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Abstract17

Single-cell RNA-sequencing (scRNA-seq) technology allows us to explore cellular18

heterogeneity in the transcriptome. Because most scRNA-seq data analyses begin19

with cell clustering, its accuracy considerably impacts the validity of downstream20

analyses. Although many clustering methods have been developed, few tools are21

available to evaluate the clustering “goodness-of-fit” to the scRNA-seq data. In22

this paper, we propose a new Clustering Deviation Index (CDI) that measures the23

deviation of any clustering label set from the observed single-cell data. We conduct24

in silico and experimental scRNA-seq studies to show that CDI can select the optimal25

clustering label set. Particularly, CDI also informs the optimal tuning parameters for26

any given clustering method and the correct number of cluster components.27

1 Introduction28

Single-cell RNA-sequencing (scRNA-seq) quantifies the transcriptome of individual cells, al-29

lowing us to explore the biological heterogeneity among cells (Shapiro et al. 2013). Thus,30

scRNA-seq analysis usually begins with cell type clustering. Over the past five years, many31

methods have been developed or re-purposed for scRNA-seq clusterings, such as K-means,32

hierarchical clustering, RaceID (Grün et al. 2015), CIDR (Lin et al. 2017), SIMLR (Wang et33

al. 2017), SCANPY (Louvain algorithm) (Wolf et al. 2018), and Seurat (Louvain algorithm)34

(Stuart et al. 2019).35

The outputs of these clustering methods are cell label sets that assign each cell to a cluster.36

Different methods usually yield different label sets. Even if we use a given clustering method,37

we still obtain different label sets by setting different tuning parameters. These different label38

sets lead to the challenge of choosing an “optimal” label set. To address the challenge, one39

approach is to apply a consensus method on these label sets to derive an ensemble label set.40

However, the ensemble label set is not guaranteed to reflect the underlying cell type structure41

better than any input label set. Furthermore, different consensus methods (Yang et al. 2019;42

Kiselev et al. 2017) often generate different ensemble label sets; thus, the challenge of choosing43

the optimal label set remains. Therefore, we need a reasonable evaluating index to score the44

“goodness-of-fit” or the deviation of each label set to the data. The evaluating index will help45

us select the optimal label set among the candidates.46

In general, the evaluating indices can be divided into two categories. The first category47
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consists of unsupervised indices. Calculating unsupervised indices does not depend on the48

knowledge of the actual label set; instad, the unsupervised indices usually use geometric or49

statistical properties to evaluate the quality of a label set. For example, the Calinski-Harabaz50

index (Caliński and Harabasz 1974) selects the label set with the minimum ratio between the51

within-cluster and between-cluster variances; similarly, the Silhouette coefficient (Rousseeuw52

1987) and the Davies-Bouldin index (Davies and Bouldin 1979) selects the label set with the53

minimum ratio between the within-cluster and between-cluster distances. However, in the54

context of scRNA-seq clustering, we found that these methods often selected different label55

sets. None of their selected label sets matches the benchmark label set (Fig. 5).56

The second category consists of supervised indices, whose accuracy is determined by the57

benchmark label set. Examples of supervised indices include the Adjusted Rand Index (ARI)58

(Hubert and Arabie 1985), the Normalized Mutual Information (Vinh et al. 2010), Fowlkes-59

Mallows scores (Fowlkes and Mallows 1983), and the weighted Rand Index and Mutual Infor-60

mation (Z Wu and H Wu 2020). One of the most commonly used supervised indices is ARI, a61

corrected-for-chance version of the Rand index that measures the agreement between two label62

sets: if they are similar, ARI is close to 1; otherwise close to 0. Because calculating supervised63

indices relies on the benchmark label set, the supervised indices are more accurate than unsu-64

pervised indices when the benchmark label set is accurate or close to the truth. Unfortunately,65

the benchmark label set is usually unavailable or challenging to generate. Moreover, even if it66

is available, it could be biased or incorrect because of outdated domain knowledge, leading to67

poor performances of supervised indices.68

In this study, we developed a new unsupervised index, Clustering Deviation Index (CDI),69

to quantify the deviation of single cell data from the the data distribution based on the given70

label set. CDI is an unsupervised evaluation index whose calculation does not rely on the71

actual unobserved label set. However, its performance on scRNA-seq is consistent with ARI72

(Fig. 5). We applied CDI to multiple experimental scRNA-seq data sets and demonstrated73

that it successfully selected biologically meaningful clustering labels in each case. Because74

CDI is unsupervised, it is much more broadly applicable than supervised indices.75
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2 Results76

Dataset # cells # genes # cell types (subtypes) Protocols Reference

Real CT26.WT 9,621 11,710 1(-) 10X v3 -

datasets T-CELL 2,989 7,893 5(-) 10X Christian et al. 2021

CORTEX 7,390 12,887 8(33) inDrop Hrvatin et al. 2018

RETINA 26,830 13,118 6(18) Drop-seq Shekhar et al. 2016

Simulated SD1 4,000 10,000 10(-) - -

datasets SD2 4,200 10,000 4(-) - -

SD3 2,800 10,000 2(4) - -

SD4 3,000 4,887 5(-) - -

Table 1. Dataset summary. More details on the experimental and simulated datasets are provided in
Sections 4.5 and 4.6.

2.1 Characterizing UMI count distributions of monoclonal cells77

We built our model on a rigorous characterization of the statistical properties of the scRNA-78

seq data, CT26.WT, from a pure monoclonal population. We generated CT26.WT for a79

murine colon carcinoma cell line derived through monoclonal expansion to eliminate cell type80

heterogeneity and avoid experimental biases (Section Discussion). Then, we extracted the81

unique molecular identifier (UMI) count of each cell. UMI is barcoded for each transcript82

before amplification in many scRNA-seq protocols, leading to more accurate quantification of83

the transcript count (Klein et al. 2015; Zheng et al. 2017). Based on CT26.WT, we evaluated84

the “goodness-of-fit” of the following four families of gene-specific UMI count distributions to85

the actual gene-specific UMI count distributions. All four families consist of negative binomial86

(NB) distributions or zero-inflated NB distributions. The difference among these families lies87

in their dispersion and zero-inflation parameter modeling, and their mean parameter modeling88

is similar (Supplemental Note 1).89

• Gene-common NB : negative binomial (NB) distributions with gene-common dispersion90

parameters;91

• Gene-common ZINB : zero-inflated negative binomial (ZINB) distributions with gene-92

common dispersion parameters;93

• Gene-specific NB : NB distributions with gene-specific dispersion parameters;94
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• Gene-specific ZINB : ZINB distributions with gene-specific dispersion parameters.95

We used the Pearson’s chi-squared test (Chernoff and Lehmann 1954) to evaluate the96

“goodness-of-fit” of the distributions in the four distribution families to the actual gene-specific97

UMI count distributions in CT26.WT (Supplemental Fig. S2). The test rejected 34.3% poorly98

fitted genes for the gene-common NB family and 34.5% for the gene-common ZINB family.99

The rejection rates are high, indicating that these distribution families do not fit the actual100

UMI count distributions. In contrast, when applied to the gene-specific NB and ZINB families,101

the “goodness-of-fit” tests only rejected 9.7% and 6.1% poorly fitted genes, respectively. The102

rejection rates are not far from the preset type I error rate 5%, suggesting an overall good fit103

of these models.104

The test results suggest that the well-fitted distribution family should include the gene-105

specific dispersion parameters, but including the zero-inflation parameters might not be neces-106

sary. To demonstrate the latter point, we split CT26.WT into two datasets - a half for training107

and the other half for testing. We fitted the unknown parameters in these four distribution108

families in the training dataset, estimated the zero UMI count proportions in the test dataset,109

and then compared the estimated and the observed zero UMI count proportions. The results110

(Fig. 1A) show that the gene-common NB and ZINB families underestimated the zero UMI111

count proportions in CT26.WT. In contrast, the gene-specific NB and ZINB families yielded112

reasonable and similar estimates of the zero UMI count proportions. Thus, adding additional113

ZINB parameters does not further improve the fitting. Hence, for the remainder of this study,114

we used the gene-specific-dispersion NB model without zero inflation.115

2.2 Characterizing UMI count distributions of polyclonal cells116

Polyclonal cell populations consist of cells from multiple cell types. To fit their UMI count117

distributions, we consider the following two NB distribution families. The difference between118

the two families lies in whether the mean and dispersion parameters are the same across cell119

types (Supplemental Note 1).120

• Cell-type-common NB : NB distributions with the cell-type-common but gene-specific121

mean and dispersion parameters;122

• Cell-type-specific NB : NB distributions with the cell-type-specific and gene-specific mean123

and dispersion parameters.124

We used the cell-type-specific “goodness-of-fit” tests (Section 4.2) to check whether these125
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two families fit the observed UMI counts well in the T-CELL dataset (Table 1). The tests126

rejected 34.27% of the genes for the cell-type-common NB family and 2.27% for the cell-127

type-specific NB family. Thus, adding cell-type-specific parameters substantially improved128

the fitting to the UMI count distributions.129

The cell-type-specific NB family consists of more free-changing parameters, so we need130

to show that the improved fit does not stem from overfitting. Therefore, we did a 50:50131

train/test split on the T-CELL dataset. We used the training dataset to fit the gene-specific132

distributions in each family, estimated the zero UMI count proportions in the test dataset, and133

then compared the estimated and the observed zero UMI count proportions in the test dataset.134

In the test dataset, we found that the cell-type-specific NB family still provides much better135

estimates to the zero UMI count proportions (Fig. 1B). We performed similar analyses on the136

CORTEX and RETINA datasets and observed similar results (Supplemental Fig. S5–S8).137

Figure 1. Zero UMI count proportion fitting under six models in monoclonal and polyclonal datasets.
In both (A) and (B), cells in each type were randomly divided into two datasets: half for training and
half for testing. The x-axis is the estimated zero UMI count probabilities based on the training dataset,
and the y-axis is the difference between observed proportions in the test dataset and the estimated zero
probabilities based on the training dataset. (A) The monoclonal CT26.WT dataset (n = 9, 621 cells). Each
point represents a gene. (B) The polyclonal T-CELL dataset (n = 2, 989 cells). Each point represents a
gene in a specific cell type, while the point colors and shapes represent five benchmark cell types (Christian
et al. 2021). The CD8 Tcm cell type in this study is defined as IL17RA+CD28+.
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2b. Penalize the model complexity.  
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Figure 2. CDI calculation illustration. CDI inputs are T candidate label sets and the raw UMI count
matrices from B batches. CDI contains two steps. CDI first selects the feature genes for each batch and
takes their union. Other known feature genes can also be manually included. Then, CDI is calculated for
all candidate label sets. CDI outputs are T CDI values corresponding to T candidate label sets. The label
set with the lowest CDI is optimal.

2.3 CDI Overview138

We developed CDI as an unsupervised index to evaluate the fitting of the observed UMI counts139

to the UMI count distribution based on the candidate label set. It calculates the negative140

penalized maximum log-likelihood of the selected feature genes based on the candidate label141

set. We have shown that the raw UMI counts follow gene-specific and cell-type-specific NB142

distributions given the actual cell-type labels. CDI is low if the candidate label set and the143

actual label set are similar; otherwise, CDI is high. The CDI calculation involves the following144

two steps (Fig. 2).145

1. Feature gene selection. Feature genes are those differentially expressed across cell146

types. Therefore, many scRNA-seq clustering methods rely on feature genes to cluster147

cells: selecting feature genes could substantially reduce data dimensions and possibly148

boost the signal in clustering. We also selected feature genes before calculating CDIs149

because of similar reasons. Many existing feature gene selection methods are available150

(Brennecke et al. 2013; Townes et al. 2019; Stuart et al. 2019). Here, we derive a new151

approach using a working dispersion score (WDS). WDS estimates the working dispersion152

for each gene. For single-batch datasets, we select genes with the largest average sample153

dispersion estimates as the feature genes. For multi-batch datasets, we rank genes in each154

batch by their average sample dispersion, combine rankings across batches by taking the155
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minimum, and select top-ranked genes as the feature genes. Compared with other feature156

selection methods, our approach is derived from the parametric NB mixture model,157

capturing the fold change of mean parameters across cell types (Section S2.2). This158

property allows WDS to improve the performance of CDI, as described in Section 2.4.1,159

and Section 4.3.160

2. Optimal clustering label set selection. If the candidate label set is close to the161

actual cell label set, the UMI count of each feature gene follows a gene-specific and cell-162

type-specific NB distribution. We calculated CDI as the sum of the negative penalized163

maximum log-likelihood for all the feature genes. The penalties are based on either the164

Akaike Information Criterion (AIC) or the Bayesian Information Criterion (BIC) (Akaike165

1974; Schwarz et al. 1978; Konishi and Kitagawa 2008) (see details in Section 4.4). The166

choice of AIC or BIC depends on users’ scientific goals. Because BIC puts a higher167

penalty on model complexity, CDI with BIC (CDI-BIC) favors label sets with fewer168

clusters. Thus, we recommend using CDI-BIC to select the optimal label set on main169

cell types. Conversely, we recommend using CDI with AIC (CDI-AIC) to select the170

optimal subtype label set to depict the heterogeneity with a higher resolution.171

2.4 Performance Evaluation172

We evaluated the performance of WDS and CDI on four simulated datasets (SD1–SD4) and173

three experimental datasets (T-CELL, CORTEX, and RETINA). All datasets have the bench-174

mark label sets. For the simulated datasets, the benchmark label sets are the actual cell label175

sets. For the experimental scRNA-seq datasets, the benchmark label sets were obtained by the176

multi-step process, including fluorescence-activated cell sorting (FACS), known feature gene177

checking, cell screening, and clustering; thus, these benchmark label sets may not be accurate178

but reflect our best knowledge of the cell types (see Section 4.6 for details).179

2.4.1 Performance of WDS in selecting feature genes for CDI180

We compared WDS against another feature selection method, VST, the default for Seurat V3181

(Stuart et al. 2019) and V4 (Hao et al. 2021). First, we selected the top 500 feature genes using182

WDS and VST, respectively. Second, we normalized the UMI counts of the selected feature183

genes by the log(max(count, 0.1)) transformation. Third, we calculated the top 50 principal184

components (PCs) of the normalized UMI counts. Finally, we plotted the two-dimensional185
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uniform manifold approximation and projection (UMAP) (Becht et al. 2018) based on the top186

50 PCs (Fig. 3).187

• For all datasets except for SD3 and SD4, the UMAPs based on both the WDS-selected188

feature genes and the VST-selected feature genes separate different cell clusters well.189

• For SD3, WDS selected 74/75 of the actual feature genes while VST only selected 48/75.190

Most of the feature genes missed by VST but not WDS are highly expressed in three191

similar subtypes but lowly expressed in the less similar main types. Consequently, the192

UMAP based on the WDS-selected feature genes reflects the cell type structure better193

than the VST-selected feature genes.194

• For SD4, VST performed better than WDS. SD4 was generated from Splatter (Zappia195

et al. 2017), a scRNA-seq data simulator that imposes strong mean-dispersion trends on196

gene expressions – that is, highly expressed genes are forced to have a lower dispersion.197

Such trends are commonly seen in bulk RNA-seq data, but we did not observe them in198

the UMI counts of the scRNA-seq datasets (Supplemental Fig. S9). On datasets with199

such trends, WDS will select genes with lower average UMI counts. These genes contain200

little information on cell types; thus, the resulting UMAP cannot separate the cells from201

different cell types. Because splatter is a commonly used scRNA-seq data simulator, we202

included SD4 to check the robustness of the subsequent procedure of CDI. In practice,203

when such mean-dispersion trends exist for the UMI counts, we should not use WDS to204

select feature genes; however, when such mean-dispersion trends do not exist (as in all205

of our experimental datasets), WDS works well.206

When WDS and VST select different feature gene sets, even if their resulting UMAPs207

separate cell types similarly well, CDI based on the two gene sets could select different label208

sets. For example, for T-CELL, both UMAPs look similar (Fig. 3E). However, CDI following209

VST selected the six-cluster label set generated by the spectral clustering (ARI=0.39); CDI210

following WDS selected the five-cluster label set generated by Seurat (ARI=0.87). For refer-211

ence, T-CELL’s benchmark label set has five clusters, similar to the five-cluster label selected212

by CDI following WDS (T-CELL panel in Fig. 4A, B). Thus, CDI following WDS is more213

robust and accurate.214

When WDS selects different numbers of feature genes, CDI based on these different feature215

gene sets has robust performance. For example, for T-CELL, based on the 200 WDS-selected216

feature genes, CDI selected a six-cluster label set generated by Seurat; the second-best was217
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the five-cluster label set generated by Seurat. Based on the 300 WDS-selected feature genes,218

CDI selected the five-cluster label set generated by Seurat. Finally, based on the 400 or219

500 WDS-selected feature genes, CDI selected the five-cluster label set generated by SC3.220

(Supplemental Fig. S14). These label sets were all similar to the benchmark label set (ARIs221

between 0.80 and 0.87). Thus, CDI’s performance is robust to the number of WDS-selected222

feature genes.223

2.4.2 Performance of CDI in selecting the optimal label set224

We evaluated the performance of CDI using the candidate label sets generated by multiple225

clustering methods, each with a wide range of tuning parameters. The clustering methods226

we applied include hierarchical clustering, K-means clustering, spectral clustering, CIDR (Lin227

et al. 2017), Seurat V3 (Stuart et al. 2019), and an ensemble clustering method called SC3228

(Kiselev et al. 2017).229

A. Data containing no rare cell types. We define a cell type as rare if its proportion is below230

3%. We evaluated the performance of CDI on the datasets where none of the cell types are231

rare. These datasets include SD1, SD4, and T-CELL. SD1 contains ten equally proportional232

cell types simulated from the NB model verified in Section 2.2; SD4 contains five unequally233

proportional cell types simulated from Splatter; T-CELL contains a mixture of five cells types234

of T cells. We selected their feature genes with either WDS (SD1, T-CELL) or VST (SD4) and235

then applied CDI-BIC to select the optimal label set marking their main cell types. CDI-BIC236

performed very well on all three datasets. It selected the label sets with the correct numbers of237

clusters (Fig. 4A); moreover, the selected label sets are very similar to the benchmark label sets238

(Fig. 4B). Of note, some other candidate label sets have the correct numbers of clusters, but239

their cell labels are very different from the benchmarks. For example, for T-CELL, two label240

sets with the lowest CDI are the five-cluster label sets generated by Seurat and SC3. These241

two label sets have similarly low CDIs (1.2744× 106 for Seurat and 1.2743× 106 for SC3) and242

similarly high ARIs (0.875 for Seurat and 0.870 for SC3). However, the five-cluster label sets243

generated by other methods have much higher CDIs (1.3356×106, 1.3095×106, 1.2918×106,244

1.2812×106) and much lower ARIs (0.002, 0.116, 0.132, and 0.388). Apparently, the label sets245

with lower CDIs have higher ARIs. The heatmaps to compare the candidate label sets with246

the benchmark label sets also verified that the label sets with lower CDIs are more similar to247

the benchmark label set (Supplemental Fig. S10). These results suggest that CDI has similar248

performance with ARI in selecting the optimal label set when the data contain no rare cell249
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Figure 3. Comparisons between WDS and VST. (A)−(D) UMAPs of the simulated datasets (SD1–SD4);
(E )−(G) UMAPs of the experimental datasets (T-CELL, CORTEX, and RETINA). In all plots, cells from
different cell types are marked with different colors.
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types. Moreover, CDI has a significant advantage over ARI because its calculation does not250

rely on the knowledge of the benchmark label set.251

B. Data containing rare cell types. We evaluated the ability of CDI-AIC and CDI-BIC to252

detect rare cell types. For example, SD2 simulated a cell population with two normal-sized253

(47.62% of all cells each) and two rare (2.38% of all cells each) cell types. Two normal-sized254

cell types and one rare cell types have different but similar feature gene UMI count distribu-255

tions. This rare cell type is called RC1; the other rare cell type is called RC2 (Fig. 3A SD2256

panel). For SD2, CDI-BIC selected a label set similar to the benchmark, suggesting that it257

can differentiate both rare cell types. Next, we reduced the cell proportion of RC1 further to258

challenge CDI with more difficult tasks. When the cell proportion of RC1 reduced to 2.03%259

(85/4185), CDI-BIC selected the three-cluster label set generated by spectral clustering; how-260

ever, CDI-AIC still selected the four-cluster label set including RC1 (Supplemental Fig. S13B,261

S13D). When the cell proportion of RC1 reduced to 0.49% (20/4120), neither CDI-AIC nor262

CDI-BIC distinguished RC1; instead, they both selected the three-cluster label set generated263

by Seurat. Although this label set misses RC1, it has a very high ARI (0.98) (Supplemen-264

tal Fig. S13G, S13I). Also, if we put the benchmark label set to the candidate pool, CDI-BIC265

would rank it as the fourth among all label sets, and CDI-AIC would select it as the optimal266

(Supplemental Fig. S13I). These results suggest that both CDI-BIC and CDI-AIC perform well267

in detecting rare cell types; compared with CDI-BIC, CDI-AIC is more sensitive in detecting268

rare cell types.269

C. Data with hierarchical cell type structures. In scRNA-seq data, some main cell types270

can be further divided into subtypes. For example, SD3 simulated a cell population with two271

main cell types; one main cell type contains three subtypes, and the other is homogeneous.272

We used CDI-BIC to select the main type label set and CDI-AIC to select the subtype label273

set. As a result, CDI-BIC selected the two-cluster label set similar to the benchmark main274

type label set; CDI-AIC selected the four-cluster label set similar to the benchmark subtype275

label set (Fig. 4A SD3 panel, 4B SD3 panel). Another dataset, CORTEX, has eight main276

types and 33 subtypes. CDI-BIC selected a 20-cluster label set (Fig. 4A CORTEX panel).277

These 20 clusters correspond to the partitions of eight benchmark main types: clusters 4-10278

correspond to excitatory neurons, clusters 11 and 12 correspond to microglia cells, and clusters279

15-20 correspond to oligodendrocytes (Fig. 4B CORTEX panel). CDI-AIC selected a label set280

with 36 clusters (Fig. 4A CORTEX (AIC) panel). Some of these 36 clusters were partitions281

of the benchmark subtypes: they further partitioned Endothelial cells subtype 1, Astrocytes,282
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Excitatory cells subtype 23, Excitatory neuron 5 1, Excitatory neuron 6, Oligodendrocytes283

subtype 5, and microglia subtype 2 into 21 clusters. Other clusters in the 36-cluster label set284

were mixtures of rare cell types, including a cluster mixing all interneuron subtypes (taking285

up 1.8% of all cells), a cluster mixing two Endothelial subtypes, and a cluster mixing two286

Microglia subtypes (Fig. 4B CORTEX (AIC) panel) In fact, not only the selected label set287

but also all other candidate label sets cannot separate these rare cell types. These results288

suggest that when the data have hierarchical structures, applying CDI-BIC in combination289

with CDI-AIC is an excellent strategy to reveal its hierarchical structure. When the subtypes290

contain too few cells, CDI-AIC may fail to identify the rare subtype but can still cluster them291

with other similar subtypes.292

D. Data from multiple batches. RETINA had two batches with six main types. Among293

them, photoreceptors were further divided into rod photoreceptors (0.34%) and core photore-294

ceptors (0.18%. The ON cone bipolar cells (BCs) had seven subtypes; the OFF cone BCs had295

six. CDI-BIC selected an 18-cluster label set that classified the main types well. It further296

partitioned the rob BCs, ON cone BCs, and OFF BCs into several subtypes. On the other297

hand, CDI-AIC selected a label set with 33 clusters. This label set separated all the subtypes298

well. Besides, it provided a more exemplary partition on the benchmark Müller glia cells and299

the rod bipolar cells (RBCs). Some subtypes of ON cone BCs (BC5A, BC5C, BC6, BC7)300

and OFF cone BCs (BC1A, BC2) were also further partitioned into sub-clusters. Cluster 11301

spanned many cell types; however, they are mainly BCs. These results suggest that CDI works302

well on the multi-batch scRNA-seq data by incorporating hypothesis tests for significant batch303

effect and subsequent adaptive modeling (Section 4.1.2).304

2.4.3 Comparison of CDI with other unsupervised indices305

For general clustering problems, many other unsupervised indices are developed, including306

Davies-Bouldin index (Davies and Bouldin 1979), Silhouette coefficient (Rousseeuw 1987),307

and Calinski-Harabasz index (Caliński and Harabasz 1974). Although these methods are not308

customized for scRNA-seq data clustering, they have been applied in multiple publications to309

select clustering label sets (H Jiang et al. 2018; Peyvandipour et al. 2020; Liu et al. 2020).310

We compared the performance of these unsupervised indices and CDI by using the benchmark311

supervised index ARI. An unsupervised index performs well if it is a monotone function of312

ARI.313

Because CDI-BIC aims to select main type label sets, we compared it with the ARI using314
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Figure 4. CDI’s performance evaluation. CDI was applied to four simulated datasets (SD1-SD4) and
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subplot title contains AIC, CDI-AIC was applied; otherwise, CDI-BIC was applied. (A) CDIs of different
candidate label sets. The x-axis labels the cluster number in the candidate label sets, and the y-axis labels
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Figure 5. Comparison between CDI and other unsupervised indices. In each panel, the x-axis is an
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the benchmark main type label sets. Similarly, we compared CDI-AIC with the ARI using315

the benchmark subtype label sets. Both CDI-AIC and CDI-BIC show clear monotone trends316

with ARI in all the datasets (Fig. 5). Therefore, CDI has matching performance with ARI,317

which requires the prerequisite knowledge of the benchmark label sets.318

In contrast, other unsupervised indices did not exhibit any apparent monotone relationships319

with ARI. They sometimes assigned similar scores to two label sets with very different ARIs.320

For example, the Davies-Bouldin index assigned similar scores to many varying-quality label321

sets in SD1 and CORTEX (Fig. 5B, F). Same for the Silhouette coefficient in SD1, SD2, and322

T-CELL (Fig. 5C, G) and the Calinski-Harabaz index in T-CELL (Fig. 5H). Therefore, these323

general unsupervised indices are inferior to CDI in selecting the optimal clustering label set324

for scRNA-seq data.325

3 Discussion326

In this study, we develop a new index, CDI, to calculate the deviation between the candi-327

date label set and the observed UMI counts. For each candidate label set, CDI calculates the328

negative penalized maximum log-likelihood of the feature gene UMI counts. The likelihood329

function is calculated based on the gene-specific cell-type-specific NB distribution family veri-330

fied in both monoclonal and polyclonal scRNA-seq data. We recommend using WDS to select331

the feature genes for CDI because CDI following WDS has robust and satisfying performances.332

Because calculating CDI relies on the gene-specific cell-type-specific NB distribution family,333

we would like to elaborate on two major innovations of our approach to ensure the distribution334

family is reliable.335

First, to generate a monoclonal dataset, we cloned a single mother cell to derive a cell line336

whose components can be considered identical. This strategy is better than the existing artifi-337

cial External RNA Control Consortium (ERCC) or fluorescence-activated cell sorting (FACS)338

strategies for the following reason. For scRNA-seq data, variations in UMI counts could come339

from the variations in the efficiency of library construction, sequencing depths, cell cycles,340

and cell types. The first three variations cannot be avoided even in a monoclonal scRNA-341

seq dataset, while the last one is successfully eliminated. Monoclonal single cell datasets are342

essential to characterize the UMI count distributions in scRNA-seq data: with the well char-343

acterized distributions, we can use the model validation tools such as AIC or BIC to evaluate344

the deviation from the data to the model given the candidate label set. Previously, such345

16

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 4, 2022. ; https://doi.org/10.1101/2022.01.03.474840doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.03.474840


monoclonal datasets were generated by either piking in the ERCC RNA or purifying cells by346

FACS. The ERCC RNA samples contain the synthesized RNAs differing from the endogenous347

transcripts in many aspects (Zheng et al. 2017; L Jiang et al. 2011) (such as length, guanine-348

cytosine content, 5’ cap, polyA length, and ribosome binding). These structural disparities349

lead to different conversion efficiencies of mRNA into cDNA. Thus, while ERCC eliminates350

the cell type variations, they also eliminate or distort the variations in library construction, se-351

quencing depths, and cell cycles. Another choice, FACS, can keep these variations; however, it352

only purifies cells based on a limited number of protein markers and therefore can only reduce353

but not eliminate the cell type heterogeneity in a cell population. Different from these two354

existing strategies, we used the single-cell expansion strategy to ensure an ideal monoclonal355

population: it keeps the variations in library construction, sequencing depths, and cell cycles;356

on the other hand, it also eliminates cell type heterogeneity.357

Second, although we are not among the first to suggest that the UMI count distributions358

are not necessarily zero-inflated, we characterized the UMI count distributions with more359

specific gene-specific and cell-type-specific models. Previous studies model the UMI count360

distributions differently (Townes et al. 2019; Svensson 2020). Townes et al. (2019) mod-361

els the distributions of cellular gene UMI counts as an over-dispersed Dirichlet-multinomial362

distribution, which can be approximated by the independent NB models with gene-common363

dispersion parameters. Svensson (2020) proposes to use the NB models with gene-common364

and cell-type-common dispersion parameters. Neither evaluated or compared the proposed365

model with other candidate NB models. To derive a reliable NB distribution family, we used366

both monoclonal and polyclonal datasets to evaluate the fitting of distribution families to367

the UMI count distributions. Eventually, we found that the NB distribution family with the368

gene-specific cell-type-specific mean and dispersion parameters is the best.369

Next, we would like to elaborate on the key features and limitations of CDI.370

First, calculating CDI relies on the likelihood of the raw UMI counts. If only the normalized371

UMI counts are available, CDI cannot be applied.372

Second, CDI is not a clustering method; instead, it is an index to evaluate the quality of373

the candidate label set: the label set with the lowest CDI will be selected. Thus, the quality374

of the selected label set highly depends on the quality of the candidate label sets. If none of375

the candidate labels fits the data well, the CDI-selected label set will not improve the fitting.376

Thus, providing a large pool of candidate label sets is crucial. We suggest using at least three377

methods, each with at least five labels with different cluster numbers.378
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Third, CDI-AIC puts fewer penalties on cluster numbers and usually selects the label with379

more clusters than CDI-BIC. These clusters often correspond to cell subtypes, and some could380

mark the cell transition stages. In many cases, the collected cells have different developmental381

stages so that the scRNA-seq data exhibit trajectory patterns. In those datasets, we can382

consider the cell types as “continuous”. When discrete clustering methods are applied to383

these datasets, the resulting clusters often represent a local stage on the trajectory. Although384

CDI is not designed to select the optimal trajectory, we can use it to select the label sets385

corresponding to the optimal local stages. For example, in RETINA, the subtypes of ON386

cone BCs and OFF cone BCs represent different development stages of those BCs. The387

CDI-AIC successfully selected a satisfying discrete label set that approximates the continuous388

trajectories of ON cone BCs and OFF cone BCs (Fig, 4B. RETINA (AIC)).389

In summary, finding an optimal clustering label set for scRNA-seq data is critical because390

clustering impacts all downstream analyses; CDI provides a robust and accurate unsupervised391

method to select cluster label sets and hence contributes to the reliability of downstream392

scRNA-seq analysis.393

4 Methods394

We develop CDI in two stages. In stage I, we characterize the unique molecular identifiers395

(UMIs) count distributions using the experimentally generated monoclonal and polyclonal cell396

populations. In stage II, based on the UMI count distributions in stage I, we develop the CDI397

and select the label set with the lowest value as the optimal label set.398

4.1 Models to characterize the UMI counts399

4.1.1 Single-batch UMI count distributions400

In a single batch scRNA-seq dataset, denote the UMI count for gene g and cell c by Xgc, g ∈401

{1, . . . , G}, and c ∈ {1, . . . , N}. Suppose the true label of theN cells is L0 = (L0,1, L0,2, . . . , L0,N )′402

with L0,c ∈ {1, 2, . . . ,K0}. Here K0 is the number of the underlying true cell types.403

Based on our experiments and modeling, assume404

Xgc | (L0,c = k) ∼ NB(scµgk, φgk), (1)405

where sc is a scale factor to adjust for the imbalance of the cellular total UMI counts in406
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the scRNA-seq data (Supplementary Note 1), and µgk and φgk are the mean and dispersion407

parameters of gene g in cell type k. The probability mass function of negative binomial408

distribution is shown in Supplementary Note 1.409

The cellular scale factor sc only impacts the mean but not the dispersion of the NB dis-410

tribution. From a Bayesian’s perspective, we can view Xgc as a Poisson-gamma distribution411

where412

Xgc | (L0,c = k, λgk) ∼ Poisson(scλgk), λgk ∼ Gamma(rgk, θgk).413

Then, (1) holds with µgk = rgkθgk and φgk = 1/rgk.414

4.1.2 Multi-batch UMI count distribution415

The UMI count distributions may differ across batches. When multiple batches exist, we416

model the UMI count distribution in batch b as417

X(b)
gc | (L

(b)
0,c = k) ∼ NB(s(b)c µ

(b)
gk , φ

(b)
gk ). (2)418

We assume batch effect lies in a low-dimensional space. Thus, for some genes or some cell419

types, introducing batch-specific parameters might not be necessary.420

To decide whether to introduce batch-specific parameters for a gene in a cell type, we first421

test the hypothesis:422

H0,gk : ∀b ∈ {1, . . . , B}, µ(b)
gk = µgk, φ

(b)
gk = φgk. (3)423

We used the likelihood ratio test to test this hypothesis. If the hypothesis is rejected, it424

indicates that the batch effect is significant for the gene in this cell type; thus we will introduce425

the batch-specific parameters like in (2) to model the UMI count of this gene in this cell type.426

Otherwise, even if the batch effect exists, it is not significant; thus we will not use the batch-427

common model (1) to characterize the UMI count distribution of this gene in this cell type.428

4.2 Cell-type-specific “goodness-of-fit” tests429

We filtered the genes and the cells as described in Section 4.6. We derived a “goodness-of-fit”430

test for each gene. First, we assigned the cells into 5K0 bins, where 5 is the number of UMI431

count categories and K0 is the number of the benchmark cell type. Based on the values of432
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(Xgc, Lc), we assigned cell c into one of the following bins:433

U × K, U = {{0}, {1}, {2}, {3}, [4,∞)}, K = {1, . . . ,K},434

where × is the Catesian product of two sets. Second, we computed the test statistic as435

Tg =
∑

(U,k)∈U×K

(nU,k −Nπ̂U,k)
2

Nπ̂U,k
.436

Here, nU,k =
∑

c I(Xgc ∈ U , Lc = k), and πU,k = P (Xgc ∈ U , Lc = k), which are the parame-437

ters of the multinomial distributions on (nU,k : U ∈ U , k ∈ K). Because πU,k is unknown, we438

estimated πU,k by first expressing it as a function of (µgk, φgk) in the corresponding NB distri-439

bution family and then derived the maximum likelihood estimator (MLE) in the multinomial440

likelihood (Chernoff and Lehmann 1954). Third, if Tg is larger than the 95% quantile of the441

chi-square distribution with the degree of freedom 5K0 − p − 1, we rejected the “goodness-442

of-fit” hypothesis for gene g. Here, p is the number of parameters in the corresponding NB443

distributions: for cell-type-common NB distributions, p = 2; for cell-type-specific NB distri-444

butions, p = 2K0. We used the chi-square quantile as the threshold because when the UMI445

count of gene g follows the corresponding NB model and Lc all match the true cell types, Tg446

asymptotically follows χ2(5K0 − p− 1) (Chernoff and Lehmann 1954). Finally, we performed447

the test for all the genes and calculated the rejection proportion. We used the proportion as448

the criterion to assess the overall fitting of the corresponding NB distribution family and the449

UMI count distribution.450

4.3 Working dispersion score (WDS) to select feature genes451

WDS is a score to measure the average sample (cell) dispersion of each gene.452

ξ̂g =
σ̂2
g − µ̂g

µ̂2
g

, (4)453

where µ̂g and σ̂2
g are the sample mean and variance of gene g’s UMI counts in the pooled data.454

It can be viewed as the estimator of ξg = (σ2
g − µg)/µ2

g, where µg and σ2
g are the mean and455

variance of gene g’ UMI counts. The rationale of WDS is provided in the supplementary note456

2.457

Before selecting the feature genes, we filtered the genes with more than 95% zero counts.458

We computed WDS for each gene and selected the top G1 (default G1 = 500) genes with the459
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highest WDS. For datasets with multiple batches, we calculated and ranked WDS for genes460

in each batch: the minimum rank across the batches is set as the overall rank for each gene.461

In the end, we selected the top G1 (default G1 = 500) genes with the highest overall rank as462

the feature genes.463

In our software, feature genes can also be added manually. For example, the users can use464

the feature genes provided by other approaches or domain knowledge.465

4.4 CDI optimal label selection466

Denote a label set with K cell types by L = (L1, . . . , LN )′ with Lc ∈ {1, . . . ,K}. This label467

set is not necessarily the true label set. It could be derived from any clustering method.468

Let Sb be the set of cells that belong to batch b. Let K = {1, . . . ,K}, and B = {1, . . . , B}.469

Based on model 2, if label sets are accurate, then the likelihood function of all genes and470

all cells are471

`(µ
(b)
gk , φ

(b)
gk : g ∈ G, k ∈ K, b ∈ B) =

∑
g∈G

∑
b∈B

∑
c∈Sb

log{F (Xgc | scµ(b)
gLc

, φ
(b)
gLc

)}, (5)472

where F is the probability mass function of negative binomial distribution (Supplementary473

Note 1). Across B batches, for each feature gene g and cell type k, we use the score tests474

to check if batch-specific mean and dispersion parameters need to be introduced. If H0,gk is475

accepted, we will use a batch-common but cell-type-specific mean and dispersion parameters476

for this feature gene, i.e.,477

µ
(1)
gk = . . . = µ

(B)
gk , φ

(1)
gk = . . . = φ

(B)
gk .478

If H0,gk is rejected, we will introduce batch specific and cell-type-specific mean and dispersion479

parameters.480

Next, we obtain the MLE (µ̂
(b)
gk , φ̂

(b)
gk : g ∈ G, k ∈ K, b ∈ B) based on (5). The corresponding481

maximum likelihood is ˆ̀= `(µ̂
(b)
gk , φ̂

(b)
gk : g ∈ G, k ∈ K, b ∈ B).482

To adjust for the model complexity, we use the penalized negative log-likelihood function483

as CDI484

˜̀= −2ˆ̀+ cpen · d,485

where cpen is the scale of penalty, and d is the overall degree of freedom of the model. For486

AIC, cpen = 2; for BIC, cpen = log(N). The overall degree of freedom d =
∑

g∈G
∑

k∈K dgk. If487
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H0,gk is rejected, dgk = 2B; otherwise, dgk = 2.488

In practice, when T label sets {Lt : t ∈ {1, . . . , T}} are given, we calculate the CDI ˜̀(Lt)489

for each label set Lt. If Lt is accurate, ˜̀(Lt) tends to be small. The optimal label set is chosen490

by L̂ = arg mint
˜̀(Lt).491

Because BIC adds more penalty on the model degree of freedom, it prefers the models492

with fewer numbers of clusters. Thus, we use CDI-BIC to select the main type label set and493

CDI-AIC to select the subtype label set.494

4.5 Simulation setting495

We simulated three sets of single-cell data (SD1-SD3) from the Negative Binomial distribution496

with gene-specific and cell-type-specific parameters. More specifically for SD1-SD3, the gene497

expression level for cells in cell type k and gene g were randomly sampled from NB(µgk, φgk),498

where µgk represented the mean parameter and φgk represented the dispersion parameter.499

Each dataset contained 10,000 genes, and the number of cells ranged from 2,800 to 4,200. To500

test the robustness of CDI, we generated SD4, which contained many outliers, and the UMI501

count distributions no longer followed the verified NB distribution.502

SD1. We generated ten equal-sized cell groups. Each group contained 400 cells; thus, in total503

there are 4,000 cells. One cell type was treated as the baseline type with µgk generated504

from the truncated normal distribution with mean 0.2 and standard deviation 0.1, and505

φgk generated from the truncated normal distribution with mean 0.5 and standard devi-506

ation 0.1. For each of the other nine groups, 25 genes had mean parameters shifted from507

the baseline group with log2 fold change 2.4. The feature gene dispersion parameters508

were shifted by a Gaussian-distributed factor with mean 0 and standard deviation 0.05.509

SD2. We generated two normal-sized cell types with 2,000 cells each and two rare cell types510

with 100 cells each. One normal-sized cell type was treated as the baseline group with µgk511

generated from the truncated normal distribution with mean 0.2 and standard deviation512

0.1. The other normal-sized cell type contained 40 feature genes with log2 fold change of513

mean 1.5. One rare cell type, RC1, contained 50 feature genes with log2 fold change of514

mean 2.8; the other rare cell type, RC2, contained 50 feature genes with log2 fold change515

of mean 3.2. Because the log2 fold change of RC1 is smaller than RC2, RC1 is considered516

to be more similar to the two normal-sized cell types. The dispersion parameters φgk517

were set in the same way as in SD1.518
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SD3. We generated two main-types: C1 contains 1, 000 cells from a homogeneous cell type,519

and C2 contains 1, 800 cells from 3 subtypes. C1 is the baseline group with µgk generated520

from the truncated normal distribution with mean 0.4 and standard deviation 0.1 and φgk521

generated from the truncated normal distribution with mean 1 and standard deviation522

0.1. Each subtype of C2 contains 600 cells and 40 feature genes. Among these 40 feature523

genes, 30 were shared by all subtypes, and the rest 10 were exclusive for each subtype.524

The log2 fold change in the means was 4 for the main type and 1.8 for the subtype. The525

dispersion parameters φgk were set in the same way as in SD1.526

SD4. We generated five common cell types using the R package Splatter (Zappia et al. 2017)527

with 3, 000 cells and 5, 000 genes. The probabilities that a cell belongs to any cell group528

were 0.2 for all groups. The proportion of differentially expressed genes were 1% per cell529

group. The location and scale parameters of the log-normal distribution for these feature530

genes were (0.4, 0.1). In addition, we followed the default option to add 5% of outliers.531

After we filtered the cells with less than 1% non-zero counts and the genes with less than532

1% of non-zero cells, the dataset had 4, 887 remaining genes. See Supplemental Fig. S12533

for all the parameters used in this setting.534

4.6 Description of the experimental scRNA-seq datasets and their535

preprocessing536

CT26.WT. This dataset was generated in Dr. Qi-Jing Li’s lab. Dr. Li is one of the co-537

authors of this paper. The wild-type CT26 cells from the murine colorectal carcinoma538

cell line were single-cell-diluted, and a clone was picked and cultured for 220 days. For539

the single-cell RNA-seq library preparation, 10, 000 cells of each clone were processed540

with the protocol of Chromium Single Cell 3’ Reagent kits v3 from 10X Genomics to541

make the single-cell RNA sequence library. Cells with more than 10% mitochondrially542

derived transcripts were removed. Among these cells, we selected those with non-zero543

gene proportions greater than 3% or the number of non-zero genes greater than 300 (at544

least one of the two conditions needed to hold). We further selected genes with non-zero545

count proportions greater than 1% or the number of non-zero cells greater than 50. This546

dataset was of high quality, with 24, 208 median UMI counts per cell and 4, 376 median547

genes per cell. Since this dataset was highly homogenous, we used CT26.WT to evaluate548

the Pearson’s chi-squared ”goodness-of-fit” of different models to the UMI counts in the549
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monoclonal scRNA-seq data.550

T-CELL. The T-CELL dataset was generated in our previous study (Christian et al. 2021).551

The benchmark clustering labels of the T-CELL population were generated as a combi-552

nation of protein-marker-based flow sorting labels and bioinformatics labels from Seurat553

v2. For evaluation purpose, we selected 5 distinct cell types: Regulatory Trm cells, Clas-554

sical CD4 Tem cells, CD8 Trm cells, CD8 Tcm cells, and Active EM-like Treg cells. In555

this study, tumors were firstly collected from the female mice after 3 weeks since the mice556

were injected by 4T1 tumors. Tissues were then disassociated into single cells and ho-557

mogenized. T cells were separated out by flow sorting with a stringent gating threshold558

and sequenced on the 10X platform. For preprocessing, we filtered out genes with less559

than 2% non-zero cells and removed cells with less than 2% non-zero genes. Eventually,560

2, 989 cells from five cell types with 7, 893 genes were retained.561

CORTEX. The visual cortex dataset was generated by Hrvatin et al. (Hrvatin et al. 2018)562

using inDrop to study the diversity of activity-dependent responses across cortical cell563

types. We obtained the labeled scRNA-seq dataset from Huang et al. 2018, which con-564

tained 10, 000 cells with 19, 155 genes. Among these 10, 000 cells, 7, 390 cells were identi-565

fied to 33 cell types as an intersection of Seurat v1 and a density-based method (Rodriguez566

and Laio 2014). In addition, eight main cell types (excitatory neurons, oligodendrocytes,567

astrocytes, interneurons, etc.) were annotated with known feature genes. We selected568

cells with at least 300 or 3% of non-zero genes, and genes with at least 50 or 1% non-zero569

cells. After preprocessing, 7, 376 cells with 12, 887 genes were included in clustering.570

RETINA. The mouse retina dataset was generated by Shekhar et al. 2016 using Drop-seq to571

classify retinal bipolar neurons. This dataset contained 27, 499 cells with 13, 166 genes.572

Among these 27, 499 cells, 26, 830 cells were labeled with 18 cell types by the assembled573

pipeline: they first used Louvain-Jaccard (Blondel et al. 2008) method to cluster the574

cells and then annotated the clusters with known feature genes. This 18-cluster label575

set was treated as the benchmark subtype label set. We further grouped the cell types576

into 6 main types based on the original paper. These cells came from two experimental577

batches of FAC sorted Vsx2-GFP positive cells on different days. We selected cells with578

at least 300 or 3% of non-zero genes, and genes with at least 100 or 2% non-zero cells.579

After preprocessing, all 26, 830 cells with 13,118 genes were selected. The preprocessing580

step removed very few genes and cells because the dataset obtained from the original581

paper was filtered before cell type annotation.582
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5 Data access583

ScRNA-seq for the murine colorectal carcinoma cell line CT26.WT is available at https://584

data.mendeley.com/datasets/cb2cb8f8mp/2. Three other public scRNA-seq datasets were585

also used in this study: T-CELL (https://data.mendeley.com/datasets/3f4rsk96kf/3),586

CORTEX (GSE102827), and RETINA (GSE81905).587

We used the CDI R packager version 0.99.2 in this study. This R package has been588

submitted to the Bioconductor project. The development version of CDI is available from589

https://github.com/jichunxie/CDI. The scripts for to reproduce figures of the manuscript590

using this package are available at https://github.com/jfanglovestats/CDI_figures.591
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