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Abstract.—Geometric morphometrics based on landmark data has been 

increasingly used in biomedical and biological researchers for quantifying complex 

phenotypes. However, manual landmarking can be laborious and subject to intra and 

interobserver errors. This has motivated the development of automated landmarking 

methods. We have recently introduced ALPACA (Automated Landmarking through 

Point cloud Alignment and Correspondence), a fast method to automatically annotate 

landmarks via use of a landmark template as part of the SlicerMorph toolkit. Yet, using a 

single template may not consistently perform well for large study samples, especially 

when the sample consists of specimen with highly variable morphology, as it is common 

evolutionary studies. In this study, we introduce a variation on our ALPACA pipeline that 

supports multiple specimen templates, which we call MALPACA. We show that 

MALPACA outperforms ALPACA consistently by testing on two different datasets. We 

also introduce a method of choosing the templates that can be used in conjunction with 

MALPACA, when no prior information is available. This K-means method uses an 

approximation of the total morphological variation in the dataset to suggest samples 
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within the population to be used as landmark templates. While we advise investigators 

to pay careful attention to the template selection process in any of the template-based 

automated landmarking approaches, our analyses show that the introduced K-means 

based method of templates selection is better than randomly choosing the templates. In 

summary, MALPACA can accommodate larger morphological disparity commonly found 

in evolutionary studies with performance comparable to human observer. 

Keywords: [Geometric morphometrics, automated landmarking, phenotype, 

craniofacial variation] 

INTRODUCTION 

Geometric morphometrics (GMM), a statistical approach toolkit for shape 

analysis based on landmark data, has been increasingly used in biological and 

biomedical fields to disentangle complex phenotypes (Adams et al. 2013; Rolfe et al. 

2021b; Zelditch et al. 2012). Nevertheless, collecting landmarks manually can be 

laborious and time consuming (Aneja et al. 2015; Percival et al. 2019; Porto et al. 2021; 

Pui and Minoi 2019; Young and Maga 2015). Manual landmarking also inevitably lead to 

intra- and interobserver errors, which can even disrupt detecting biologically meaningful 

variations (Daboul et al. 2018; Percival et al. 2014; Porto et al. 2021; Robinson and 

Terhune 2017). Nowadays, combining landmark data collected by different researchers 

becomes increasingly common when working with big datasets, so proper error control 

becomes more urgent for ensuring accuracy, consistency, and reproducibility (Daboul et 

al. 2018; Fruciano 2016; Porto et al. 2021; Robinson and Terhune 2017).  
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To resolve the limitations in manual landmarking, researchers have developed 

various automated landmarking techniques based on image registration (Bromiley et al. 

2014; Devine et al. 2020; Maga et al. 2017; Percival et al. 2019; Young and Maga 

2015). However, these methods may not always be convenient for biologists to use 

because most require high-end hardware and knowledge of image-processing 

(Bromiley et al. 2014; Young and Maga 2015; Devine et al. 2020). We have recently 

introduced an automatic landmarking method, ALPACA (Automated Landmarking 

through Point cloud Alignment and Correspondence), as part of the SlicerMorph 

morphometrics toolkit (Porto et al. 2021; Rolfe et al. 2021b). For a detailed explanation 

of ALPACA and its underlying methods, we refer the readers to the cited papers. In 

summary ALPACA is fast and lightweight because it uses sparse point clouds extracted 

from the original 3D surface models (Porto et al. 2021). These point clouds, while 

retaining sufficient geometric information, greatly reduce the computational burden so 

that ALPACA can efficiently run on any recent personal computer and does not require 

access to specialized hardware such as GPUs or high-performance computing cluster. 

ALPACA is free to download as part of the open-source SlicerMorph extension in the 

3D Slicer software (Kikinis et al. 2014; Porto et al. 2021; Rolfe et al. 2021b). 

 One limitation of ALPACA, and most other registration-based methods, lies in the 

usage of single template for landmarking the entire sample (Porto et al. 2021). This is 

because the accuracy of automated landmarking depends on how well the registration 

algorithm optimizes the cost of global registration with local shape differences, which 

becomes more difficult as the template and target specimens become more different in 

form (Young and Maga 2015; Porto et al. 2021). This limitation is particular well-known 
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in neuroimaging where template-based analysis had been norm for the last two 

decades (Rohlfing et al. 2005; Iglesias and Sabuncu 2015; Young and Maga 2015; 

Doshi et al. 2016). And it is particularly difficult in evolutionary focused biological 

studies, where researchers frequently deal with highly variable samples from different 

species. Consequently, it can be difficult to use a single specimen to landmark a 

variable study sample while maintaining accuracy of landmarking.  

 If one template is insufficient for landmarking a highly variable study sample, a 

potential solution is to use multiple templates to have a more comprehensive 

representation of the whole study sample (Antonelli et al. 2019; Iglesias and Sabuncu 

2015; Rohlfing et al. 2005; Young and Maga 2015; Schipaanboord et al. 2019). The 

multi-template approach has already been utilized in automated image segmentation to 

better capture variability of anatomical structures within a sample so that the 

segmentation of these structures can be more accurate (Antonelli et al. 2019; Doshi et 

al. 2016; Iglesias and Sabuncu 2015; Rohlfing et al. 2005; Schipaanboord et al. 2019; 

Wang and Yushkevich 2013). Young and Maga (2015) also adopted the multi-template 

method from automated segmentation for their image-based automatic landmarking 

research and have achieved an improvement in accuracy comparing to the single-

template method. The main issue with the multi-template methods is the increased 

computational demand, as each subject now needs to be registered as many times as 

there are templates. While this is a concern for computationally expensive methods 

takings hours, in ALPACA a single specimen can be landmarked in matter of few 

minutes, making ALPACA an effective tool to implement multi-template automated 

landmarking approach(Porto et al., 2021).  
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Overall, there are two steps to the MALPACA workflow: the first step, which is 

optional, is to identify the templates to be used to landmark the rest of the samples. 

Second step is the execution of multi-template estimation pipeline, which is essentially 

running ALPACA independently for each unique template. The final output for the target 

specimen is the median of all corresponding ALPACA estimates.  

Identifying the templates to sufficiently capture the variability of the whole sample 

are critical for any method that relies on them (Antonelli et al. 2019; Gooding 2021; 

Schipaanboord et al. 2019). This might be particularly difficult if no prior information, 

such as a pilot study with smaller samples sizes, is available to the investigator. If the 

investigator needs to manually landmark even a portion of the study sample to 

determine the morphological variability, and then choose the ones to be used as 

templates, this time investment may overcome the benefit from automated landmarking. 

If such a pilot dataset is already in existence, we advise investigators to make use of 

these priors to make their template selection. For the cases where no prior information 

is available, we implemented a K-means based template selection that uses point-

clouds of the surface models of the study population to approximate the morphological 

variability in an unbiased way. A Generalized Procrustes Analysis (GPA) is applied to 

these point clouds, followed by the PCA decomposition of Procrustes aligned 

coordinates. Using all PC scores from the GPA we apply K-means clustering to the data 

to detect the samples that are closest to the centroids of the identified clusters. The 

investigator can specify how many templates per group (if data consist of multiple 

groups or species) are going to be extracted. The investigator then landmarks the 

selected specimens, and inputs them as the templates for the MALPACA pipeline. More 
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details of how to execute the K-means based template selection procedure can be 

found in the supplemental online material (Supplement_1).  

 The first goal of this study is to evaluate whether MALPACA outperforms 

ALPACA in estimating landmark positions with less error when compared to the “gold 

standard” (GS) manual landmarks. The second goal is, for cases where no prior 

information about landmark variability is available, to assess whether K-means can be 

an acceptable alternative for choosing a set of templates for MALPACA. The structure 

of the study is summarized in Table 1. 

TABLE 1. A summary of research goals of this study. 

Research goals Samples Analysis and Evaluation Metric 

1. Evaluate whether 
MALPACA outperforms 
ALPACA 

Mouse and 
ape sample  

 

1) RMSE and individual landmark errors comparing to 
manual landmarks (“gold standard” or GS) 

2) Correlations of morphometric variables such as centroid 
sizes, pairwise Procrustes distances and PC scores with 
morphospace derived from GS  

2. The performance of K-
means multi-template 
selection 

Mouse 
sample 

Permutation test: comparing RMSEs derived from K-
means based MALPCA and 100 rounds of MALPACAs, 
each of which based on a random combination of 7 
templates 

Ape sample Permutation test: comparing RMSEs derived from K-
means based MALPCA and 50 rounds of MALPACAs 
using randomly selected template, each of which based 
on a random combination of 6 templates 

Note: for details, please see the Material and Methods session.  

 

MATERIAL AND METHODS 

Samples and templates 

 Our study uses two samples that represent different types of group structure. The 

first sample consists of 3D skull models of one representative from 61 inbred laboratory 
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mice from both classical and wild-derived strains (Maga et al. 2017; Porto et al. 2021) 

(See Tables S1 for list of strains used in the study). This dataset is used to mimic a 

population level morphometric analysis, where no distinct grouping structure exists (or 

expected) in the resultant morphospace. All specimens had been manually annotated 

with 51 landmarks once by single observer. Throughout this study we will refer the 

manually annotated datasets are as “gold standard” (GS). Seven templates are selected 

to landmark the remaining 54 specimens by MALPACA using the K-means template 

selection module. In addition, a synthetic template, an average mouse model, was the 

template used in the original ALPACA evaluation study (Porto et al., 2021).  

 The second sample contains 3D skull models of 52 great ape specimens from 

three species: 11 Pan troglodytes, 23 Gorilla gorilla, and 18 Pongo pygmaeus (For 

details, see Porto et al. 2021 and Rolfe et al. 2021a as well as Table S2 for list of 

specimens used in this study). The dataset is courtesy of the 3D Digitization program of 

the Smithsonian Institution. Each specimen has been annotated twice manually with 41 

landmarks by a single observer. The mean of these two manual landmark sets is used 

as the GS. K-means template selection was used to identify two templates from each 

species to landmark the remaining 46 specimens (9 Pan, 21 Gorilla, and 16 Pongo).  

Methods 

K-means-based multi-template selection.— This study utilizes K-means 

clustering as the basis for templates selection (Young and Maga 2015). The raw data 

for K-means are the full set of principal component (PC) scores derived from the 

decomposition of GPA aligned coordinates from (GPA) of sparse point clouds. To 
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achieve this, point-to-point correspondences must be established across point clouds so 

that they can be treated as landmark configurations. This is a three-step process:  

1). A reference model is tightly registered to the target(s) using the global and ICP rigid 

registration steps from ALPACA (Rusinkiewicz and Levoy 2001; Rusu et al. 2009; Zhou 

et al. 2018; Porto et al. 2021). 

2). A sparse point cloud is extracted from the reference. This is done by deleting points 

in the reference model until the distances between any pairs of points are not smaller 

than a user-defined threshold (Schroeder et al. 2006). In our sample, this leads 

reference point clouds with 791 and 674 points for mouse and ape datasets 

respectively.  

3) For each point in the reference point cloud, the point closest to the target model is 

extracted (Schroeder et al. 2006). This results in a sparse point cloud from the target 

model that has point-to-point correspondence with the reference point cloud.  

These point clouds are then treated as landmark configurations and submitted to a 

Generalized Procrustes Analysis (GPA). The shape coordinates achieved from the GPA 

of point clouds are submitted to a PCA. (Rolfe et al., 2021) 

 The full set of PC scores are input into the K-means algorithm to select a user-

defined number (k) of templates. The K-means algorithm, which is implemented using 

the SciPy Python package, iteratively looks for an optimal way to partition specimens 

into k clusters so that the mean within-cluster Euclidean distance between specimens 

and the centroid is minimized (Virtanen et al. 2020). Within each cluster, the specimen 

closest to its centroid is selected as a template, so that k-templates are selected (Young 
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and Maga 2015). It should be noted that for K-means template selection procedure to 

work correctly, 3D models of all specimens should be complete and segmented to have 

the same anatomical content. Because the workflow uses the entire model to generate 

point clouds, inclusion of incomplete specimens or extraneous anatomical elements will 

create spurious outcome. Step-by-step instruction for executing K-means template 

selection using the mouse data and landmarks are available as SOM (Supplement_2).  

MALPACA.— To initiate MALPACA user simply needs to input the location of 3D 

models and corresponding landmark set of specimens designated as templates. For 

each template, ALPACA is run independently on the target specimens to landmark 

them. (for details of ALPACA, see Porto et al. 2021). After a target specimen is 

landmarked by each template, its final landmark coordinate is estimated using the 

median of individual estimates of from templates. MALPACA module returns both the 

final median landmark estimate and estimates from individual templates as files on disk. 

While we chose median to estimate final landmark location due to its robustness to 

outliers, providing all the output gives the user flexibility to implement their own 

estimation method. Step-by-step instructions on how to execute the multi-template 

landmarking can be found in the SOM2 section 2.  

Evaluating MALPACA performance 

Root Mean Square Error (RMSE).— To assess whether MALPACA outperforms 

ALPACA, we quantified how closely these two estimates approximate the GS landmark 

location. This is measured as the square root of the mean sum of squared errors 

(RMSEs) between GS and estimated landmark position Thus, RMSE serves as a single 

value to summarize the overall deviations between all estimated and GS landmarks for 
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a specimen. While the RMSEs are calculated in the scale of the data (millimeters in this 

case), where appropriate we also report them as percentage of the centroid size of the 

specimen so that they can be understood in context of the body size. Because ALPACA 

returns estimated landmarks in target specimens coordinate system, error assessment 

does not require any further alignment or superimposition. Statistical significance of 

whether MALPACA-derived RMSEs are smaller than ALPACA-derived ones are 

assessed via one-sided Welch t-test.  

Size and shape variables.— To further evaluate the performance of MALPACA-

estimated landmarks in morphometric analysis, we perform separate GPAs for 

MALPACA estimates and GS landmarks. We then calculate correlations between 

estimated and GS landmarks in pairwise Procrustes distances, principal components 

(PCs), and centroid sizes are also assessed. Procrustes distances quantify overall 

shape differences. PCs are components ranked by proportions of the total variance they 

explain. Centroid sizes are common size measures. Morphometric analyses commonly 

use these variables to represent overall shape and size variations (Zelditch et al. 2012). 

Joint GPA between MALPACA and GS landmarks are also carried out to visualize 

differences between estimated mean shapes. 

Assessing the magnitude of digitation errors in MALPACA: As indicated above, 

both intra and interobserver errors are common in manual landmarking. Thus, looking at 

the RMSE of MALPACA errors is not sufficient, as these RMSE need to be evaluated in 

context of manual digitization errors. Our mouse sample was only landmarked a single 

time, as such there was no possibility of calculating observer errors. Instead, we relied 

on intraobserver errors computed by Percival et al.’s (2019) as the reference for manual 
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errors as thirty-four of the landmarks in their study are also replicated in our analysis. As 

for the ape sample, each specimen was landmarked twice by the same observer. The 

RMSEs between these two manual landmark sets us as an estimate of intraobserver 

error. It should be noted that intraobserver errors tends to be much less than 

interobserver errors associated with manual landmarking (Percival et al., 2014).  

Robustness of K-means based template selection.— This study uses 

permutation analysis to evaluate whether K-means is an acceptable method to select 

templates when no prior information is available. Each permutation is based on using a 

random choice of specimens as templates to run a MALPACA (100 permutations for the 

mouse sample, and 50 permutations for the ape sample). We then used the RMSE from 

our K-means based MALPACA method and compared them to all permutated RMSEs 

using randomly selected templates (5,400 RMSEs for the mouse sample, and 2,300 

RMSEs for the ape sample).  

The evaluation of MALPACA performance is carried out in R (R Core Team 

2021). RMSEs of the data are calculated using the SlicerMorphR package (Citation to 

GH). Generalized Procrustes Analysis (GPA) is performed using the geomorph R 

package for calculating correlations between estimated and manually placed landmarks 

in centroid sizes, pairwise Procrustes distances, and principal component scores 

(Adams et al. 2021).  

RESULTS 

 All MALPACA and ALPACA analyses were run on the same 64-bit Windows 10 

desktop with an Intel Core i5 3.10 GHz CPU, and 16 GB RAM. For mouse dataset 
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execution time was 69s for a single sample or 7.2h for all study which included the 

template selection.  

MALPACA performance over ALPACA 

The analysis of the mouse sample shows that MALPACA outperforms each 

ALPACA run by estimating landmarks significantly closer to the GS (Fig. 3). The mouse 

MALPACA yields significantly smaller RMSEs than those generated by any ALPACA 

based on a K-means selected template or the synthetic template (all p-values from one-

sided Welch t-tests < 8.52 × 10-7) (Fig. 3; Fig. S2;  

 

TABLE 2). For 37 out of 51 landmarks, the MALPACA-based errors are 

significantly smaller than the ALPACA using the synthetic template (p-values < 0.05 for 

one-sided t-tests for assessing if MALPACA-errors are smaller) (Fig. 3; Table S4). For 

the remaining 14 landmarks, the MALPACA-based errors are not significantly larger 

than the ALPACA ones (p-values > 0.37 for one-sided Welch t-tests assessing if 

ALPACA-based errors are smaller) (Fig. 3; Table S5). 

To test for differences in the common morphometric variables (Procrustes 

distances, centroid sizes, PC ordination scores), we have investigated correlations of 

these variables from the separate generalized Procrustes alignments of MALPACA 

estimates and GS landmarks. For the mouse data, our results show that the Procrustes 

distances derived from MALPACA estimates and GS landmarks are highly correlated in 

pairwise distances with a 0.8 correlation coefficient (denoted as r) (Fig. 5a). Centroid 

sizes calculated from MALPACA estimates and GS landmarks are almost identical with 
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the correlation coefficients exceed 0.99 (Table S6). For all these shape and size 

variables, the correlations of MALPACA derived estimates with GS exceed that of 

ALPACA and GS (Fig. 5; Table S6).  

To compare the similarity of morphospaces derived from MALPACA and GS 

landmarks, we relied on the strength of the correlations of corresponding PC scores 

from different datasets. The MALPACA-GS correlation is especially strong in PC 1 

scores as the correlation coefficient in PC 1 scores reaches 0.947 (Fig. 6a). MALPACA 

and GS landmarks also yield high correlation in PC 2 scores (r = 0.83), with a gradual 

decline of correlation coefficients with the other PC scores. The ALPACA-GS 

correlations in scores of PC 1 and PC 2 are still strong but relatively weaker than the 

MALPACA-GS correlations (Fig. 6b).  

 

 

FIGURE 1. Comparison of RMSEs between estimated landmarks and the “Gold Standard” for the 
mouse sample. “ALPACA”: Mouse ALPACA is estimated using the synthetic mouse template used in the 
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original ALPACA paper. Other boxes are ALPACA estimates using specified template. To see RMSEs 
expressed as percentage of specimen centroid sizes, please see Fig. S2. 

 

 

TABLE 2. P-values from one sided Welch t-tests that examines whether ape MALPACA RMSEs are 
significantly smaller than RMSEs derived from ALPACA using individual mouse template. 

Mouse MALPACA one-sided Welch t-test for 

RMSEs 

p-value 

Vs. ALPACA (synthetic template) 1.283 × 10-16 

Vs. 129S1.SVIMJ ALPACA 8.493 × 10-10 

Vs. B6CBAF1 ALPACA 8.522 × 10-7 

Vs. BALB.CBYJ ALPACA 2.539 × 10-16 

Vs. CAST.EIJ ALPACA 3.847 × 10-28 

Vs. SF.CAMEIJ ALPACA 3.496 × 10-36 

Vs. SPRET.EIJ ALPACA 5.313 × 10-35 

Vs. X129P3.J ALPACA 2.211 × 10-16 

 

FIGURE 2. Difference of estimated landmarks from GS for the mouse sample. Errors 
represent by Euclidean distance (for errors expressed in percentage of centroid sizes, see Fig. 
S3). Boxes represent errors between MALPACA estimates and the Gold Standard (GS) 
landmarks. Red dots: median errors between the estimates of the synthetic template ALPACA 
and the GS. 
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FIGURE 3. Individual landmark errors of the mouse sample comparing to intraobserver errors. 
Similar to Fig 3, boxes represent errors between MALPACA and the GS for each landmark. Black dots: 
mean errors of mouse MALPACA. Green dots: mean intraobserver errors of ach landmarks computed by 
Percival et al. (2019). The labels on the x-axis are landmarks in this study that overlap with those from 
Percival et al. (2019). Note that in b), to be in line to Percival et al.’s (2019) intraobserver errors, we 
performed two joint GPAs: one for MALPACA estimates and manual landmarks, and the other for 
ALPACA estimates and manual landmarks. The MALPACA-manual and ALPACA-manual errors are 
derived from these joint GPAs and are converted to distances measured in millimeter by scaling the 
coordinates with centroid sizes.  
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FIGURE 4. Superimposition of joint GPA for mouse MALPACA and manual landmarks (XY 
dimensions) based on the mouse sample. Light blue dots: all manual landmarks. Dark blue cross: mean 
manual landmarks. Light red dots: all MALPACA estimated landmarks. Deep red cross: mean MALPACA 
estimated landmarks. 

 

 

    

FIGURE 5. Plots of estimated against Gold Standard pairwise Procrustes distances based on the 
mouse sample: a) MALPACA vs. Gold Standard; b) ALPACA vs. Gold Standard based on the synthetic 
template. “r” = correlation coefficient. The plot is based on distances between all pairs of specimens 
within the mouse sample derived from separate General Procrustes Analyses of estimated and Gold 
Standard landmarks. 

 

a) b) 
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FIGURE 6. Correlations in the scores of the first six PCs (principal components) between 
estimated and Gold Standard landmarks based on the mouse sample: a) MALPCA vs. Gold Standard; 
b) ALPACA (the synthetic template) vs. Gold Standard. PC scores are derived from separate GPAs of 
estimated and manual landmarks. 

 

Overall, the ape MALPACA-ALPACA performance evaluations are in line with the 

results from the mouse dataset. MALPACA yields significantly smaller RMSEs than 

does any ALPACA based on a K-means selected template (all p-values < 0.02) (Fig. 7; 

Fig. S4; TABLE 3). The mean shapes of MALPACA-based and GS landmarks derived 

from their joint GPA are highly consistent (Fig. 9). All centroid sizes from MALPACA and 

ALPACA show nearly perfect correlations with the GS as the correlation coefficients 

exceed 0.99, while the MALPACA-GS correlation is the highest (Table S7). Both 

pairwise Procrustes distances and PC 1 scores derived from MALPACA estimated 

landmarks very strongly correlates with those derived from GS (r = 0.912 and 0.985 

respectively) (Fig. 10). The MALPACA estimates and GS also yield strong correlations 

in PC 2, PC 3 and PC 4 scores as the correlation coefficients all exceed 0.8 (Fig. 10b).  

 

a) b) 
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TABLE 3. P-values from one sided Welch t-tests that examines whether ape MALPACA RMSEs are 
significantly smaller than RMSEs derived from ALPACA using individual ape template. 

Ape 6-template MALPACA RMSEs p-value 

Vs. Pan 1 template USNM084655 ALPACA  3.152 × 10-7 

Vs. Pan 2 template USNM176236 ALPACA 1.306 × 10-7 

Vs. Gorilla 1 template USNM590953 ALPACA 0.0179 

Vs. Gorilla2 template USNM599167 ALPACA 4.329 × 10-5 

Vs. Pongo 1 template USNM142185 ALPACA 1.817 × 10-13 

Vs. Pongo 2 template USNM153830 ALPACA 2.738 × 10-6 

 

 

 

  

FIGURE 7. Ape MALPACA and ALPACA performance measured by RMSEs between estimated 
and manual landmarks. “Ape Intrabserver” refers to the RMSEs between two manual landmark datasets 
of the ape sample. See Fig S4 for RMSEs as percentage of centroid sizes. See Table 4 for the template 
used for each ALPACA based on a K- means selected template. 
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FIGURE 8. Individual landmark errors of the mouse sample (for errors in percentage of centroid 
sizes, see Fig. S3). Boxes represent errors between MALPACA estimates and the Gold Standard (GS) 
landmarks. Green dots represent median intraobserver manual landmark errors between two manual 
landmark sets. 

 

 

 

FIGURE 9. Superimposition of joint GPA for ape MALPACA and manual landmarks (XY 
dimensions) based on the ape sample. Light blue dots: all manual landmarks. Dark blue cross: mean 
manual landmarks. Light red dots: all MALPACA estimated landmarks. Deep red cross: mean MALPACA 
estimated landmarks. 
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FIGURE 10. MALPACA-Gold Standard correlations based on the ape sample. a) Estimated 
against Gold Standard pairwise Procrustes distances; b) Correlations in the scores of the first six PCs 
(principal components) between estimated and Gold Standard landmarks 

 

 

 

a) 

b) 
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Manual landmark errors 

Fig. 3 compares the mouse manual landmarking errors (intraobserver errors) 

calculated by Percival et al (2019) to the errors between estimated and GS landmarks in 

our study for the 34 landmarks that are shared between these two studies. In general, 

intraobserver errors are the smallest with a mean error 0.163. The ALPACA-GS errors 

are much larger as the mean error reaches 0.285. The MALPACA-GS method 

outperforms ALPACA-GS with a mean error 0.197 and is more comparable to the 

manual landmarking error.  

For the ape sample, manual intraobserver errors are measured by RMSEs, 

between two landmark sets. Again, the manual errors are significantly smaller than the 

errors between any set of estimates and GS landmarks (Fig. 8; Fig. S5). The one-sided 

Welch t-test for assessing whether the manual errors are smaller than the MALPACA-

manual errors yield a p-value of 2.381 × 10-19. Comparing individual landmark errors 

show that for 38 of 41 landmarks, the intraobserver manual errors are significantly 

smaller than MALPACA-manual errors (p-values < 0.05 based on one-sided t-test that 

assesses if individual intraobserver landmark errors are smaller) (Fig. 8; Table S8). 

 

TABLE 4. RMSEs of K-means-based MALPACAs comparing to the permutated RMSEs. 

 0th 25th 50th 75th 100th 

Mouse 
MALPACA 
RMSEs 

0.177  
(0.159) 

0.237 
(0.231) 

0.261 
(0.255) 

0.285 
(0.286) 

0.479 
(0.508) 

Ape 6-template 
MALPACA 
RMSEs 

2.382 
(2.078) 

3.172 
(3.087) 

3.833 
(3.747) 

4.437 
(4.689) 

6.153 
(6.713) 

Note: the values in the paratheses are corresponding quantile values of permutation analyses. 
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Permutation tests and the performance of K-means based templates.— 

Permutation tests are carried out to assess whether K-means based templates 

outperforms randomly selected templates as a way to determine the efficacy of K-

means multi-template selection (Table 5). For the mouse sample, 100 permutations are 

carried out to generate 100 different random combinations of templates. Consequently, 

MALPACAs is run 100 times on the set of 54 specimens, generating 5,400 RMSE 

scores. For the ape sample, 50 permutations are run for the set of 46 specimens, 

generating 2,300 RMSE scores. For the mouse dataset, 25 out of 54 specimens 

(46.2%) had a K-means based MALPACA estimate with an RMSE smaller than the 50th 

percentile of the 5,400 RMSEs from the permutation analysis (Fig. S6). The comparison 

of k-means versus random template selection for the ape dataset is consistent with the 

analysis of the mouse sample. Overall, 20 out of 46 specimens (43.5%) had a 

MALPACA estimate with RMSE error score below the 50th percentile of the 4,600 

RMSEs from the permutation analysis (Fig. S7). In addition, the ranges of RMSEs 

derived from the ape and mouse K-means based MALPACA both overlap with the 

RMSEs derived from the permutation analysis. These results show that K-means based 

selection of templates for MALPACA has a comparable level of performance to random 

selection of templates.  

DISCUSSION  

The Efficacy of K-means-based MALPACA 

Template selection for properly representing the whole sample is a critical factor 

in determining the performance of any template based method to avoid potential biases 

in the outcome especially when the sample is highly variable (Antonelli et al. 2019; 
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Gooding 2021; Schipaanboord et al. 2019). For example, in the field of automatic 

segmentation based on neuroimage registrations, various multi-atlas selection methods 

have been designed with differential accuracy for delineating organs (Antonelli et al. 

2019; Schipaanboord et al. 2019). In this study, we proposed a convenient method to 

identify multiple samples that can be used as templates for the study population by 

applying K-means clustering to the PCA scores derived from the downsampled point 

cloud data of their 3D models. It is expected that this approach will be able to capture 

gross patterns of overall shape variations when there is no prior information available to 

the investigator to guide the template selection.  

Our study confirms the expectation that MALPACA using K-means selected 

templates in general outperforms ALPACA because these templates can capture gross 

variations within a sample. In both the analyses of the mouse and ape samples, the 

MALPACA-derived landmark estimates are closer to the GS (manual) landmarks than 

any ALPACA. In most cases, MALPACA also produce pairwise Procrustes distances 

and centroid sizes closer to those of GS compared to ALPACA. Moreover, 

morphospaces derived from MALPACA-based PCs are more similar to GS-based PCs 

than those produced by ALPACA.  

However, there are certain assumptions behind this approach that are important 

to consider. First, input models should contain the same corresponding structures 

across samples. For example, if 3D models of skull variably contain pieces of 

vertebrate, parts of mandibular joint, other non-cranial elements across samples, they 

will influence the analysis, because ultimately the analysis is dependent on the 

extracted point cloud. If a sample is partial or broken (e.g., missing a large section 
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alveolar row on maxilla), it should be left out of the template selection analysis, because 

the correspondence of the point cloud generated from this sample is unlikely to match to 

that of others. It is important to note that actual ALPACA/MALPACA pipeline is robust to 

with respect to small missing regions in specimens, and such specimens can still be 

used in the automated landmarking pipeline, provided that the landmark set does not 

contain any landmark that falls into the missing section. But they should be avoided 

during template selection procedure.  

It should also be noted that templates selected by K-means may not be among 

the most optimal template sets for MALPACA. We carry out permutation analysis to 

perform a series of MALPACAs based on randomly selecting specimens as templates 

for both the mouse and ape sample. The K-means based MALPACA’s performance is 

intermediate compared to MALPACA based on randomly selected templates. 

Nevertheless, K-means can effectively avoid selecting poorly performed sets of 

templates. Furthermore, as shown in this study, MALPACA using K-means selected 

templates consistently generates more accurate landmarks than using a single 

template. Overall, Investigators can entirely skip the template selection procedure, if 

they know have other means to determine what templates to use (e.g., prior data, 

similar genetic background etc.). However, if uncertainty around what templates should 

be used, the K-means multi-template selection method present in this study provides a 

reasonable solution for choosing specimens as templates for automated landmarking. 

Landmarking Errors and Consistency 

 In both the mouse and ape samples, the deviations between MALPACA and GS 

are obviously much larger than the errors between two manual landmarking trials. This 
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is as expected, as intraobserver errors created by the same expert are usually very 

small. Still, the MALPACA-GS errors in landmark positions are more similar to the 

intraobserver errors than ALPACA-GS errors. 

On the other hand, inter-observer errors are usually larger than intraobservers 

errors. These errors can be as significant as some biologically meaningful variations, 

such as intraspecific variations and sexual dimorphism (Robinson and Terhune 2017; 

Daboul et al. 2018; Percival et al. 2019). Furthermore, interobserver errors can be 

unpredictable they have a variety of causes, including subjective understanding of 

anatomical variations, vague landmark protocols, and different landmark annotation 

tools (Robinson and Terhune 2017). In recent years, combining data collected by 

multiple researchers has become increasingly common. Consequently, while research 

collaboration and data sharing are greatly increasing time efficiency for data collection 

and sample size for higher statistical power, controlling interobserver errors is becoming 

more difficult and complicated. This can create issues in consistency and reproducibility. 

MALPACA, by contrasts, produces highly consistent landmarks when the same 

templates are used. Researchers can focus on carefully landmarking a short list of 

templates that can be shared with others. In this way, MALPACA can greatly facilitate 

data sharing while also ensuring consistency and reproducibility.  

 

Multi-template estimates enable post hoc analyses of results 

One advantage of our multi-template pipeline is its potential for designing post-

hoc analyses to assess landmarking quality. When there is only one estimate for a 
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target, it is not easy to evaluate how well the automated landmarking performed without 

visualizing the estimate on the target model, or alternatively, manually landmarking the 

target specimen and calculating the errors. Both approaches are too tedious or 

downright unfeasible for a large study.  

Here we provide an example of how individual estimates can be conveniently 

used for post-hoc analyses using simple heuristics in lieu of having gold standards. One 

of the Pan templates (USNM176236) chosen by K-mean template selection is a juvenile 

and yielded outlier estimates for four adult Gorilla specimens (Fig.7). This is because 

differences between this juvenile Pan template and the adult Gorilla specimens are 

large hence the global registration in ALPACA poorly aligned their point clouds.  

In order to test whether these outliers may negatively impact the final output, we 

performed a post hoc test to determine and remove outlier estimates given by individual 

templates. Procedures described here are available as R functions incorporated to 

SlicerMorphR package.  

To determine whether an estimated landmark for a specimen is an outlier, we 

first calculate the Euclidean distance between this landmark and its corresponding 

MALPACA estimate. We then defined a heuristic threshold as two standard deviations 

above the mean of the pooled distances between each individual estimate and its 

corresponding final output for one specimen. If the distance for an estimated landmark 

exceeds the threshold, this landmark is considered as an outlier. This function 

successfully pinpoints the outlier estimates for the four Gorilla specimens derived from 

the juvenile Pan template, along with other outliers that exceed the threshold (Fig. S8). 

It should be noted that the new estimates after removing all the outliers is not 
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significantly better than the original result (p-value = 0.5751; see Fig. S8). This is 

because the MALPACA landmark estimates are based on medians, which are more 

robust to outliers than means.  

Still, the issue derived from using a juvenile Pan template to landmark adult 

Gorilla specimens is indicative of situation when morphologically well-differentiated 

species exist within a study sample and including results from the templates of other 

species may have the potential to hamper the accuracy of the final estimates for 

specimens from each species. As a result, when templates from all distinct species are 

used for landmarking the whole sample (the “default” approach of MALPACA), the final 

output may be sub-optimal. Thus, for the three-species ape sample, we designed a 

“species-specific” approach that performs three separate MALPACA runs, each of 

which landmarks one species only using the two templates of that species (“species-

specific MALPACA” in the following text). With the output estimates given by each 

individual template in hand, this was easily done by calculating median values between 

the two landmark sets of each ape species derived from its two templates. 

We then compared the performance of the species-specific MALPACA to the 

“default” MALPACA using the ape sample by calculating RMSEs between landmarks 

generated by each approach and the GS. We also assessed correlations in centroid 

sizes, pairs Procrustes distances, and PC scores. Detailed results are present in Fig. 

S10. In general, the results of the species-specific MALPACA are highly consistent with 

the “default” MALPACA. On the other hand, the species-specific MALPACA estimates 

did yield scores of PC 2 and PC 3 more correlated to those yielded by manual 

landmarks as the correlation coefficients both exceed 0.9. Overall, we encourage users 
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to try different approaches based on estimates of individual template based on the 

structures of their samples. Since the MALPACA algorithm essentially runs multiple 

instances of ALPACA, it shares all the advantages of ALPACA in being lightweight and 

user friendly (Porto et al. 2021). Graphic user-interfaces for MALPACA and K-means 

multi-template selection is included in the existing open-access SlicerMorph module to 

facilitating the usage and exploration of these methods.  

 

Future Directions 

K-means multi-template selection is determined by the sparse point clouds with 

point-to-point correspondence, which ultimately depends on the registration between 

each specimen and the reference. For convenience, this study selects the first one in 

the specimen list as the reference. If a different specimen is selected as the reference, 

the registration will be slightly different as will the point clouds. This may lead to a 

slightly different set of templates. Thus, it is important to assess how different choices of 

reference in point cloud generation may influence K-means multi-template selection, 

hence the final results of MALPACA. Furthermore, in this study, the efficacy of 

MALPACA is based on evaluating RMSE in landmark placement and a few size and 

morphometric variables. Because MALPACA is particularly suitable for studying highly 

variable and multi-species samples compared to single-template methods and is fast 

and lightweight, it would be interesting to use MALPACA in address questions in 

evolutionary and systematic biology with large sample size, such as phylogenetic and 

ontogenetic analysis, and then compared to the usage of manual landmarks.  
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CONCLUSIONS 

 In this study, we confirm that MALPACA outperforms single-template ALPACA in 

generating landmarks closer to manually placed ones for both the single-population 

mouse and multi-species ape samples. The K-means based multi-template selection 

method proposed in this study can also generate a template set with good performance 

when researchers have no prior knowledge for optimal template selection.  

 MALPACA inherits the advantages of ALPACA in being light weight and easy to 

use, but is more accurate and suitable for landmarking highly variable samples, such as 

the multi-species samples commonly encountered in evolutionary and systematic 

studies. Overall, MALPACA offers the potential for large-scale collaboration and data 

sharing for morphometric analysis while ensuring accuracy, consistency and 

reproducibility, thus contributing to make morphometrics fully embrace the “era of big 

data”.  
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