regions. d-f, 

Same as (a-c) for dataset2. 

  

Stimulus-dependence of behavioural variability and setpoint similarity 

External stimulus directly modulates the responses by activating selective receptive fields of 

neurons, which can be measured under anaesthesia24,25. In awake behaving animals, 

however, it is possible that different stimulus types indirectly modulate the responses by 

inducing different patterns of behavioural variability. We indeed found that this was the case 

when comparing natural movies with an unnatural stimulus (drifting gratings) (Fig. 6). Natural 

movies induced more variability of pupil size and running in the animals across the two 
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blocks of stimulus presentations: both measures significantly increased during the second 

block for natural movies, whereas changes were not significant for drifting gratings (Fig. 

6a,d). The result was consistent across the two datasets with different length and sequence 

of stimulus presentations (cf. Extended Data Fig. 11a,b).  

To see if and how this difference affects response similarity of units, we calculated average 

setpoint similarity (cf. Fig. 5) between the two blocks of presentations from the shuffled 

activity of units in response to different stimuli (see Methods). Average setpoint similarity 

was high for both stimuli, but it was significantly larger for drifting gratings for most sessions 

(Fig.  6b,e). Plotting setpoint similarity as a function of behavioural changes for the entire 

distribution revealed its composition across the two stimulus types. Responses to drifting 

gratings showed, on average, a higher setpoint similarity for similar behavioural states (small 

behavioural changes) (Fig. 6c,f), arguing for more stability of average responses even 

independent of behavioural variability. Larger behavioural changes were more prevalent for 

the natural movie presentations, and units’ responses showed a large drop of setpoint 

similarity at these deviations (Fig. 6c,f), leading to a significant drop of average setpoint 

similarity compared to drifting gratings. Taken together, these results suggest that stability of 

population responses to different stimulus types might be determined by the combined effect 

of stimulus-evoked reliability of responses and its indirect modulation by behavioural 

variability.  

 

 

Fig. 6: Stimulus-dependence of behavioural variability and setpoint similarity. 
a, Average pupil size and running speed during the 1st (grey) and 2nd (black) blocks of presentation 
of natural movies (left) and drifting gratings (right) for different sessions (empty circles). Filled circles: 
the mean across sessions. Pupil size and running speed are z-scored across each session, 

Neuropixels dataset1 Neuropixels dataset2
a d

b ec f
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respectively. P-values on top show the result of two-sample t-tests between the two blocks. NS: P > 
0.05. *: P ≤ 0.05; **: P ≤ 0.01; ***: P ≤ 0.001; ****: P ≤ 0.0001. b, Average setpoint similarity between 
the two blocks of presentation of natural movie 1 (NM) and drifting gratings (DG) for different 
sessions. Sessions are sorted according to their average setpoint similarity for NM. Population 
vectors are built out of the average responses of all units to 30 randomly chosen frames (1 second 
long). The correlation coefficient between a pair of population vectors from different blocks (within the 
same stimulus type) is taken as setpoint similarity. The procedure is repeated for 100 pairs in each 
session and the average value is plotted. Error bars show the std across the repeats. c, Left: Setpoint 
similarity as a function of the difference in average running, ∆Z=Z2-Z1, where Z1 and Z2 are the 
average running during randomly chosen frames in the 1st and 2nd block, respectively. The lines 
show the average of the points in 40 bins from the minimum ∆Z to the maximum. Right: Distribution of 
changes in running for different stimuli. d-f, Same as (a-c) for dataset2.   
 

Decoding generalizability improves by focusing on reliable units  

How does behavioural variability affect the decoding of stimulus-related information, and 

how can decoding strategies be optimized to circumvent the drift of representations? Our 

analyses so far suggested that behaviour modulates the responses in addition to and 

independently of stimulus-evoked modulations (independent model in Fig. 3). This 

independent behavioural modulation would be perceived as noise, if a downstream decoder 

is decoding stimulus-related signals, and can compromise the generalizability of decoding. 

For instance, the activity of a subpopulation of units (A) might be assigned to stimulus A by 

the decoder, in the absence of significant behavioural modulation. If the decoder is now 

tested in a new condition where behaviour modulates the responses independently of the 

presented stimulus, the activity of subpopulation A can be interpreted as presence of 

stimulus A, independent of the presented stimulus. This is in contrast to the gain model 

(signal-gain model in Fig. 2b) in which behavioural state scales the stimulus-evoked signal, 

and can therefore not compromise the generalizability of decoding (subpopulation A only 

responds to stimulus A, but with different gains). In the signal-gain model, focusing on units 

which are strongly modulated by behaviour should in fact enhance the decoding 

generalizability under behavioural variability, whereas in the independent model the focus 

should be on units with more stimulus reliability.  

We tested these two alternatives directly by training a linear decoder to discriminate 

between different frames of the natural movie (Fig. 7a and Methods). The decoder was 

trained on the activity of units in the first block to detect a target frame; it was then tested on 

the second block of presentation to discriminate between the target frame and other frames, 

in order to evaluate the generalizability of decoding (i.e out-of-distribution transfer) (Fig. 7a). 

When the decoder was trained on the activity of all units in the first block, discriminability (��) 

was very low in the second block (Fig. 7b,c,e,f). However, focusing on the reliable units 

(units with high stimulus reliability) shifted the distribution of �� to larger values and 

increased the average discriminability (Fig. 7c,f). Focusing on units with strong behavioural 
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modulation, on the other hand, did not yield higher discriminability in the second block 

(Extended Data Fig. 12). These results suggest that behavioural modulation is detrimental to 

generalizability of stimulus decoding, and that this problem can be circumvented by focusing 

on units with more stimulus information.  

This effect was consistent across mice in both datasets (Fig. 7d,g). In dataset2, we observed 

higher average �� in the second block, when the decoder was trained and tested on all units. 

This could be due to more presentations of the natural movie in dataset2 (30 repetitions in 

each block compared to 10 in dataset1). Larger training samples can help the decoder in 

learning the signal from the noise, suggesting that the effect of behavioural “noise” on 

corrupting the stimulus signal is more significant for small sample sizes. On the other hand, 

longer presentations can lead to sampling from responses under more behavioural 

variability, which can in turn inform the decoder on how to ignore the stimulus-irrelevant 

modulation by behaviour. Altogether, these results corroborate our previous analysis that the 

contribution of behavioural variability to neural activity is orthogonal to stimulus modulations, 

and suggest that such behavioural noise limits the decoding capacity especially with limited 

data. 
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Fig. 7: Decoding generalizability of natural images improves by focusing on reliable units. 
a, Schematic of a decoder which is trained on the population activity during the first block of 
presentation of the natural movie (upper) and tested on the second block of presentation to 
discriminate different frames of natural images from each other (out-of-distribution transfer, see 
Methods for details). b, Matrix of discriminability index (Methods), d’, between all combination of 
movie frames as target and test, when all units (left) or only units with high stimulus reliability (right) 
are included in training and testing of the decoder. c, Distribution of d’ from the example 
discriminability matrices shown in (b) for decoders based on all units (black) and reliable units 
(green). Reliable units are chosen as units with stimulus reliability (Methods) of more than 0.5. d, 
Average d’ for all mice, when all units or only reliable units are included. Size of each circle is 
proportionate to the number of units available in each session (sessions with >10 reliable units are 
included). Filled markers: average across mice. e-g, Same as (b-d) for dataset2. Data in (b,c) and 
(e,f) are from the same example sessions shown in Fig. 1a and Fig. 1e. 
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Discussion 
The results of our analysis here suggest that variability of the behavioural state of animal 

contributes significantly to changes in representational similarity. We found that population 

responses to different repeats of the same natural movie was the most similar when 

behavioural parameters like pupil size and running speed changed the least. This was a 

result of an independent modulation of neural activity by behaviour, which was mixed with 

stimulus-evoked responses to represent a multidimensional code. Our results are consistent 

with a view in which behaviour modulates the low-dimensional, slowly-changing setpoints of 

neurons, upon which faster operations like sensory processing are performed.  

Small modulation of ongoing neural dynamics by sensory stimuli was reported before in 

awake, freely viewing animals26, in line with other reports on the significance of internal 

signals even in sensory cortices27–29. Our results here are consistent with these reports, and 

our analysis provides a mechanism by which variability of the internal state can contribute to 

ongoing signal correlations. It suggests that two distinct sources of response similarity exist 

in neuronal networks, with one set by baseline responses modulated on a slower timescale 

via internal parameters (setpoint similarity), and the other arising from finer and faster 

modulations invoked by sensory stimuli. Importantly, changes in representational similarity 

(i.e. representational drift) can arise from changes in both sources, and hence attributing it 

purely to the drift of the sensory component might be inaccurate. 

Internal, behavioural states of the animal can contribute independently to neural processing, 

or can act as a modulator for external stimuli, for instance by increasing the input gain and 

enhancing the saliency of the sensory signal. Notably, our results could not be explained by 

a model in which behaviour acted as a gain controller for sensory inputs. Such a model 

would predict a direct relationship between the stimulus modulation and behavioural 

modulation of neurons. One would therefore expect that the most reliable neurons in 

representing sensory information to be modulated the most by arousal or running states. 

However, we found that the reliability of stimulus-evoked responses to different repeats of 

the same natural movie was independent of behavioural modulation, in line with previous 

reports16.     

A gain-model account of behavioural modulation would only change the signal-to-noise ratio 

of sensory representations by behaviour. Therefore, if the level of arousal or attention of the 

animal drifts away over time, the signal component of the representations becomes weaker 

compared to the noise, leading to some drop in representational similarity. In contrast, 

independent modulation of neuronal responses by behaviour affects representational 

similarity in more complex ways. First, similarity of population vectors across repeats of the 

same stimuli can be due, at least partly, to the behavioural signal rather than stimulus-
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evoked responses. Second, changes in behavioural signal might be perceived as sensory-

irrelevant noise, if the parameter space of representations (composed of internal and 

external parameters) is only analysed over the external stimulus dimension10,30. Behavioural 

variability can, therefore, be misinterpreted as representational drift in the latter scenario.   

A recent analysis of similar datasets from the Allen Brain Observatory reported similar levels 

of representational drift within a day and over several days5. While this was mainly attributed 

to the drift of sensory representations, our analysis here shows that the contribution of 

behavioural variability might have a strong contribution in these (and possibly other) 

datasets. First, the study showed that tuning curve correlations between different repeats of 

the natural movies were much lower than population vector and ensemble rate correlations5; 

it would be interesting to see if, and to which extent, similarity of population vectors due to 

behavioural signal that we found here (cf. Fig. 5) contributes to this. Second, the stimulus-

independent component of representational drift due to behavioural variability is a global 

phenomenon that can affect all regions, even independent of their involvement in the 

processing of natural images. Similar to5, we found “representational drift” in many areas, 

including regions like CA1, although units in this region had no reliable representation of 

natural images (Extended Data Fig. 5a). Drawing further conclusions about stimulus-

dependences of representational drift in visual cortex – and other sensory cortices – thus 

needs a critical evaluation by teasing apart the contribution of different components.  

Another recent study reported stimulus-dependent representational drift in the visual cortex, 

whereby responses to natural images experienced large representational drift over weeks 

compared to responses to drifting gratings6. In line with the finding of this study, we found 

here that responses to drifting gratings were more robust to behavioural variability in 

general. However, we also observed that different stimulus types can induce variable 

patterns of behaviour, thus highlighting the combined contribution of behaviour and stimulus 

to representational drift. Notably, the mentioned study6 found a dependence of 

representational drift on the pupil size (see Supplementary Fig. 8c in 31), with a more 

decrease in pupil size over time correlating with more representational drift for both stimulus 

types (see Supplementary Fig. 11d in 6). Such consistent changes of behaviour may 

contribute to representational drift over longer timescales (days to weeks), by recruiting 

similar mechanisms as we described here for shorter intervals (e.g. changes in setpoint 

similarity). Mapping behavioural changes over longer times and per individual animal can 

shed light on the specific contribution of behaviour to representational drift. It would for 

instance be interesting to see if the large variability of representational drift across different 

animals (see Supplementary Fig. 5 in the same study6) might be linked to their behavioural 

variability.  
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Behavioural variability might be more pertinent to other modalities for which active sensing is 

less constrained during experiments. While eye movements are minimized in head-fixed 

mice, in other modalities (like olfaction) it might be more difficult to control for the 

behavioural variability arising from active sensing (e.g. sniffing) over time and across 

animals. A recent study demonstrated significant representational drift over weeks in the 

primary olfactory cortex of mouse4. The surprising finding that sensory representations are 

not stable in a sensory cortex was hypothesized to be linked to the different structure of 

piriform cortex compared to other sensory cortices with more structured connectivity. It 

would be interesting to see if, and to which extent, other factors like changes in the gating of 

olfactory bulb by variable top-down modulations32,33, or changes in the sniffing patterns of 

animals, may contribute to this. Similar to the general decline over time of the pupil size 

reported in the visual cortex6, animals may change their sniffing patterns during experiments, 

which can in turn lead to a general or specific suppression or amplification of odours, 

depending on the level of interest and engagement of individual animals in different 

sessions. 

Beyond sensory processing, variability of internal state can also contribute to other cognitive 

processes in various cortices34. A recent study in monkey found that changes in the 

perceptual behaviour was modulated by a slow drift in its internal state, as measured by 

pupil size35. This was correlated with a slow drift of activity in V4 and PFC, along with 

changes in the impulsivity of the animal (as reflected in the hit rates), which overrode the 

sensory evidence. These results, in another species, are in agreement with our findings here 

on the contribution of behavioural drift to changes in neural representations. Interestingly, 

the sensory bias model in the study could not capture the effect of the slow drift on decoding 

accuracy; instead, an alternative impulsivity model, which introduced the effect of slow drift 

as an independent behavioural parameter, matched with the data (Fig. 6 in 35). 

Another study in monkey M1 found that learning a new BCI task was modulated along the 

dimension of neural engagement of the population activity, which in turn was correlated with 

pupil size36. Neural engagement increased abruptly at the beginning, and decreased 

gradually over the course of learning, where output-null and output-potent components of 

neural engagement differentially attuned for different targets. Notably, exploiting behavioural 

perturbations in this study enabled an interactive interrogation of the neural code during 

learning. Behavioural perturbations, combined with large-scale recording and perturbation of 

neural activity37–39, which are more feasible in mice, can pave the way for a more precise 

(and potentially causal) interrogation of the neural mechanisms underlying representational 

drift. It would specifically be interesting to see how the bidirectional modulation of activity by 

behaviour we observed here emerges and which circuit mechanisms13,14,17,18 contribute to it.  
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In summary, our analysis reveals new insights on representational drift from the viewpoint of 

behaviour. Conceptually, it argues for primacy of internal parameters40, and suggests that 

representational similarity could be better understood and characterized in a 

multidimensional parameter space where the contribution of external and internal 

parameters are equally considered. Computationally, it argues for an independent mixing of 

stimulus-evoked and behavioural signals, rather than a simple gain modulation of sensory 

inputs by behaviour. Technically, it asks for further controls and analysis of behavioural 

variability in the characterisation of representational drift. Future studies will hopefully probe 

the multidimensional code underlying representations in the brain by combining large-scale 

recordings of neural activity with simultaneous measurement and quantification of behaviour. 
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Methods 

Curation and preprocessing of the data 

Data curation. Publicly available data provided by the Allen Brain Observatory19,20 was 

accessed via AllenSDK (https://allensdk.readthedocs.io). We analysed recording sessions in 

which neuronal responses to visual stimuli were measured via electrophysiology techniques 

by Neuropixels probes (https://portal.brain-map.org/explore/circuits/visual-coding-

neuropixels). The data composed of 58 sessions/mice in two separate datasets: brain 

observatory dataset (Dataset1; n=32) and functional connectivity (Dataset2; n=26) 

(Supplementary Table 1). Similar stimuli (including natural moves and drifting gratings) were 

shown to the animals, with different length and sequence of presentations in each dataset 

(https://allensdk.readthedocs.io/en/latest/_static/neuropixels_stimulus_sets.png; see 

Extended Data Fig. 11a,b for illustration of different stimulus sets). We used the spiking 

activity of units which was already extracted by Kilosort210, and we included units in our 

analysis which passed the default quality criteria. Invalid intervals were treated as Not a 

Number (NaN) values. For further details on the preparation of animals, visual stimulation, 

data acquisition and default pre-processing of data, see the Technical White Paper from the 

Allen Brain Observatory on Neuropixels Visual Coding.  

Pre-processing of data. For our analysis here, we rendered the spiking activity of units in 

bins of 1 second. When analysis was focused on specific stimulus types (e.g. presentation of 

natural movie 1 as in Fig. 1b,f), the activity was rendered from the onset of presentation of 

each block of the stimulus. When the analysis was across all stimuli and involved the activity 

during the whole session (e.g. data shown in Fig. 1a,e), the activity was rendered from the 

beginning of the session or an arbitrary time (e.g. time frames specified in Extended Data 

Fig. 11). Behavioural information was obtained in similar time frames. Locomotion was 

quantified for all animals as the average running speed. Level of arousal was quantified by 

pupil size, as measured by pupil width (whenever pupillometry was available; 

Supplementary Table 1).  

To normalize the parameters (e.g. to normalize for different size of pupil across animals), we 

calculated their z-score values. For parameter � (units’ activity, pupil size or running speed), 

it was obtained as � � 	� 
 µ��/σ�, where µ� and σ� are the mean and standard deviation of 

� during the entire session or a specified time window. 

Data analysis  

Representational similarity. Representational similarity of population activity was 

quantified by calculating the correlation of responses to different repeats of the same 

stimulus (Extended Data Fig. 1c). Let � be a vector of responses of � recorded units to � 1-

second long chunks of a natural movie (the natural movie is broken down to � chunks, or 
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frames, each lasting for 1 second, corresponding to the bin width the neural activity is 

rendered in). � is a 1 � N� population vector composed of the concatenated activity of units 

(either the actual activity, i.e. average spiking activity, or the z-scored activity of each unit). 

Denote ��  and ��  as vectors of responses to two repeats of the same natural movie. 

Representational similarity is quantified as the Pearson correlation coefficient of these two 

population vectors: 

ρ�� � cov��� , ���
σ��σ��  

Stimulus reliability. We also quantified the reliability of how single units respond 

individually to repetitions of the stimuli (Extended Data Fig. 1d). To quantify that, we 

calculated a stimulus reliability metric, which is obtained as the average correlation 

coefficient of each unit’s activity vector (�) across repetitions of the stimulus (e.g. the natural 

movie). Let ��� and ��� be the vectors of response of the �-th unit to the i-th and j-th 

repetitions of the natural movie. Similarity of the unit’s response between these two repeats 

can be quantified by the Pearson correlation coefficient of the responses as before: 

ρ��� � cov����� , ����
σ
��
�σ

��
�

 

Stimulus reliability of the unit � is obtained as the average correlation across all pairs of 

(non-identical) repetitions of the stimulus: 

ρ� � 1
��	�� 
 1� � � cov���� , ����

σ���σ������

	�

�
�

 

where �� is the number of repetition of the stimulus. Note that to each single unit we can 

ascribe a stimulus reliability index, since this is calculated from the individual vectors of 

single units’ responses (r�); on the other hand, representational similarity is calculated from 

the population vector of responses (�) and indicates a single population metric ascribed to 

the activity of a group of neurons (e.g. V1 units or all recorded units). 

Behavioural tuning. To obtain a measure of how single units are modulated by behaviour, 

we calculated the correlation of units’ responses with behavioural parameter, β: 

ρ�	β� � cov	�� , β�
σ��σ  

Here, �� is the vector of response of the �-th unit, and β is the vector of respective 

behavioural parameter (either pupil size or running speed) rendered during the same time 

window and with the same bin width as unit’s activity.  

To obtain a measure of reliability of this modulation by behaviour, we calculated bootstrap 

correlations. The activity of each unit was shuffled for 100 times and the correlation with 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 2, 2022. ; https://doi.org/10.1101/2022.01.02.474731doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.02.474731
http://creativecommons.org/licenses/by/4.0/


 25

behaviour was calculated. The mean (µsh) and std (σsh) of the distribution of shuffled 

correlations were then used to obtain the z-scored, bootstrapped correlation:  

Z � ρ	β� 
 µsh

σsh

 

where ρ	β� is the unshuffled correlation of the unit with behaviour. 

Modelling 

Gain models. To gain mechanistic insight on the contribution of behavioural changes to 

modulation of representational similarity, we explored two different models. First, we 

developed a gain model, in which the integration of the signal and the noise by neurons was 

differently modulated by behaviour (Extended Data Fig. 4a). For a population of �� neurons, 

let ! be the 1 � �� vector of responses of neurons upon presentation of a stimulus. This is 

assumed to be composed of signal (") and noise (�) components. Change in the 

behavioural parameters (for instance, pupil size) is supposed to change a gain parameter, #, 

which in turn differently modulate the signal (") and noise (�). The vector of population 

activity, !, is obtained, as a linear combination of weighted components by the 

behavioural/gain parameter. If the signal and the noise are both scaled by the behavioural 

parameter, it is given as ! � gS & gN. If either the noise or the signal are scaled, it is given 

as ! � S & gN or ! � gS & N, respectively (Extended Data Fig. 4b).  

" and � are both vectors of size 1 � ��, where each element is drawn from a random 

uniform distribution between '0,1). The population activity is simulated for �� repeats of the 

stimulus. The stimulus signal, ", remains the same for all the repeats (frozen noise drawn 

from the same range as before, '0,1)), while the noise component, �, is instantiated 

randomly on each repeat (from the same range, '0,1), as the signal). The behavioural 

parameter (e.g. pupil size) is assumed to change on every repeat too, which changes the 

gain parameter, #, as a result. # was therefore assumed to be a random number uniformly 

drawn from the range '0.5, 2) for each repeat. We chose �� � 1000 and �� � 100.  

Representational similarity for different models was calculated, similar to the procedure in 

analysing the experimental data, as: 

ρ�� � cov�!� , !��
σ��σ��  

where !�  and !� are population responses to the �-th and �-th repeat of the stimulus, 

obtained from different gain models. This value is plotted against the relative gain (obtained 

as the ratio of the gains in the two repeats, #�/#� or #�/#�) in Extended Data Fig. 4b. 

Extended gain model. To match better with the experimental data on a single unit level, we 

extended the previous signal gain model to have stimulus tuning for individual units (Fig. 2a). 

Whereas before the stimulus was assumed to be a single, fixed value between '0,1) for each 
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neuron, now the stimulus itself is extended (corresponding to different frames of the natural 

movie or different orientations of drifting gratings). The stimulus, -, is assumed to be a vector 

of fixed random values between [0,1] with size 1 � ��. Each neuron, �, has a different 

stimulus drive/tuning, .� , with which the stimulus vector is multiplied. . is a vector of size 

1 � �� (number of neurons in the population), randomly drawn from '0,1). Response of the 

�-th neuron to each repeat of the stimulus is composed of its stimulus signal (" � .�-), 

which is multiplied by the behavioural gain (#), and an added noise term (�), which is 

independently drawn for each stimulus and repeat from the range '0,1). �� � 10, �� � 1000, 

�� � 200. 

Independent model. We also developed an alternative model, whereby the effect of 

behaviour on population responses was modelled as an independent signal (Fig. 2b). Here, 

instead of scaling signal or noise components of the input, behaviour enters as an 

independent parameter: 

! � "� & � & "�  

where "� and "�  are stimulus-evoked and behavioural signals and � is the noise. "� and � 

were instantiated as before, while "�  was determined based on two factors. First, the 

behavioural parameter, β, which was changing on every repeat, and was simulated, similarly 

as the behavioural gains before, by a random number between '0.5, 2) for each repeat. 

Second, the vector of tuning (.�) of different neurons in the population with the behavioural 

parameter, which was modelled as a random number between '0,1) for each neuron. The 

behavioural signal was obtained as: "� � β.� . Representational similarity was computed as 

before for the population vectors and plotted against the relative behavioural parameters. 

Decoding model. To directly compare the stimulus-induced information available in different 

blocks of stimulus presentation, we developed a decoding model (Fig. 7a). A linear decoder 

is trained on the neural activity (composed of the average activity of units in response to 

different repeats of the natural movie) during the first block of presentation to discriminate 

different frames (1 second long) of the natural movie (Fig. 7a, upper). The weights of the 

readout (W) for each target frame were optimized to maximize its classification (C=1) against 

other, non-target frames (C=0). The decoder is then tested on the data in the second block 

(Fig. 7a, lower). The population activity in response to each frame (the vector of average 

responses of neurons to a single frame across different repeats) is passed through the 

decoder to determine whether it is the target (D=1) or not (D=0). Performance of the decoder 

is quantified by calculating the discriminability (d’) as  

�� � µ� 
 µ�
/σ�� & σ��
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where µ� and σ� are the average and std of D for target frame across repetitions (within the 

second block), and µ� and σ� are similar values for non-target frames. The discrimination 

matrix (Fig. 7b,e) then shows the discriminability (d’) of each movie frame as a target when 

presented against all other frames.  

Theoretical analysis 

Gain models. Representational similarity for the responses in the gain models can be 

calculated as follows. 

In the absence of any scaling of the signal or the noise, ! � " & �, the representational 

similarity is obtained as the correlation coefficient of responses to a pair of stimulus repeats: 

ρ�� � cov�!� , !��
σ��σ��  

where !� � S & �� and !� � S & ��. Assuming that " and � have zero means, we can write: 

ρ�� � σ��
σ�� & σ	�  

where σ� and σ	 are the std of " and �, respectively. This indicates that representational 

similarity can be expressed as a function of the relative variability of the signal and the noise. 

If modulation of the responses due to signal is dominant over the noise, σ	 0 σ	, ρ�� 1 1. 

If both the signal and the noise are scaled by the behavioural parameter, by the gain factor 

#, as u � gS & gN, we obtain: 

ρ�� � #�#� �σ��
g�g�	σ�� & σ	� � � �σ��

σ�� & σ	�  

where #�  and #�  are the gains in the �-th and �-th repeat of the stimulus, respectively. 

Representational similarity, therefore, remains the same under similar scaling of " and �. 

If only the noise is scaled by behaviour, we obtain: 

ρ�� � σ��
3�σ�� & #��σ	� ��σ�� & #��σ	� �

 

showing that the larger the gain, the smaller the representational similarity. 

Similarly, if only the signal is scaled, representational similarity can be obtained as follows: 

ρ�� � g�g�σ��
3	g��σ�� & σ	� ��#��σ�� & σ	� �

 

which, if rewritten as: 

ρ�� � σ��
3�σ�� & σ	� /#����σ�� & σ	� /#���
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shows that larger gains effectively decrease the significance of noise, and hence enhance 

representational similarity. Specifically, in the limit of very large gains for both repetitions 

(#� 0 1, �#� 0 1), we have: 4�� 1 1.  

For the specific case where gains are the same between the two repeats (#� � #� � #), the 

equation simplifies to: 

ρ�� � σ��
σ�� & σ	� /#�

 

Thus, for similar behavioural states (and hence gains) between the two repeats of the 

stimulus, representational similarity increases if # 5 1 and decreases if # 6 1. 

Independent model. For the model in which the stimulus and the behaviour contributes 

independently to neural responses, representational similarity in response to the same 

stimulus can be expressed as: 

ρ�� � σ��
σ�� & σ�� & σ	�  

where σ�, σ�, and σ	 denote the variability of the population response induced by stimulus, 

behaviour and noise components, respectively. In deriving the above equation, we have 

assumed that the stimulus and behavioural components of the signal are independent, i.e. 

6 "� . "� 5� 0 (in addition to the noise term being independent of "�  and "� , respectively). 

We also assumed that the behavioural signal, "� � β., remained the same between the two 

repeats (that is, the behavioural parameter was the same: β� � β� � β. If the behavioural 

parameter changes between the repeats, the equation can, in turn, be written as: 

ρ�� � σ��
3�σ�� & β��σ�

� & σ	� ��σ�� & β��σ�
� & σ	� �

 

Note that, when representational similarity is only characterized in terms of the stimulus part 

of the signal, the contribution of behavioural variability is similar to a noise term – decreasing 

4��  for larger values of β. Changes in the behavioural state can, thus, not be distinguished 

from random variability of the “signal”. 

Relation between representational similarity and stimulus reliability. As explained 

above, representational similarity and stimulus reliability are calculated to quantify the 

similarity of population and single units’ responses, respectively, to the repeats of the same 

stimulus. In fact, representational similarity of a population vector composed of one single 

unit is the same as the stimulus reliability of that unit. Similarly, if all the units in a population 

of neurons had the same response profile in response to the stimulus, the stimulus reliability 

of units would be the same as the representational similarity of the population responses. 

Although these two measures are related (similar to lifetime sparseness and population 

sparseness41), they are, however, not always directly equivalent to each other.  
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Consider a single unit, �, which has a constant baseline firing rate of �� and a component 

which is modulated by the stimulus, ��: � � �� & ��. If the stimulus-modulated component of 

the response is randomly changing between different repeats of the stimulus, the neuron 

would have a stimulus reliability of zero: ρ� � 0. A population of units with this behaviour 

would have an average stimulus reliability of zero. However, the representational similarity of 

the responses of this population is not necessarily zero. In fact, we may obtain high values 

of population-level representational similarity, if the baseline component of the responses is 

significantly larger than their modulation ( �� 0 ��). Under this scenario, representational 

similarity is calculated from the baseline component of the population responses (��), which 

indeed remains constant across repeats, hence ρ�� 1 1.  
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Supplementary information 
 

 

Extended Data Fig. 1: Characterization and quantification of representational similarity. 

a, Left: Illustration of response of a population of neurons (#1 to #n; upper) to a stimulus 

(lower), composed of binary values (ON: red; OFF: white). Right: The population response to 

another repetition of the same stimulus can remain the same (upper), demonstrating a 

stable and reliable code, or it can change from the original pattern (lower), leading to a drift 

of representations. b, The degree of change or constancy of representations can be 

assayed by comparing the population responses to two repeats of the same stimulus. c, 

Representational similarity (RS) is quantified by the corelation coefficient (CC) of the 

concatenated (across neurons) vector of population responses to two repeats, PV(i) and 

PV(j). d, Stimulus reliability (SR) is calculated for each unit individually, from the CC of the 

vector of responses of that unit to two stimulus presentations.         
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Extended Data Fig. 2: Relation between behavioural changes and representational similarity 

when calculated from z-scored activity. 

a, Same as Fig. 1d,h when all recorded units are included, instead of only V1 units. b, Same 

as Fig. 1d,h when population vectors are composed of z-scored activity of units in V1 

(upper) or all regions (lower). Z-scored activity of unit � is calculated as �� � 	�� 
 µ��/σ�, 
where µ� and σ� are the average and std of the activity of unit (��) during the two blocks of 

presentation of natural movie 1. Left: Neuropixels dataset1; Right: Neuropixels dataset2. 
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Extended Data Fig. 3: Dependence of representational similarity on behavioural change in 

wild type mice and for male/female animals separately. 

Same as Extended Data Fig. 2 when (a) only wild typed (WT) mice are included in the 

analysis, or (b) when the analysis is performed for V1 units in female and male mice 

separately (see Supplementary Table 1 for details). Left: Neuropixels dataset1; Right: 

Neuropixels dataset2. 
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Extended Data Fig. 4: Dependence of representational similarity on behaviour in different 

gain models and in different experimental datasets. 

a, A model neuron which integrates the signal and the noise components in its inputs. The 

signal has the same pattern over multiple repetition (rep#) of the stimulus, while the noise 

changes in each repeat. b, Representational similarity as a function of relative gain of the 

repeats (#�/#� , where #�  and #�  are the gains in the �-th and �-th repeats) for three models, 

where both signal and noise (left), only noise (middle), or only signal (right) components of 
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the input are scaled by behaviour (see Methods for details). Change in the gain did not 

change representational similarity when both signal and noise were scaled (left), consistent 

with our theoretical analysis (see Methods). When arousal scaled noise only, there was a 

small decrease in the average representational similarity (middle). The most prominent 

effect was observed when arousal scaled signal only. For this scenario, a general increase 

in the average representational similarity was obtained, with the maximum increase 

happening at equal gains (#� � #�) (right). c, Representational similarity as a function of 

relative pupil size (obtained by the division of the average pupil sizes in a pair of movie 

repeats) for all recorded units. d, The average representational similarity of all mice shown in 

(c) for datasets 1 (red) and 2 (blue) separately. Bottom: Same when V1 units are only 

included, from the sessions with more than 40 units (the inclusion criterion). e, Same as (c) 

when V1 units are only included in the analysis. There are fewer individual sessions here 

because not all sessions contained more than 40 V1 units. f, Same as (d) for V1 units.  
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Extended Data Fig. 5: Wide and mixed distribution of stimulus and behavioural modulations.   

a, Distribution of stimulus reliability for all V1 units from all sessions in Neuropixels dataset1 

(red) and dataset2 (blue). b, Sample activity of V1 units with high stimulus reliability 

(indicated by the numbers on the top) from each dataset. Top: The activity in response to 

each movie repeat; bottom: average activity in each block of presentation. c, Distribution of 

behavioural modulation of all V1 units for the two datasets. Behavioural modulation is 

obtained as the correlation coefficient (CC) of each unit’s activity with pupil size. d, Sample 

activity of V1 units with strong modulation by pupil size (numbers indicated on the top). Top: 

tuning of unit’s activity with pupil size. Bottom: the activity of units in response to repeats of 

the natural movie, showing different levels of modulation by stimulus within and across 

blocks of presentation (denoted by the value of stimulus reliability on top). e,f, Activity of 

units can be weakly or strongly modulated by stimulus or behaviour, giving rise to four 

possible quadrants. Sample V1 units from each quadrant are shown for Neuropixels 

dataset1 (e) and dataset2 (f). For each sample, z-score activity of the unit across different 

repetitions of the movie is plotted (left), with the number on top denoting stimulus reliability of 

the unit. The average activity of each unit as a function of average pupil size (during each 
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movie repeat) is plotted on the right, with the number on the top denoting behavioural 

modulation of the unit (CC with pupil size).  
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Extended Data Fig. 6: Stimulus-independent behavioural modulation of CA1 units. 

a, Top: Average stimulus reliability across units in V1 and CA1 for different mice in each 

dataset. Bottom: Same for the average (across units) of the absolute value of behavioural 

modulation. Filled circles: average across mice. Red: Neuropixels dataset1; Blue: 

Neuropixels dataset2. b, Top: Sample activity of CA1 units (from Neuroixels dataset1) with 

considerable modulation by pupil size (numbers indicated on the top). Bottom: The activity of 

units in response to repeats of the natural movie. c, Same as (b) for Neuroixels dataset2. d, 

Schematic representation of population responses with stimulus-evoked (red) and 

behaviourally-induced (green) components to the repeats of the same stimulus. Even if the 

stimulus-evoked component is different between repeats (red), the population vector of 

responses (see Extended Data Fig. 1c) can have some similarity due to the constancy of the 

component set by the behaviour (green). e, Average representational similarity as a function 

of change in pupil width (similar to Fig. 1d,h, right) for V1 (left) and CA1 units (right). Red: 

Neuropixels dataset1; Blue: Neuropixels dataset2. 
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Extended Data Fig. 7: Relation of the principal components of neural activity to the average 

activity of units and their stimulus reliability. 

a, Projections of the activity of units in example sessions over the first three PCs (cf. Fig. 

3a,b,g,h), with the average activity of each unit indicated by the pseudo colour code. b, 

Projection of units’ activity over PC1/PC2 versus the average activity of the unit. The best 

fitted regression lines and R2 values in each case are shown. c, Similar to Fig. 3c,i for 

individual sessions. R2 values of regression lines fitted to the projection of units’ activity over 

PC1/PC2 versus stimulus reliability of the respective units is plotted for each session/mouse. 

Upper: Neuropixels dataset1; Lower: Neuropixels dataset2. 
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Extended Data Fig. 8: Average activity of units is modulated by behavioural state. 

a, Average population activity (left y-axis) and running speed (right y-axis) as a function of 

pupil size, for the example shown in Fig. 4a from Neuropixels dataset1. b, Average 

population activity of V1 units during each movie presentation as a function of pupil size, 

from all recorded sessions. Pupil size for each repeat is normalized (within each session) by 

subtracting the mean value (across repeats) and dividing by it. c, For the example session in 

Fig. 4, the average (across movie frames) activity of V1 units is calculated and their mean 

and std across movie repetitions in each block is shown. Units are sorted in both blocks 

according to the mean in the 1st block. d, Average activity (across movie frames and 

repeats) of units during the 2nd block versus the 1st. Note the logarithmic scales. e, R2 

values of the regression fits to the data like Fig. 4c, when the population vectors are 

composed of the average activity of units during presentation of each individual frame (1 

second long) of the natural movie. f-j, Same as (a-e) for Neuropixels dataset2.  
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Extended Data Fig. 9: Significant modulation of units by behaviour. 

a, Left: Distribution of correlation of V1 units’ activity with running during first and second 

blocks of presentation of natural movie 1. Right: Distribution of bootstrapped correlations 

with running. Correlation coefficient (CC) of each unit’s activity with 100 randomly shuffled 

versions of the running speed is calculated. The z-score of bootstrapped correlation (Z) is 

calculated by subtracting the mean of this distribution from the unshuffled CC and dividing it 

by the std of the distribution (see Methods for details). Bootstrapped correlations are 

calculated during the first (grey) and second (black) blocks separately. Significant 

correlations are taken as units for which |Z| > 2 (indicated by dashed red lines). Fractions of 

significant correlations during the first and second blocks are indicated on the top, 

respectively. b, same as (a) for all recorded units. c,d, Same as (a,b) for dataset2. 
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Extended Data Fig. 10: Consistent modulation of neuronal responses by behaviour across 

blocks of presentation of drifting gratings, and across stimuli. 

a, Left: Distribution of correlations with running during the 1st and 2nd blocks of presentation 

of drifting gratings across all sessions. Right: Distribution of the z-score of bootstrapped 

correlations (Z) with running (see Methods and Extended Data Fig. 9). Significant 

correlations with running are defined as |Z| > 0.2. b, Correlation with running of units during 

the 2nd block against the 1st block, for all units and sessions (left; red), and for selected 

units (right; magenta), where sessions with similar levels of running between the two blocks 

and units with significant correlations are selected. c, Upper: Average running during the 1st 

and 2nd blocks for all sessions (all; red) and for selected units (sel; magenta). Lower: 

Correlation of all units with pupil versus their correlation with running, during the 1st (grey) 

and 2nd (black) blocks. Magenta: regression fits for selected units only. d, Correlation of all 

units with running speed during the presentation of drifting gratings versus correlations with 

running obtained during the presentation of natural movie 1, in the 1st and 2nd blocks of 

presentations, respectively. e-h, Same as (a-d) for dataset2.  
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Extended Data Fig. 11: Consistent modulation of neuronal responses by behaviour across 

stimuli, regions and datasets. 

a,b, Analysis of the reliability of behavioural tuning in two parts of each session in the two 

datasets. The composition of stimulus sets in each session type is shown, with the type, 

sequences, and the length of each stimulus presentation indicated1. In both datasets, 

correlation of units with running speed is calculated in two parts: 1st part from 30 to 90 

minutes, and the 2nd part from 90 to 150 minutes. c,d, Similar to Extended Data Fig. 10a-c 

for the 1st and 2nd part of the sessions in dataset1 (c) and dataset2 (d). e, Upper: 
                                                 
1 Illustrations from: https://allensdk.readthedocs.io/en/latest/visual_coding_neuropixels.html (for 

further details, see: https://allensdk.readthedocs.io and http://observatory.brain-

map.org/visualcoding). 
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Distribution of correlations with running for units recorded from different regions. Results for 

the two parts of the sessions (lighter lines denoting the first part) and both datasets (red: 

dataset1; blue: dataset2) are overlayed. Sessions where the average running between the 

two parts are too different are excluded (exclusion criteria: |Z2-Z1|>0.3, where Z1 and Z2 are 

the average of the z-scored value of running speed in the 1st and 2nd parts, respectively). 

Lower: Correlation with running in the 2nd part against the 1st part in each region, for 

dataset1 (red) and dataset2 (blue), respectively. Lines show the best fitted least-square 

regression lines, with numbers denoting the R2 values of the fit in each case. f, Tuning 

reliability (average R2 values in (e)), for different regions across the two datasets. Regions 

key: [visual cortex, VIS] VISp: primary visual cortex; VISl: lateromedial area; VISrl: 

rostrolateral area; VISal: anterolateral area; VISam: posteromedial area; VISam: 

anteromedial area. [Hippocampal formation] CA1: cornu ammonis 1; CA3: cornu ammonis 3; 

DG: dentate gyrus; SUB: subiculum; ProS: prosubiculum. [Thalamus] LGd: lateral geniculate 

nucleus; LP: lateral posterior nucleus. [Midbrain] APN: anterior pretectal nucleus. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 2, 2022. ; https://doi.org/10.1101/2022.01.02.474731doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.02.474731
http://creativecommons.org/licenses/by/4.0/


 48

 

 

 

Extended Data Fig. 12: Decoding natural images does not improve by focusing on 

behaviourally modulated units. 

Same as Fig. 7c,d when reliable (Rel.) units are chosen as units with strong behavioural 

modulation (correlation with running speed of more than 0.5), instead of units with strong 

stimulus reliability (cf. Fig. 7). Relation between average d’ and the number of units available 

for decoding in each session (all units or behaviourally reliable units) is plotted on the 

bottom. 
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Supplementary Table 1: Information of recording sessions in different datasets. 

 

SESSION ID SESSION TYPE AGE 

(DAY

) 

SEX GENOTYPE 
PUPILOMETR

Y 

715093703 brain observatory 118 M Sst-IRES-Cre x Ai32 NO 

719161530 brain observatory 122 M Sst-IRES-Cre x Ai32 NO 

721123822 brain observatory 125 M Pvalb-IRES-Cre x Ai32 NO 

732592105 brain observatory 100 M WT NO 

737581020 brain observatory 108 M WT NO 

739448407 brain observatory 112 M WT NO 

742951821 brain observatory 120 M WT YES 

743475441 brain observatory 121 M WT YES 

744228101 brain observatory 122 M WT YES 

746083955 brain observatory 98 F Pvalb-IRES-Cre x Ai32 YES 

750332458 brain observatory 91 M WT YES 

750749662 brain observatory 92 M WT YES 

751348571 brain observatory 93 F Vip-IRES-Cre x Ai32 YES 

754312389 brain observatory 140 M WT YES 

754829445 brain observatory 141 M WT YES 

755434585 brain observatory 100 M Vip-IRES-Cre x Ai32 YES 

756029989 brain observatory 96 M Sst-IRES-Cre x Ai32 YES 

757216464 brain observatory 105 M WT YES 

757970808 brain observatory 106 M WT YES 

758798717 brain observatory 102 M Sst-IRES-Cre x Ai32 YES 

759883607 brain observatory 113 M WT YES 

760345702 brain observatory 103 M Pvalb-IRES-Cre x Ai32 YES 

760693773 brain observatory 110 F Sst-IRES-Cre x Ai32 YES 

761418226 brain observatory 119 M WT YES 

762120172 brain observatory 100 M Vip-IRES-Cre x Ai32 YES 

762602078 brain observatory 110 M Sst-IRES-Cre x Ai32 YES 

763673393 brain observatory 126 M WT YES 

773418906 brain observatory 124 F Pvalb-IRES-Cre x Ai32 YES 

791319847 brain observatory 116 M Vip-IRES-Cre x Ai32 YES 

797828357 brain observatory 107 M Pvalb-IRES-Cre x Ai32 YES 

798911424 brain observatory 110 F Vip-IRES-Cre x Ai32 YES 
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799864342 brain observatory 129 M WT YES 

766640955 functional connectivity 133 M WT YES 

767871931 functional connectivity 135 M WT YES 

768515987 functional connectivity 136 M WT NO 

771160300 functional connectivity 142 M WT YES 

771990200 functional connectivity 108 M WT YES 

774875821 functional connectivity 114 M WT YES 

778240327 functional connectivity 120 M WT YES 

778998620 functional connectivity 121 M WT YES 

779839471 functional connectivity 122 M WT YES 

781842082 functional connectivity 126 M WT YES 

786091066 functional connectivity 111 F Sst-IRES-Cre x Ai32 YES 

787025148 functional connectivity 114 M Sst-IRES-Cre x Ai32 YES 

789848216 functional connectivity 119 M Sst-IRES-Cre x Ai32 YES 

793224716 functional connectivity 120 M WT YES 

794812542 functional connectivity 120 F Sst-IRES-Cre x Ai32 YES 

816200189 functional connectivity 128 F Vip-IRES-Cre x Ai32 YES 

819186360 functional connectivity 128 F WT YES 

819701982 functional connectivity 135 F Vip-IRES-Cre x Ai32 YES 

821695405 functional connectivity 134 F WT YES 

829720705 functional connectivity 112 M Pvalb-IRES-Cre x Ai32 YES 

831882777 functional connectivity 137 M Sst-IRES-Cre x Ai32 YES 

835479236 functional connectivity 121 M Vip-IRES-Cre x Ai32 YES 

839068429 functional connectivity 129 F Sst-IRES-Cre x Ai32 YES 

839557629 functional connectivity 115 M Pvalb-IRES-Cre x Ai32 YES 

840012044 functional connectivity 116 M Pvalb-IRES-Cre x Ai32 NO 

847657808 functional connectivity 126 F WT YES 

 

 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 2, 2022. ; https://doi.org/10.1101/2022.01.02.474731doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.02.474731
http://creativecommons.org/licenses/by/4.0/

