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Abstract 

We present a structure-based method for finding and evaluating structural similarities in protein regions
relevant to ligand binding. PDBspheres comprises an exhaustive library of protein structure regions
(“spheres”)  adjacent  to  complexed ligands derived from the Protein Data Bank (PDB), along with
methods to find and evaluate structural matches between a protein of interest and spheres in the library.
Currently, PDBspheres’ library contains more than 2 million spheres, organized to facilitate searches by
sequence and/or structure similarity of protein-ligand binding sites or interfaces between interacting
molecules. PDBspheres uses the LGA structure alignment algorithm as the main engine for detecting
structure similarities between the protein of interest and library spheres. An all-atom structure similarity
metric ensures that sidechain placement is taken into account in the PDBspheres’ primary assessment
of  confidence  in  structural  matches.  In  this  paper,  we  (1)  describe  the  PDBspheres  method,  (2)
demonstrate how PDBspheres can be used to detect and characterize binding sites in protein structures,
(3)  compare  PDBspheres  use  for  binding  site  prediction  with  seven  other  binding  site  prediction
methods using a curated dataset of 2,528 ligand-bound and ligand-free crystal structures, and (4) use
PDBspheres to cluster pockets and assess structural similarities among protein binding sites of the
4,876 structures  in  the  “refined  set”  of  PDBbind 2019 dataset.   The  PDBspheres  library  is  made
publicly available for download at https://proteinmodel.org/AS2TS/PDBspheres

1. Introduction

Interactions between proteins and small molecule ligands are a cornerstone of biochemical function.
Modern  drug  discovery  often  relies  on  structure-based  drug  discovery,  which  requires  structural
information about the target of interest (typically a protein). When a new structure is obtained, it may
be the case that little is known with regard to potential binding sites on that structure. A number of
binding site prediction methods attempt to address this issue [25-34]. These can be categorized in three
broad sets: (1) template-based methods that use known protein information, (2) physics-based methods
that rely on geometry (for example, cavity detection) and/or physicochemical properties (for example,
surface energy interactions with probe molecules), and (3) machine learning (ML) - rapidly developing
in recent years methods capable of efficiently processing information collected in their training data
sets. For ML methods data can come from both experiments and in silico data processing, as described
for example in [14], [24], and [35]. PDBspheres can be classified as a template-based method, however
it relies solely on local structure conformation similarity – i.e.,  doesn’t utilize any prior information
from libraries of sequences, motifs or residues forming binding sites. In this structure template-based
prediction method,  binding sites are identified exclusively based on the structure similarity between
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regions from the query protein and pocket spheres from the PDBspheres library. Ligand placement
within a predicted pocket is calculated based on a protein-sphere superposition, i.e., an agreement in
structure conformation between atoms from the query protein and protein atom coordinates from the
template sphere. The main premise of structure template-based binding site prediction methods is that
the number of pockets is limited [18], therefore each one of them may serve as a binding site for a large
diversity of ligands [19].  However, possible conformations of ligands bound in the pocket are also
limited. Indeed, when we predict a ligand-protein conformation we focus on what parts of the ligand
(e.g., its core region) need to be in a correct conformation, i.e., a conformation that can be confirmed
by  experiment  and  from  which  the  binding  affinities  can  be  estimated.  Usually  such  “correct”
conformations are shared between ligands that bind a given pocket (at least shared by their “core”
regions.) The evaluation of the correctness of the ligand placement within a pocket is not an easy task.
For example, when for a given protein two pocket predictions with different ligands inserted need to be
evaluated a simple calculation and comparison of the ligand centroids (the center of mass of the bound
ligands) can be misleading. This is because the two predictions may differ in assigned placements of
the ligands within a pocket (especially when the pocket size is large allowing the ligands to fit in
different areas within the cavity), or the ligand sizes and their shapes are different (e.g., some parts of
the  ligands  can  be  exposed  outside  the  pocket  with  different  orientations  [23];  see  Fig.1).  These
difficulties in the assessment of the accuracy of binding site predictions and ligand placements within
predicted pockets could be overcome when we focus on the evaluation of residues interacting with the
bound ligands.

Fig.1. (A) Example of the b1 domain from the Human Neuropilin-1 (PDB 2qqi) where a single pocket
can serve as a binding site for many different ligands. (B) Zoom-in to the pocket that can accommodate
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ligands  of  different  sizes.  A list  of  ligands  includes:  6JY.20  (Arg-7),  6K8.24  (Arg-6),  8DR.32
(EG00229), AAG.15 (M45), AR5.19 (Arg-5), BCN.23 (Bicine), DUE.40 (EG01377), HRG.13 (Arg-1),
R40.22 (Arg-4), where ligand information (PDBid.size) is provided with a size representing a number
of heavy atoms. (C) Two different poses of the ligand DUE.40 (EG01377) are reported in Powell et al.
2018 [23] and identified by PDBspheres based on two templates: 6fmc and 6fmf. (D) Superposition of
two experimentally solved structures of Neuropilin1-b1 domain in complex with EG01377 (in green:
PDB 6fmc at resolution 0.9  Å, and in red: PDB 6fmf at  resolution 2.8  Å) shows almost identical
protein structure conformations while poses of bound ligands differ significantly outside the core. The
distance between centroids of the ligand’s two orientations when placed in the pocket is more than 4.6
Å.

Knowing  the  correct  "core"  conformation  of  the  ligand  within  the  pocket  (i.e.,  the  pose  of  the
conserved part)  can  significantly  improve “in  silico” drug discovery;  it  can be used in  compound
screening/docking efforts as a pre-filter for selection of most promising compounds for a more detailed
and expensive computational evaluation. Currently, there are millions of compounds screened using
docking/MMGBSA approaches  to  find  good  candidates  for  a  further  (experimental)  analysis  of
potential inhibitors for given targeted proteins. Better predictions of the initial "core" conformation and
protein-ligand  residue  contacts  for  most  suitable  compounds  can  significantly  reduce  expensive
calculations and limit them to the carefully preselected most "promising" compounds only.

Recently, to address a need in proper evaluation of the binding site prediction systems a benchmark
dataset  (LBPs  dataset)  of  ligand-bound  and  ligand-free  crystal  structures  for  304  unique  protein
families (2,528 structures in 1456 “holo” and 1082 “apo” conformations) has been developed [1], [9].
The main criterion for the assessment of the accuracy of predictions of the binding site is the agreement
in the set of residues predicted to be in contact with experimentally confirmed ligands (residue contacts
derived from protein-ligand co-crystals from PDB [21].) It means that any residue predicted to be part
of the binding site which is confirmed in the experimental data is denoted “true positive” (TP), and any
residue predicted to be part of the binding site which is not confirmed in experimental data is denoted
“false  positive”  (FP)  or  over-predictions.  Any  remaining  residues  in  the  experimental  data  not
accounted for in an algorithm’s predicted binding site are denoted “false negative” (FN) or under-
predictions, and all remaining residues (which are not predicted as part of the binding site and not
confirmed in  experimental  data)  are  denoted as  “true negative”  (TN).  Both Matthew’s  Correlation
Coefficients (MCCs), and F scores as calculated by formulas (Eqs. 1-2, Section 2.3) have proven to be
useful as metrics to represent the predictive power of the various methods.

2. Methods

The PDBspheres  system is  designed to  help  assess  the  similarity  between proteins  based on their
structure similarity in selected local regions (e.g., binding sites, protein interfaces, or any other local
regions that might be structurally characteristic of a particular group of proteins). The PDBspheres
system has three main components: (1) the PDBspheres library of binding site templates, (2) a structure
similarity search algorithm to detect similarity between evaluated local structural regions (e.g., binding
sites), and (3) numerical metrics to assess confidence in detected similar regions. 

Currently, the PDBspheres library (ver. 2021/10/13) contains 2,002,354 compound binding site models
and 67,445 short-peptide binding site models.
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The LGA program [10] is used to perform all structure similarity searches. In the process of detecting
pocket candidates within proteins structure similarity searches can be performed using all templates in
the PDBspheres library (i.e, exhaustive search, testing all 2.0 M pockets from the library), or searches
can be performed on a preselected subset of the sphere templates. There are two standard preselection
approaches implemented in the PDBspheres system: (1) a set of template spheres can be preselected
based on specific targeted ligands (e.g., their names or sizes), or (2) template spheres can be preselected
based on sequence similarity between a query protein and protein pockets (sphere templates) in the
PDBspheres library. The computational time of the structure processing can vary depending on the size
of the protein or the number of template spheres from the PDBspheres library preselected by the system
for the pocket detection and similarity evaluation. An exhaustive search (against entire PDBspheres
library) can take more than one day on a single processor machine, however with standard preselection
procedures the calculations can be completed in less than one hour for medium size proteins.  For
example, the processing of three protein structures discussed in the manuscript and illustrated on Fig.1
(Neuropilin-1, 158aa), Fig.2 (PL2pro, 318aa), and Fig.6 (Tryptase, 248aa)) took 7 min, 52 min, and 50
min respectively on a single processor with 16 cores machine.

The  main  structure  similarity  metrics  used  to  assess  confidence  in  detected  pockets  are  LGA_S
(combination of GDT and LCS measures [10]), which evaluates structure similarities on Calpha and/or
Cbeta levels, and GDC (Global Distance Calculations [11]), which allows evaluation on an all-atoms
level, i.e., extending structure similarity evaluation to the conformation of side-chain atoms.
When applied to predict protein binding sites in a given protein structure, PDBspheres detects ligand-
protein binding regions using the pocket/sphere templates in the PDBspheres library constructed from
all available structures deposited in the PDB database. After a binding pocket is detected the ligand(s)
from matching template(s) is/are inserted into the identified pocket in a query protein to illustrate an
approximate location of the ligand. The location is approximate because it is based on the alignment of
the query protein with the template protein spheres, and no docking or any energy minimization or
structure relaxation are undertaken. Thus, it should be noted that PDBspheres is not a docking system
to predict  de novo ligand poses within a binding site. However,  further relaxation of the predicted
protein-ligand complex can be considered as the next step to improve a ligand placement within a
pocket (which is a subject of continuing PDBspheres system development.)

The  clustering  of  identified  pocket-spheres  matches  and  their  corresponding  ligands  characterizes
distinct pocket regions within the protein by the sets of residues interacting with inserted ligands. The
clustering of  interacting residues allows identify overlapping parts  of ligands that  approximate the
ligand’s “core” conformation within detected pockets and for each cluster defines a representative set
of residues forming a consensus pocket. An example of an identified cluster of pocket-spheres is shown
in Fig 2. Each protein may have more than one consensus pocket.

2.1 PDBspheres library

Each entry in the PDBspheres library is a subset of the records in a PDB entry,  consisting of the
coordinates of all atoms belonging to a “query ligand,” and coordinates of all protein atoms belonging
to residues near that query ligand (water atoms are excluded.) The protein residue is included if at least
one of its atoms is within 12.0 Å of any atom of the query ligand. Previous research indicated that
distances of 7.5 Å are sufficient to capture informative functional properties for clustering purposes
[12];  however,  based on our  experimentation using the LGA program for detecting local  structure
similarities we expanded the distance to 12.0 Å. This size of “template sphere” is sufficient to capture
the structural environment of the query ligand for structure comparative needs. Our tests indicated that
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larger than ~12 Å distance spheres would affect accuracy in calculated structure conformation-based
local residue-residue correspondences between template spheres and the query protein within evaluated
pockets. On the other hand, the smaller than ~12  Å distance criteria may not provide sufficient fold
constraints to capture the uniqueness of searched pockets. To assist in the identification of functional
residues, PDBspheres also collects and reports information on protein-ligand interface residues. These
residues are identified as those of which at least one atom is within 4.5 Å of any ligand atom. 

In the PDBspheres library the 12.0 Å “sphere” entries have been constructed for each ligand in PDB,
including peptides, metals, and ions, although the library includes only peptides containing 25 or fewer
residues. The library is updated weekly in coordination with new PDB releases. As of 2021/10/13 the
library consists of 2,069,796 spheres (binding site templates).

The primary use of the PDBspheres library is to identify “sphere” protein structures that are structurally
similar  to  regions  of  a  query  protein  structure.  The  query  protein  structure  may  be  a  complete,
multimeric assembly, or it may be a single sub-unit of such an assembly,  or even a fragment of a
protein as long as it carries enough structural information (local structure conformation formed by atom
coordinates) to reflect a structural shape of a putative binding site.

2.2 PDBspheres similarity searches

The fundamental identification method used by PDBspheres is structural alignment of a sphere with the
query structure, and the assessment of the structural match. For general use, a comprehensive search –
that is, a structural alignment-based search of the entire PDBspheres library (over 2 million sphere
templates) – would be computationally expensive. One means to address this issue is to conduct an
initial search for matches to a query protein structure on a subset of sphere templates. Then, if needed,
the search can be expanded to additional templates from the library. In its current implementation for
possibly faster processing, the PDBspheres searches can be restricted to a subset of template spheres
selected based on (1) ligand similarity i.e., ligand(s) information, or (2) sequence similarity between the
query protein and PDB proteins from which the PDBspheres library entries were derived. In the case of
former approach, the sequence similarity searches are conducted using the Smith-Waterman algorithm
against FASTA-format sequences of all proteins contributing to the PDBspheres library entries. In the
current version of PDBspheres, the Smith-Waterman algorithm “ssearch36” [15] is used.

In the PDBspheres library each sphere template entry includes a number of characteristics such as the
ligand name (PDB ligand ID), the number of heavy atoms in the ligand, and the number of residues in
the protein fragment forming the protein-ligand "sphere" (that is, the size of the pocket template). Thus,
the list of matching spheres can be screened using specific criteria related to the expected pocket size,
exact ligand name or ligand similarity.  A selection of the template spheres based on the estimated
similarity  between the  expected ligand and the  PDB ligands  from the  PDBspheres  system can be
quantified by the Tanimoto or Tversky similarity indexes [16]. In our currently implemented approach,
the pocket identification is restricted to the template spheres derived from the similarity between the
query ligand and the set of PDB ligands collected within the PDBspheres library. 

After the identification of a subset of spheres, for example,  those matching by sequence similarity
and/or ligand similarity, each member of this subset is evaluated by assessing its structure similarity
with a query protein. The evaluation is performed in two steps: (1) detection of the region resembling
the  binding  site,  and  (2)  an  assessment  of  the  similarity  in  residue  conformations  including  a
conformation  in  their  side  chain  atoms.  The  primary  search  involves  a  calculation  of  structural
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alignment between template spheres and a query protein. The structural alignment is conducted using
the LGA program [10] and is calculated using a single point representation of aligning residues (Calpha
atoms, Cbeta atoms or any other point that can represent a residue position.) The structural similarity
search returns similarity scores (LGA_S scores) and alignments between template spheres for various
“pockets”  and  the  query  protein.  The  final  evaluation  of  identified  pockets  is  done  by  assessing
similarities in the conformation of all atoms (including side chain atoms) using the GDC metric [11].

The PDB ligand from the sphere template is translated and rotated according to the transformation that
results from aligning the sphere template atoms to the query protein atoms. The ligand atoms are not
considered in this alignment, and the crystal ligand conformation is not altered. It means that potential
steric clashes between protein residues and atoms of inserted ligands can be observed. The number of
possible clashes is reported.

When for a given protein structure and selected set  of sphere templates,  PDBspheres searches are
completed the reported binding site predictions are screened and evaluated by several criteria. 
PDBspheres reports the following set of characteristics for all pockets detected within a given protein:

(a) PDB identifier for the template sphere protein matching the query protein pocket,
(b) PDB identifier for the template sphere ligand matching the query protein pocket,
(c) list of residues in the query protein in direct contact with the inserted ligand (residues within the

distance <= 4.5 Ångstroms),
(d) coordinates of the centroid of the ligand inserted into the detected pocket in the query protein.

Because the pocket searches can match template spheres to different regions of the query protein all
identified pocket candidates are organized into clusters. Within the PDBspheres approach the merging
and clustering of detected pockets is performed to satisfy the following two criteria: 

(1) within each cluster the pockets are grouped together based on sets of residues interacting with
ligands that are in common (more than 80% of ligand contact residues are the same),

(2) pockets and the sets  of residues identified as  in  contact  with ligands are  merged when the
inserted  ligands  overlap  (the  distances  between  ligand  centroids  are  not  larger  than  2.0
Ångstroms.)

This grouping of pockets and their corresponding inserted ligands allows to define sets of residues
interacting with similar ligands, and helps identify overlapping parts of ligands that approximate the
ligand’s  “core”  conformation  whose  location  is  used  to  define  representative  (consensus)  pockets
within the protein.

For a given protein the following set of measurements and scorings are provided to help assess the
confidence level of the pocket prediction (see examples provided in Fig 4 and supplemental File 1):

 LIGAND – protein-ligand template sphere identifier.
 Ns - number of residues in the protein-ligand template sphere.
 RMSD – root mean square deviation calculated on superimposed Calpha or Cbeta atoms from

sphere template and detected protein pocket.
 Nc – number of conserved, i.e., “tightly” superimposed residues between “sphere template” and

detected pocket in evaluated protein.
 SeqID – sequence identity in  structure aligned residues.  Higher value indicates that protein

forming a sphere template and our protein might be close homologs.
 LGA – structure similarity based on aligned by LGA program Calpha or Cbeta atoms.
 GDC – structure similarity calculated by LGA program assessing agreement in conformations

of all atoms (i.e., including side chain atoms).
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 N4 - the number of protein residues within 4.5 Å of the inserted ligand.
 cl -  the number of query protein residues that may have possible steric clashes with inserted

ligand’s atoms.

Firstly, to be considered a predicted site candidate, there must be at least ten aligned residues (Nc>=10)
that are conserved between the query and the sphere. Secondly, the sequence identity between query
and sphere conserved residues must be at least 10% (SeqID>=10.0). Thirdly, the structural similarity
measured by GDC (Global Distance Calculations) [11], which counts how many atoms (including side
chain atoms) in the query protein and the sphere protein are in close superposition, must be at least
55% (GDC>=55.0).  Fourthly, there must be at least one query protein binding site residue that have
atoms within less than 4.5 Å of an atom of the aligned sphere PDB ligand atom (N4>=1). Finally, there
are no more than two steric clashes (cl<=2) (distance less than 1.0 Å) allowed between query protein
binding site residue atoms and any atom of the aligned sphere ligand, counted per residue (that is,
multiple  clashing  atoms  all  within  a  single  residue  are  allowed,  but  only  for  not  more  than  two
residues.)  We may expect a higher confidence in predicted binding sites when: Nc>=25, GDC>=65,
and cl<=1. However, these thresholds cannot be considered as absolute requirements. For example,
possible clashes indicated by “cl>0” may suggest a need to correct the placement of the inserted ligand.
Ideally, a score of “cl=0” would enhance the confidence in ligand-protein binding prediction, however,
in  many  cases  “cl>0”  indicates  that  the  ligand  placement  within  the  pocket  may  need  additional
adjustment  or  refinement  of  protein  side-chain  atoms.  More  specifically:  “cl>0” indicates  that  the
location of the inserted ligand needs some optimization (through docking or MD simulations), or that
the side-chain and/or backbone conformations of the protein residues forming the pocket may need
some relaxation to accommodate the ligand. It is also important to keep in mind that the query protein
structure may not be in its  “holo” conformation to properly accommodate the ligand (i.e.,  without
clashes), so the conformation of binding site residues of the protein may require some optimization. 

The example below illustrates the PDBspheres method applied to find binding sites  in papain-like
proteinase (PL2pro) from COVID-19. In Fig.2. we show results from detected pocket cluster #1 which
was defined based on PL2pro pocket  structure  similarities  with 60 pocket-ligand sphere templates
(Nm=60 in Fig.2). The number of predicted different bound ligands is Nlig=25, and the combined total
number of residues being in contact with bound ligands is Nres=22.
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Fig.2.  Identified in  PL2pro pocket  cluster  #1.  A list  of  identified  ligands includes  three  important
inhibitors:  TTT (GRL0617), JW9 (Jun9-72-2), and VIR250.  Agreement in sets of contact residues is
also observed (see Fig.4.).

In Fig.3. we show that the poses of three TTT, JW9, and VIR250 ligands overlap significantly. These
ligand poses are brought from 11 different sphere templates listed in Fig.4: three for VIR250, five for
TTT, and three for JW9.

Fig.3. (A) Example of the peptide inhibitors VIR250 (6wuu_J,6wuu_H,6wuu_G) that pass through the
“gorge”. Inhibitors TTT and JW9 are places on the one side (right part) of the cavity only. (B) Assessed
by PDBspheres  poses  of  all  three  ligands  that  come from different  sphere  templates  show strong
overlap. 

In Fig.4.  we present  a snapshot from the summary table  automatically  created by the PDBspheres
system. A complete summary table of predicted pocket-ligands for a structural model of papain-like
proteinase (PL2pro model: nCoV_nsp3.6w9c_A.pdb) is provided in supplemental File1.
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Fig.4.  Fragment of the PDBspheres summary table  reporting predicted PL2pro ligands assigned to
pocket cluster #1. Results highlighted in green (when SeqID “>95”) indicate that similar pockets are
detected in Sars2 or variants of Sars2. When SeqID “<30” (results highlighted in red) examples of
similar  pockets  detected  in  human  proteins  are  shown.  An  agreement  in  sets  of  contact  residues
indicates that all listed ligands are predicted to bind the same pocket identified through clustering as
“pocket cluster #1”.

Recent studies of ligand binding site refinements show significant success in generating reliable “holo”
(ligand-bound) protein structures from their “apo” (ligand-free) conformations [20]. Similarly, if N4 –
the number of protein atoms within 4.5 A of the ligand – is very low, then this indicates that the current
placement of the ligand does not show strong interactions with residues of the protein binding site. This
may suggest that the pocket is too big (or some residues in the protein model are missing, or side-chain
atoms are not in the right conformation). Of course, it may also indicate that the identified pocket is
incorrect, or the location of the inserted ligand is wrong, but these conclusions can only be confirmed
by more detailed inspection. In such cases it can be informative to check the overlap of the template
pocket and the query protein pocket (i.e., Nc, the number of conserved superimposed pocket-forming
residues). Higher overlaps (e.g., Nc>=25 or more) indicate greater size of the region forming the pocket
and higher confidence in reported pocket similarities (more residues identified as conserved); however,
such thresholds  cannot  be  definitive because in  cases  of  shallow cavities  or  interface  sites  on the
surface  of  the  protein  the  Nc  number  can  be  low.

2.3 Benchmark dataset and evaluation metrics

The benchmark dataset used for the comparative analysis of performance of PDBspheres with seven
other methods is the “LBSp dataset” described in Clark et al. 2019 [9] and 2020 [1] papers. To assess
accuracy of evaluated methods we followed the same metrics and evaluation procedures as described in
the Clark et al. 2020 paper [1]. The authors defined a reference list called unified binding sites (UBS)
as  a  union  of all residues  contacted  by any bound  ligand  within  a  family.  The  scoring  of  each
algorithm’s  site  prediction  is  determined  by  agreement  with  the  UBS  reference  using  calculated
numbers  of  true  positives  (TP),  true  negative  (TN),  false  positive  (FP),  and  false  negative  (FN)
predicted contacts. Both Matthew’s Correlation Coefficients (MCCs), and F scores as calculated by
formulas (Eqs. 1-2) have been used as metrics to represent the predictive power of the various methods.
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(1) MCC=
(TP∗TN )− ( FP∗FN )

√(TP+FP ) (TP+ FN ) (TN +FP ) (TN+FN )

(2) F= 2∗TP
2∗TP+FP+FN

There are other metrics sometimes used to evaluate protein-ligand binding sites detection, e.g., DCC
[13] and DVO [14]. DCC is the distance between the predicted and the actual center of the pocket. This
metric evaluates the correct location of the pocket. DVO (discretized volume overlap) is defined as the
ratio of the volume of the intersection of the predicted and the actual segmentations to the volume of
their union. It assesses the correctness of the shape of predicted pockets. If DCC is below 4  Å, the
pocket is considered as correctly located [13]. However, in our study we follow metrics described in
the Clark et al. 2020 [1] paper as they focus on assessing accuracy of binding site prediction methods
based on the correctness of identified pocket residues being in contact with ligands.

3. Results and discussion

3.1 Comparison of PDBspheres to other methods

The PDBspheres method was compared to Surfnet [2], Ghecom [3], LIGSITE [4], Fpocket [5], Depth
[6], AutoSite [7] and Kalasanty [8], described in more detail in Clark et al. [1]. Five of these seven
methods are considered to be geometry-based, while one is energy-based, and one is machine-learning-
based. Evaluation results for these seven methods are taken from the publication [1], i.e., no new calcu-
lations/predictions have been performed for these other methods. The metrics used for the assessment
of the prediction accuracy of PDBspheres are the same as used in [1]. Predictive power is assessed us-
ing two metrics: F scores and Matthew’s Correlation Coefficients (MCCs). The F scores and MCCs
provide a good description of the relative success of evaluated algorithms assessing whether or not a
method produced a predicted binding site containing residues in common with the definition of Unified
Binding Sites (UBS) [1]. They assign high scores not just when at least one residue in a given site is
identified correctly, but rather reward methods with more correct and less false predictions of contact
residues implying which of the algorithm pocket predictions are close to the “correct” location on the
binding surface of the protein. The results from evaluation different methods are provided in Table 1,
where the first seven result rows are taken from [1].

Method Apo Holo Apo Holo

F F IQR F F IQR MCC MCC IQR MCC MCC IQR

Surfnet 0.23 0.23 0.23 0.24 0.22 0.26 0.23 0.28

Ghecom 0.48 0.5 0.54 0.55 0.5 0.54 0.53 0.62

LIGSITE 0.48 0.46 0.52 0.48 0.46 0.52 0.5 0.56

Fpocket 0.42 0.57 0.53 0.56 0.43 0.61 0.51 0.62

Depth 0.4 0.29 0.42 0.27 0.38 0.29 0.4 0.27

AutoSite 0.35 0.59 0.45 0.6 0.34 0.67 0.42 0.67

Kalasanty 0.49 0.51 0.51 0.43 0.48 0.56 0.54 0.48

PDBspheres(100) 0.81 0.14 0.82 0.15 0.80 0.15 0.82 0.15
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0.80 0.82 0.79 0.81

PDBspheres(90) 0.77
0.73

0.18 0.79
0.74

0.16 0.76
0.72

0.18 0.77
0.73

0.17

PDBspheres(80) 0.76
0.72

0.17 0.78
0.73

0.18 0.75
0.71

0.18 0.77
0.72

0.18

PDBspheres(70) 0.76
0.71

0.19 0.78
0.73

0.17 0.75
0.70

0.19 0.77
0.72

0.17

PDBspheres(60) 0.76
0.71

0.19 0.78
0.72

0.17 0.75
0.70

0.19 0.77
0.72

0.17

PDBspheres(50) 0.75
0.70

0.20 0.77
0.71

0.17 0.74
0.69

0.20 0.75
0.70

0.19

Table 1.  Median of family median F scores and MCCs for apo and holo datasets for all seven LBS-
prediction methods and PDBspheres (for which mean values are also given, colored in blue). IQR
(interquartile range) describes the difference between maximum and minimum scores within the middle
50% of values when ordered from lowest to highest. IQR indicates how close the middle 50% of family
F and MCC values are to their respective medians. F and MCC scores are described in Section 2.3
{Benchmark dataset and evaluation metrics}.

The final six data rows in Table 1 show results from the evaluation of PDBspheres when the pocket
detection was performed using the complete PDBspheres library (100%), and when the PDBspheres
library was restricted to templates with no more than 90%, 80%, 70%, 60% and 50% sequence identity
with query proteins, respectively. Results illustrate that in contrast to the large diversity of possible
protein sequences  the number of  structurally  distinct  pockets  is  limited,  therefore  proteins  that  by
sequence are very different may still share almost identical structural conformations in local regions
(e.g.,  binding sites)  that  can  perform similar  functions. This  observation served as  a  basis  for  the
development  of  our  PDBspheres  structure  template-based binding site  detection  method.  The only
limitation in its ability to identify correct pockets for a given protein might be an underrepresentation of
particular pocket’s conformation in currently experimentally solved protein structures deposited in the
PDB. For example, in case when a non-restricted library is used the binding sites for all 304 families
(“apo” and “holo” protein conformations) were predicted. However, in the case of the restricted library
(which excludes template spheres derived from proteins showing more than 90% sequence identity to
the query proteins) the binding sites for 5 families of “apo” versions and 7 families of “holo” versions
were not predicted (see Table 2). In Table 2 we show even more results indicating that the protein
binding sites are highly structurally conserved and can be successfully detected using structure-based
template  spheres  taken  from  proteins  sharing  low  sequence  identity  with  targeted  proteins.  The
PDBspheres method leverages this quality efficiently. Indeed, thanks to the richness in diversity of
protein structures deposited in PDB the system is able to identify location of 97% binding sites from
the LBPS dataset using structural templates that share as low as 50% sequence identity with targeted
proteins. And even with such significant restriction to the library of template spheres the accuracy in
identified sets  of residues interacting with ligands is  still  high ~75% as measured by F and MCC
metrics (see Table 1).

Restricted
sequence
identity

Number of detected pockets Number of pocket’s families

All Apo Holo All Apo Holo

100% 2528 1082 1456 304 304 304
90% 2481 1056 1435 299 299 297
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80% 2469 1051 1428 298 296 297
70% 2469 1051 1428 298 296 297
60% 2464 1048 1426 297 295 296
50% 2457 1046 1421 295 294 294

Percent of detected pockets Percent of pocket’s families
50% 97.2% 96.7% 97.6% 97.0% 96.7% 96.7%

Table  2. Number  of  detected  pockets  and  pocket’s  families  when  the  PDBspheres  libraries  are
restricted  to  templates  with  sequence  identity  to  proteins  from  the  LBPs  dataset  not  exceeding
introduced cutoffs.

Based on MCC and F scores shown in Table 1, the PDBspheres method identifies similar pockets better
than  the  other  seven evaluated  methods.  We should  emphasize  that  PDBspheres  is  an exclusively
structure-based  method,  not  exactly  template-based  (i.e.,  PDBspheres  does  not  utilize  any  prior
information from libraries of sequences/residues forming binding sites). Additionally, PDBspheres does
not use any prior information about the location of searched pockets in proteins from the same family.
We treat all structures equally and independently in finding structural similarities between the query
protein  and  template  spheres.  Of  course,  we  can  find  such  cavities  more  easily  in  the  “holo”
conformations,  but  as  the  results  show,  we  can  also  find  adequate  structure  similarities  in  “apo”
versions of the query protein; again, strictly based on similarities in structure without any sequence-
based knowledge of residues forming the pocket (residue information that could be transferred from
some databases of “holo” structures.) All results reported here are based on PDBspheres superpositions
calculated on C-alpha atoms. Results based on superposition of C-beta atoms (results not shown) are
virtually identical.

3.2 Structural similarity of binding sites vs. sequence identity

Here, we discuss how close in sequence identity two proteins need to be to have structurally similar
binding sites, addressing these two questions:

 How low the level of sequence identity between two proteins can be and still  share similar
pockets and perform similar functions?

 Do such proteins have enough similarity in their functional sites to bind ligands in a similar
manner?

Fig.  5  illustrates  results  from  the  LBS  database  pocket  identification  calculations,  which  were
summarized in Table 1. Fig.5. shows that the correct detection of binding sites using strictly structure-
based conformation similarity criteria does not require high sequence identity between targeted protein
and the binding site templates. The analysis of the PDBspheres predictions of pockets from the LBS
database indicates that the binding sites can be correctly predicted based on template spheres derived
from proteins that share significantly lower overall sequence identity with the query protein. Let us
note that the main difference between results shown in the Table 2 and Fig 5 is that here we discuss the
correctness of the prediction (i.e., as accurate as possible identification of residues involved in protein-
ligand interaction) while in Table 2 we report results from just detection of the pocket location in the
protein  (i.e.,  without  any  assessment  of  the  accuracy  and  completeness  of  predicted  interacting
residues).
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Fig.5. The plot illustrates how many pockets from the LBS database proteins (all 2,528 pockets; “apo”
and “holo” combined) can be predicted based on binding site templates derived from proteins with
lowest possible sequence identity to the query proteins. For example, at least 400 pockets (see left
bottom part of the plot) can be predicted based on template binding sites derived from proteins that
share as low as 20% sequence identity (SeqID) with a query protein. On the other hand, more than
2,400 pockets (~95%) can be correctly predicted based on templates sharing no more than 80% of
SeqID with query proteins.

In Fig.6. we show an example of correct pocket detection by PDBspheres using different pocket-ligand
sphere templates derived from proteins that share low sequence identity. Two compared proteins (serine
proteases) have less than 38% of sequence identity, but they are structurally similar at the level of over
86% by the LGA assessment of similarity on the C-alpha atoms level and 77% by GDC (all atoms
level). Of the residues that are in contact with corresponding ligands (distance below 4.5 Å) in the
identified similar pockets, 11 out of 17 are identical (65%). The pocket template spheres derive from
two PDB complexes that bind inhibitor compounds having PDB ligand identifiers 2A4 and QWE,
respectively. These ligands are significantly different in size and the distance between ligand centroids
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calculated from the complexes of the same orientations are very different, i.e., the distance between
centroids of ligands when inserted in any of these pockets is about 6.0 Å. However, the portions of the
ligands inserted in pockets have a similar overlapping region and are in contact with similar amino
acids from the pockets. In each of these two protein-ligand complexes the core parts of the ligands are
in contact with 13 residues of which 11 are identical (85%) (see Fig.6 (C) and (E)).  These results
illustrate how PDBspheres can be used to detect conservation in local structural conformations and to
assess conservation of critical contact residues; both can assist in inferring protein function.
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Fig.6.  Example  of  two  structures  of  serine  proteases:  Tryptase  (in  red  PDB chain:  4mpv_A) and
Thrombin (in blue PDB chain: 1a4w_H) that share high structure similarity in their binding sites (over
77% by GDC) while the level of sequence identity between them is no higher than 38%. (A) Overall
structure superposition of  two protein-ligand complexes  showing location of  bound inhibitors.  (B)
PDBspheres-based  local  superposition  of  corresponding  protein  spheres  surrounding  ligands.  (C)
Structurally  superimposed  spheres  of  4mpv  and  1a4w  show  significant  similarity  in  side-chain
conformation of residues interacting with corresponding ligands 2A4 and QWE. Residues interacting
with  ligands  2A4  and  QWE  are  highlighted  in  orange  and  light  blue,  respectively.  (D)  Local
superposition indicates a perfect agreement in the nearby catalytic triad residue conformations (His,
Asp, Ser). (E) Structural alignment of residues from close distance (4.5 Å) from the corresponding
ligands shows that 11 out of 13 (85%) of residues that are in contact with similar core parts of the
ligands are identical.

3.3 Clustering binding sites from PDBbind database

In this section, we describe how PDBspheres can be used to perform structure-based clustering and
structure similarity analysis of binding sites from the PDBbind dataset [17] (ver. 2019). Some of these
results were leveraged in our previous work generating rigorous training and validation datasets for
machine learning of ligand-protein interactions [24]. Here we want to address the following questions:

 To what extent can structurally-similar binding pockets having similar ligand placement allow
inference of binding affinity from one pocket-ligand pair to another pocket-ligand pair?

 To what extent can clustering of detected pockets and calculated structure similarities among
clustered pockets from different proteins provide functional information for protein annotation?

In our analysis,  we focus on the "refined" 2019 dataset  (4,852 structures)  which we expanded by
adding 24 structures  from the previous  PDBbind release that  are  not  present  in  the 2019 version.
Hence,  in  total  the  dataset  of  evaluated  binding  sites  consists  of  4,876  structures.  Since  we  are
interested in the assessment of similarities between specific pockets listed in proteins from PDBbind
(the  PDBbind database reports  only one pocket for each protein regardless of how many different
pockets a given protein may have or how many alternative locations of a given pocket in a multichain
protein complex can be observed) we restricted our structure similarity searches and evaluations to only
those regions in PDBbind proteins that encompass targeted pockets (many protein structures in the
PDBbind refined dataset are multidomain complexes with total sizes of more than 2000 residues, so
they can have multiple binding sites in addition to the targeted ones). Therefore, in our approach to
evaluate similarities and cluster pockets in PDBbind each of its protein structures was reduced to the
region in the close vicinity of a reported ligand (residues having any atom within 16 Å of any ligand
atom),  and  each  ligand  binding  site  reported  in  PDBbind  was  associated  with  its  corresponding
PDBspheres template sphere (residues having an atom within 12 Å of a ligand atom).  We performed
an all-against-all PDBspheres detection and pocket similarity evaluation using the 16 Å protein region
representation of each PDBbind protein. Results from the pair-wise pocket similarity evaluation are
provided in supplemental File5. Structure similarity results allowed grouping of the 4,876 PDBbind
protein pockets into 760 clusters. Cluster details are provided in supplemental File2, File3, and File4.
Fig. 7 illustrates the clusters and it is a snapshot taken from the HTML supplemental File6 (interactive
overview of predicted clusters created using “plotly” R graphic library). Each axis of Fig. 7 indexes a
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sample  of  4,876  protein  pockets,  where  sampled  proteins  are  reported  to  help  identification  of
corresponding pockets or clusters on the plot.  A “zoom-in” option in “plotly” graph expands each
rectangle to show a list of individual memebers of a selected cluster. It allows for each of the sampled
proteins to be labeled with its exact location within the cluster (see the example in Fig. 8; supplemental
File6 contains further illustrations). Each rectangle in Fig. 7 represents a cluster and is composed of
small markers – one for each sampled protein-pocket pair within the cluster – colored by the GDC all-
atom similarity score between each member of the cluster, where colors closer to red indicate a higher
degree of similarity between members. For example, the first three large clusters from the bottom left
of Fig. 7 represent predicted clusters, i.e., cluster #22 (318 members), #8 (351 members), and #5 (322
members),  respectively.  Evaluation  of  predicted  clusters  (see  supplemental  File2)  shows  that  all
members of the cluster #22 are assigned with EC subclass 4.2.1.1, members of the cluster #8 - EC
3.4.21, and cluster #5 - EC 3.4.23. All clusters along the diagonal in Fig. 7 have high within-cluster
similarity,  and  are  separated  from  other  clusters  according  to  the  applied  “exclusive”  clustering
approach. Some of the defined clusters are formed after grouping together proteins from several “finer”
subclusters. For example, at the top right there is a large cluster (#25 with 382 members assigned with
several  subclasses  of  the  broad-spectrum  transferases  -  EC  class  2.7  (“Transferring  phosphorus-
containing groups”), with varying degrees of similarity among its members as they belong to different
and more specific subclasses which are still similar enough (according to the selected thresholds) to
form one distinct cluster (see supplemental File2 and File6). 

Fig.7.  Clustering  of  the  refined  set  of  4,876  pockets  from the  PDBbind  based  on  their  structure
similarity. PDBspheres-based pocket detection and similarity evaluation resulted in 760 constructed
clusters. HTML file allowing interactive overview of predicted clusters is provided in supplemental
File6. Fig. 8 shows a “zoom-in” to cluster #277, which contains 24 protein-ligand pairs. 
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PDBspheres can assist in making predictions related to protein functional annotation. Similar pockets
that are clustered together by PDBspheres share similar functions as indicated in the supplemental
File2,  File3,  and File4,  where  the  members  from each cluster  are  checked for  their  agreement  in
assigned EC, SCOP, and GO annotations. An example in Fig. 8 illustrates such agreement showing
individual protein-pocket-pair GDC similarity values for a particular cluster (cluster #277).  Each of the
proteins  grouped  into  this  cluster  share  the  same  EC  subclass  and  GO  annotation
(:0006508:0008237:0008270:  see cluster #277 in supplemental File2 and File4 for details) identified in
PDB, which is an indication that the PDBspheres-based clustering can be functionally meaningful.

Fig.8.  Plot  showing  an  example  of  a  cluster  #277  identified  by  PDBspheres  (see  Fig.  7  and
supplemental File2.) Pocket-based clustering groups proteins with the same function. All 24 proteins
grouped together within the cluster #277 belong to the same enzyme subclass 3.4. - hydrolases that act
on peptide bonds (EC 3.4.11 are those hydrolases that cleave off the amino-terminal amino acid from a
polypeptide). For each of the listed enzymes (PDB id in the first column which corresponds to the Y-
axis in the plot) the assigned alternative EC numbers (second column) are separated by colon ‘:’. In
addition to the general functional clustering of proteins, the PDBspheres clustering approach provides
finer subclustering of proteins within predicted clusters. The bottom 6 proteins from the cluster #277
form  a  clear  subcluster  as  they  share  additional  EC  3.3.2.6  -  bifunctional  zinc  metalloprotease
activities.

Another important question is: can we transfer binding affinity scores from one ligand binding site to
another if the pockets and the ligand placements within the pockets are similar? Interestingly, pockets
from PDBbind that share high structure similarity and that have similar ligand placement (distances
between the  centroids  of  inserted ligands within  the aligned pockets  no greater  than 0.5 Å) show
similarities in reported protein-ligand binding affinities. For PDBbind entries having Kd values, Fig. 9
(A) compares the Kd values of each pair of protein-ligand complexes for the set of pairs that have GDC
structural similarity greater than 95% and aligned ligand centroids within 0.5 Å.  The R2 and Spearman
values of 0.5 and 0.7, respectively, indicate the strength of the relation – similar protein-ligand pairs
tend to have similar Kd values.  Similarly, Fig 9 (B) shows R2 and Spearman values of 0.44 and 0.574
for pairs that have Ki values and meet the similarity criteria.
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Fig.9. (A) Scatter plot of Kd values from 1,544 pocket pairs, and (B) Ki values from 5,137 pocket
pairs.  Redundant pairs – self-comparisons and symmetry duplicates – are not included.

These similarities in binding affinities are even higher between pockets from different proteins when
they bind the same ligand. The corresponding R2/Spearman scores for Kd and Ki are 0.5/0.738 (194
pairs) and 0.69/0.772 (411 pairs), respectively. If we relax the criteria – a ligand placement centroid
value cutoff of 1.0 Å and GDC as low as 90% – then of the resulting PDBbind Kd subset of similar
complexes, 287 pairs have the “same ligand” in the pocket, and there are 631 “same-ligand” pairs in
the Ki subset.   Figs.  10 (A) and (B) compare the Kd and Ki values,  respectively,  with respective
R2/Spearman values of 0.46/0.703 (287 pairs) and 0.64/0.752 (631 pairs).
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Fig.10. (A) Scatter plot of Kd values from 287 “same ligand” pocket pairs, and (B) Ki values from 631
“same  ligand”  pocket  pairs.  Redundant  pairs  –  self-comparisons  and  symmetry  duplicates  –  are
removed from calculations.

Results from the PDBspheres clustering of the PDBbind dataset suggest that the structure similarity
between pockets/ligand placements is a significant characteristic that can allow prediction of similar
binding affinity values.  In future work, we anticipate enhancing current measurements with additional
information about the specific atom location of protein residues interacting with the ligand, which may
improve predictions. Complete detailed results from PDBspheres analysis of pair-wise similarities in
binding sites between proteins from PDBbind are provided in the supplemental File5.

4. Conclusions

While  developing  PDBspheres  we  focused  on  two  goals:  (1)  binding  pocket  detection;  and  (2)
identification of characteristics and scores to assess similarities between pockets to help further protein
functional characterization and clustering. 

In particular, with regard to binding pocket detection we find that PDBspheres’ strictly structure-based
approach can correctly predict binding site regions in protein structures known to be in a “holo” (i.e.,
ligand-binding)  conformation  as  well  as  in  protein  structures  in  “apo”  (without  a  ligand  present)
conformation. Since local regions in functionally similar proteins are remarkably conserved in their
structural conformations,  the method allows detection of similar binding sites even in proteins that
share very low sequence similarity.  In comparisons with other  binding site prediction methods the
PDBspheres’ strictly structure-based approach allows a very high accuracy in identifying protein-ligand
contact residues.

With regard to characterizing and evaluating binding pocket similarities among proteins we find that a
high level of sequence similarity between different proteins is  not  essential  to identify structurally
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similar binding sites that may perform similar functions. In the structure-based detection of binding
sites the similarity assessed based on calculated structural alignment using C-alpha atom positions is
sufficient, and the use of other residues (e.g., C-beta atoms, or other points representing residue) in the
similarity assessment does not yield better results. Structurally similar binding pockets having similar
ligand placements allow inference of binding affinity from one pocket-ligand pair to another pocket-
ligand  pair.  PDBspheres-based  clustering  of  detected  pockets  and  calculated  structure  similarities
among pockets from different proteins provide information that can significantly help protein function
annotation efforts.
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Supplemental data:
The supplemental data is available for download at https://proteinmodel.org/AS2TS/PDBspheres

File1:  PDBspheres.COVID19_PL2pro.protein_ligand_summary.txt 

File2: PDBspheres.PDBbind_Clusters.EC_included.txt 

File3: PDBspheres.PDBbind_Clusters.SCOP_included.txt
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(the same format as File2, but reporting SCOP annotation)

File4: PDBspheres.PDBbind_Clusters.GO_included.txt
(the same format as File2, but reporting GO annotation)

File5: PDBspheres.PDBbind_Binding_sites_similarities.GDC_and_affinities.txt 

File6: PDBspheres.PDBbind_Clusters.interactive_plot.html
(interactive overview of predicted clusters shown on Fig.7.)
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