New Results
Exploring the rules of chimeric antigen receptor phenotypic output using combinatorial signaling motif libraries and machine learning
K.G. Daniels, View ORCID ProfileS. Wang, M.S. Simic, H.K. Bhargava, S. Capponi, Y. Tonai, W. Yu, S. Bianco, W.A. Lim
doi: https://doi.org/10.1101/2022.01.04.474985
K.G. Daniels
1Cell Design Institute and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158
S. Wang
2Department of Functional Genomics and Cellular Engineering, IBM Almaden Research Center, 650 Harry Rd, San Jose, CA 95120
3Center for Cellular Construction, San Francisco, CA, 94158
M.S. Simic
1Cell Design Institute and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158
H.K. Bhargava
1Cell Design Institute and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158
S. Capponi
2Department of Functional Genomics and Cellular Engineering, IBM Almaden Research Center, 650 Harry Rd, San Jose, CA 95120
3Center for Cellular Construction, San Francisco, CA, 94158
Y. Tonai
1Cell Design Institute and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158
W. Yu
1Cell Design Institute and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158
S. Bianco
2Department of Functional Genomics and Cellular Engineering, IBM Almaden Research Center, 650 Harry Rd, San Jose, CA 95120
3Center for Cellular Construction, San Francisco, CA, 94158
W.A. Lim
1Cell Design Institute and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158

Article usage
Posted January 05, 2022.
Exploring the rules of chimeric antigen receptor phenotypic output using combinatorial signaling motif libraries and machine learning
K.G. Daniels, S. Wang, M.S. Simic, H.K. Bhargava, S. Capponi, Y. Tonai, W. Yu, S. Bianco, W.A. Lim
bioRxiv 2022.01.04.474985; doi: https://doi.org/10.1101/2022.01.04.474985
Exploring the rules of chimeric antigen receptor phenotypic output using combinatorial signaling motif libraries and machine learning
K.G. Daniels, S. Wang, M.S. Simic, H.K. Bhargava, S. Capponi, Y. Tonai, W. Yu, S. Bianco, W.A. Lim
bioRxiv 2022.01.04.474985; doi: https://doi.org/10.1101/2022.01.04.474985
Subject Area
Subject Areas
- Biochemistry (9556)
- Bioengineering (7071)
- Bioinformatics (24785)
- Biophysics (12575)
- Cancer Biology (9927)
- Cell Biology (14304)
- Clinical Trials (138)
- Developmental Biology (7934)
- Ecology (12083)
- Epidemiology (2067)
- Evolutionary Biology (15960)
- Genetics (10905)
- Genomics (14710)
- Immunology (9848)
- Microbiology (23591)
- Molecular Biology (9460)
- Neuroscience (50725)
- Paleontology (369)
- Pathology (1535)
- Pharmacology and Toxicology (2675)
- Physiology (4001)
- Plant Biology (8645)
- Synthetic Biology (2388)
- Systems Biology (6415)
- Zoology (1345)