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Abstract 

Background 

The purpose of this study was to manually and semi-automatically curate a database and 

develop an R package that will provide a comprehensive resource to uncover associations 

between biological processes and environmental factors in health and disease. 

We followed a two-step process to achieve the objectives of this study.  First, we conducted a 

systematic review of existing gene expression datasets to identify those with integrated 

genomic and environmental factors. This enabled us to curate a comprehensive genomic-

environmental database for four key environmental factors (smoking, diet, infections and toxic 

chemicals) associated with various autoimmune and chronic conditions. Second, we developed 

a statistical analysis package that allows users to interrogate the relationships between 

differentially expressed genes and environmental factors under different disease conditions. 

Results  

The initial database search run on the Gene Expression Omnibus (GEO) and the Molecular 

Signature Database (MSigDB) retrieved a total of 90,018 articles. After title and abstract 

screening against pre-set criteria, a total of 186 studies were selected. From those, 243 

individual sets of genes, or “gene modules”, were obtained. We then curated a database 

containing four environmental factors, namely cigarette smoking, diet, infections and toxic 

chemicals, along with a total of 25789 genes that had an association with one or more of these 

gene modules. In six case studies, the database and statistical analysis package were then tested 

with lists of differentially expressed genes obtained from the published literature related to type 

1 diabetes, rheumatoid arthritis, small cell lung cancer, COVID-19, cobalt exposure and 

smoking. On testing, we uncovered statistically enriched biological processes, which revealed 

pathways associated with environmental factors and the genes. 

Conclusions 
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A novel curated database and software tool is provided as an R Package. Users can enter a list 

of genes to discover associated environmental factors under various disease conditions. 

Keywords 

Environmental factors, gene expression, genomic-environmental database, cigarette smoking, 

diet, infections and toxic chemicals 

 

Background 

Organisms are constantly being exposed to a wide range of environmental triggers that 

influence gene expression, resulting in several diseases. Environmental factors, such as drugs, 

toxic chemicals, smoke, temperature, dietary components and infections are considered 

modifiable causes of disease through their effects on biological processes, and in response, the 

expression of many genes is altered (1). It is estimated that environmental factors account for 

approximately 70% percent of all autoimmune diseases and 80% of all chronic diseases (2). 

These large proportions indicate that environmental exposures are an important contributor to 

disease, and there is ample evidence to support complex interrelationships between various 

environmental and genomic factors for disease causation (3). Manipulation of environmental 

triggers and the host immune system during the clinical and preclinical stages of a disease will 

offer significant insight and guide early intervention for many disorders (4). 

In the era of Big Data technologies, several genomic databases exist to explore differential 

expression of genes under various clinical conditions(5, 6). However, to our knowledge there 

is currently no computational tool that can use information from existing large-scale databases 

to predict gene-environment relations.  Therefore, in this study we formulated an integrated 

and comprehensive database that will provide insights of how environmental factors are 

associated to gene expression and disease, and leading to the identification of potential 
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therapeutic strategies for the prevention and control of diseases attributable to both 

environmental and genetic factors. 

Implementation 

We followed a two-step approach to conduct this study. First, we conducted a systematic 

review using a standard approach to identify all studies that used integrated datasets containing 

comprehensive information about environmental and genetic risk factors for various diseases. 

Second, we curated a database and developed a statistical analysis package to enable the user 

to understand the relationships between differentially expressed genes and select 

environmental factors. 

Step 1: Systematic review: 

The aim of this step was to identify the relevant published literature from where we could 

obtain existing data pertinent to gene expression changes in response to an environmental 

factor. In detail the systematic review was conducted as follows:  

Search strategy 

We undertook a comprehensive literature and database search using PubMed, Gene expression 

omnibus (GEO), and Gene set enrichment analysis (GSEA) databases (7).  All databases were 

searched from their inception until 16th October 2020.  The reference lists of all the retrieved 

studies were examined to identify additional studies.  

The search terms and their synonyms related to environmental factors and gene expression.  

The keywords used included medical subject headings (MeSH) terms, e.g., ("Diet"[MeSH 

Terms] OR diet [All Fields]) AND ("gene expression"[MeSH Terms] OR gene expression [All 

Fields]). Table 1 details the search strategy and date of searches for various databases.  

Inclusion/exclusion criteria: 

Pre-set inclusion criterion for studies to be considered eligible were: 

• Only articles written in English  
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• Participants of any age group and both genders. 

• Since most of the experimental trials involving environmental factors were carried out 

in humans or mice, we included hits for Homo sapiens and Mus musculus.  

• Four specific environmental factors were chosen, based on the previous published 

evidence for major contribution as an environmental factor affecting gene expression 

(8). Specifically, 

o Cigarette smoking – Includes data related to the practice of tobacco smoking 

and inhalation of tobacco smoke.  

o Diet - Includes data on the various types and quantities of food consumed by a 

person. 

o Infections - Includes data on infections caused by pathogenic organisms such 

as viruses, bacteria, fungi, protozoa and parasites. 

o Toxic chemicals - Includes data on substances such as metals or other chemical 

agents that are hazardous to human health if inhaled, ingested or absorbed.   

• We included published data from datasets, series and platforms. Samples were 

excluded if they consisted of unpublished data. We did not limit the search specific for 

any disease. 

We did not include any dataset relating to mRNA, protein, CDS or small non-coding RNAs 

like miRNA or siRNA. 

Literature review method 

Two reviewers screened the abstracts and citations independently at the same date and time 

and using the same search parameters. We identified articles that met the inclusion criteria. 

After title and abstract screening, studies were selected for full-text review. After the full length 

article review, those studies that met the inclusion criteria were selected for data extraction (7). 

Data extraction 
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Two reviewers independently extracted data. The specific features extracted from each article 

were: (1) Differential gene expression data; (2) specific description of the type of data 

collected; (3) specific keywords related to the differentially expressed genes for each dataset, 

including disease, sample condition and pathways. These were manually searched in the 

abstract, demographics and result sections of each publication.  

Data were extracted and coded in a spreadsheet to collate information from each study. The 

data were combined and any anomalies between reviewers were resolved by a third reviewer. 

Quality and data validity assessment 

The methodological quality was checked before including the data, using the Q-Genie tool (9). 

We recorded whether the study used a standard microarray procedure and descriptions of the 

sample data, causes of up- and downregulation of genes and any other specific changes in the 

gene expression. 

Step 2: Software generation  

The statistical analysis package E.PAGE (Environmental Pathways Affecting Gene 

Expression) (github.com/AhmedMehdiLab/E.PAGE) was written in R version 4.0.3 (www.R-

project.org/) and developed using RStudio (rstudio.com). Using publicly available packages 

(tidyverse www.tidyverse.org, Seurat satijalab.org/seurat/) as dependencies, the package 

performs enrichment analysis as previously described by Mehdi and colleagues (10). 

For the enrichment analysis of gene modules, we followed standard methods to perform gene 

set enrichment analysis. We compared the number of genes that had a specific gene modules 

against those that did not. A hypergeometric distribution was used to determine a p-value, 

which was corrected using false discovery rate (FDR) for multiple hypothesis testing using the 

Benjamini and Hochberg correction method (Hochberg, 2018). The results are filtered based 

on the adjusted P value, and those with P ≤ 0.05 are displayed to the user. Fold enrichment was 

calculated by taking the ratio of a set of genes containing a specific gene modules, and the total 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 4, 2022. ; https://doi.org/10.1101/2022.01.03.474848doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.03.474848
http://creativecommons.org/licenses/by-nd/4.0/


set of genes was obtained by taking the union of all the collected gene modules (10). Adjusted 

fold enrichment was measured as a ratio of the fold enrichment value to the negative log of 

adjusted P value. This log fold change value was used to determine the significance of the 

enriched genes specific for an gene module (10). An odds ratio then was measured to determine 

the probability of finding the set of enriched genes specific to an gene module (Szumilas, 2010). 

Step 3: Case studies: 
 
We used six case studies to test our enrichment tool, these studies were not used in database 

curation. Case study 1 involves gene expression data in peripheral blood mononuclear cells 

(PBMC) in children with type 1 diabetes (11). Gene expression changes were identified using 

microarray analysis from 43 patients with new onset T1D compared with 24 healthy controls. 

The gene expression data set in case study 2 is taken from the GEO database (microarray 

datasets; GSE12021, GSE55457, GSE55584 and GSE55235) that includes samples from 45 

patients with rheumatoid arthritis,  compared with 29 healthy control samples (12). Case study 

3 includes gene expression data from 23 small cell lung cancer samples and 42 healthy lung 

tissues (13). The gene expression data from the case study 4 was taken from cobalt-exposed rat 

liver derived cells (14). The final two case studies used differentially expressed genes extracted 

from single-cell expression data. Case study 5 was based on single-cell RNAseq data from 

COVID-19 patients, comparing severe and healthy cases in peripheral immune environments 

(15), while case study 6 was based on a single-cell RNAseq-based atlas of epithelial cell-

specific responses to smoking (16). For single-cell RNA seq data, E.PAGE used a Seurat object 

(with clustering performed) as an input and performs differential expression analyses between 

the clusters to uncover lists of genes to compute related enriched gene modules. 

Results 

Systematic review and E.PAGE structure 
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The initial electronic search of GEO and MSigDB database identified a total of 90,018 studies 

(Figure 1). Title and abstract screening of retrieved studies resulted in a total of 3547 studies 

which had potential data related to environmental factors. After full text examination of 3547 

studies, 3008 studies were excluded since they did not provide any differential gene expression 

data associated with any of the four environmental factors. A total of 243 datasets were 

obtained from 186 studies and the gene expression data were retrieved and collated to form a 

database. Figure 1 illustrates a flow chart of all the steps taken to obtain the data that satisfy 

the required parameters. The overall structure of E.PAGE is shown in Figure 2. After literature 

screening, a database of 243 datasets was developed by linking each dataset with published 

lists of differentially expressed genes and the gene modules. Specifically, the text of these 186 

publications and associated datasets were manually screened to develop gene modules 

representing the type of experiment, experimental conditions or disease type, experimental 

factors, demographics of subjects, and published pathways as previously described by Mehdi 

and colleagues (10). The final database consisting of 243 datasets is obtained through GEO and 

MSigDB databases and includes 18015 genes for diet, 13259 genes for infections, 3841 genes 

for cigarette smoking and 644 genes for toxic chemicals.  

Querying E.PAGE 

An R package was developed to enable statistical enrichment and gene modules associated 

with datasets/genes of interest to a user. The package produces various data tables as shown in 

Figure 2 and a user can search genes of interest for their statistical enrichment. To test the 

utility of the statistical analysis package, we performed six case studies as described hereafter.  

 

Case studies 1 and 2: Immune response activation in type-1 diabetes and rheumatoid arthritis 

We first tested whether query signatures associated with T1D and RA could recover common 

pathways associated with these autoimmune disease. We used 291 DE genes uncovered from 
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43 patients with new-onset T1D as compared to 24 healthy controls (8) (Table 2) and 229 DE 

genes from 45 samples from patients with RA, compared with 29 healthy control samples (12) 

(Table 3). The statistical enrichment using E.PAGE identified that the genes in both datasets 

are involved in Immune response. Other significant gene modules that were common to both 

diseases include Interferons, IL-12 and Transcription regulation. These processes are all well 

known to be involved in RA and T1D (17). Insulin resistance and Xenobiotic metabolism, 

which are both believed to be associated with T1D, were uncovered using E.PAGE and validate 

the utility of the platform (Table 2). Similarly, for RA, many smoking related gene modules 

such as Smoking history and Pack years (Smoking Status: Current, Never, Pack-years: (10 - 

20), Pack-years: (20 - 30; Healthy smoker),  (Above 40; Smoker with COPD)), were uncovered 

indicating an important risk factor for this disease (Table 3). For both T1D and RA, a large 

number of gene modules related to infections, both viral and bacterial (Lyme disease, Borrelia 

burgdorferi, HBV Infection, Viral response, Bacterial infection, Zika virus, Influenza A 

Infection, HIV infection, Echovirus-30, Rhinovirus infection), were significantly associated 

with disease, indicating that similar responses are occurring in patients suffering from these 

chronic autoimmune diseases as in responses to infections.  

 

Case study 3: Regulation of the cell-cycle process in small cell lung cancer 

 We next studied gene modules associated with small cell lung cancer. The query signature 

containing 71 DE genes was derived from 23 clinical small cell lung cancer samples and 42 

healthy control tissues (13). We found that several lungs cancer associated gene modules were 

infections were was the most common environmental factor associated with the DE genes 

statistically significant  (Table 4). The effect of Cigarette smoking (Tumor tissue vs Non tumor 

tissue in Non-smoker vs Smoker, Cigarette smoking, Smoking Status: Current, Never) was also 

evident. As expected, Lung tissue gene expression and Adenocarcinoma were amongst the top 
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five gene modules, along with Cytoprotective mechanism, Mitotic spindle formation genes and 

Cell cycle, which are important pathways dysregulated in cancer (Table 4). Other interesting 

gene modules that are known to be involved in lung cancer were also identified, including Lung 

cancer, Cigarette smoking, Airway epithelium and Immune response.  

 

Case study 4: Genotoxicity associated with cobalt exposed gene expression  

We next used E.PAGE to understand the gene expression pathways involved in cobalt 

exposure. We used 27 DE genes uncovered by measuring the effect of cobalt exposure on gene 

expression in two rat liver derived cell lines using microarray analysis (14). Cobalt exposed 

DE genes were associated with chemical induced gene expression. Other significant gene 

modules include genotoxicity, carcinogen, non-genotoxic, hepatocarcinogens, and liver-based 

in vitro models (Table 5). 

 

Case study 5: Single-cell COVID-19 dataset  

From a single-cell RNA sequencing dataset (15), we first conducted a standard Seurat pipeline 

to determine the graph based clusters (18). We then analysed enrichment of gene modules 

based on DE genes in Seurat clusters in COVID-19 and healthy cases. As expected, we 

identified COVID-19, SARS-COV2 modules. Significant enrichment was also observed for the  

Inflammation, Infection-type: Acute, Immune response, Infection induced gene expression and 

Cigarette smoking amongst the top modules that were previously shown to be COVID-19-

related (15, 19, 20) (Table 6). 

 

Case study 6: Single-cell Smoking dataset: As a final case study, we attempted to identify 

enriched gene modules related to smoking using a single cell RNA sequencing dataset which 

contained data of smokers vs non-smokers (16). After processing the data using the Seurat 
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pipeline and analyzing the single-cell expression data, gene set enrichment identified Epithelial 

gene expression, Cigarette smoking, Airway epithelium, and Chronic obstructive pulmonary 

disease as the top gene modules with highly significant p-values, confirming that smoking-

related pathways were correctly predicted using E.PAGE (Table 7).  Furthermore, smoking 

associated with gene signatures of lung-associated diseases such as Lung cancer, Cystic 

fibrosis, as well as with Carcinogen and respiratory infections such as Influenza and COVID-

19.  

Discussion 

Environmental factors are known to influence the development of disease, with or without 

combination with genetic factors, however there is currently no curated database and 

enrichment tool to identify the genes and the corresponding biological processes associated 

with these environmental conditions. We developed E.PAGE, a database and enrichment tool 

to understand the gene-environment relationship. Our database was developed based on 

experimental evidence obtained from the published literature to establish a relationship 

between environmental factors, differentially expressed genes and specific biological processes 

associated with the genes.  

To set up the database, we used cigarette smoking, infections, toxic chemicals and diet, as they 

constitute the primary environmental factors influencing disease outcomes (4). We made every 

effort to ensure completeness, accuracy and currency of the database. The current database has 

243 datasets which consists of 25789 genes in total. The largest number of datasets relate to 

diet and infections due to the long research history of these two environmental factors and 

disease. We manually curated each dataset using specific keywords and a brief description, 

abstract published with these datasets. We then developed an enrichment tool that uncovers 

modules associated with genes of interest using the methods we previously published (10). In 

six case studies, we tested E.PAGE with sets of DE genes available from the literature. 
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Specifically, we tested two gene lists associated with autoimmunity - T1D and RA - along with 

those related to small cell lung cancer, COVID-19 and smoking subjects. To confirm the effect 

of toxic chemicals on differential gene expression, we also used gene expression data from a 

study on cobalt exposure.  

 

On testing T1D and RA associated DE genes, we found a large number of gene modules related 

to immune responses, which supports previous studies on how malfunction in the adaptive 

immune response results in activation of self-reactive T cells. We also obtained a substantial 

number of environmental modules associated with viral and bacterial infections, which 

supports recent findings on how bacterial and viral infections are implicated in immune 

response signaling in autoimmune disease pathogenesis. The T1D and RA associated DE genes 

were found to be primarily enriched in   infection-associated gene modules and less in gene 

modules associated with the environmental factors diet, cigarette smoking or toxic chemicals. 

This information supports the hypotheses that infection-associated immune responses are 

major contributors to the development of T1D and RA (21-23). A substantial number of genes 

involved in the central nervous system were also related to RA, consistent with other evidence 

(24).  

 

When small cell lung cancer genes were tested, we found a large number of environmental 

modules for DE genes to be related to lung cancer, as expected. We also found an expected 

link to cell cycle, since cell cycle checkpoints are disrupted leading to tumour development and 

cancer progression. Genes relating to cytoprotective function, mitotic spindle formation are also 

generally dysregulated in cancer. Recent studies that show a high incidence of retrovirus in 

lung small cell cancer suggest a possible direct link between infections and small cell cancer 

(25).  
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To further assess associations between environmental factors with toxic chemicals, we tested 

genes differentially expressed due to cobalt exposure against the E.PAGE database. On testing, 

we found the modules Genotoxicity and Carcinogen to be enriched. We also obtained a 

substantial number of genes differentially expressed due to toxic chemicals as environmental 

factors, supporting the validity of the tool to identify potential involvement of toxic chemicals 

on DE genes involved in critical functions in a relevant datasets. 

On testing gene expression data sourced from patients with COVID-19, we found that genes 

differentially expressed in severe cases were linked to gene modules common between 

bronchoalveolar and peripheral immune environments (15, 20). This finding shows how the 

E.PAGE database can be used to find commonalities between two sets of differentially 

expressed genes, even if they may not have many genes in common. 

On testing the single-cell gene expression data for smoking we found gene modules for 

Cigarette smoking, Airway epithelium, Epithelial gene expression, and Chronic obstructive 

pulmonary disease. Additional pathways that are well known to be altered by cigarette smoking 

were identified. Therefore, E.PAGE was able to find relevant significantly enriched gene 

modules. 

From the above case studies, we found that our database is highly reliable and has the potential 

to establish a link between environmental factors and important biological processes. In the 

case studies, we generally obtained a higher number of DE genes related to infection as an 

environmental factor. Though this link with infection may be valid, there is a possibility of 

dataset bias due to limited type of input data such as gene list, similarities between infection 

and tissue damage -associated immune responses. Additionally, our study is limited to four 

types of environmental variables, therefore to increase usage towards wider community more 

environmental datasets need to be integrated.  
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A key benefit of this research is to predict gene-environment interactions to identify novel 

associations between environmental factors and disease, and to inform hypothesis synthesis 

and target selection. Thereby, it allows scientists and epidemiologists to dissect which genes 

may be influenced by environmental exposures in different disease conditions. We illustrate 

this by using examples from type-1 diabetes, rheumatoid arthritis, small cell lung cancer and 

COVID-19 datasets.  

The current study lends itself to future extension to additional environmental variables such as 

alcohol, physical activities, life-style factors, which could facilitate developing disease risk 

prediction models.  

Availability and requirements 

Project name: E.PAGE (Environmental Pathways Affecting Gene Expression) 

Project home page: github.com/AhmedMehdiLab/E.PAGE 
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Programming language: R version 4.0.3 (www.R-project.org/) 

Other requirements: tidyverse and Seurat R packages 
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Figures and Tables 

Figure 1. PRISMA Flow chart representing the various stages of screening involved in 
the systematic review process 
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Figure 2. Flow chart representing the various parameters and their utilities provided on 
database query 
 

 

Table 1. Search strategies used for database searching  

  

Search term Number of 

hits (Total) 

Date of search hits 

Cigarette smoking AND Gene 

expression 

324 16/10/2020 

Diet AND Gene expression 25440 16/10/2020 

Infection AND Gene 

expression [GEO Database] 

59338 16/10/2020 

C7 Immunologic gene sets 

[GSEA] 

4872 16/10/2020 

Toxic chemical AND Gene 

expression 

44 16/10/2020 
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Table 2. Collation of results obtained on query of E.PAGE with genes differentially 
expressed in Type 1 Diabetes 
 
 

Gene Modules 
Number of 
Modules 

Number of DE 
Genes Padj 

Fold 
Enrichment 

Dyslipemia 1 13 1.46E-08 12.88 

Olive oil induced gene expression 3 15 7.52E-08 8.58 

Diet intake: Olive oil 2 14 1.14E-07 8.96 

Inflammation 31 82 6.87E-07 1.85 

Infection type: Acute 58 112 7.46E-07 1.61 

Transcription regulation 11 33 8.00E-07 3.09 

Interferons 15 53 1.66E-06 2.22 

IL-12 4 37 5.02E-06 2.60 

Th1-mediated response 4 37 5.02E-06 2.60 

Parasite killing 4 37 5.02E-06 2.60 

Non-smoker vs Smoker 16 46 3.21E-05 2.13 

Type 2 Diabetes 5 16 5.99E-05 4.24 

Early Disseminated 1 12 1.11E-04 5.35 

Immune response 46 83 1.20E-04 1.59 

Cigarette smoking 36 61 1.57E-04 1.77 

Monocytes 10 34 2.21E-04 2.26 

Airway epithelium 26 58 2.21E-04 1.78 

Reactive oxygen species 12 58 2.69E-04 1.76 

Mycobacterium tuberculosis 3 14 3.67E-04 3.97 

Smoking Status: Current, Never 23 36 6.22E-04 2.08 

Chronic obstructive pulmonary disease 16 30 6.36E-04 2.26 

Polymorphonuclear leukocytes 10 55 1.08E-03 1.70 

Anaplasma phagocytophilum 10 55 1.08E-03 1.70 

Granulocytic anaplasmosis 10 55 1.08E-03 1.70 

Metabolism 7 35 1.27E-03 2.01 

Epithelial gene expression 16 36 1.27E-03 1.98 

Lyme disease 2 15 1.27E-03 3.24 

Borrelia burgdorferi 2 15 1.27E-03 3.24 

PBMCs 22 58 1.27E-03 1.65 

DE genes expressed in Obese, Lean 3 94 2.28E-03 1.39 

Obese vs Lean 2 94 2.28E-03 1.39 

Apoptosis 34 85 4.29E-03 1.40 

Protein catabolism 2 10 5.26E-03 3.63 

Plasmodium falciparum 1 14 5.26E-03 2.83 

Malaria 1 14 5.26E-03 2.83 

Blood monocytes 1 14 5.26E-03 2.83 

Hepatocellular carcinoma 1 29 5.26E-03 1.95 
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HBV Infection 1 29 5.26E-03 1.95 

Infection type: Chronic 29 66 5.60E-03 1.47 

Infection induced gene expression 110 148 6.10E-03 1.21 

Pack-years: (10 - 20) 5 14 6.83E-03 2.74 

Diet intake: Dietary energy restriction 3 25 7.21E-03 2.01 

DE genes expressed in Obese 15 33 7.27E-03 1.80 

Idiopathic pulmonary fibrosis 1 13 7.33E-03 2.82 

Cytokines 4 12 1.00E-02 2.83 

Lung cancer 8 23 1.00E-02 2.01 

Viral response 9 25 1.00E-02 1.94 

Mannose metabolism 1 88 1.00E-02 1.34 

Insulin resistance 7 89 1.00E-02 1.33 

Adipose tissue gene expression 3 88 1.05E-02 1.33 

DE genes expressed in Healthy 11 31 1.09E-02 1.77 

Before vs After diet intake 7 19 1.23E-02 2.13 

Blood immune cells 20 37 1.23E-02 1.65 

Influenza A Infection 20 37 1.23E-02 1.65 

E. coli infection 20 37 1.23E-02 1.65 

Staphylococcus aureus infection 20 37 1.23E-02 1.65 

Streptococcus pneumoniae infection 20 37 1.23E-02 1.65 

T effector cells 2 11 1.39E-02 2.82 

Helminth infection 2 11 1.39E-02 2.82 

Macrophages 17 49 1.53E-02 1.50 

Lipid metabolism 9 33 1.58E-02 1.68 

Infection induced gene expression in mice 18 39 1.65E-02 1.58 

Dendritic cells 20 73 1.65E-02 1.35 

Vascularization 1 13 1.77E-02 2.42 

Energy restriction associated gene expression 2 22 1.77E-02 1.90 

Oxidative stress 11 24 1.89E-02 1.82 

Hematopoiesis 2 13 1.95E-02 2.38 

Vesicular traffic 1 12 2.10E-02 2.43 
DE genes expressed in Insulin sensitive 
individuals 1 12 2.10E-02 2.43 

Lipid induced gene expression 1 15 2.22E-02 2.15 

Xenobiotic metabolism 4 13 2.66E-02 2.26 

Bacterial infection 4 13 2.82E-02 2.24 

Protein Metabolism 2 12 3.00E-02 2.31 

Skeletal muscle gene expression 2 12 3.03E-02 2.30 

Maternal cigarette smoking 2 13 3.03E-02 2.20 

Mosquito-borne pathogen 7 21 3.58E-02 1.77 

Signal Transduction 7 15 3.62E-02 2.01 

Zika virus 8 21 4.12E-02 1.75 
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Pack-years: (20 - 30; Healthy smoker),  (Above 
40; Smoker with COPD) 4 12 4.50E-02 2.15 

 
 
Table 3. Collation of results obtained on query of E.PAGE with genes differentially 
expressed in Rheumatoid Arthritis 
 

Gene Modules Number of 
Modules 

Number of DE 
Genes Padj Fold 

Enrichment 

Infection type: Acute 58 131 8.49E-34 2.63 

Immune response 46 107 1.03E-27 2.87 

Infection induced gene expression 110 159 1.03E-27 1.82 

Inflammation 31 91 5.26E-22 2.88 

PBMCs 22 78 6.89E-20 3.10 

Transcription regulation 11 44 1.16E-19 5.77 

Interferons 15 63 3.98E-19 3.70 

Central nervous system 4 27 4.96E-18 10.49 

Infection type: Chronic 29 85 5.19E-18 2.65 

Astrocytes 2 17 1.94E-17 24.50 

Plasmodium falciparum 1 29 9.43E-17 8.21 

Malaria 1 29 9.43E-17 8.21 

Blood monocytes 1 29 9.43E-17 8.21 

Dendritic cells 20 91 1.85E-16 2.36 

Mycobacterium tuberculosis 3 25 2.53E-16 9.93 

Infection induced gene expression in mice 18 59 4.97E-16 3.35 

Pro-inflammatory response 1 15 1.72E-15 24.29 

Chemokines 2 17 3.11E-15 17.76 

Viral response 9 41 9.93E-15 4.46 

Monocytes 10 43 7.69E-14 4.00 

Olive oil induced gene expression 3 17 2.43E-13 13.61 

Bacterial infection 4 27 2.79E-13 6.51 

Dyslipemia 1 14 3.35E-13 19.40 

Bone marrow monocytes 1 16 3.35E-13 14.78 

Myelodysplastic syndromes 1 16 3.35E-13 14.78 

Hematopoietic stem cell disease 1 16 3.35E-13 14.78 

Lyme disease 2 24 7.14E-13 7.25 

Borrelia burgdorferi 2 24 7.14E-13 7.25 

IL-12 4 39 4.66E-12 3.84 

Th1-mediated response 4 39 4.66E-12 3.84 

Parasite killing 4 39 4.66E-12 3.84 

Diet intake: Olive oil 2 15 7.67E-12 13.43 

Airway epithelium 26 60 2.08E-11 2.57 

DE genes expressed in Obese 15 43 3.55E-11 3.28 
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Blood immune cells 20 48 3.55E-11 2.99 

Influenza A Infection 20 48 3.55E-11 2.99 

E. coli infection 20 48 3.55E-11 2.99 

Staphylococcus aureus infection 20 48 3.55E-11 2.99 

Streptococcus pneumoniae infection 20 48 3.55E-11 2.99 

Mosquito-borne pathogen 7 34 4.44E-11 4.02 

Zika virus 8 34 6.48E-11 3.96 

Tissue remodeling 1 10 1.04E-09 19.74 

Immunoregulation 1 10 1.04E-09 19.74 

Hepatocellular carcinoma 1 36 1.13E-09 3.38 

HBV Infection 1 36 1.13E-09 3.38 

Chronic obstructive pulmonary disease 16 33 3.61E-09 3.48 

Lipid metabolism 9 41 3.98E-09 2.91 

Cigarette smoking 36 57 4.61E-09 2.31 

Macrophages 17 54 1.51E-08 2.31 

HIV infection 9 30 1.59E-08 3.54 

Non-smoker vs Smoker 16 42 1.60E-08 2.72 

Metabolism 7 37 1.82E-08 2.97 

Zika virus associated pDCs response 1 15 3.13E-08 7.21 

Early Disseminated 1 13 8.80E-08 8.11 

Apoptosis 34 78 9.83E-08 1.80 

Type 2 Diabetes 5 16 1.40E-07 5.93 

Reactive oxygen species 12 52 1.44E-07 2.21 

Fusobacterium nucleatum 3 10 1.58E-07 11.53 

Oral pathogen 3 10 1.58E-07 11.53 

Diet intake: Low calorie diet 4 23 1.60E-07 3.98 

Epithelial gene expression 16 36 1.63E-07 2.77 

Smoking Status: Current, Never 23 35 1.67E-07 2.82 

DE genes expressed in Healthy 11 35 1.97E-07 2.80 

Echovirus-30 1 13 2.33E-07 7.35 

Blood‚ÄìCerebrospinal Fluid Barrier 1 13 2.33E-07 7.35 

Polar Infection 1 13 2.33E-07 7.35 

Skeletal muscle gene expression 2 18 3.23E-07 4.83 

Before vs After diet intake 7 23 8.32E-07 3.60 
Pack-years: (20 - 30; Healthy smoker),  (Above 
40; Smoker with COPD) 4 18 8.72E-07 4.50 

T effector cells 2 15 1.08E-06 5.38 

Helminth infection 2 15 1.08E-06 5.38 

Cell growth 7 15 1.37E-06 5.27 

Macrophages gene expression 4 12 1.40E-06 6.89 

Cell culture based smoking effect 3 13 1.62E-06 6.12 

Cystic Fibrosis 1 24 1.62E-06 3.33 
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Rhinovirus infection 1 24 1.62E-06 3.33 

Human choroid plexus epithelial cells 1 12 1.79E-06 6.70 

Cytokines 4 15 2.70E-06 4.96 

SIV infection 6 24 2.81E-06 3.22 

Weight associated gene expression 10 16 2.90E-06 4.59 

Polymorphonuclear leukocytes 10 48 2.90E-06 2.07 

Anaplasma phagocytophilum 10 48 2.90E-06 2.07 

Granulocytic anaplasmosis 10 48 2.90E-06 2.07 

Ulcerative colitis 1 10 3.48E-06 7.92 

Crohn's disease 1 10 3.48E-06 7.92 

Jurkat cells gene expression 1 10 3.48E-06 7.92 

Pack-years: (10 - 20) 5 16 5.00E-06 4.38 

Diet intake: Dietary energy restriction 3 26 5.00E-06 2.92 

Viral infection 19 62 6.62E-06 1.78 

Signal Transduction 7 19 9.18E-06 3.57 

Vesicular traffic 1 15 1.32E-05 4.26 
DE genes expressed in Insulin sensitive 
individuals 1 15 1.32E-05 4.26 

Protein Metabolism 2 15 2.30E-05 4.04 

Idiopathic pulmonary fibrosis 1 14 2.58E-05 4.26 

Lung cancer 8 23 3.20E-05 2.81 

Oxidative stress 11 25 3.26E-05 2.66 
Non-smoker vs Smoker (Healthy smoker, 
Smoker with COPD) 11 18 4.67E-05 3.26 

Zika virus associated CD4T cell response 1 10 1.23E-04 5.06 

Diet intake vs Control 17 19 1.64E-04 2.83 

Cytoskeletal function 3 21 1.72E-04 2.64 

Pathogen sensing 6 14 3.90E-04 3.23 

Antimicrobial defense 6 14 3.90E-04 3.23 

Supression of T cell activation 6 14 3.90E-04 3.23 

Enhanced bactericidal activity 6 14 3.90E-04 3.23 

Inhibition of granuloma destruction 6 14 3.90E-04 3.23 

Viral responses 4 11 4.20E-04 3.90 

Genotoxic 2 14 4.28E-04 3.19 

Carcinogen 2 14 4.28E-04 3.19 

Chemical induced gene expression 3 14 5.13E-04 3.13 

Energy restriction associated gene expression 2 20 7.40E-04 2.41 

Calorie restriction effect on old vs young 1 14 1.07E-03 2.90 

Innate Immunity 5 46 1.11E-03 1.63 

Regulatory T cells 2 10 1.38E-03 3.60 

Immunopathology 2 10 1.38E-03 3.60 

Helminth Infection 2 10 1.38E-03 3.60 

Insulin resistance 7 67 2.63E-03 1.40 
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Diet intake: High-fat 13 19 3.42E-03 2.16 

Non-genotoxic 1 12 3.47E-03 2.79 

Hepatocarcinogens 1 12 3.47E-03 2.79 

Liver-based in vitro models 1 12 3.47E-03 2.79 

Immune response 2 36 4.56E-03 1.64 

Dendritic cell maturation 2 36 4.56E-03 1.64 

Newcastle disease virus 2 36 4.56E-03 1.64 

Adipose tissue gene expression 3 64 7.85E-03 1.36 

Mannose metabolism 1 63 1.14E-02 1.34 

Hematogenous dissemination of virus 6 15 1.54E-02 2.04 
Epidermal growth factor receptor/PI3K signaling 
pathway 6 15 1.54E-02 2.04 

Obese vs Lean 2 63 1.89E-02 1.31 

DE genes expressed in Obese, Lean 3 63 1.90E-02 1.31 

Lipid induced gene expression 1 11 2.42E-02 2.21 

CD4+ T cell 7 11 2.53E-02 2.19 

Pack-years: (20 - 30) 9 16 3.38E-02 1.80 
 
 
 
 
Table 4. Collation of results obtained on query of E.PAGE with genes differentially 
expressed in small cell lung cancer 
 

Gene Modules Number of 
Modules 

Number of DE 
Genes Padj Fold 

Enrichment 

Cytoprotective mechanism 1 21 7.28E-08 5.33 

Mitotic spindle formation genes 1 10 1.95E-07 15.80 

Cell cycle 4 10 8.49E-07 12.98 

Lungs tissue gene expression 2 10 8.49E-07 12.62 

Adenocarcinoma 2 10 3.62E-04 6.39 
Tumor tissue vs Non tumor tissue in Non-smoker 
vs Smoker 3 10 6.78E-04 5.82 

Apoptosis 34 34 9.36E-04 1.97 

Smoking Status: Current, Former, Never 5 10 1.21E-03 5.27 

Reactive oxygen species 12 23 1.31E-03 2.47 

Polymorphonuclear leukocytes 10 22 2.30E-03 2.39 

Anaplasma phagocytophilum 10 22 2.30E-03 2.39 

Granulocytic anaplasmosis 10 22 2.30E-03 2.39 

Cigarette smoking 36 23 2.30E-03 2.35 

Macrophages 17 22 2.38E-03 2.38 

Smoking Status: Current, Never 23 14 1.10E-02 2.85 

Infection induced gene expression in mice 18 17 1.35E-02 2.44 

Lung cancer 8 10 4.05E-02 3.08 
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Table 5. Collation of results obtained on query of E.PAGE with genes differentially 
expressed in cobalt exposure 
 
 

Gene Modules Number of 
Modules 

Number of DE 
Genes Padj 

Fold 
Enrichment 

Genotoxic 2 8 1.84E-05 12.09 

Non-genotoxic 1 8 1.84E-05 12.33 

Carcinogen 2 8 1.84E-05 12.09 

Hepatocarcinogens 1 8 1.84E-05 12.33 

Liver-based in vitro models 1 8 1.84E-05 12.33 

Chemical induced gene expression 3 8 1.84E-05 11.87 
 
 
Table 6. Collation of results obtained on querying E.PAGE with genes differentially 
expressed in severe COVID-19  
 

Gene Modules 
Number of 
Modules 

Number of DE 
Genes Padj 

Fold 
Enrichment 

Inflammation 31 188 1.18E-60 3.39 

Infection type: Acute 58 225 1.02E-56 2.58 

Immune response 46 187 7.61E-49 2.86 

Infection induced gene expression 110 273 1.41E-44 1.79 

Interferons 15 123 1.89E-43 4.11 

Cigarette smoking 36 143 6.85E-41 3.31 

Chronic obstructive pulmonary disease 16 90 1.80E-39 5.42 

PBMCs 22 139 3.93E-37 3.15 

DE genes expressed in Obese 15 99 2.19E-35 4.30 

Mycobacterium tuberculosis 3 49 9.60E-35 11.09 

Non-smoker vs Smoker 16 105 4.88E-34 3.88 

Infection type: Chronic 29 151 3.17E-33 2.69 

Monocytes 10 87 6.19E-33 4.61 

Macrophages 17 126 5.42E-32 3.08 

IL-12 4 83 1.20E-31 4.66 

Th1-mediated response 4 83 1.20E-31 4.66 

Parasite killing 4 83 1.20E-31 4.66 

Viral response 9 78 1.05E-30 4.84 

Macrophages gene expression 4 39 4.60E-30 12.77 

Lung cancer 8 73 5.74E-30 5.09 

Mosquito-borne pathogen 7 74 6.99E-30 4.99 

Zika virus 8 74 1.72E-29 4.92 

Reactive oxygen species 12 121 1.30E-28 2.93 

Diet intake: Dietary energy restriction 3 74 1.55E-28 4.74 
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Airway epithelium 26 118 4.15E-27 2.88 

Plasmodium falciparum 1 46 3.05E-25 7.43 

Malaria 1 46 3.05E-25 7.43 

Blood monocytes 1 46 3.05E-25 7.43 

Metabolism 7 82 4.91E-25 3.76 

Pack-years: (10 - 20) 5 46 1.16E-24 7.19 

Polymorphonuclear leukocytes 10 112 7.05E-24 2.76 

Anaplasma phagocytophilum 10 112 7.05E-24 2.76 

Granulocytic anaplasmosis 10 112 7.05E-24 2.76 

Bone marrow monocytes 1 28 1.65E-23 14.75 

Myelodysplastic syndromes 1 28 1.65E-23 14.75 

Hematopoietic stem cell disease 1 28 1.65E-23 14.75 

Apoptosis 34 159 4.18E-23 2.09 

Energy restriction associated gene expression 2 64 8.15E-23 4.40 

Idiopathic pulmonary fibrosis 1 42 8.63E-23 7.28 

Smoking Status: Current, Never 23 78 1.41E-22 3.59 

Epithelial gene expression 16 79 5.50E-22 3.47 

Dendritic cells 20 144 5.52E-21 2.13 

Lyme disease 2 40 7.47E-21 6.89 

Borrelia burgdorferi 2 40 7.47E-21 6.89 

Hepatocellular carcinoma 1 69 1.70E-20 3.69 

HBV Infection 1 69 1.70E-20 3.69 

Blood immune cells 20 85 5.45E-20 3.02 

Influenza A Infection 20 85 5.45E-20 3.02 

E. coli infection 20 85 5.45E-20 3.02 

Staphylococcus aureus infection 20 85 5.45E-20 3.02 

Streptococcus pneumoniae infection 20 85 5.45E-20 3.02 

Chemokines 2 24 5.79E-20 14.29 

Central nervous system 4 35 5.94E-20 7.75 

Zika virus associated pDCs response 1 32 7.36E-20 8.77 
Pack-years: (20 - 30; Healthy smoker),  (Above 
40; Smoker with COPD) 4 42 1.05E-19 5.99 

Tissue remodeling 1 19 1.94E-19 21.39 

Immunoregulation 1 19 1.94E-19 21.39 

Sepsis 1 17 7.12E-19 25.40 

CD14+ Monocytes 1 17 7.12E-19 25.40 

Innate immune response 1 17 7.12E-19 25.40 

Fatty acid metabolism 3 17 1.15E-16 19.41 
Non-smoker vs Smoker (Healthy smoker, 
Smoker with COPD) 11 44 4.18E-16 4.54 

Bacterial infection 4 38 7.17E-16 5.22 

Early Disseminated 1 25 9.19E-16 8.89 

Bronchoalveolar epithelium 1 13 1.04E-14 26.06 
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Olive oil induced gene expression 3 21 5.82E-14 9.59 

HIV infection 9 51 8.54E-14 3.44 

SARS-COV2 3 18 5.31E-13 10.88 

COVID-19 3 18 5.31E-13 10.88 

Infection induced gene expression in mice 18 76 5.83E-13 2.46 

Astrocytes 2 16 6.21E-13 13.15 

Citric acid cycle 1 13 8.34E-13 19.08 

Complement system 1 13 8.34E-13 19.08 

Diet intake: Milk fat and protein 1 13 8.34E-13 19.08 

Apopotosis 1 13 3.39E-12 17.23 

Human gingival fibroblasts 2 13 4.17E-12 16.96 

Transcription regulation 11 45 6.79E-12 3.37 

Diet intake: Olive oil 2 18 9.01E-12 9.19 

Oxidative stress 11 50 1.57E-11 3.03 

Dyslipemia 1 15 1.60E-11 11.85 

Fusobacterium nucleatum 3 16 1.89E-11 10.52 

Oral pathogen 3 16 1.89E-11 10.52 

Pro-inflammatory response 1 14 2.47E-11 12.93 

Atheroscleorsis 1 10 2.67E-11 24.91 

Atherosclerotic cardiovascular disease (ASCVD) 1 10 2.67E-11 24.91 

Aging 1 10 2.67E-11 24.91 

T effector cells 2 26 3.15E-11 5.32 

Helminth infection 2 26 3.15E-11 5.32 

Smoking Status: Current, Former, Never 5 34 3.20E-11 4.05 

Oxidative phosphorylation 3 13 2.25E-10 12.42 
Tumor tissue vs Non tumor tissue in Non-
smoker vs Smoker 3 31 2.34E-10 4.08 

Xenobiotic metabolism 4 30 3.13E-10 4.16 

Human choroid plexus epithelial cells 1 20 3.73E-10 6.37 

Adenocarcinoma 2 29 5.47E-10 4.19 

Pack-years: (20 - 30) 9 45 8.40E-10 2.89 

Regulatory T cells 2 24 8.95E-10 4.93 

Immunopathology 2 24 8.95E-10 4.93 

Helminth Infection 2 24 8.95E-10 4.93 

Cell culture based smoking effect 3 21 1.12E-09 5.64 

Hematopoiesis 2 28 1.92E-09 4.09 

Signal Transduction 7 33 2.01E-09 3.54 

Cystic Fibrosis 1 39 2.33E-09 3.09 

Rhinovirus infection 1 39 2.33E-09 3.09 

Angiogenesis 2 14 2.35E-09 9.13 

Extracellular matrix metabolism 1 10 3.66E-09 15.51 

Autosomal-dominant hyper-IgE syndrome 1 10 3.66E-09 15.51 
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Immunodeficiency 1 10 3.66E-09 15.51 

Lipid metabolism 9 58 3.95E-09 2.35 

Vascularization 1 27 5.71E-09 4.01 

Oxidant-related 2 13 9.38E-09 9.13 

Zika virus associated mDCs response 1 19 2.74E-08 5.21 

Maternal cigarette smoking 2 27 3.99E-08 3.65 

Cell death 1 20 8.38E-08 4.60 

Leptin resistance 1 11 9.12E-08 9.62 

Weight loss 2 11 3.15E-07 8.53 

Gene expression induced due to fasting 3 13 3.26E-07 6.76 

Diet intake: Fasting 3 13 3.26E-07 6.76 

DE genes expressed in Healthy 11 49 3.99E-07 2.24 

Cytokines 4 21 4.55E-07 3.96 

Diet intake: Low calorie diet 4 30 5.45E-07 2.96 

SIV infection 6 35 5.45E-07 2.68 

Zika virus associated CD8T cell response 1 16 1.24E-06 4.78 

Type 2 Diabetes 5 19 1.44E-06 4.01 

Ulcerative colitis 1 13 1.57E-06 5.87 

Crohn's disease 1 13 1.57E-06 5.87 

Jurkat cells gene expression 1 13 1.57E-06 5.87 

DNA damage 3 10 3.48E-06 7.54 

Weight associated gene expression 10 21 4.12E-06 3.44 

Obese vs Lean 2 123 4.99E-06 1.46 

DE genes expressed in Obese, Lean 3 123 5.04E-06 1.46 

Adipose tissue gene expression 3 121 5.21E-06 1.46 

Chemical induced gene expression 3 24 5.25E-06 3.06 

Insulin resistance 7 122 5.28E-06 1.46 

Genotoxic 2 23 1.27E-05 2.99 

Carcinogen 2 23 1.27E-05 2.99 

Mannose metabolism 1 119 1.31E-05 1.44 

Smoking History: > 19 years 2 12 1.59E-05 5.14 

Pack-days: (1 - 1.21) 2 12 1.59E-05 5.14 

Calorie restriction effect on old vs young 1 24 1.87E-05 2.83 

Diet intake vs Control 17 29 2.83E-05 2.46 

Non-genotoxic 1 22 2.84E-05 2.92 

Hepatocarcinogens 1 22 2.84E-05 2.92 

Liver-based in vitro models 1 22 2.84E-05 2.92 

Cell cycle 4 14 3.19E-05 4.11 

Zika virus associated CD4T cell response 1 14 3.81E-05 4.04 

Viral responses 4 17 3.81E-05 3.43 

Cigarette smoking in women 3 13 4.07E-05 4.29 

Lungs tissue gene expression 2 14 4.20E-05 4.00 
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HIV-1 infection 9 30 4.20E-05 2.36 

Smoking Status: Current, Former 2 14 5.33E-05 3.90 
Tumor tissue vs Non tumor tissue in Current 
smoker vs Former Smoker 2 14 5.33E-05 3.90 

Zika virus induced B cell response 1 14 6.10E-05 3.84 

Zika virus associated B cell response 1 14 6.10E-05 3.84 

Zika virus associated monocytes response 1 14 6.10E-05 3.84 

Mitotic spindle formation genes 1 12 7.90E-05 4.29 

Skeletal muscle gene expression 2 19 1.04E-04 2.91 

Metabolic pathways 2 10 1.64E-04 4.70 

Innate Immunity 5 75 2.77E-04 1.52 
Pulmonary nontuberculous mycobacterial 
disease 1 10 6.57E-04 3.93 

T cell signaling 1 10 6.57E-04 3.93 

Before vs After diet intake 7 24 1.03E-03 2.14 

Protein Metabolism 2 16 2.17E-03 2.46 

Vesicular traffic 1 15 3.42E-03 2.43 
DE genes expressed in Insulin sensitive 
individuals 1 15 3.42E-03 2.43 

DNA Methylation 5 11 4.73E-03 2.80 

CD4+ T cell 7 17 1.54E-02 1.93 

Hematogenous dissemination of virus 6 22 2.11E-02 1.71 
Epidermal growth factor receptor/PI3K signaling 
pathway 6 22 2.11E-02 1.71 

Cytoskeletal function 3 23 2.54E-02 1.65 

Cytoprotective mechanism 1 27 3.10E-02 1.55 

Cell-adhesion 3 16 3.67E-02 1.78 

Diet intake: High-fat 13 24 4.03E-02 1.56 

 
Table 7. Collation of results obtained on querying E.PAGE with genes differentially 
expressed in heavy smoking subjects 
 

Gene Modules Number of 
Modules 

Number of DE 
Genes Padj Fold 

Enrichment 

Epithelial gene expression 16 198 3.07E-87 5.16 

Cigarette smoking 36 261 6.38E-85 3.58 

Airway epithelium 26 254 7.98E-85 3.68 

Non-smoker vs Smoker 16 206 3.08E-81 4.52 

Idiopathic pulmonary fibrosis 1 103 2.05E-73 10.60 

Chronic obstructive pulmonary disease 16 158 2.05E-73 5.64 

Pack-years: (10 - 20) 5 105 4.99E-71 9.74 

Lung cancer 8 136 4.78E-62 5.63 

Smoking Status: Current, Never 23 141 3.87E-44 3.85 

Pack-years: (20 - 30) 9 113 3.95E-39 4.31 

Infection type: Acute 58 276 3.54E-31 1.88 

Infection induced gene expression 110 390 1.15E-30 1.51 
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Inflammation 31 207 2.15E-30 2.21 

Immune response 46 214 1.04E-23 1.94 

Infection type: Chronic 29 192 8.61E-23 2.03 

Apoptosis 34 233 2.18E-22 1.82 

Transcription regulation 11 77 8.42E-20 3.42 

Cystic Fibrosis 1 74 1.82E-19 3.48 

Rhinovirus infection 1 74 1.82E-19 3.48 

Lyme disease 2 48 2.39E-18 4.91 

Borrelia burgdorferi 2 48 2.39E-18 4.91 
Non-smoker vs Smoker (Healthy smoker, 
Smoker with COPD) 11 62 4.36E-18 3.79 

Lipid metabolism 9 106 4.56E-18 2.55 

Reactive oxygen species 12 146 8.89E-18 2.10 

PBMCs 22 152 1.48E-17 2.04 

Mycobacterium tuberculosis 3 41 1.59E-17 5.51 
Pack-years: (20 - 30; Healthy smoker),  (Above 
40; Smoker with COPD) 4 51 3.22E-17 4.32 

Macrophages 17 143 6.22E-17 2.07 

Infection induced gene expression in mice 18 119 6.23E-17 2.29 

Interferons 15 115 3.24E-16 2.28 

Polymorphonuclear leukocytes 10 138 2.89E-15 2.02 

Anaplasma phagocytophilum 10 138 2.89E-15 2.02 

Granulocytic anaplasmosis 10 138 2.89E-15 2.02 

Central nervous system 4 38 6.33E-15 5.00 

Oxidative stress 11 77 7.09E-15 2.77 

HIV infection 9 72 9.37E-15 2.88 

Signal Transduction 7 55 1.14E-14 3.50 

Hepatocellular carcinoma 1 82 1.93E-14 2.61 

HBV Infection 1 82 1.93E-14 2.61 

Human choroid plexus epithelial cells 1 30 2.52E-13 5.67 

IL-12 4 76 1.01E-12 2.53 

Th1-mediated response 4 76 1.01E-12 2.53 

Parasite killing 4 76 1.01E-12 2.53 

Monocytes 10 78 2.14E-12 2.45 

Dendritic cells 20 186 3.07E-12 1.63 

Smoking Status: Current, Former 2 30 7.44E-12 4.96 
Tumor tissue vs Non tumor tissue in Current 
smoker vs Former Smoker 2 30 7.44E-12 4.96 

Bronchoalveolar epithelium 1 13 1.11E-11 15.46 

Viral response 9 69 1.16E-11 2.54 

Squamous cell lung carcinoma 1 26 2.11E-11 5.51 

Smoking Years Quit: > 2 years 1 26 2.11E-11 5.51 

Pack-years: (30 - 40) 1 26 2.11E-11 5.51 

Metabolism 7 82 6.06E-11 2.23 
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Cytoprotective mechanism 1 70 1.35E-10 2.38 

Mosquito-borne pathogen 7 63 1.57E-10 2.52 

Zika virus associated pDCs response 1 28 2.84E-10 4.55 

Zika virus 8 63 2.84E-10 2.48 

SARS-COV2 3 19 4.46E-10 6.81 

COVID-19 3 19 4.46E-10 6.81 

Lungs tissue gene expression 2 27 5.51E-10 4.57 

DE genes expressed in Obese 15 82 7.48E-10 2.11 

Mucus overproduction 2 18 8.21E-10 7.02 

Skeletal muscle gene expression 2 37 1.35E-09 3.36 

Cell culture based smoking effect 3 27 2.03E-09 4.30 

Obese vs Lean 2 208 2.03E-09 1.46 

DE genes expressed in Obese, Lean 3 208 2.06E-09 1.46 

SIV infection 6 55 3.91E-09 2.50 

Cytokines 4 32 4.68E-09 3.58 

Insulin resistance 7 205 4.75E-09 1.45 

Adipose tissue gene expression 3 203 5.36E-09 1.46 

Mannose metabolism 1 202 6.76E-09 1.45 

Smoking Status: Current, Former, Never 5 41 1.02E-08 2.90 

Early Disseminated 1 22 2.01E-08 4.64 

Blood immune cells 20 88 6.63E-08 1.86 

Influenza A Infection 20 88 6.63E-08 1.86 

E. coli infection 20 88 6.63E-08 1.86 

Staphylococcus aureus infection 20 88 6.63E-08 1.86 

Streptococcus pneumoniae infection 20 88 6.63E-08 1.86 

Macrophages gene expression 4 22 8.61E-08 4.27 

Mitotic spindle formation genes 1 21 8.68E-08 4.45 

Genotoxic 2 37 8.68E-08 2.86 

Carcinogen 2 37 8.68E-08 2.86 

Cell cycle 4 23 1.30E-07 4.01 

Chemical induced gene expression 3 37 1.37E-07 2.80 

Chemokines 2 16 1.61E-07 5.65 

Dyslipemia 1 14 1.75E-07 6.57 

DE genes expressed in Lean 3 10 4.35E-07 9.56 

Zika virus associated mDCs response 1 23 4.37E-07 3.74 

Vesicular traffic 1 31 4.60E-07 2.98 
DE genes expressed in Insulin sensitive 
individuals 1 31 4.60E-07 2.98 

Protein Metabolism 2 32 4.60E-07 2.92 

Non-genotoxic 1 35 4.60E-07 2.75 

Hepatocarcinogens 1 35 4.60E-07 2.75 

Liver-based in vitro models 1 35 4.60E-07 2.75 
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Astrocytes 2 13 7.52E-07 6.34 

DE genes expressed in Healthy 11 70 9.81E-07 1.90 

Olive oil induced gene expression 3 17 1.08E-06 4.61 

Weight associated gene expression 10 30 1.12E-06 2.91 

Transport 3 15 1.18E-06 5.19 

Diet intake: Olive oil 2 16 1.19E-06 4.85 

Diet intake: Low calorie diet 4 41 1.30E-06 2.40 

Pro-inflammatory response 1 12 1.39E-06 6.58 

Regulatory T cells 2 26 1.39E-06 3.17 

Immunopathology 2 26 1.39E-06 3.17 

Helminth Infection 2 26 1.39E-06 3.17 
Tumor tissue vs Non tumor tissue in Non-
smoker vs Smoker 3 34 1.41E-06 2.66 

Fusobacterium nucleatum 3 14 1.45E-06 5.46 

Oral pathogen 3 14 1.45E-06 5.46 

Diffuse large B-cell lymphoma 1 14 1.54E-06 5.42 

Germinal center B-cell 1 14 1.54E-06 5.42 

DNA repair 1 14 1.54E-06 5.42 

Genomic stability 1 14 1.54E-06 5.42 

Prostaglandin metabolism 1 10 3.94E-06 7.39 

DE genes expressed in Low calorie diet 1 10 3.94E-06 7.39 

Epithelial barrier integrity 1 11 3.94E-06 6.54 

Cilia beat activity 1 11 3.94E-06 6.54 

Cytoskeletal function 3 49 4.67E-06 2.09 

Oxidant-related 2 12 2.20E-05 5.00 

Diet intake: Dietary energy restriction 3 51 2.20E-05 1.94 

Echovirus-30 1 18 2.49E-05 3.44 

Blood‚ÄìCerebrospinal Fluid Barrier 1 18 2.49E-05 3.44 

Polar Infection 1 18 2.49E-05 3.44 

Adenocarcinoma 2 29 3.16E-05 2.49 

Human papillomavirus 2 11 4.65E-05 5.06 

Zika virus induced B cell response 1 19 6.29E-05 3.09 

Zika virus associated B cell response 1 19 6.29E-05 3.09 

Ulcerative colitis 1 14 9.73E-05 3.75 

Crohn's disease 1 14 9.73E-05 3.75 

Jurkat cells gene expression 1 14 9.73E-05 3.75 

Viral infection 19 141 1.10E-04 1.37 

T effector cells 2 22 1.28E-04 2.67 

Helminth infection 2 22 1.28E-04 2.67 

Before vs After diet intake 7 38 1.45E-04 2.01 

Cell growth 7 22 1.66E-04 2.62 

Innate Immunity 5 116 3.50E-04 1.39 
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Xenobiotic metabolism 4 27 3.92E-04 2.22 

Bacterial infection 4 27 4.44E-04 2.20 

DNA Methylation 5 18 4.82E-04 2.72 

Energy restriction associated gene expression 2 44 4.91E-04 1.80 

Pack-years: Above 40 2 10 1.14E-03 3.75 

Gene expression induced due to fasting 3 11 1.36E-03 3.40 

Diet intake: Fasting 3 11 1.36E-03 3.40 

Type 2 Diabetes 5 19 1.47E-03 2.38 

Maternal cigarette smoking 2 25 2.60E-03 2.01 

Immune reposne 2 89 3.69E-03 1.37 

Dendritic cell maturation 2 89 3.69E-03 1.37 

Newcastle disease virus 2 89 3.69E-03 1.37 

Cell-adhesion 3 28 4.32E-03 1.85 

Diet intake vs Control 17 34 4.93E-03 1.71 

Viral responses 4 18 5.73E-03 2.16 

Hematopoiesis 2 22 8.83E-03 1.91 

Zika virus associated CD8T cell response 1 13 1.22E-02 2.31 

Calorie restriction effect on old vs young 1 25 1.33E-02 1.75 

Vascularization 1 21 1.41E-02 1.85 

Host susceptibility 2 16 2.10E-02 1.95 

Macrophage activation 2 16 2.10E-02 1.95 

Inflammatory diseases 2 16 2.10E-02 1.95 

Plasma insulin level 5 12 2.21E-02 2.19 

Pathogen sensing 6 22 2.31E-02 1.72 

Antimicrobial defense 6 22 2.31E-02 1.72 

Supression of T cell activation 6 22 2.31E-02 1.72 

Enhanced bactericidal activity 6 22 2.31E-02 1.72 

Inhibition of granuloma destruction 6 22 2.31E-02 1.72 

HIV-1 infection 9 32 3.48E-02 1.49 

Plasmodium falciparum 1 18 3.91E-02 1.72 

Malaria 1 18 3.91E-02 1.72 

Blood monocytes 1 18 3.91E-02 1.72 

Hematogenous dissemination of virus 6 32 4.04E-02 1.47 
Epidermal growth factor receptor/PI3K signaling 
pathway 6 32 4.04E-02 1.47 
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