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Abstract 6 

South American wetlands are of global importance, yet limited delineation and 7 

monitoring restricts informed decision-making around the drivers of wetland loss. A 8 

growing human population and increasing demand for agricultural products has driven 9 

wetland loss and degradation in the Neotropics. Understanding of wetland dynamics 10 

and land use change can be gained through wetland monitoring. The Ñeembucú 11 

Wetlands Complex is the largest wetland in Paraguay, lying within the Paraguay-12 

Paraná-La Plata River system. This study aims to use remotely sensed data to map land 13 

cover between 2006 and 2021, quantify wetland change over the 15-year study period 14 

and thus identify land cover types vulnerable to change in the Ñeembucú Wetlands 15 

Complex. Forest, dryland vegetation, vegetated wetland and open water were identified 16 

using Random Forest supervised classifications trained on visual inspection data and 17 

field data. Annual change of -0.34, 4.95, -1.65, 0.40 was observed for forest, dryland, 18 

vegetated wetland and open water, respectively. Wetland and forest conversion is 19 

attributed to agricultural and urban expansion. With ongoing pressures on wetlands, 20 

monitoring will be a key tool for addressing change and advising decision-making 21 

around development and conservation of valuable ecosystem goods and services in the 22 

Ñeembucú Wetlands Complex. 23 

 24 

Additional Keywords 25 

Remote sensing, Paraguay, Paraná, La Plata, land use change, wetland conversion, 26 

neotropics 27 

 28 

1. Introduction 29 

South American wetlands are of global importance, yet limited delineation and 30 

monitoring restricts informed decision-making around the drivers of wetland loss in the 31 
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neotropics. Wetlands are some of the most valuable ecosystems on Earth, providing 32 

goods and services including water storage and purification, carbon fixation, 33 

agricultural production and provision of biodiverse habitat (Kashaigili et al., 2006; 34 

Ramsar Convention, 2016; Guo et al., 2017). Wetlands are estimated to cover around 3-35 

6% of the Earth’s surface and South America holds a large proportion of these, with 36 

wetland area covering 20% of the continent’s surface and holding 42% of the Earth’s 37 

peat volume (Junk, 2013; Gumbricht et al., 2017; Kandus et al., 2018). 38 

Despite their value, wetlands are one of the Earth’s most vulnerable ecosystems 39 

(Millennium Ecosystem Assessment, 2005). Wetlands are being lost at a faster rate than 40 

any other ecosystem, with over half of Earth’s wetlands becoming degraded or lost in 41 

the last 150 years (Sica et al., 2016; Slagter et al., 2020). Wetland degradation, 42 

destruction and modification has been driven by anthropogenic and natural pressures 43 

(Baker et al., 2007; Gardner et al., 2015; Reis et al., 2017). In South America, a growing 44 

human population and increasing demand for agricultural products has driven 45 

infrastructure development, agricultural expansion and exploitation of natural resources, 46 

exerting pressure on wetlands. Extreme weather events such as drought and storms can 47 

also drive wetland change. Wetland destruction and degradation reduces the capacity of 48 

wetlands to provide valuable ecosystem services, including reduced flood and drought 49 

mitigation, wetland biodiversity loss, and reduced provisioning of natural resources. 50 

Despite global concern for wetland habitats and the ecosystem goods and services they 51 

provide, little is known about the extent of wetland conversion in South America (Junk, 52 

2013). Paraguay is one of South America’s least studied countries, and even less is 53 

known about the largest wetland within Paraguay’s administrative boundaries, the 54 

Ñeembucú Wetlands Complex (Kandus et al., 2018; Pett and Wyer, 2020; Rosset et al., 55 

2020). The Ñeembucú Wetlands Complex lies within the Paraguay-Paraná-La Plata 56 

River system, which has the 9th highest water discharge into oceans and 5th highest 57 

drainage area of rivers worldwide (Milliman and Meade, 1983; Junk, 2013). The 58 

Paraguay-Paraná-La Plata River system flows from tropical to temperate regions, 59 

resulting in high environmental heterogeneity and biodiversity (Sica et al., 2016). The 60 

Ñeembucú Wetlands Complex has a humid subtropical climate, with 1604mm average 61 

total annual precipitation and follows a dry/wet season trend (Beck et al., 2018; 62 

Climate-Data, 2021). Ñeembucú is the 3rd least populated department in Paraguay, and 63 

livelihoods within this department predominantly rely on agriculture and local fisheries 64 
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(UNFPA and DGEEC, 2021). Local populations are dependent on the ecosystem health 65 

of the wetlands as a result. Common agricultural practices in the area include the use of 66 

fire to promote growth of palatable grasses and subsistence deforestation.  67 

Utilisation of monitoring to understand wetland dynamics and land use change trends is 68 

crucial for effectively informing decision-making and development planning in the 69 

Ñeembucú Wetlands Complex. Wetland monitoring is important for assessing global 70 

change, identifying areas at high risk of land conversion and degradation, and 71 

examining the effectiveness of policy in preserving wetland habitats (Lang and 72 

McCarty, 2008; Dewan and Yamaguchi, 2009). Knowledge of the pace and extent of 73 

wetland change can be gained using remote sensing techniques and this understanding 74 

is required to effectively manage wetland resources and development. Remote sensing 75 

enables studies on greater spatial and temporal scales and is less expensive than field 76 

studies (Kandus et al., 2018). However, wetland monitoring using remote sensing has 77 

faced challenges as wetland habitats are highly variable and lack unifying features 78 

which enable identification (Gallant, 2015). Recent developments in remote sensing 79 

technology have allowed advancements in wetland delineation, mapping and 80 

monitoring with high-quality, high-resolution satellite imagery (Junk, 2013). In 81 

particular, optical data is limited in its ability to detect hydrology and a shift in data 82 

sources for wetland mapping to synthetic aperture radar data has been seen with the 83 

availability of the Sentinel-1 collection (Guo et al., 2017). Recent developments can be 84 

utilised to gain knowledge about wetland dynamics in the Ñeembucú Wetlands 85 

Complex. 86 

The objectives of this study are to use remotely sensed data to map land cover between 87 

2006 and 2021, use these maps to quantify wetland change over the 15-year study 88 

period and thus identify land cover types vulnerable to change in the Ñeembucú 89 

Wetlands Complex. 90 

 91 

2. Materials and Methods 92 

Land cover was identified and quantified for a series of years within a 15-year period 93 

from 2006 to 2021. A two-step classification process was followed; step 1 identified 94 

forest, non-forest vegetation, and open water cover, and step 2 identified dryland 95 
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vegetation and wetland vegetation, differentiated within the vegetation class from step 96 

1. 97 

Forest was defined using the national forest definition, characterised by the presence of 98 

trees and at least 10% canopy cover (FAO, 2020). Vegetated wetland included all 99 

seasonal and permanent wetland types except open water, and this primarily consisted 100 

of freshwater marshes, peatland, seasonally-inundated grassland and shrub-dominated 101 

wetland in the study area (Ramsar, 1990). Dryland was dry vegetation with less than 102 

10% canopy cover from trees, and open water was areas of water not covered by 103 

vegetation.  104 

Supervised classifications were carried out for four ‘supervision years’; 2006, 2011, 105 

2016 and 2021. Three further ‘intermediate years’ (2009, 2014 and 2019) were 106 

classified using the classifier trained on the nearest ‘supervision year’. The area covered 107 

by each land cover class was quantified for each year and change over the study period 108 

was measured. 109 

2.1 Study Area 110 

The study area is an 8,361km2 region within the Department of Ñeembucú, Paraguay 111 

(see Figure 1). The study area is bordered by the River Tebicuary in the north, River 112 

Paraguay in the west, River Parana in the south and the department’s administrative 113 

boundary in the east. The Ñeembucú Wetlands Complex is located at the confluence of 114 

two of South America’s most important rivers, the Paraguay and the Paraná, and is part 115 

of the Rio de la Plato Basin System (ymin: -27.44417, ymax: -26.39394, xmin: -116 

58.66491, xmax: -57.18209). Ñeembucú has the 3rd lowest population size of 117 

Paraguay’s departments (UNFPA and DGEEC, 2021).  118 
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 119 

Figure 1. A study area map showing; A the location of Paraguay within South America, 120 

B the location of the study area within Paraguay, and C the study area locally. Maps 121 

were created using RStudio, and the Paraguay administrative boundaries were sourced 122 

from UNFPA and DGEEC (2021) (R Core Team, 2021). 123 

2.2 Datasets 124 

2.2.1 Validation Data 125 

Field Data 126 

Field data was collected in October 2021 from 129 plots within 11 localities across the 127 

study area (See Figure 2). The localities were selected due to being either being public 128 

access land, properties for sale with surveying permissions from the owner, or 129 

properties that we had previously established relationships and permission to survey the 130 

property. Random allocation of plots for field data collection was not feasible for the 131 

study area due to the high proportion of privately owned land (Fian International, 2021). 132 

Between 5 and 21 plots were visited at each locality, depending on locality size. Each 133 

plot is 10m2 and the plots were distributed evenly across habitat types in each locality 134 

and at least 100m apart. Each plot was recorded as dryland, vegetated wetland or forest. 135 

The forest plots were excluded from the dataset and 97 sample plots remained as field 136 

data to be used in producing a non-forest vegetation classification. The dataset was 137 
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randomly split into a training partition (75% of observations) and a testing partition 138 

(25% of observations). 139 

Visual Inspection Data 140 

Image interpretation data was collected using Sentinel and Landsat images from 141 

October in supervision years: 2006, 2011, 2016 and 2021 (Copernicus, 2021; USGS, 142 

2021). This was done by visually inspecting 504, randomly allocated, 30m2 plots on 143 

true colour image composites from the available satellite imagery for October of that 144 

year. Resolutions ranged between 10m2 and 30m2 (See Figure 2). The visual inspection 145 

plots were allocated across the study area using random stratified sampling using the 146 

‘sp’ package v.1.4 in RStudio version 3.7.2 (Pebesma and Bivand, 2005; R Core Team, 147 

2021). For 2006 and 2011, Landsat 7 Surface Reflectance and Landsat 5 Surface 148 

Reflectance were used to create composite images for inspection. For 2016 and 2021, 149 

Sentinel-2 Surface Reflectance and Landsat 8 Surface Reflectance were used to create 150 

composite images for inspection. One composite image from each dataset was produced 151 

for each year, and every sample point was inspected and identified as forest, non-forest 152 

vegetation or open water based on the plot’s appearance. Forest appeared dark green, 153 

open water appeared black or blue, and non-forest vegetation belonged to neither of the 154 

aforementioned classes. Vegetated wetland and dryland could not be differentiated 155 

through a visual inspection because of the high variability and inconsistency in 156 

appearance (Kandus et al., 2018). The visual inspection dataset was randomly split into 157 

a training partition (75% of observations) and a testing partition (25% of observations). 158 
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 159 

Figure 2. A map showing the distribution of ground-truth data used to supervise the 160 

land cover classifications. Both groups of points were split randomly into a 75% 161 

training partition and 25% testing partition. The visual inspection points (n = 504) 162 

supervised the Level 1 classification and the field points (n = 129) supervised the Level 163 

2 classification. 164 

2.2.2 Classification Data 165 

Images from the USGS Landsat Collections (Landsat 5, 7 and 8, Level 2 [Collection 2]) 166 

and Sentinel Collections (Sentinel-1 SAR GRD and Sentinel-2 MSI) were sourced using 167 

Google Earth Engine for the study period between 2006 and 2021 (Gorelick et al., 2017; 168 

Copernicus, 2021; USGS, 2021). 169 

2.3 Identification of land cover 170 

Imagery from the LANDSAT and Sentinel missions were utilised to develop supervised 171 

classifications of land cover over the study period (Copernicus, 2021; USGS, 2021). A 172 

two-step methodology was employed to firstly identify open water, vegetation, and 173 

forest (Level 1 classification), and secondly to identify dryland and vegetated wetland 174 

within the vegetation class (Level 2 classification). 175 

2.3.1 Data processing 176 
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Imagery from the Landsat and Sentinel missions over a 12-week period (23rd August – 177 

14th November) were used to calculate Enhanced Vegetation Index (EVI), Normalized 178 

Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI) 179 

from Landsat data and the 10th percentile, 90th percentile and difference between the 10th 180 

and 90th percentile for Sentinel-1 bands. The annual seasonality of NDVI, NDWI and 181 

Bare Soil Index (BSI) were calculated over the year leading up to the end date of the 12-182 

week imagery period. The mean value of bands in each pixel were used to produce a 183 

composite image of the study area. SRTM Digital Elevation Data was also collated at 184 

90m2 and a mean taken for each 30m2 pixel of the composite image (Jarvis et al., 2008). 185 

The final composites for each year contained raw bands and processed bands (see Table 186 

1). The equations used in band processing are as follows; 187 

For NDVI: 188 

𝑁𝐷𝑉𝐼 =  
(𝑁𝐼𝑅−𝑅𝑒𝑑)

(𝑁𝐼𝑅+𝑅𝑒𝑑)
    (Huete et al., 2002) 189 

 190 

 191 

For NDWI: 192 

𝑁𝐷𝑊𝐼 =  
(𝑁𝐼𝑅−𝑆𝑊𝐼𝑅)

(𝑁𝐼𝑅+𝑆𝑊𝐼𝑅)
    (Gao, 1996) 193 

 194 

For BSI: 195 

𝐵𝑆𝐼 =  
((𝑅𝑒𝑑+𝑆𝑊𝐼𝑅)−(𝑁𝐼𝑅+𝐵𝑙𝑢𝑒))

((𝑅𝑒𝑑+𝑆𝑊𝐼𝑅)+(𝑁𝐼𝑅+𝐵𝑙𝑢𝑒))
    (Chen et al., 2004) 196 

 197 

For EVI: 198 

𝐸𝑉𝐼 =  2.5 ×
(𝑁𝐼𝑅−𝑅𝑒𝑑)

(𝑁𝐼𝑅+6×𝑅𝑒𝑑−7.5×𝐵𝑙𝑢𝑒+1)
   (Huete et al., 2002) 199 

Table 1. Datasets and image bands used in the classification of land cover 200 

Year Dataset Raw Bands Bands Dates 
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2021 Sentinel-1 VV, VH VV p10, VV p90, VV p10-p90 

difference, VH p10, VH p90, VH 

p10-p90 difference 

23/08/21-

14/11/21 

Sentinel-2 SR B1, B2, B3, B4, 

B5, B6, B7, B8, 

B8A, B9, B10, 

B11, B12, BQA 

EVI, NDVI, NDWI 

 

 

Seasonality: NDVI magnitude, 

phase and mean, NDWI 

magnitude, phase and mean 

23/08/21-

14/11/21 

 

Seasonality 

bands: 

14/11/20-

14/11/21 

Landsat 7 SR RGB Entropy 23/08/21-

14/11/21 

SRTM Digital 

Elevation Data 

Version 4 

Elevation  

 

23/08/21-

14/11/21 

2016 Landsat 7 SR B1, B2, B3, B4, 

B5, B7 

EVI, NDVI, NDWI, Entropy 23/08/16-

14/11/16 

Landsat 7 TOA B1, B2, B3, B4, 

B5, B6 VCID 1, 

B6 VCID 2, B7, 

B8, BQA 

 

 

 

Seasonality: NDVI magnitude, 

phase and mean, NDWI 

magnitude, phase and mean, BSI 

magnitude, phase and mean 

23/08/16-

14/11/16 

 

Seasonality 

bands: 

14/11/15-

14/11/16 

 

Landsat 8 SR B1, B2, B3, B4, 

B5, B6, B7 

EVI, NDVI, NDWI 23/08/16-

14/11/16 

Landsat 8 TOA B1, B2, B3, B4, 

B5, B6, B7, B8, 

B9, B10, B11, 

BQA 

 23/08/16-

14/11/16 
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SRTM Digital 

Elevation Data 

Version 4 

Elevation  23/08/16-

14/11/16 

2011 Landsat 7 SR B1, B2, B3, B4, 

B5, B7  

EVI, NDVI, NDWI, Entropy 

 

 

Seasonality: NDVI magnitude, 

phase and mean, NDWI 

magnitude, phase and mean, BSI 

magnitude, phase and mean 

23/08/11-

14/11/11 

 

Seasonality 

bands: 

14/11/10-

14/11/11 

Landsat 7 TOA B1, B2, B3, B4, 

B5, B6 VCID 1, 

B6 VCID 2, B7, 

B8, BQA 

 23/08/11-

14/11/11 

SRTM Digital 

Elevation Data 

Version 4 

Elevation  23/08/11-

14/11/11 

2006 Landsat 7 SR B1, B2, B3, B4, 

B5, B7  

EVI, NDVI, NDWI, Entropy 

 

 

Seasonality: NDVI magnitude, 

phase and mean, NDWI 

magnitude, phase and mean, BSI 

magnitude, phase and mean 

23/08/06-

14/11/06 

 

Seasonality 

bands: 

14/11/05-

14/11/06 

Landsat 7 TOA B1, B2, B3, B4, 

B5, B6 VCID 1, 

B6 VCID 2, B7, 

B8, BQA 

 23/08/06-

14/11/06 

Landsat 5 SR B1, B2, B3, B4, 

B5, B6, B7, 

sr_atmos_opacity 

EVI, NDVI, NDWI 23/08/06-

14/11/06 

Landsat 5 TOA B1, B2, B3, B4, 

B5, B6, B7, BQA 

 23/08/06-

14/11/06 
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SRTM Digital 

Elevation Data 

Version 4 

Elevation  23/08/06-

14/11/06 

 201 

2.3.2 Classification 202 

For the Level 1 classification, which identified open water, vegetation, and forest, a 203 

random forest classifier, with 800 trees, a minimum leaf population of 1 and a bag 204 

fraction of 0.5, was trained using the training partition of visual inspection data. A 205 

supervised classification was performed for each study year (2006, 2011, 2016, 2021), 206 

creating a classification of forest, vegetation and open water for each year. In order to 207 

produce a Level 1 classification for three intermediate years (2009, 2014, 2019), the 208 

trained classifier of the closest year was used to classify the composite image of the 209 

intermediate year. For example, a classification for 2009 was produced using the 210 

classifier trained on 2011 data. A classification for 2014 used the 2016-trained classifier 211 

and a classification for 2019 used the 2021-trained classifier. This produced a 212 

classification of forest, vegetation, and open water for 7 study years between 2006 and 213 

2021. There was no satellite imagery available for 35.8km2, 0.4% of the study area, in 214 

the 2021 study period. These pixels were assumed not to have changed since 2020 and 215 

were assigned values from the 2020 classification. 216 

For the Level 2 classification, identifying dryland and vegetated wetland, a random 217 

forest classification, with 400 trees, a minimum leaf population of 1 and a bag fraction 218 

of 0.75, was trained using the training partition of the field data. A supervised 219 

classification was performed on the area classified as vegetation in the Level 1 220 

classification for each study year (2006, 2011, 2016, 2021), creating a vegetation type 221 

classification. The same three intermediate years classified in the Level 1 classification 222 

underwent vegetation type classification. 223 

The Level 2 classification was combined with the Level 1 classification image for each 224 

study year, producing classified land cover images showing forest, non-forest dryland, 225 

vegetated wetland and open water. Land cover classifications are in 30m2 resolution and 226 

use a WGS84 coordinate reference system. 227 

2.3.3 Accuracy assessment 228 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 3, 2022. ; https://doi.org/10.1101/2022.01.03.474818doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.03.474818
http://creativecommons.org/licenses/by-nc/4.0/


12 

 

To assess the accuracy of each classification, a confusion matrix carried out on Google 229 

Earth Engine (Stehman, 1997; Gorelick et al., 2017). A further accuracy assessment was 230 

carried out in RStudio, which quantified the total accuracy of each classification and the 231 

number of false positives and number of false negatives for each class (R Core Team, 232 

2021).  233 

Accuracy assessments were carried out for the land cover maps in supervision years, 234 

which were 2006, 2011, 2016, and 2021. These were carried out on the Level 1 235 

classification outputs and Level 2 classification outputs separately.  236 

2.4 Change Detection 237 

The area covered by each land cover class was measured from the land cover 238 

classification for each study year and the mean annual change between each of the 239 

images was calculated. The mean annual change for the whole study period was 240 

calculated by taking the mean of annual change estimates between study years. 241 

2.5 Precipitation Trend 242 

Precipitation data was sourced from the CHIRPS daily (version 2.0) climate dataset at 243 

5566m resolution (Funk et al., 2015). The total annual precipitation was quantified by 244 

taking the sum of total annual precipitation of all pixels across the study area for every 245 

year between 2006 and 2021 on Google Earth Engine (Gorelick et al., 2017). The total 246 

annual precipitation was then plotted using RStudio (R Core Team, 2021). 247 

 248 

3. Results 249 

3.1 Land Cover Classification 250 

Classified land cover maps of the study area, produced in the two-step classification 251 

methodology, are presented in Figure 3. The Ñeembucú Wetlands Complex is 252 

dominated by vegetated wetland, covering 65-79% of the study area between 2006 and 253 

2021. Second to vegetated wetland was dryland, covering 8-23% of the study area over 254 

the study period. In 2016, vegetated wetland covered 11% more of the study area than 255 

for the same class in 2014. Inversely, dryland covered 11% less of the study area than 256 

for the same class in 2016. This is explained by severe flooding due to repeated heavy 257 

rainfall in 2015-2016, which was reported in the Paraguay River basin (Dos-Gollin et 258 

al., 2018). After excluding 2016 observations due to extreme weather, vegetated 259 

wetland and dryland covered 65-70% and 19-23% of the study area, respectively, 260 
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between 2006 and 2021. Forest and open water covered 6-8% and 5-7% of the study 261 

area, respectively, over the study period. 262 

 263 

Figure 3. Classified land cover maps of the study area for study years between 2006 264 

and 2021. The supervised classification years were 2006, 2011, 2016 and 2021. 2009, 265 

2014 and 2019 were intermediate years, classified by the closest years classifier. 266 

Classifications created on Google Earth Engine and plotted in RStudio (Gorelick et al., 267 

2017; R Core Team, 2021). 268 

3.2 Classification Accuracy Assessment 269 

The random forest classification produced Level 1 land cover classification maps with 270 

91-96% overall accuracies and Level 2 land cover classification maps with an 82% 271 
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overall accuracy. Table 2 presents the overall accuracy, and percentage of false 272 

negatives (Type I errors) and false positives (Type II errors) in each land cover class in 273 

supervision years (the years in which training and testing data were available to 274 

supervise classifications). 275 

Within the Level 1 Classification, vegetation was overrepresented for all years. Forest 276 

was the most underrepresented class in all years, with false negatives ranging between 277 

2.9% of test observations in 2021 and 4.7% in 2011. In 2006, 0.8% and 3.1% of open 278 

water and forest observations, respectively, were falsely identified as vegetation. In 279 

2011, over two thirds of the vegetation false positives were classified as forest in the 280 

testing data, and the remaining were open water. The proportion of vegetation false 281 

positive belonging to forest and open water was similar to in 2011, with over two thirds 282 

of the vegetation false positives classified as forest in the testing data. In 2021, no errors 283 

were identified in the open water class, and there was a 0.7% greater false positive 284 

identification of vegetation than of forest. 285 

The Level 2 classification had a lower accuracy than the Level 1 classification, due to 286 

the heterogeneity in habitat types within non-forest vegetation leading to a lack of 287 

unifying features within classes (Gallant, 2015). Within both dry and wetland 288 

vegetation, dominance of grasses, herbaceous plants and shrubs vary, and the 289 

seasonality of water presence varies within the vegetated wetland class too. Within the 290 

Level 2 classification, dryland was overrepresented, with a greater number of false 291 

positives than the vegetated wetland class. 292 

Table 2. The accuracy of each classification in identifying each land cover 293 

Level 1 Land Cover Classification   

Year Overall 

Classifier 

Accuracy 

(%) 

Forest Vegetation Open Water 

False 

Positive 

(%) 

False 

Negative 

(%) 

False 

Positive 

(%) 

False 

Negative 

(%) 

False 

Positive 

(%) 

False 

Negative 

(%) 

2006 96 0 3.1 3.9 0 0 0.8 

2011 91 1.6 4.7 6.3 2.3 1.6 2.3 

2016 94 0.8 3.1 3.8 2.3 1.5 0.8 

2021 95 2.2 2.9 2.9 2.2 0 0 

        

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 3, 2022. ; https://doi.org/10.1101/2022.01.03.474818doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.03.474818
http://creativecommons.org/licenses/by-nc/4.0/


15 

 

Level 2 Land Cover 

Classification 

     

Year Overall 

Classifier 

Accuracy 

(%) 

Dryland Vegetated Wetland 

False Positive 

(%) 

False Negative 

(%) 

False Positive 

(%) 

False Negative 

(%) 

2021 82 10.7 7.1 7.1 10.7 

 294 

3.3 Land Cover Change Detection 295 

The greatest annual change throughout the study period was observed in the dryland 296 

vegetation and vegetated wetland land cover classes (see Table 3). Extreme change in 297 

dryland and vegetated wetland was seen between 2014 and 2016, with changes of -298 

65.76% and 7.72% observed in each class, respectively. The extreme figures observed 299 

in 2016 are the results of extreme weather, and this year’s classification was removed 300 

from the change detection as a result (Dos-Gollin et al., 2018; Figure 4). The change 301 

detection showed vegetated wetlands decreasing at a mean annual rate of 1.65%, and a 302 

mean annual increase in dryland of 4.94% (Table 3). Further to this, forest is lost at a 303 

rate of 0.34% annually, while open water is gained at a mean rate of 0.40% annually. 304 

Table 3. Mean annual change (%) in area in each land cover between study years 305 

Time Period Forest Dryland Vegetated 

Wetland 

Open Water 

2006-2009 -9.12 3.89 -0.92 3.37 

2009-2011 9.00 -9.69 1.80 1.34 

2011-2014 3.54 -1.13 -0.52 4.42 

2014-2019 -3.70 1.54 0.13 -3.07 

2019-2021 -1.43 30.07 -8.74 -4.07 

Overall Study Period -0.34 4.94 -1.65 0.40 

 306 

3.4 Precipitation Trend 307 

Total annual precipitation ranged between 9,036,984mm and 16,546,476mm and 308 

displayed an increasing trend over the study period (see Figure 4). However, greater 309 

variability in annual precipitation is seen in the latter years within the study period, with 310 
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total annual precipitation more than three times greater than the previous year observed 311 

in 2016, and some of the lowest rainfall years observed in 2020 and 2021 (Figure 4a). 312 

The impact of extreme precipitation in 2016 is observed in the inundation of a greater 313 

area of non-forested land in that year (Figure 4b). 314 

 315 

Figure 4. Temporal pattern of A total annual precipitation (mm) and B area (km2) 316 

under each land cover class in the study area between 2006 and 2021. In A, the 317 

observed annual precipitation is plotted in black and the fitted precipitation trend in 318 

grey. Sources: The CHIRPS daily (version 2.0) climate dataset (Funk et al., 2015). 319 

Processed in Google Earth Engine and plotted in RStudio (Gorelick et al., 2017; R 320 

Core Team, 2021). 321 

 322 

4. Discussion 323 

The wetland change identified in the Ñeembucú Wetlands Complex is comparable to 324 

wetland change reported in regions of the Paraguay-Paraná-La Plata River system, 325 

where pressure from human activities events is driving wetland conversion and 326 

degradation trends (Collischonn et al., 2001; Junk, 2013). In the Lower Paraná River 327 

Delta, one third of freshwater marshes were converted to pasture and forestry between 328 

1999 and 2013 (Sica et al., 2016). Similarly, Guerra et al. (2020) projected a 3% loss in 329 

native vegetation by 2050 in the Pantanal, the lowland region of the Upper Paraguay 330 

River Basin. Brandolin et al. (2013) found a 15% loss in flooded area in Córdoba, 331 

Argentina, and area in which agricultural expansion has driven high channelisation of 332 

the wetlands between 1987 and 2007. Conversely, a 66% increase in flooded area was 333 
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seen in Santa Fe, a region experiencing lower agricultural pressure, within the same 334 

study in Argentina. The increase in flooded area observed in Santa Fe was attributed to 335 

increased flooding driving expansion of wetlands in a region with low agricultural 336 

pressure (Brandolin et al., 2013). The findings of this study suggest that wetland areas 337 

within the Ñeembucú Wetlands Complex are being converted to dryland, a similar trend 338 

observed in other regions within the Paraguay-Paraná-La Plata River system, and 339 

globally (Kashaigili et al., 2006; Junk, 2013; Gardner et al., 2015). 340 

Land use in the Ñeembucú Wetlands Complex is predominantly agricultural and it is 341 

likely that agricultural and urban expansion is driving the drainage and conversion of 342 

wetlands to dryer, productive lands (Bucher & Huszar, 1995; JICA-CEPAL, 2013). This 343 

trend is seen in wetlands both globally and within the Paraguay-Paraná-La Plata River 344 

system. Wetland loss in the Ñeembucú Wetlands Complex is comparable to that seen in 345 

Argentina, where the use of water management infrastructure, such as channels and 346 

levees, has been held responsible for driving wetland conversion (Bucher and Huszar, 347 

1995; Brandolin et al., 2013; Sica et al., 2016). In wetlands with high agricultural 348 

production in the Paraná River Delta in Argentina, artificial drainage channels were 349 

constructed to mitigate the impacts of frequent flooding caused by an increasing rainfall 350 

trend in the latter half of the 20th century, and illegal construction of channels by 351 

landowners followed (Brandolin et al., 2013). Within the Lower Paraná River Delta, 352 

water management practices, cattle density, and accessibility were the primary drivers 353 

of wetland conversion (Brandolin et al., 2013; Sica et al., 2016). In the Upper Paraguay 354 

River Basin, native vegetation loss was driven by commodity agriculture, protection 355 

status, and accessibility (Guerra et al., 2020). The relative influences of these variables 356 

differed spatially, with agriculture having a lesser effect and distance to roads having a 357 

greater effect in the Pantanal wetlands compared to the dryer surrounding Cerrado and 358 

Amazon biomes.  359 

Wetland conversion observed in the Ñeembucú Wetlands Complex is likely not 360 

attributed to precipitation, as total annual precipitation and extreme precipitation trends 361 

are increasing in the region. Doyle and Barros (2011) found increasing precipitation 362 

localised to both the Middle Paraná and Middle Paraguay Basins, in which the 363 

Ñeembucú Wetlands Complex lies, and Haylock et al. (2006) reported increased annual 364 

precipitation and extreme precipitation days, with a shortened wet season, for Paraguay 365 

and the surrounding region. Further to this, an increasing trend was seen for total annual 366 
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precipitation in the Ñeembucú Wetlands Complex, within this study. Wetland dynamics 367 

are largely driven by precipitation, and without simultaneous urban and agricultural 368 

development, increasing precipitation is expected to drive greater inundation and 369 

flooding (Collischonn et al., 2001; Prieto, 2007; Pereira et al., 2021). The 370 

aforementioned increasing inundation observed in Santa Fe, Argentina, is an example of 371 

wetland expansion driven by increasing precipitation (Brandolin et al., 2013). The 372 

precipitation trends observed in the study area and the surrounding region suggest 373 

climate change is not driving conversion of wetlands observed in this study. 374 

Continued loss of vegetated wetlands and forest in the Ñeembucú Wetlands Complex 375 

will reduce the capacity of the ecosystem to provide valuable goods and services, 376 

including water storage, provisioning of fish and fuel, and supporting wetland 377 

biodiversity. Recent developments in the region including the Coastal Defences of Pilar 378 

and Alberdi-Pilar Ruta constructions pose a further threat this vulnerable habitat 379 

(Gardner et al., 2015; MOPC, 2021a; MOPC, 2021b). The primary goals of these 380 

developments are to alleviate flood risk and increasing accessibility to Ñeembucú’s 381 

main city, Pilar, which are frequently acknowledged as drivers of wetland conversion. 382 

Further to this, development of the floodplain in Ñeembucú may reduce water storage 383 

and drive flooding in the rest of the region (Gottgens et al., 2001). It may also be the 384 

case that land use change and river modifications upstream of the Ñeembucú Wetlands 385 

Complex are influencing wetland change by moderating river discharges (da Silva and 386 

Girard, 2004). Given the clear impact global change has already had on these wetlands, 387 

wetland monitoring is an essential tool for preserving the economic, ecological and 388 

cultural value of the Ñeembucú Wetlands Complex (Sica et al., 2016; Kandus et al., 389 

2018; Guerra et al., 2020).  390 

Continued monitoring of the Ñeembucú Wetlands Complex and further analysis of the 391 

drivers of land use change in the region are essential for well-informed decision-making 392 

in the region (Junk, 2013; Guo et al., 2017; Kaplan and Avdan, 2018). Globally, the 393 

value of wetlands has rarely been seriously considered within decision-making 394 

(Woodward and Wui, 2001). However, integration of the value of wetlands into 395 

decision-making and development-planning will promote conservation of economically, 396 

ecologically, and culturally valuable wetland habitats. Further analysis of change within 397 

wetland types, and the drivers of this change, will be essential for identifying vulnerable 398 

habitats, monitoring wetland health and understanding the role of policy and 399 
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development in driving wetland dynamics in Ñeembucú (Gumbricht et al., 2017; 400 

Davidson & Finlayson, 2018).  401 

 402 

5. Conclusion 403 

With around 6000km2 of wetland area within an 8000km2 complex of forest, grassland 404 

and wetland, the Ñeembucú Wetlands Complex is a valuable region within the 405 

Paraguay-Paraná-La Plata River system within which preservation of biodiversity, 406 

provisioning of natural resources, and water storage must be considered within 407 

development process. Within the Ñeembucú Wetlands Complex, vegetated wetlands 408 

and forest have been lost over the last 15 year, predominantly being converted into more 409 

productive, dryland areas. Given the increasing precipitation trends identified in the 410 

region, it’s likely that agricultural and urban development is driving land use change in 411 

the region. With large, ongoing, developments in the region, continued monitoring will 412 

be essential for understand the impact on the Ñeembucú Wetlands Complex, a region in 413 

which much of the population’s livelihoods depend on ecosystem health. With current 414 

ongoing developments in the area and projected continued climatic and anthropogenic 415 

pressures, monitoring will be essential for understanding the impact of climate change 416 

and development on wetland health. Wetland monitoring is a key tool for addressing 417 

wetland change and gaining the knowledge required for well-informed decision making 418 

around future development and conservation of valuable ecosystem goods and services. 419 
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