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Abstract 
Nm (2´-O-methylation) is one of the most abundant modifications of mRNAs and non-coding 

RNAs occurring when a methyl group (–CH3) is added to the 2´ hydroxyl (–OH) of the ribose 

moiety. This modification can appear on any nucleotide (base) regardless of the type of nitrogenous 

base, because each ribose sugar has a hydroxyl group and so 2´-O-methyl ribose can occur on any 

base. Nm modification has a great contribution in many biological processes such as the normal 

functioning of tRNA, the protection of mRNA against degradation by DXO, and the biogenesis 

and specificity of rRNA. Recently, the single-molecule sequencing techniques for long reads of 

RNA sequences data offered by Oxford Nanopore technologies have enabled the direct detection 

of RNA modifications on the molecule that is being sequenced, but to our knowledge there was 

only one research attempt that applied this technology to predict the stoichiometry of Nm-modified 

sites in RNA sequence of yeast cells. To this end, in this paper, we extend this research direction 

by proposing a bio-computational framework, Nm-Nano for predicting Nm sites in Nanopore 

direct RNA sequencing reads of human cell lines. Nm-Nano framework integrates two supervised 

machine learning models for predicting Nm sites in Nanopore sequencing data, namely Xgboost 

and Random Forest (RF). Each model is trained with set of features that are extracted from the raw 

signal generated by the Oxford Nanopore MinION device, as well as the corresponding basecalled 

k-mer resulting from inferring the RNA sequence reads from the generated Nanopore signals. The 

results on two benchmark data sets generated from RNA Nanopore sequencing data of Hela and 

Hek293 cell lines show a great performance of Nm-Nano. In independent validation testing, Nm-

Nano has been able to identify Nm sites with a high accuracy of 93% and 88% using Xgboost and 

RF models respectively by training each model with Hela benchmark dataset and testing it for 

identifying Nm sites on Hek293 benchmark dataset. Thus, Nm-Nano outperforms the Nm sites 

predictors existing in the literature (not relying on Nanopore technology) that were only limited to 

predict Nm sites on short reads of RNA sequences and unable to predict Nm sites on long RNA 

sequence reads. By deploying Nm-Nano to predict Nm sites in Hela cell line, it was revealed that 

a total of 196 genes was identified to have the most abundance of Nm modification among all other 

genes that have been modified by Nm in this cell line. Similarly, deploying Nm-Nano to predict 

Nm sites in Hek393 cell line revealed that a total of 196 genes line was identified to have the most 

abundance of Nm modification among all other genes that have been modified by Nm in this cell 

line. According to this, a significant enrichment of a wide range of functional processes like high 

confidences (adjusted p-val < 0.05) enriched ontologies that were more representative of Nm 

modification role in immune response and cellular homeostasis were revealed in Hela cell line, 

and “MHC class 1 protein complex”, “mitotic spindle assembly”, “response to glucocorticoid”, 

and “nucleocytoplasmic transport” were revealed in Hek293 cell line. The source code of Nm-

Nano can be freely accessed at https://github.com/Janga-Lab/Nm-Nano .  
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1. Introduction 

 

2´-O-methylation (or Nm, where N denotes any nucleotide) is a co- or post-transcriptional 

modification of RNA, occurring when a methyl group (–CH3) is added to the 2´ hydroxyls (–OH) 

of the ribose moiety. This modification can appear on any nucleotide regardless of the type of 

nitrogenous base (Base), where 2´-O-methyl ribose can occur at any base. Nm is an abundant 

modification that occurs frequently in mRNAs and at multiple locations in non-coding RNAs such 

as transfer RNA (tRNA), ribosomal RNA (rRNA), and small nuclear RNA (snRNA) [1-3]. This is 

due to the role that internal 2′- O-methylation of mRNA plays as a new mechanism of genetic 

regulatory control, with the ability to influence mRNA abundance and protein levels both in vitro 

and in vivo [4]. 

 

Nm modification has a great contribution in many biological processes such as the normal 

functioning of tRNA [5], protecting mRNA from degradation by DXO [6], and the biogenesis and 

specificity of rRNA [7,8]. It has been also found that Nm modification has been associated with 

many human diseases known to date and has potential indirect links to some other biological 

defects [9].   

 

Detecting Nm modifications in RNAs has been a great challenge for many years and various 

experimental methods for identifying such modification have been presented in the literature [9]. 

However, each of these methods has exhibited significant limitiations. For example, RiboMethseq 

was introduced as a high throughput method in which Nm modifications could be mapped based 

on their protection given against alkaline hydrolysis, resulting in Nm nucleotides being depleted 

from the start of sequencing reads [11 ]. However, RiboMethseq couldn’t be  applied to short 

RNAs.  To address this limitation, two other chemical methods: Nm-seq and RibOxi-seq were  

presented for detecting Nm mofications in RNAs [12,13].  Using these methods, Nm sites could 

be mapped after ligation of  linkers to the Nm-modified nucleotide at the 3′-end. However these 

methods were only able to identify significantly  fewer Nm modification sites relative to those 

reported by LC-MS/MS methods, a biochemical method to detect and quantify the relative 

abundance of RNA modification [14,15]. Despite LC-MS/MS providing industry standard results, 

it is time and labor consuming, as well as requiring large amounts of input RNA and is limited for 

low-abundance nucleotides [16]. 

 

 

On the other hand, there have been few computational biology methods presented in the literature 

as complementary to the experimental methods to address their limitations [17-19].  What 

computational methods that have been reported mainly rely on developing  machine/deep learning 

classification algorithms to identify Nm sites in RNA sequences based only on short read data. 

Additionally, the accuracy of predicting Nm sites in some of  these methods has not been explicitly 

presented [18]. For instance, a support vector machine-based method was presented in [17] to 

identify Nm sites in RNA short reads sequences of the human genome by encoding RNA 

sequences using nucleotide chemical properties and nucleotide compositions. This model was 

validated by identifying Nm sites in Mus musculus and Saccharomyces cerevisiae genomes. 

Another research work presented in [18] proposed a deep learning-based method for identifying 

Nm sites in short reads RNA sequences. In this approach, dna2vec- a biological sequence 

embedding method originally inspired by the word2vec model of text analysis was adopted to yield 
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embedded representations of RNA sequences that may or may not contain Nm sites. Those 

embedded representations were fed as features to a Convolutional Neural Network (CNN) for 

classification of RNA sequences into modified or not modified with Nm sites. The method was 

trained using the data collected from Nm-seq experimental method.  Another prediction model 

based on Random Forest for identifying Nm sites in short read RNA sequences was presented in 

[19].  This model was trained with features extracted by multi-encoding scheme combination that 

combines the one-hot encoding, together with position-specific dinucleotide sequence profile and 

K-nucleotide frequency encoding.  

 

Recently, the third-generation sequencing technologies such as the platforms provided by Oxford 

Nanopore Technologies (ONT) has been proposed as a new mean to detect RNA modifications on 

long RNA sequence data. However this technology has been only used once to predict the 

stoichiometry of Nm-modified sites in yeast mitochondrial rRNA using a KNN algorithm trained 

to classify the reads into two classes: modified or unmodified [20]. To this end, our work aims to 

extend this direction by combining machine learning and Nanopore Technology to identify Nm 

sites in long RNA sequence reads of human cell lines. We have developed a framework called 

Nm-Nano that integrates two different  supervised ML models (predictors) to identify Nm sites in 

Nanopore direct RNA sequencing reads of Hela and Hek293 cell lines, namely the Extreme 

Gradient Boosting (Xgboost) and Random forest (RF) models (Figure 1). 

 

XGboost is trained with a set of features extracted from the raw signal generated by Oxford 

MinION Nanopore sequencing device when sequencing RNA reads and the corresponding 

basecalled k-mers resulting from basecalling the generated signals back to the original RNA 

sequence. The features extracted from the Nanopore signals include: the mean and stanndard 

deviation of the signal, the mean and standard deviation of the simulated signal that is generated 

by evenalign module of Nanoplish (a free software for Nanpore signal extraction and analysis [21-

23]), and the difference between the mean of the signal and the mean of the simulated one.  The 

features extracted from the basecalled k-mers include a feature that is obtained by checking the 

matching  between the reference k-mer and the model k-mer. The former refers to the basedcalled 

k-mer resulting from aligning events/signals to a reference genome using eventalign Nanoplish 

module. The later is a  simulated basecalled k-mer that is generated by eventalign module of 

Nanpolish software. In addition, the genomic location/ position of the Nm modification is used 

among the extracted features used to train XGBoost model. The genomic location is also obtained  

as an output when aligning nanopore events/signals to a reference genome using Nanopolish 

eventalign module. 

 

Similarly RF is trained with the same set of features used to train the XGBoost.  In addition to 

embedding features that are generated by applying the word2vec [24] technique to each of 

reference k-mers in the extracted Nanopore signals. Using this technique, each reference  k-mer 

resulting from basecalling the corresponding signal is represented by 1-dimensional vector. All of 

1-dimentional vectors corresponding to reference k-mers are combined with the aforementioned 

extracted  features from Nanopore signals and used to train the RF model, which  in turn will able 

to predict whether the signal is modified by the presence of Nm sites in the testing phase. 
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The developed predictors integrated in Nm-Nano framework for identifying Nm sites have been 

trained and tested upon a set of ‘modified’ sequences containing Nm sites at known positions and 

‘unmodified’ ones.  

 

2. Results and discussions 

We have used two validation methods when evaluating the performance of Nm-Nano predictors: 

namely the random-test splitting and the test with independent cell line. In the former, the 

benchmark dataset is randomly divided into two folds: one for training and another for testing. The 

test size parameter for this method was set to 0.2 which means 80% of the benchmark dataset is 

used for training the ML model and 20% of the dataset is kept for testing. In the latter, two 

benchmark datasets for two different cell lines were used, one for training and another for testing. 

For the performance evaluation results of Nm-Nano ML models, Hela benchmark dataset was used 

for training the models, while Hek293 benchmark dataset was used for testing them. 

2.1 Performance evaluation with random-test splitting 

Table. 1 shows the performance of Xgboost and RF with embedding ML models implemented in 

Nm-Nano that are available on its GitHub page when applied to the benchmark dataset of Hela 

cell line. Xgboost is trained with the 7 extracted features introduced early in Section 1 and later in 

Subsection 5.3, while RF is trained with those 7 features combined with the features generated 

with word2vec embedding introduced early in Section 1 and later in Subsection 5.4.  As the table 

shows, Xgboost model outperforms the RF with embedding in terms of accuracy, precision, recall 

and AUC. 

 

AUC Recall Precision  Accuracy (%) Classifier 

0.965 0.96 0.97 96.46  XGboost 

0.915 0.9 0.93 91.5 RF 

 

Table  1: The performance of Nm predictors on Hela benchmark dataset with random-test 

splitting. 

 

The learning (Figure 2. panels A, and D), and loss (Figure 2. panels B, and E) curves of Xgboost, 

and RF with k-mer embedding show the performance of Xgboost in terms of accuracy score and 

misclassification error outperforms the performance of RF with embedding. Also, the receiver 

operating characteristic (ROC) curves (Figure 2. panels C, and F) of Xgboost and RF with k-mer 

embedding show that the percentage of true positive rate to the false positive rate in case of 

Xgboost model is more than the one for RF with k-mer embedding model.  
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2.1.1 Performance results using single type of feature 

Table 2 shows the performance of Nm-Nano ML models with random test-splitting on Hela 

benchmark dataset in terms of accuracy with each of the extracted and generated features with 

word2vec embedding technique introduced early in Section 1 and later in Subsection 5.4. Clearly 

the features generated by word2vec embedding technique achieve the best contribution to the 

performance of RF among all other features. However, the contribution of those features to the 

performance of XGboost model was not presented as they were not considered for training this 

learning model. This is because the performance of XGboost was high after tunning its parameters 

with grid search algorithm which takes too much time for obtaining the best parameters of 

Xgboost. Therefore, generating more features with word2vec embedding techniques for training 

grid-search Xgboost model will add extra processing overhead due adding the time that is taken 

by word2vec technique for generating extra features to the time that is taken by the grid search 

algorithm for hyper parameter tuning of Xgboost ML model. 

For the extracted features, the position feature contributes more to the classifiers’ accuracy than 

other extracted features used for training either the Xgboost or RF with embedding ML models. It 

is followed by the model mean, then model standard deviation features. It was also observed that 

the k-mer match feature achieves the lowest contribution to the performances of Xgboost and RF 

with embedding ML models.  

 

 

Model_mean event_stdv event_level

_mean 

        position Classifier 

84.21% 54.66% 58.97% 94.71% XGboost 

 74.71% 54.82% 59.03% 76.63% RF 

                                                                                    (a) 

 

 

 

 

                                 

                                                                                      (b) 

Table  2: The performance of Nm’s predictors on Hela benchmark dataset in terms of accuracy 

with random test-splitting using single type of feature. 

 

embedding        Mean_diff K-mer_match Mode_stdv Classifier 

- 53.57% 53.12% 66.3% XGboost 

86.27% 53.55% 53.12% 66.03% RF 
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2.2 Performance against independent cell line  

Table 3 shows the performance of ML models against independent cell line (i.e., with independent 

test dataset, where Hela cell line benchmark dataset is used for training Nm-Nano’s predictors and 

Hek293 cell line benchmark dataset is used for testing them) using the seven extracted features. 

As the results show, Xgboost model outperforms RF with k-mer embedding model. The learning 

(Figure 3. panels A, and D), and loss (Figure 3. panels B, and E) curves of Xgboost, and RF with 

k-mer embedding show the performance of Xgboost in terms of accuracy score and 

misclassification error outperforms the performance of RF with k-mer embedding. The receiver 

operating characteristic (ROC) curves (Figure 3. panels C, and E) of Xgboost and RF with 

embedding show that the percentage of true positive rate to the false positive rate in case of 

Xgboost model is more than the one for RF with embedding model. A supplementary Figure 1 

shows the learning, loss and ROC curves of Xgboost (Panel A, B, and C) against the learning, loss 

and ROC curves of RF with embedding when reversing and training both models with Hek293 

RNA sequence reads and testing with Hela RNA sequence reads. 

 

 

AUC recall precision  accuracy (%) Classifier 

0.928 0.89 0.96 92.8% XGboost 

0.89 0.85 0.92 88.8% RF 

Table  3: The performance of Nm’s predictors against independent cell line. 

 

 

2.2.1 Performance results using single type of feature 

Table 4 shows the performance of ML models against independent cell line in terms of accuracy 

with single type of feature among the seven extracted features in combination with features 

generated with word2vec embedding technique that will be described in subsection 5.5.2. Clearly 

the features generated with word2vec embedding technique contributes more to the RF classifier 

accuracy than other features, but they were not considered for training the grid search Xgboost 

model. Again, this is due to the extra processing overhead resulting from combining the time taken 

for generating more features by wor2vec technique and the time taken by grid search algorithm 

for obtaining the best parameters of Xgboost as we early mentioned in subsection 2.1.1. 

As for the contribution of each of the seven extracted features, it was observed that the position 

feature achieves the best among all extracted features followed by model mean feature, then the 

model standard deviation feature. Also, it was observed that k-mer match has the lowest 

contribution to the performance of either Xgboost or RF with k-mer embedding models. 
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Model_mean event_stdv event_level

_mean 

position Classifier 

80.13 53.89 56.25 89.31 XGboost 

71.93 54.43 56.78 72.07 RF 

 

 

 

 

 

 

 

 

Table 4: The performance of Nm’s predictors against independent cell line in terms of accuracy 

using single type of feature. 

 

2.3 Abundance of 𝐍𝐦 sites 

In order to identify the abundance of Nm sites in the RNA sequence of either Hela or Hek293 cell 

lines, first we run the best  machine learning model in Nm-Nano framework (i.e., XGBoost) on 

the complete RNA sequence reads of Hela and Hek293 cell lines. Then, we identify all samples 

with predicted Nm sites in those reads, then we identify the number of Nm unique genomic 

locations as well as their frequencies in the two complete cell lines. We found that there are 

27,068,157 Nanopore signal samples predicted as samples with Nm sites from a total of 

920,643,074 Nanopore signal samples that represent the complete Hela cell line with 

4,064,938 unique genomic locations of Nm (Supplementary excel file 1). Similarly, we found that 

there are 10,541,009 Nanopore signal samples predicted as samples with Nm sites from a total of 

275,056,669 samples that present the complete RNA sequence of Hek293 cell line with 2,952,972 

unique genomic locations of Nm modification (Supplementary excel file 2). As for overlapping 

between unique genomic locations of Nm in both cell lines, we found that there are 1,191,677 

genomic locations common between Hela and Hek293 cell lines (Figure 4.A). Also, we found that 

there is an overlapping of 76 genes between the top 1% frequent modified Nm genes of both 

complete Hela and Hek293 cell lines (Figures 4.B).  Clearly, we notice that the extent of Nm 

modification (the number of Nanopore signal samples predicted as samples with Nm sites to the 

total number of Nanopore signal samples in the complete RNA sequence of the cell line) in RNA 

sequences of Hela cell line is slightly less than its counterpart for Hek293 cell line (2.94 % for 

Hela versus 3.83% for Hek293).  Therefore the distribution of Nm across normalized gene length 

for Hela cell line is slightly less than its equivalent in Hek293 cell line (Figures 4.C). 

embedding Mean_diff K-mer_match Mode_stdv Classifier 

- 54.97 53.58 64.18 XGboost 

83.54 55.04 53.58 64.18 RF 
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Since Nm modifications can occur at any RNA base, we have also reported about the percentage 

of unique Nm locations occurring per each RNA base in the two complete cell lines of Hela and 

Hek293 (Table 5.) 

    

 

 

 

 

 

Table 5: The percentage of unique Nm locations occurring per each base of RNA sequence in 

Hela and Hek293 cell lines. 

 

 

2.4 Functional enrichment analysis 

A total of 176 genes from Hek293 and 196 genes from Hela cell lines were identified to have the 

most abundance of Nm modification.  The short-listed genes from both cell lines were plugged 

into Cytsoscape ClueGo [25] application to obtain enriched ontologies and pathways at high 

confidence (p<0.05). Enrichment observations from this analysis are visualized in Figure 5 A, and 

B for Hek293 and Hela cell lines respectively.  

From the functional enrichment analysis of the gene set form Hek293 cell line (Figure 5A), we 

observed a wide range of functional processes like” “MHC class 1 protein complex”, “mitotic 

spindle assembly”, “response to glucocorticoid”, and “nucleocytoplasmic transport” being 

significantly enriched. Essentially highlighting the diverse regulatory role of an Nm modification, 

from its involvement in cell immune signaling to cellular processing.  

In Hela cell line, we observed several high confidences (adjusted p-val < 0.05) enriched ontologies 

that were more representative of Nm modification role in immune response and cellular 

homeostasis (Figure 5B) like: “Regulation involved in apoptotic pathway”, “antigen processing 

and presenting”, and “ER to Golgi transport mechanism”. 

To observe which cellular pathways were associated with the Nm modifications, we ranked the 

complete human gene lists from both Hela and Hek293 cell lines based on occurrence of Nm 

modification locations and performed GSEA gene set enrichment analysis [26]. Across both cell 

lines we observed that genes associated with immune pathways were enriched in these ranked lists, 

reinforcing the association between Nm Modification and immune response which was previously 

observed in literature [27, 28, 29]. Both cell lines had pathways like: 

“KEGG_NATURAL_KILLER_CELL_MEDIATED_CYTOTOXICITY”, 

“KEGG_ANTIGEN_PROCESSING_AND_PRESENTATION”, and 

U base         G base C base A base Cell line 

27.44% 22.41%   22.29%   27.86% Hela 

27.24% 22.63%   22.49%   27.63% Hek293 
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“KEGG_AUTOIMMUNE_THYROID_DISEASE” with high enrichment scores (NES>1.5) as 

seen in supplementary Figure 2. Apart from immune associated pathways being enriched, we also 

observed some tissue specific pathways were enriched in case of Hela, like cardiovascular 

pathways such as “KEGG_HYPERTROPHIC_CARDIOMYOPATHY_HCM”, and 

“KEGG_CARDIAC_MUSCLE_CONTRACTION”. Those pathways were enriched with high 

normalized enrichment scores (NES>1.3).  

3. Implementation and usage of Nm-Nano 

The main file of Nm-Nano framework is implemented in python 3.x and the file has to be run on 

Linux environment by running the following command from Nm-Nano main directory on the 

user’s local machine after cloning the code from Nm-Nano GitHub repository:  

 

python main.py -r ref.fa -f reads.fastq  

 

Where the following two inputs files are needed to run the main file:  

 

• The absolute path to the reference Genome file (ref.fa)  

• The absolute path to fastq reads file (reads.fastq)  

 

Once the user runs the Nm-Nano framework by executing the main python file, then the framework 

pipeline that accepts the two inputs mentioned above will start execution and the user will be asked 

to enter the bed file name with the absolute path and extension that is needed to generate the 

coordinate file that is needed for labeling the Nanopore signals samples as Nm modified and 

unmodified ones. Next, the framework will extract the raw Nanopore signals from the input fast5 

file(s) as well as extracting some of its corresponding features that are used later to train Xgboost 

and Rf with embedding ML models integrated in Nm-Nano framework for predicting Nm sites in 

direct Nanopore RNA sequence (Figure 1). It should be also mentioned that Nm-nano framework 

can also be extended by integrating other machine learning and deep learning models for predicting 

Nm sites. 

4. Discussion and Conclusions  

 

In this paper, we have proposed a new framework called Nm-Nano that integrates two machine 

learning models: the Xgboost and RF with k-mer embedding. It has been shown that the proposed 

framework was efficient in detecting Nm sites in RNA long reads which addresses the limitations 

of most existing Nm predictors presented in the literature that were able only to detect Nm sites in 

short reads of RNA sequences. It was also observed that deploying Nm-Nano on the total direct 

RNA Nanopore sequence of Hela and Hek293 lead to obtaining some biological results from 

preforming functional enrichment analysis for the total number of discovered frequently modified 

Nm genes in both cell lines. These results can be observed by a wide range of functional processes 

in Hela and Hek293 cell lines. In Hela, we observed several high confidences (adjusted p-val < 

0.05) enriched ontologies that were more representative of Nm modification role in immune 

response and cellular homeostasis, while In Hek293 we observed a wide range of functional 

processes that highlight the diverse regulatory role of Nm modification, from its involvement in 
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cell immune signaling to cellular processing. For this reasons, Nm-Nano would be a useful tool 

for accurate identification of Nm sites in RNA read sequence.  

 

5. Materials and Methods 

5.1 Basic approach pipeline  

The complete pipeline of Nm-Nano framework for identifying Nm modifications in RNA 

sequence consists of several stages. The first part of the pipeline  starts by culturing the cell line 

by extracting it from an animal and let it grows in an artificial environment. Next, the RNA is 

extracted from this cell during library preparation and put through the MinION device and start 

generating Nanopore signal data.  After that, the fast5 file that stores the raw electrical signal levels 

that are output by the Nanopore sequencers is produced by ONT  and basecalledd via Guppy 

basecaller [30] to determine which base is being passed through the ONT and then aligned to a 

reference genome to produce the SAM file using minimap2 tool [31]. From the SAM file, a BAM 

and sorted BAM file are generated using samtools[32], where the BAM file is a compressed 

version of the SAM file. Next, a coordinate file with ids of fast5 files that have the target 

modification is created using the produced SAM file and a provided BED file that highlights the 

target modified locations on the whole genome [33]. This coordinate file is needed for labeling the 

signal samples produced by eventalign module as modifed and unmodified when training any of 

Nm-Nano predictors. Next, eventalign module of the Nanopolish software that  performs signal 

extraction is launched, which produces a dataset of Nanopore signal samples. Therefore, the 

structure of Nm-Nano’s pipeline emphasizises that it has some common parts with the pipeline of 

Penguin [34], our early developed tool for detecting Pseudouridine sites in long reads RNA 

sequence. However, our Nm-Nano’s pipeline is different from Penguin’s pipeline in three phases 

(Figure 1): the benchmark dataset generation, the feature extraction and ML models construction 

phases. The benchmark dataset generaion phase in Nm-Nano’s pipeline is different from its 

equivalent in Penguin’s pipeline because Nm modifications can occur at any RNA base, and so all 

the samples that are generated from signal extraction are used to identify Nm sites. However, some 

of those samples are modified with Nm sites, while the remaining are control samples that are not 

modified with Nm modification and using the information in the coordinate file some of those 

samples will be labeled as modified, while the remaining will be labeled as unmodified.  Simililarly 

the feature exraction phase in Nm-Nano’s pipeline is different from its equivalent in Penguin’s 

pipleine  because the features extracted from the modified and unmodified signal samples to train 

the constructed ML models for predicting Nm sites are different from those that were extracted to 

train Penguin’s predictors. Finally, the ML models construction phase in Nm-Nano’s pipeline is 

different from its equivalent in Penguin’s pipeline because it deploys machine learning models 

(the XGBoost and Random Forest wih k-mer embedding) for predicting Nm sites in long RNA 

sequence reads that are different from the set of developed ML predictors integrated in the Penguin 

tool.  In the next subsection we will highlight those differences by introducing more details about 

the benchmark dataset generation, feature extraction and ML model constructions. 

 

5.2 Benchmark datasets generation 

Two different benchmark datasets were generated for Hek293 and Hela cell lines (Supplementary 

csv files Nm_hek.csv and Nm_Hela.csv). Both datasets were generated by considering all the 

samples output by Nanopolish eventalign module that was run on the basecalled RNA sequence 
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reads of each cell line. In order to label each sample, all the samples generated from signal 

extraction were used as the the target samples for identifying Nm modification since Nm 

modifications can occur at any RNA base. Next, the intersection between their position column on 

the reference genome and the position in the coordinate file (generated from Nm BED file and 

SAM file for each cell line) is determined. This intersection will represent the positive samples, 

while the remaining samples will be the negative samples. In the end we have 56,320  samples: 

28,160 are positive and 28,160 are negative ones (after sampling the negative samples which are 

very huge in comparison with negative ones) for Hek293. Similarly, we get 192,082 samples: 

96,041 are positive samples and 96,041 are negative samples for Hela cell line. 

5.3 Feature extraction 

Each generated benchmark dataset has seven columns that represent seven features that were used 

for training the machine learning models that we developed and integrated in Nm-Nano 

framework. Those features are: position, event_level_mean, event_stdv, model_mean, 

model_stdv, mean_diff, and reference & model k-mer match. The first five features were directly 

extracted by picking their columns from the eventalign’s output (Supplementary text2) (namely: 

position, event_level_mean, event_stdv, model_mean , and  model_stdv columns).  The sixth 

feature is generated  by calculating the difference between the mean of the signal 

(event_level_mean) and the mean of the simulated signal by eventalign module (model_mean). 

The  seventh feature is generated by checking if the reference_k-mer and model_k-mer coulmns 

in the eventalign’s output match each other, where the former refers the basecalled k-mers resulting 

from inferring the RNA sequence reads from extracted Nanopore signals by evenalign in the 

basecalling phase, while the latter refers to bacalled k-mers resulting from inferring RNA sequence 

reads from simulated signals by eventalign. The value of reference & model k-mer match is 1 if 

reference and model k-mers match each other and 0 otherwise. 

5.4 Features generation with word embedding 

In addition to the extracted features, embedding features have been generated using the word2vec 

technique that are combined with other extracted features that have been previously mentioned for 

training the RF classifer model that has been developed for predicting Nm sites in long RNA 

sequence reads. Those embedding features are obtained by applying the word2vec technique to 

the reference k-mer, where each reference k-mer is represented by 1-dimensional vector of fixed 

size (the vector size is set optionally as a parameter when building word2vec embedding model). 

In summary, the combination of all extracted  features and embedding features are used to train 

the RF model, which  in turn will able to predict whether the signal is modified by the presence of 

Nm sites in the testing phase. 

5.5 ML Models construction 

We have developed  two machine learning models for predicting Nm sites in RNA sequence reads 

including the XGBoost [35] and RF [36] with k-mer embedding. The XGBoost model parameters 

were tuned using the Grid-search hyperparmerter tuining algorithm [37]. For RF, the seed number 

parmeter was set to 1234 and the number of trees paramter was set to 30 for obtaining the best 

performance of RF. The optimized distributed gradient boosting python library has been used for 
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implementing the XGBoost model [38] and  the scikit-learn toolkit [39], the free machine learning 

python library has been used for implementing the RF model. 

5.5.1 XGBoost with grid search for hyper parameter tuning  

The Extreme Gradient Boosted trees (XGBoost) is a special implementation of Gradient Boosting 

[40]. Gradient boosting is a machine learning technique that produces a prediction model based on 

an ensemble of weak prediction models, which are decision trees in the case of XGBoost.  This 

model is highly flexible and versatile and can be applied for classification-based problems, which 

is the main goal of this study. The advantage that XGBoost has over other tree-based models is 

that it has a faster training time along with its regularized boosting, which helps to prevent 

overfitting: this is when the machine learning model learns and becomes too accustomed to the 

training data and is not able to generalize and accurately predict the testing data. XGBoost does 

not also require feature scaling due to being a tree-based model, which is a major advantage. 

Feature Scaling is required for many non-tree-based models such as Support Vector Classifiers 

(SVM) and Logistic Regression (LR). Although feature Scaling is beneficial for these models, it 

causes certain feature importance and interpretability to be reduced, which may lead to lower 

accuracies. XGBoost can also cross-validate each iteration (round) of its training process, which 

can lead to higher results than models that cannot do the latter process. The use of decision trees 

and gradient boosting also provided the advantages of both random forest and other gradient 

boosting models, causing XGBoost to typically have a prediction error many times lower than 

regular gradient boosting or random forest. 

The XGBoost machine learning model was created after the data was preprocessed by removing 

null values and performing feature extraction, The model has several parameters that can be 

adjusted and tuned to get the best performance of XGBoost. Hyper-parameter tuning using the grid 

search algorithm has been used since it allows for the best and most accurate combination of 

parameters to be obtained. The parameters that were optimized for the XGBoost model were eta, 

gamma, max_depths, min_child_weights, and scale_pos_weight. The optimized values for these 

parameters obtained using grid search algorithm were 0.01, 0.1, 15, 3, and 1 respectively. The 

parameter eta, representing the learning rate of the XGBoost model. Gamma parameter represents 

how conservative the model is. The parameter max_depth represents how deep a decision tree can 

be built and min_child_weight represents the minimum value needed to activate the respective 

node in the decision tree. The scale_pos_weight parameter controls the balance of positive and 

negative weights; this parameter is associated with the min_child weight. After the values for these 

best parameters were obtained by fitting the grid search XGBoost model to the training data, they 

were applied to the model to obtain its prediction results in the testing phase. 

5.5.2 RF with k-mer embedding 

We have developed a Random Forest (RF) ML model that has been trained with the extracted 

features and the features generated by applying Word2vec embedding technique to the reference 

k-mer, one feature column in the benchmark Nm modification dataset of Hela and Hek293 cell 

lines. RF algorithm has been extensively used in the literature to address several problems in 

bioinformatics research [41]. It has been observed that the performance of RF model is improved 
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when it is trained by combination of the extracted features and the generated k-mer embedding 

features and outperforms its perfromance when it is trained with the extracted features only as we 

mentioned early in subsections 2.1.1 and 2.2.1. 

The idea of applying Word2vec to reference k-mer has been inspired by the work in [42] in which 

word2vec has been applied to DNA k-mers to generate embedding features represented by vectors 

of real numbers as representations of  those k-mers. This approach was introduced as an alternative 

approach to vector encoding of k-mer using one-hot  technique that is subject to the curse of 

dimnensionality problem.. 

The RF machine learning model was created after the data was preprocessed by removing null 

values then performing feature extraction and combing them with generated k-mer embedding 

features. The k-mer embedding feature was generated using genism [43], a free python library that 

implements word2vec algorithm using highly optimized C routines, data streaming, and pythonic 

interfaces. The word2vec algorithm has various parameters including: the vector size, the window 

size, and and the word count. The vector size is the dimensionaility of the vector that repesents 

each k-mer. The window size refers to the maximum distance between a target word/k-mer and 

words/k-mers around the target word/k-mers. The word count refers to the minimum count of 

words to consider when training the model, where words with occurrence less than this count will 

be ignored. The k-mer embedding features that lead to best performance of RF have been generated 

by setting the vector size to 20, the minimum word count to 1, and the window size to 3.   

5.6 Performance evaluation metrics 

The accuracy (Acc), precision (P), recall (R), and the area under ROC curve (AUC) [44] have been 

used as metrics for evaluating performance of Nm-Nano predictors. The mathematical notions for 

the first three metrics are identified as follows: 

 𝐴𝑐𝑐 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
 (1) 

 𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (2) 

 𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (3) 

Where: 

• TP denotes true positive and refers to the number of correctly classifed Nm sites. 

•  FP denotes false positive and refers to to the number of non-Nm sites misclassified as Nm 

sites.  

• FN denotes false negative and refers to the number of Nm sites misclassified as non-Nm 

sites.  

• TN denotes true negative and refers to the number of correctly classifed non-Nm sites. 

As for AUC metric, it measures the entire two-dimensional area under the ROC curve [45] which 

measures how accurately the model can distinguish between two things (e.g. determine if a base 

of RNA sequence is Nm site or not). 
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5.7 Environmental settings  

Nm-Nano has been developed as tool for detecting Nm modification in Nanopore RNA sequence 

data by integrating two machine learning models: the Xgboost and RF with k-mer embedding to 

identify this type of RNA modification. XGboost parameters were tuned to get the best 

performance using the Grid search algorithm which takes around 6 hours 52 min to fit on the 

training dataset of Hek293 and 9 hours 12 min to fit on the training dataset of Hela cell line for 

obtaining the best parameters that were applied to XGboost model in the testing phase. The 

experiment was executed on windows machine with (8 cores) processor of Ryzen 5900HS CPU, 

and 16 GB RAM. It should be observed that the time taken by grid search algorithm for obtaining 

the best parameters of XGboost is added to the total time that is needed to apply XGboost on the 

benchmark dataset of a given cell line for detecting Nm modification. However, using grid search 

algorithm for hyper parameter tuning of XGboost causes a significant improvement in the 

performance of XGboost. Similarly, when developing RF with k-mer embedding ML model to 

identify Nm modification in Nanopore sequence data of a specific cell line, the word2vec 

embedding algorithm should be applied first to reference k-mers in the generated benchmark 

dataset before applying RF algorithm to that dataset for generating embedding features that would 

be added to the extracted features to train RF Model. This will add extra time to the execution time 

of RF algorithm. However, applying embedding with word2vec for generating embedding features 

added to the extracted ones achieves a significant improvement in the performance of RF. 

Meanwhile, we thought about improving the performance of XGboost by applying grid search 

algorithm for hyper parameter tuning in addition to applying k-mer embedding with word2vec for 

generating embedding features that would be added for the extracted features used for training 

XGboost. However, we found that this will make XGboost slow when applying it to the benchmark 

dataset of a given cell line with a slight improvement in its performance that would not be 

proportional to the huge increase in the processing time of Xgboost. 

It should be also observed that Xgboost outperforms RF with embedding when applied on the 

whole dataset of Hek293 or Hela either in test-split or in the independent test. However, the 

performance of RF with k-mer embedding might outperform grid search XGboost model if the 

ML models are applied to a part of the benchmark dataset of the cell line or when using other types 

of cell lines different from Hek293 and Hela.  
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Figure Legends 

 

Figure1. Nm-Nano framework consists of three main phases for predicting Nm sites when testing 

with an independent cell line showing: the benchmark dataset generation, the feature exraction, 

and ML models construction and testing phases. 

Figure 2. The learning, loss  and ROC curves of learning models with random split testing for 

XGBoost model and RF with k-mer embedding ML models. 

Figure 3. The learning, loss  and ROC curves of learning models against independent cell line for 

XGBoost model and RF with k-mer embedding ML models  

Figure 4. Showing (a) The overlap between Nm unique locations in complete Hek293 and Hela 

cell lines (b) the overlapping between top frequent 1 % modified Nm genes in complete Hek293 

and Hela cell lines (c) The density plots that represents Nm modifications across normalized gene 

length for Hek293 and Hela cell lines. 

Figure 5. Functional enrichement analysis of most frequenlty Nm modified  genes across a cell 

line in terms of functional grouping of the GO-terms based on GO hierarchy using Cytoscape 

ClueGO application, and a pie chart. (a) Hek293 cell line and  (b) Hela cell line (visualizing high 

confidence (p-val<0.05) ontologies and pathways potentially associated with Nm RNA 

modification. The size of the nodes representative of the significance of association with respect 

to genes per GO-term). 
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HIGHLIGHTS 

 

• Nm-Nano integrates two ML learning models (i.e., predictors) namely Xgboost and RF with 

embedding to identify Nm sites in Nanopore direct RNA sequencing reads.  

• The pipeline of Nm-Nano framework automates the data preprocessing including Nanopore 

direct RNA reads alignment using Minimap2, and Nanopore signal extraction using 

Nanopolish, feature extraction from raw Nanopore signal for training Xgboost and RF with 

embedding Models implemented in this platform, features generation with word2vec technique 

needed for training RF with embedding model, and the prediction of Nm sites using any of 

both models.  

• Nm-Nano can predict Nm sites with a high performance on long RNA reads and it outperforms 

the performance of the state-of-the-art research methods existing in the literature that predict 

Nm sites only on short RNA reads. 

• There are 10541009 Nanopore signal samples predicted by Nm-Nano best ML model 

(Xgboost) as Nm sites from a total of 275056669   Nanopore signal samples that represent 

complete RNA sequence of Hek293 cell line with 2952972 unique genomic location of Nm 

sites. 

• There are 27068157 Nanopore signal samples predicted by Nm-Nano best ML model 

(Xgboost) as Nm sites from a total of 920643074   Nanopore signal samples that represent 

complete RNA sequence of Hela cell line with 4064938 unique genomic location of Nm sites. 

• There is a small fraction of 20% (1191677 unique genomic locations) of Nm sites that are 

common (overlapped) between both Hek293 and Hela cell lines.   

• The extend of Nm modification (the number of Nanopore signal samples predicted as Nm 

signal samples to the total number of Nanopore signal samples generated from the complete 

RNA sequence of the cell line) in RNA sequence of Hela cell line is slightly less than 

its counterpart for HeK293 cell line (2.94 % for Hela cell line versus 3.83% for Hek293) 
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Figure 3 
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Figure 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A B 

C 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 4, 2022. ; https://doi.org/10.1101/2022.01.03.473214doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.03.473214
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

Figure 5 

A 

 

 

 

 

 

 

 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 4, 2022. ; https://doi.org/10.1101/2022.01.03.473214doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.03.473214
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

 

 

B 

 

 

 

 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 4, 2022. ; https://doi.org/10.1101/2022.01.03.473214doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.03.473214
http://creativecommons.org/licenses/by-nc-nd/4.0/

