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Abstract 27 

The animal gut microbiome has been implicated in a number of key biological processes, ranging 28 

from digestion to behavior, and has also been suggested to facilitate local adaptation. However, studies 29 

in wild animals rarely compare multiple populations that differ ecologically, which is the level at 30 

which local adaptation may occur. Further, few studies simultaneously characterize diet and the gut 31 

microbiome from the same sample, despite the likely presence of co-dependencies. Here, we 32 

investigate the interplay between diet and gut microbiome in three geographically isolated populations 33 

of the critically endangered Grauer’s gorilla, which we show to be genetically differentiated. We find 34 

population- and social group-specific dietary and gut microbial profiles and co-variation between diet 35 

and gut microbiome, despite the presence of core microbial taxa. There was no detectable effect of 36 

age, sex, or genetic relatedness on the microbiome. Diet differed considerably across populations, with 37 

the high-altitude population consuming a lower diversity of plants compared to low-altitude 38 

populations, consistent with food plant availability constraining diet. The observed pattern of 39 

covariation between diet and gut microbiome is likely a result of long-term social and ecological 40 

factors. Our study suggests that the gut microbiome is sufficiently plastic to support flexible food 41 

selection and hence contribute to local adaptation.  42 

 43 

 44 
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Introduction 47 

The ranges of many species span ecologically diverse habitats that differ in abiotic and biotic 48 

factors, leading to some degree of adaptation to the predominant local condition. Our view of how 49 

organisms adapt has recently expanded beyond natural selection acting on morphological, 50 

physiological, and behavioral traits, to also include the contribution of associated microorganisms, the 51 

microbiome (Rosenberg & Zilber-Rosenberg, 2016). In animals, the microbiome plays a critical role 52 

in key biological processes such as digestion, health, behavior (Agranyoni et al., 2021; Colston & 53 

Jackson, 2016; Davidson et al., 2020; Ley et al., 2008; Moran et al., 2019), and has even been 54 

implicated in influencing host genomic evolution (Rudman et al., 2019). 55 

The gut microbiome is shaped by numerous factors including host evolutionary relationships, 56 

social interactions, habitat, and diet (Archie & Tung, 2015; Rojas et al., 2021; Youngblut et al., 2019). 57 

In wild animals, distinct populations living under different ecological conditions have frequently been 58 

shown to possess unique gut microbiomes (Bueno de Mesquita et al., 2021; Couch et al., 2020; Uren 59 

Webster et al., 2018). Along with spatial differences, studies often show shifts in the gut microbiome 60 

concordant with seasonal dietary changes (Baniel et al., 2021; Bergmann et al., 2015; Guo et al., 2021; 61 

Hicks et al., 2018). Such differences are expected, as microorganisms, with their large population 62 

sizes, rapid evolution, and flexible community structure, are able to react quickly to changes in 63 

environmental conditions (Koskella et al., 2017), supporting their role in local adaptation of the host 64 

(Alberdi et al., 2016). Experimental studies have used dietary and gut microbial manipulations to 65 

dissect the directionality of the diet-microbiome link. They suggest a two-way connection. On the one 66 

hand, dietary manipulations alter the composition of the gut microbiome, permitting hosts to rapidly 67 

utilize new dietary sources (Reese et al., 2021). On the other hand, the gut microbiome itself can drive 68 

dietary choice (Trevelline & Kohl, 2022). In the wild, it is possible that the microbiome may impact 69 

dietary choices by modulating host behavior, for example, by constraining the selection to similar 70 

foods even in different habitats or by promoting dispersal decisions that reduce environmental change 71 

(‘natal habitat-biased dispersal’).  72 
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Here, we investigate spatial variation of the gut microbiome and its potential role in local 73 

dietary adaptation by jointly analyzing dietary and gut microbial diversity and composition in several 74 

isolated populations of the critically endangered Grauer’s gorilla (Gorilla beringei graueri) (Plumptre 75 

et al., 2016). This gorilla subspecies is endemic to the eastern Democratic Republic of Congo (DRC). 76 

Our study populations occupy the ecological extremes of the species’ range, approximated here by 77 

altitude (600 m above sea level [asl] and 2500 m asl). Grauer’s gorillas are herbivores, consuming a 78 

large diversity of plants and plant parts (Yamagiwa et al., 2005). However, due to the political 79 

instability throughout their range, very little is known about ecology and diet of different populations 80 

(but see van der Hoek, Binyinyi, et al., 2021; van der Hoek, Pazo, et al., 2021).  81 

Using fecal DNA metabarcoding combined with host genotyping, we first investigated 82 

whether isolated and genetically differentiated gorilla populations show dietary similarities. As plant 83 

communities differ considerably by altitude throughout the region (Imani et al., 2016), the presence of 84 

shared food taxa across populations would be indicative of restrictive dietary selection (a core 85 

Grauer’s gorilla diet). If such a pattern of food selection occurs at least in part via gut microbial 86 

influence over host foraging, we also expect to find a conserved set of gut microbial taxa (a core 87 

microbiome). In contrast, if plasticity of the gut microbiome confers dietary flexibility, potentially 88 

facilitating local adaptation, we expect diet and the microbiome to differ significantly among 89 

populations, with strong covariation between them and little evidence for conserved dietary and 90 

microbial taxa. 91 

92 
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Materials & Methods 93 

 94 

Ethics Statement 95 

This study was conducted in compliance with legal requirements of the DRC and the animal use 96 

policies of UC Davis. Data collection protocols were approved by Institut Congolais pour la 97 

Conservation de la Nature. Samples were collected non-invasively, without disturbing the animals.  98 

 99 

Sample collection 100 

Fecal samples (n=220) were opportunistically collected from Grauer’s gorillas in eastern DRC 101 

between 2015 and 2018 at three sites: Kahuzi-Biega National Park (KBNP, 2.32˚S, 28.72˚E; KBNP; 102 

2500 m asl), Nkuba Conservation Area in Walikale territory, North Kivu (NCA, 1.38˚S, 27.47˚E; 103 

NCA; 600 m asl), and Maiko National Park (MNP, 0.87˚S, 27.35˚E; MNP; 830 m asl; Figure 1). In 104 

KBNP, gorillas in the Chimanuka group were habituated to human presence and samples were 105 

collected from identified individuals after observing defecation. All other samples were collected from 106 

night nests without knowledge of individual identity following the two-step collection method 107 

(Nsubuga et al., 2004). Geographic location and altitude were recorded using handheld GPS for all 108 

sampling sites except for the Mankoto group in KBNP, for which this information is missing. We 109 

assigned age classes in the field based on dung diameter, as follows: infant <4cm, sharing a nest with 110 

an adult; juvenile/subadult <5cm, own nest; and adults >5cm (McNeilage et al., 2006; Schaller, 1963). 111 

For the Chimanuka group, age classes of identified individuals were known from observations.   112 

 113 

DNA extraction 114 

Fecal samples were exported to Uppsala University, Sweden, for molecular analysis. DNA 115 

was extracted from 50 mg of dried material using the DNeasy PowerSoil DNA Extraction Kit 116 

(Qiagen) in a dedicated primate fecal extraction laboratory. We implemented the following 117 

modifications to the manufacturer’s protocol: fecal samples were incubated under shaking (500 RPM) 118 

in the C1 solution overnight at 23°C. They were then transferred into a heating block and incubated at 119 
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65°C for 10 minutes, followed by bead beating on a vortex at maximum speed for 1 hour at room 120 

temperature. Incubation in C2 and C3 solution was on ice. We incubated the samples in C6 solution at 121 

room temperature for 5 minutes before elution.  122 

 123 

Gorilla genotyping, individual identification, relatedness and population differentiation analyses 124 

We genotyped all 220 samples at 12 microsatellite loci (vWF, D1s550, D4s1627, D5s1457, 125 

D5s1470, D6s474, D6s1056, D7s817, D8s1106, D10s1432, D14s306, and D16s2624) following the 126 

two-step multiplex protocol (Arandjelovic et al., 2009) and sexed them with the amelogenin assay 127 

(Bradley et al., 2001). PCR products were run on an agarose gel to confirm amplification success and 128 

absence of contamination in blanks. Up to four loci were pooled, based on fluorophores and product 129 

sizes, and run on the ABI GeneAnalyzer (ThermoFisher Scientific). We scored genotypes manually in 130 

GeneMapper v5.0 (Chatterji & Pachter, 2006) and used Cervus v3.0.7 (Kalinowski et al., 2007) to 131 

identify individuals. Samples were considered to originate from the same individual if their genotypes 132 

matched at five or more loci without mismatches, with the probability of identity assuming full-sibling 133 

relationship (PIDsib) less than 0.05. We manually generated consensus individual genotypes from 134 

matching samples, taking into account the time and place of sample collection, and evidence about the 135 

presence of other individuals from the same group.  136 

We tested for deviations from Hardy-Weinberg equilibrium, heterozygote deficiency, and 137 

linkage disequilibrium at each locus in GenePop v4.7.5 (Raymond & Rousset, 1995; Rousset, 2008). 138 

Genetic population structure was assessed using STRUCTURE v2.3.4 (Porras-Hurtado et al., 2013) 139 

with 20 independent runs for K = 1-11 (corresponding to the eleven social groups), an 100,000-140 

iteration burn-in, and data collection for 1,000,000 runs, assuming population admixture and 141 

correlated allele frequencies (Falush et al., 2003). Results from different runs of K were merged in 142 

CLUMPP (Jakobsson & Rosenberg, 2007; Kopelman et al., 2015), and analyzed and visualized in 143 

‘pophelper’ in R (Francis, 2017; R Core Team, 2021). The most likely value of K was determined 144 

using ∆K (Evanno et al., 2005). We used the ‘adegenet’ R package for Principle Component Analysis 145 

(PCA) based on individual genotypes (Jombart, 2008). Population differentiation statistics FST and F'ST 146 
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(Meirmans & Hedrick, 2011) were calculated in GenoDive v3.04 (Meirmans, 2020), and significance 147 

assessed with 9999 permutations. We compared genetic relatedness between populations and social 148 

groups using an AMOVA in the R package ‘poppr’ (Kamvar et al., 2014) and calculated pairwise 149 

relatedness (r) between all individuals within KBNP and NCA separately in ML-Relate (Kalinowski et 150 

al., 2006).  151 

 152 

Characterization of gorilla diet  153 

We characterized the diet of 92 unique individuals identified by genotyping (see Results), 154 

from nine social groups and two lone silverbacks (Table S1, S2). We aimed to analyze a single nest 155 

site per group, but have also included individuals from additional nest sites of the same group if they 156 

were collected during the same year and season to maximize the number of studied individuals (Table 157 

S2). A single sample per individual was studied. The majority of our samples were collected during 158 

the dry season, but we also included some samples, social groups (Chimanuka) and one population 159 

(MNP) that were collected during the rainy season (Table S2). We present our analyses with and 160 

without these samples.  161 

We amplified the P6 loop of the trnL chloroplast intron (Taberlet et al., 2007), a locus that has 162 

been successfully used for dietary metabarcoding in primates, and for which a large database of 163 

tropical plants is available (Mallott et al., 2018). We used the standard trnL g and h primers (Table 164 

S3), tagged with 96 eight-base-pair (bp) barcodes. Each barcode differed from all others at a minimum 165 

of three positions. DNA amplifications were carried out in 20 µl reactions containing 2 µl fecal DNA 166 

extract, 1 U Platinum II Taq Hot-Start DNA polymerase, 1x Platinum II Buffer, 0.2 mM each dNTP, 2 167 

mM MgCl2, and 1 µM each primer. Each DNA sample was amplified twice. The duplicates were 168 

placed randomly on different PCR plates to avoid potential batch effects and biases due to cross-169 

contamination of sample and/or barcoded primer (Table S1). We included one PCR negative and two 170 

to three empty wells per plate, to check for contamination during PCR (Taberlet et al., 2018). In 171 

addition, we included five DNA extraction blanks. PCR conditions consisted of 2 minutes 172 

denaturation at 94˚C followed by 35 cycles of 94˚C for 30 seconds, 51˚C for 30 seconds, and 68˚C for 173 
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15 seconds, without final extension. PCR products were checked on a 2% agarose gel to confirm 174 

amplification without contamination.  175 

The barcoded PCR products were pooled column-wise (16 µl for each sample, duplicates in 176 

separate pools), mixed with 640 µl PB Buffer, and purified using MinElute columns (Qiagen, The 177 

Netherlands), eluting in 50 µl EB buffer. Double-indexed next-generation sequencing libraries 178 

(Kircher et al., 2012) were prepared as detailed (Brealey et al., 2020; Rohland et al., 2015) but using 179 

not-barcoded incomplete adapters after blunt-end repair. Two library preparation blanks were carried 180 

through all steps. Each pool was quantified using qPCR with PreHyb primers (Table S3; Rohland et 181 

al., 2015) and amplification settings as in Brealey et al. (2020).  182 

Each sample pool and both library blanks received a unique combination of indices (Table 183 

S1). For indexing PCR, we used the same reaction mixture and cycling conditions as Brealey et al. 184 

(2020). The number of cycles ranged from 8 to 10, depending on the copy number estimated from 185 

qPCR (Table S1). Library preparation blanks were amplified for 10 cycles to maximize capture of 186 

potential contaminants. We performed MinElute purification and quantified indexed pools with qPCR, 187 

as above, using i7 and i5 primers (Rohland et al., 2015, Table S3). Indexed sample pools were 188 

combined in equimolar amounts, except for library preparation blanks, of which we added 0.5 µl each 189 

into the final pool, corresponding to the lowest amount added for any sample. The final sequencing 190 

pool was cleaned using AmPure XP beads (Beckman Coulter, USA) with two elutions (0.5x followed 191 

by 1.8x), which remove very large fragments and fragments <100bp, respectively. This size selection 192 

is optimized for the retention of trnL amplicons (~10-150bp in length + 148 bp of barcoded and 193 

indexed adapters). Elution was performed in 30 µl of EB buffer. The cleaned library pool was 194 

quantified using both a Qubit High Sensitivity fluorometer and 2200 TapeStation and sequenced at the 195 

Uppsala Science for Life Laboratory on a single MiSeq lane with 150 bp paired-end sequencing with 196 

version 2 chemistry. 197 

Sequence processing and analysis was done in OBITools v1.2.13 (Boyer et al., 2016). Paired 198 

reads with quality scores >40 and overlap >10 bp were retained and merged. Sample of origin for each 199 

read was established through its index and barcode, requiring an exact sequence match. Sequences 200 
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were clustered into molecular operational taxonomic units (MOTUs), each representing a unique plant 201 

taxon (Valentini et al., 2009). A large number of MOTUs had fewer than 10 sequences across all 202 

samples and were removed as recommended (e.g., Shehzad et al., 2012). We also removed sequences 203 

that differed by exactly one nucleotide from a more abundant sequence and had a total count less than 204 

5% of the more abundant sequence, following Boyer et al. (2016). 205 

Finally, taxonomic assignment used a custom-made reference database (below). Based on a 206 

frequency plot of identity to the reference database (Figure S1) and similar trnL-based studies of 207 

tropical primate diet (e.g., Quéméré et al., 2013), we removed sequences below an identity threshold 208 

of 0.90. Below this, sequences were regarded as likely chimeric, enriched in sequencing or PCR 209 

errors. No singletons were present after this filtering step. 210 

 211 

Compiling plant trnL reference database  212 

 We built a local DNA barcoding reference library by downloading all 324,502 available 213 

sequences from NCBI GenBank using the search query: “(trnL[All Fields] OR complete genome[All 214 

Fields]) AND (plants[filter] AND (chloroplast[filter] OR plastid[filter]))” (last accessed 2 December 215 

2021). In OBITools v1.2.13, the sequence list was annotated with taxonomy information downloaded 216 

from NCBI (ftp://ftp.ncbi.nih.gov/pub/taxonomy/taxdump.tar.gz, last accessed 3 December 2021). To 217 

complete the database of trnL genes, we followed established protocol (Boyer et al., 2016), using the 218 

same trnL g-h primers as in the wet laboratory to extract trnL variants in silico in the program ecoPCR 219 

v2.1 (Ficetola et al., 2010). We kept sequences that were between 10 to 230 base pairs long with at 220 

most three primer mismatches total (Taberlet et al., 2018). The final database contained 21,308 trnL in 221 

silico amplicons, in 608 families and 5,662 genera. 222 

To evaluate the resolution of our reference database with respect to local plant diversity, we 223 

compared plant taxa present in our database to a list of plants known to occur in the Kahuzi and 224 

Itebero regions of KBNP (Yumoto et al., 1994). To enable this comparison, we updated the taxonomic 225 

classification of the KBNP plant list (Yumoto et al., 1994) by searching for species names in the 226 
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Global Biodiversity Information Facility (GBIF). The updated list contained 328 taxa, in 81 unique 227 

families and 234 genera. Of these, all families and 77.4% of genera were present in our trnL database. 228 

 229 

Characterization of gorilla gut microbiome 230 

We characterized gut microbial composition in 70 individuals from KBNP and NCA 231 

populations using a single sample per individual (Table S2). We selected the same sample that was 232 

used for dietary analyses and only dry season samples from the Bansamba group in NCA. To quantify 233 

possible contamination, we also carried nine random extraction blanks through the entire data 234 

generation process.  235 

The V4 region of the 16S rRNA gene was amplified with primers 515F/806R (Table S3) for 236 

each sample in duplicate. The PCR reaction contained 2 µl of extracted DNA, 5 µM each of the 237 

forward and reverse primer, 1x Phusion High-Fidelity Buffer, 0.02 units Phusion HF DNA polymerase 238 

(2U/µl), 0.012 mg DMSO and 0.05 µM (each) dNTPs, with the volume made up to 20 µl with 239 

Ultrapure H2O. Thermal cycling conditions were as follows: 30 seconds at 98°C, 25 cycles of 98°C 240 

for 10 seconds, 52°C for 20 seconds and 72°C for 20 seconds, and 10 minutes at 72°C. PCR cycles 241 

were limited to 25 to minimize the risk of unspecified products and chimeras. Duplicate reactions were 242 

pooled and cleaned with AmPure beads (Qiagen).  243 

Next-generation sequencing libraries were prepared from PCR products following the double-244 

barcoding, double-indexing strategy (Kircher et al., 2012; Meyer & Kircher, 2010; Rohland et al., 245 

2015; van der Valk et al., 2017). As a result, each sample had a unique combination of two barcodes 246 

and two indices, which enabled bioinformatic filtering of potential chimeric molecules and 247 

misassigned reads resulting from index hopping (van der Valk et al., 2017, 2020). For indexing, we 248 

determined the suitable number of PCR cycles (8-11) based on qPCR of barcoded libraries, as above. 249 

Indexed libraries were quantified by qPCR and pooled in equimolar amounts for sequencing on a 250 

single MiSeq lane, using version 2 chemistry and 250 bp paired end sequencing at the Uppsala 251 

Science for Life Laboratory sequencing facility.  252 
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Sequencing reads were demultiplexed and adapters removed using a Python script (Brealey et 253 

al., 2021). We followed established protocol to estimate microbial amplicon sequence variants (ASVs) 254 

using DADA2 (Callahan et al., 2016), rather than clustering sequences, which avoids biases due to 255 

arbitrary similarity thresholds (Edgar, 2018). Forward and reverse reads were truncated to 200 and 150 256 

bp, respectively, at which point read quality scores dropped below 35. We merged paired-end reads, 257 

requiring an overlap of at least 12 bp, and removed sequences outside the 250-256 bp range and those 258 

with any barcode mismatch, as recommended (Callahan et al., 2016). 259 

Taxonomy was assigned using the SILVA 132 reference database, released in December 2017 260 

(Quast et al., 2012). Species-level assignment required a strict 100% match (Edgar, 2018). We 261 

removed singletons and ASVs labeled ‘Unassigned’, ‘Eukaryota’, “mitochondria”, or “chloroplast”. 262 

We retained Archaea, although archaeal amplification from the V4 region of the 16S rRNA is limited 263 

(Raymann et al., 2017), because within-dataset comparisons are nonetheless informative. We built a 264 

bacterial phylogenetic tree by aligning sequences to the Greengenes 13_5 mega-phylogeny (203,452 265 

99% OTUs; DeSantis et al., 2006) in SEPP using default parameters (Mirarab et al., 2012). 266 

 267 

Statistical analyses of trnL and 16S datasets 268 

To examine dietary and microbiome diversity, we analyzed the trnL and 16S rRNA 269 

metabarcoding datasets, after first filtering out rare sequence variants below 0.5% relative abundance 270 

in at least one sample, as suggested (Deagle et al., 2019). We evaluated sampling effort and 271 

sequencing depth accumulation curves in the R packages ‘vegan’ (Oksanen et al., 2020) and 272 

‘ranacapa’ (Kandlikar et al., 2018), respectively. We checked whether the predicted number of taxa 273 

(asymptote of the sequencing accumulation curve) minus actual number of taxa (richness) related to 274 

any of the considered biological variables or sequencing depth (read count) using a generalized linear 275 

model (GLM) with quasi-Poisson error distribution in the R package ‘lme4’ (Bates et al., 2015).  276 

We calculated two alpha diversity metrics for each dataset: richness, or the number of taxa, 277 

and Shannon’s diversity index, or evenness (Chao et al., 2014). As recommended by McMurdie & 278 

Holmes (2013), we did not rarefy to minimum sequencing depth. To test the effects of population, 279 
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social group, altitude, sex, and age class on diversity metrics, we fitted a GLM with quasi-Poisson (for 280 

richness) or gamma (for evenness) error distribution with logit link function, followed by Tukey 281 

honestly significant difference (HSD) post-hoc comparisons between levels of categorical variables 282 

that were overall significant (χ2 test with Bonferroni correction) (Lenth et al., 2021). 283 

To assess trends in diet and microbiome beta diversity, or composition, we followed a strategy 284 

designed for the compositional nature of metabarcoding data (Gloor et al., 2017; Weiss et al., 2017). 285 

We used Bayesian multiplicative zero replacement and then centered and log-ratio (CLR) transformed 286 

each dataset using the R packages ‘zcompositions’ (Palarea-Albaladejo & Martín-Fernández, 2015) 287 

and ‘compositions’ (van den Boogaart & Tolosana-Delgado, 2008). For the microbiome dataset, we 288 

secondarily used Phylogenetic Isometric Log-Ratio Transform (phILR) to compute compositional 289 

abundance at phylogenetic balances (Silverman et al., 2017). To evaluate variation in composition of 290 

diet and microbiome, we computed Aitchison’s dissimilarity (Euclidean distance between CLR 291 

values) (Aitchison et al., 2000). To quantitatively estimate which factors best predict variation in diet 292 

and gut microbiome, we modeled the composition in CLR (or phILR) transformed space as a function 293 

of ecological and biological variables using PERMANOVA, via function adonis2 in ‘vegan’ 294 

(Anderson & Walsh, 2013). The predictor variables were population, social group, sex, age class, and 295 

altitude. Sequencing read count was kept as the first predictor, even if p > 0.05. Post-hoc comparisons 296 

between levels of overall significant variables were done with Bonferroni correction using 297 

‘pairwiseAdonis’ (Arbizu, 2020). The influence of genetic distance (1 - genetic relatedness) was 298 

modeled separately within each population using Mantel and partial Mantel tests (controlling for 299 

social group identity). 300 

We estimated the covariance between diet and microbiome using a co-inertia analysis between 301 

the two matrices in the package ‘omicade4’ and calculated the RV coefficient (Escoufier, 1973; 302 

Robert & Escoufier, 1976) and its significance using a Monte Carlo test with 999 permutations (Meng 303 

et al., 2014). To compare the effects of diet and other variables on the gut microbiome, we fit a 304 

Multiple Regression on Matrices (MRM) model (Lichstein, 2007), an extension of the partial Mantel 305 

test, in ‘ecodist’ (Goslee & Urban, 2007). The explanatory variables were straight-line geographic 306 
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distance, altitude difference, diet composition (Aitchison distance), and social group and population as 307 

binary (same, 0, or different, 1). Significance was assessed using 999 permutations of the response 308 

variable, the Aitchison distance matrix of gut microbiome composition.   309 

Differences in beta diversity can be due to differential abundance of a few key organisms, or 310 

subtle differences across an entire community. To identify dietary and microbial taxa that may have 311 

driven compositional differences, we used the R package ‘ALDEx2’ and focused on significant 312 

differences (Wilcoxon rank sum test with correction for false discovery rate (FDR) p < 0.05) with 313 

effect sizes >1, as recommended (Gloor et al., 2017).  314 

315 
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 316 

 317 
Figure 1. (A) Map of Grauer’s gorilla fecal sampling locations from Maiko National Park (MNP; designated with cyan on 318 
the left-hand side of the map), Nkuba Conservation Area (NCA; green) and Kahuzi-Biega National Park (KBNP; brown), 319 
with (B) inset zooming in on different social groups in KBNP. Circle colors designate social groups, coded as in (C). Note 320 
that multiple circles are present for the Chimanuka group, consistent with opportunistic sampling of identified individuals. 321 
Geographic coordinates were not available for the Mankoto group. The table in (C) shows the sample size (N=number of 322 
unique individuals, f=number of females, m=number of males) used for dietary and gut microbiome characterization of each 323 
social group. Only diet but not gut microbiome data is available for samples shaded in gray. Bansamba group (NCA) was 324 
sampled repeatedly, but only few samples were included in dietary analyses in later years (three from 2016 and three from 325 
2018). Also shown for each social group are: collection year and season, altitude, and Ngenotypes, the total number of successfully 326 
genotyped samples.  327 

328 
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Results 329 

Study populations of Grauer’s gorillas are genetically differentiated 330 

We identified 92 unique individuals in the three study populations by microsatellite 331 

genotyping: 59 in KBNP, 28 in NCA, and 5 in MNP (Figure 1, Table S2). Individuals belonged to six 332 

different social groups and two solitary adult males (lone silverbacks) in KBNP, two social groups in 333 

NCA, and one group in MNP. Genotyping revealed that each individual was sampled 1-13 times, with 334 

4-17 individuals per social group.  335 

None of the 12 microsatellite loci deviated from Hardy-Weinberg equilibrium after Bonferroni 336 

correction for multiple testing (p > 0.1). On average, there were 6.1 alleles per locus (Table S2). The 337 

average observed and expected heterozygosities were 0.66 and 0.68, respectively. The test for global 338 

heterozygote deficiency was not significant overall (p = 0.6) or in any population (p > 0.4). The test 339 

for genotypic linkage disequilibrium using log likelihood ratio statistic with 66 pairwise comparisons 340 

between the 12 loci was not significant for any pair (p > 0.1). Thus, we assumed linkage equilibrium 341 

and considered all loci in further analyses. 342 

Analysis of the three populations using STRUCTURE (Porras-Hurtado et al., 2013) revealed 343 

two distinct genetic groups (optimal K=2 according to ∆K; Evanno et al., 2005; Figure S2). The 344 

clusters differentiated gorillas in high-altitude KBNP (2500 m asl) from those in low-altitude NCA 345 

and MNP (600-830 m asl) (Figure S3), consistent with the PCA (Figure 2A). All three populations 346 

were significantly differentiated from one another (F'ST = 0.26-0.45; p < 0.001; Table S4A), with 347 

largest differences between MNP and KBNP, which are furthest apart geographically (215km). 348 

Individuals within social groups were more closely related than individuals in different groups in the 349 

same population (AMOVA ϕ = 0.12, p < 0.001; Table S4B), consistent with gorilla social structure 350 

(Harcourt & Stewart, 2013).  351 
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  352 
 353 
Figure 2. (A) PCA of genetic distances among individuals based on microsatellites. NMDS of (B) dietary 354 
composition and (C) gut microbiome composition, both in Aitchison distances. Individual samples are coloured by 355 
population of origin, with 95% confidence interval ellipses for each population (brown = KBNP, green = NCA, cyan 356 
= MNP, as in Figure 1). 357 
 358 

Negative controls in trnL and 16S rRNA metabarcoding 359 

 To quantify contamination in the diet (trnL) and the gut microbiome (16S rRNA) dataset, we 360 

analyzed DNA extraction blanks, PCR negative controls, unused barcode combinations and library 361 

preparation negative controls (for diet) (Table S2; Table S5; Table S6). In the diet dataset, the 362 

extraction and PCR negative controls contained 16 trnL reads in total, identified to 12 different plant 363 

taxa. Each taxon had one to three reads summed across all negative controls, yet up to 3,620-154,357 364 

reads per sample (Table S5). There were no reads with unused barcode combinations, suggesting that 365 

cross-contamination of barcodes during PCR and library preparation was negligible. In the 366 

microbiome dataset, four extraction blanks had 90 reads in total, whereas the remaining five had none 367 

(Table S6). These mapped to eight different 16S taxa, with three to 26 reads each. As with the diet 368 

data, these taxa were among the most abundant in the samples (up to 2,244-14,307 reads per sample). 369 

This pattern is consistent with low-level cross-contamination from high quantity into low quantity 370 

samples typical for large-scale sequencing studies (Eisenhofer et al., 2019).  371 

 372 

Diet of Grauer’s gorillas  373 

We characterized the diet of 92 Grauer’s gorilla individuals (Table 1C) using the chloroplast 374 

trnL P6 loop locus. After data filtering, we retained 5,367,160 trnL sequencing reads (corresponding 375 

to 45% of raw reads) belonging to 120 unique taxa (Table S7A). PCR replicates were more similar to 376 
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each other than to other samples in alpha and beta diversity (p < 0.001, Figure S4), and hence their 377 

sequencing data were pooled. Sample size and sequencing depth were sufficient to capture dietary 378 

diversity in KBNP and NCA, but not in MNP, where only five individuals were sampled 379 

(Supplemental Text, Figure S5).  380 

Of the 120 detected dietary plant taxa, 115 could be identified to at least the order level (in 29 381 

different orders), 110 to family (in 49 families), and 44 to genus (in 35 genera) level (Table S8). All 382 

but 21 taxa have previously been recorded in the Grauer’s gorilla diet in KBNP, NCA, and Mt. 383 

Tshiaberimu (Kambale, 2018; van der Hoek, Pazo, et al., 2021; Yamagiwa et al., 1994, 2005; Yumoto 384 

et al., 1994; Table S8, columns S-T; Figure S6). These 21 taxa are, however, present in the region 385 

(Spira et al., 2018). 386 

 Each Grauer’s gorilla fecal sample contained 36 – 80 trnL taxa (mean 58.52 ± 10.83) (Figure 387 

3A), with each population showing a different set of most abundant and prevalent plants (Table 1; 388 

Table S8). Five plant taxa were found in each sample collected during the dry season in KBNP and 389 

NCA, even though they showed very low abundance in some samples (0.1%). Only two plant taxa had 390 

abundances over 1% in all three populations (Table 1).  391 

392 
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Table 1. Top three most abundant plant taxa by population and taxa shared across populations. 393 
ID NCBI- based 

finest taxonomic 
identity 

Distribution-refined 
probable identity 

Mean 
abundanc
e in KBNP 

Mean 
abund 
in NCA 

Mean 
abund 
in MNP 

KBNP 
Rank§ 

NCA 
Rank§ 

MNP 
Rank§ 

1 Urera sp. Urera hypselodendron 35.1% 0.2% 0.1% 1 14 19 

2 Apocynaceae sp. Taccazea apiculata 21.0% 0.2% 0.2% 2 16 17 

6 Urticaceae sp. Urticaceae sp. 6.0% 12.9% 0.06% 3 13 22 

8 Myristicaceae sp. Pycnanthus, Staudtia, or 
Afradisia sp. 0.05% 14.5% 8.1% 13 1 5 

5† Apocynoideae sp. Baissea, Funtumia, or 
Motandra sp. 4.6% 8.9% 14.7% 4 2 3 

25 Megaphrynium 
macrostachyum 

Megaphrynium 
macrostachyum 0.01% 3.4% 0.05% 25 3 26 

31 Phyllanthaceae sp. Phyllanthaceae sp. 0.01% 0.01% 18.8% 46 63 1 

32 Alafinae sp. Strophanthus sp. 0.02% 0.2% 12.9% 29 26 2 

14† Ficus sp. Ficus sp. 2.7% 5.6% 1.9% 8 6 14 

13‡ Moraceae sp. Moraceae sp. 1.8% 3.9% 0.07% 10 4 21 

†Taxon greater than 1% relative abundance in all three populations (identifiable also by similar, high rank). 394 
Shaded rows highlight taxa present in every sample collected during the dry season. With the exception of Moraceae sp. (ID 395 
13‡), these taxa were also present in each rainy season sample and hence the abundances are shown including samples 396 
collected during the rainy season. Moraceae sp. (ID 13‡) was missing from one individual in the Chimanuka group (KBNP) 397 
collected during the rainy season. 398 
§Rank is calculated by ranking each taxon by its relative abundance in a sample and calculating its mean rank across all 399 
samples in a population. It thus reflects the average abundance rank of a given taxon across all samples in a population. 400 
 401 

Geography, altitude, and social group identity influence dietary diversity and composition in 402 

Grauer’s gorillas 403 

Dietary richness and evenness differed significantly by population and social group identity (p 404 

< 0.001, Table S9). Both richness and evenness were significantly higher in low altitude populations 405 

(NCA and MNP) than in high-altitude KBNP (mean richness: 66.8±7.5 taxa in MNP, 65.6±6.1 in 406 

NCA vs. 54.5±10.4 in KBNP, p < 0.001; evenness: 10.0±1.3 in MNP, 8.4±2.5 in NCA, vs. 5.4±2.6 in 407 

KBNP, p < 0.001; Figure S7). Altitude was also a significant predictor of dietary richness and 408 

evenness in KBNP (p < 0.001; Figure S8). In contrast, neither individual’s sex nor age (age class 409 

available for 70 individuals) had an effect on dietary richness or evenness (p > 0.3; Table S9). We 410 

obtained qualitatively similar results when analyzing only samples collected during the dry season 411 
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(excluding Chimanuka group, three individuals from Bansamba group, and MNP; Table S9), with the 412 

exception that dietary richness did not significantly change with altitude in KBNP (p = 0.2). 413 

 Hierarchical clustering of dietary composition first separated high altitude (KBNP) from low 414 

altitude (NCA and MNP) locations (Figure 3B), even though MNP samples were collected during the 415 

rainy season. Within populations, individuals clustered by social group. NMDS ordination showed a 416 

similar pattern (Figure 2B). After accounting for sequencing depth, dietary composition was 417 

significantly influenced by population (p < 0.001, explaining 27.9% of the variance) and social group 418 

(p < 0.001, explaining an additional 21.6%) but not by sex (p = 0.7) or age (p = 0.2; Table 2). All 419 

social groups differed significantly from each other (p < 0.05; Table 2), except for some comparisons 420 

involving the Mufanzala2 group, which had a small sample size (n=4). Restricting the analysis to two 421 

similarly sized social groups in NCA and KBNP collected during the dry season, we confirmed the 422 

presence of significant between-group and between-population diet differences (Table S10), 423 

supporting the notion that populations and social groups have distinct diets and that our results are not 424 

driven by differences in sample size or season. 425 

 Using ALDEx2, we identified differentially abundant dietary items across populations. The 426 

drivers of the observed population dietary differences were among the most abundant taxa in each 427 

population (Table 1), most of which were absent or present at very low abundance in other 428 

populations (Figure 3C; Table S11). Out of the 21 previously undescribed food items (see above), 13 429 

were significantly more abundant in low-altitude populations compared to the high-altitude population 430 

KBNP (Table S8, S9; Figure S6). Within populations, each social group consumed between two and 431 

32 differentially abundant taxa (mean = 11.3 ± 11.6). 432 

 433 

434 
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Table 2. PERMANOVA model of factors influencing dietary composition 435 
 

Variable 
 

Df 
 

R2 
 

F 
 

p 
Post-hoc tests 

Significant pairwise comparisons pBonferroni 

Read Count 1 0.01 1.73 0.05 – 

Population 2 0.279 17.80 <0.001 NCA – KBNP 
KBNP – MNP‡ 
MNP – NCA 

< 0.001 
< 0.001 
< 0.001 

  
Social Group 

  
6 

  
0.216 

  
4.56 

 
<0.001 

KBNP 
Chimanuka‡ – Nouvelle Famille 
Chimanuka‡ – Mankoto 
Chimanuka‡ – Mpungwe 
Chimanuka‡ - Mufanzala2 
Chimanuka‡ – Namadiriri 
Nouvelle Famille – Mankoto 
Nouvelle Famille – Mpungwe 
Nouvelle Famille – Namadiriri 
Mankoto – Mpungwe 
Mankoto - Mufanzala2 
Mankoto – Namadiriri 
Mpungwe – Namadiriri 
Mufanzala2 – Namadiriri 
NCA 
Membe1 – Bansamba(‡) 

 
0.02 
0.005 
0.005 
0.02 
0.005 
0.02 
0.02 
0.005 
0.005 
0.03 
0.005 
0.005 
0.02 
 
0.005 

Sex 1 0.005 0.82 0.6 – 

Age class† 2 0.022 1.28 0.1 – 
†Age class (Infants (N=7), Juveniles/subadults (N=21), Adults (N=42)) was modeled separately using a reduced dataset, since only 70 of the 436 
92 samples had age estimates. In this model the other predictor variables had estimates similar to those of the complete dataset. 437 
‡Samples from MNP, Chimanuka group in KBNP, and three out of 17 individuals from Bansamba group in NCA were collected during the 438 
rainy season, whereas all other samples were collected during the dry season. Removal of these individuals did not affect results (Table 439 
S10). 440 

441 
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 442 
Figure 3. (A) Plants consumed by Grauer’s gorillas in KBNP, NCA, and MNP. The 15 most abundant taxa across all 443 
samples are shown. Populations are designated with coloured bars below (MNP cyan, NCA green, KBNP brown). (B) 444 
Hierarchical cluster dendrogram of Ward’s sum of squares based on minimum variance of squared dissimilarities (Murtagh 445 
& Legendre, 2014) of centered-log-ratio (CLR) transformed taxon abundance. Branches are colored by social group, 446 
following the code in Figure 1. (C) Plant taxa in Grauer’s gorilla diet, coloured by the population in which they are 447 
significantly more abundant (ALDEx2 Wilcoxon test p < 0.05). For taxa that differ between two or more population pairs, 448 
the color corresponds to the population with greatest effect size. Gray taxa do not differ significantly in abundance between 449 
populations. Branch lengths do not reflect phylogenetic distance. Diagram generated with the ‘metacoder’ package in R 450 
(Foster et al., 2017). 451 
 452 

Gut microbiome of Grauer’s gorillas in Kahuzi-Biega National Park and Nkuba Conservation Area 453 

We characterized 16S rRNA diversity in 70 individuals for which we also had dietary data 454 

(Figure 1C; Table S2), using the same samples as for diet. Two samples had low read counts (5 and 455 

348, compared to the mean of 43,611 ± 11,357 in other samples) and were excluded. Our final dataset 456 

consisted of 68 unique individuals and contained 2,965,516 reads in 417 unique microbial taxa (Table 457 

S12).  458 

The sample accumulation analyses suggested that additional sampling of feces from more 459 

individuals could uncover novel gut commensals at the population level (Figure S9A). However, per 460 

sample sequencing depth was sufficient to obtain a good representation of host microbiome diversity 461 

(Figure S9B). We detected 16 different phyla and 48 different families of microorganisms in the gut 462 

microbiome of Grauer’s gorillas. All taxa were identified at least to the family level, 309 taxa to the 463 

genus and 17 to the species level (Table S12). None were closely related to dominant soil 464 
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microorganisms (Delgado-Baquerizo et al., 2018). There were seven Archaea in our dataset, belonging 465 

to the Methanomethylophilaceae and Methanobacteriaceae families. Each fecal sample contained on 466 

average 200.29 ± 19.6 taxa (min = 160, max = 237), each with average abundance of 0.2% ± 0.4%.  467 

Eleven taxa were present in every individual gorilla fecal sample from both populations (the core gut 468 

microbiome), however, populations differed in the most abundant taxa (Table 3). 469 

 470 

Table 3. Top three most abundant gut microbiome taxa by population and taxa shared across 471 
populations. 472 

ASV NCBI-based finest taxonomic identity 
Mean 

abundance 
in KBNP 

Mean 
abund 
NCA 

Rank 
KBNP§ 

Rank 
NCA§ 

3† Bacteria; Firmicutes; Clostridia; Clostridiales; Family XIII; AD3011 group 2.40% 2.49% 1 3 

6† Bacteria; Firmicutes; Erysipelotrichia; Erysipelotrichales; Erysipelotrichaceae; UCG-004 2.32% 1.16% 2 17 

4 Bacteria; Firmicutes; Clostridia; Clostridiales; Ruminococcaceae; Faecalibacterium 2.78% 0.84% 3 39 

5† Bacteria; Bacteroidetes; Bacteroidia; Bacteroidales; Rikenellaceae; RC9 gut group 1.61% 6.36% 7 1 

2† Bacteria; Firmicutes; Clostridia; Clostridiales; Christensenellaceae; R-7 group 2.90% 3.97% 4 2 

1† Bacteria; Chloroflexi; Anaerolineae; Anaerolineales; Anaerolineaceae; Flexilinea 2.72% 4.27% 6 4 

22 Bacteria; Bacteroidetes; Bacteroidia; Bacteroidales; Prevotellaceae; Prevotella 7 1.09% 0.18% 10 85 

21 Bacteria; Firmicutes; Clostridia; Clostridiales; Ruminococcaceae; UCG-005 0.84% 0.99% 13 18 

31 Bacteria; Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; Oribacterium 0.96% 0.27% 19 61 

30 Bacteria; Proteobacteria; Gammaproteobacteria; Betaproteobacteriales; Burkholderiaceae; Sutterella 0.95% 0.14% 16 86 

33 Bacteria; Firmicutes; Clostridia; Clostridiales; Ruminococcaceae; Ruminiclostridium 9 0.73% 0.76% 17 35 

59 Bacteria; Firmicutes; Clostridia; Clostridiales; Ruminococcaceae; UCG-002 0.39% 0.51% 43 31 

70 Bacteria; Actinobacteria; Coriobacteriia; Coriobacteriales; Eggerthellaceae; Senegalimassilia 0.32% 0.48% 67 40 

152 Bacteria; Bacteroidetes; Bacteroidia; Bacteroidales; Prevotellaceae 0.15% 0.11% 100 123 

128‡ Bacteria; Firmicutes; Clostridia; Clostridiales; Ruminococcaceae; Flavonifractor 0.18% 0.22% 82 67 

51‡ Bacteria; Firmicutes; Erysipelotrichia; Erysipelotrichales; Erysipelotrichaceae; Solobacterium 0.46% 0.16% 48 98 

8‡ Bacteria; Firmicutes; Clostridia; Clostridiales; Lachnospiraceae; Oribacterium 2.11% 0.49% 14 37 

† Taxon greater than 1% relative abundance in both populations (identifiable also by similar, high rank). 473 
Shaded rows highlight taxa present in every sample collected during the dry season. With the exceptions of Flavonifractor 474 
sp. (ASV128‡), Solobacterium sp., (ASV51‡), and Oribacterium sp. (ASV8‡), these taxa were also present in each rainy 475 
season sample and hence the abundances are shown including samples collected during the rainy season. Flavonifractor sp. 476 
(ASV128‡), Solobacterium sp., (ASV51‡), and Oribacterium sp. (ASV8‡) were missing from one, one, and two individual(s), 477 
respectively, in the Chimanuka group (KBNP) collected during the rainy season. 478 
§ Rank is calculated by ranking each taxon by its relative abundance in a sample and calculating its mean rank across all 479 
samples in a population. It thus reflects the average abundance rank of a given taxon across all samples in a population. 480 

481 
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In accordance with previous studies on great apes (Campbell et al., 2020; Gomez et al., 2016b; 482 

Hicks et al., 2018; Nishida & Ochman, 2019), Grauer’s gorilla gut microbiome in both populations 483 

was dominated by the phyla Firmicutes (65.6% in KBNP, 60.0% in NCA%), Bacteroidetes (20.7% in 484 

KBNP, 23.1% in NCA.0%), Spirochaetes (3.5% in KBNP, 5.4% in NCA), Chloroflexi (2.7% in 485 

KBNP, 4.3% in NCA), Proteobacteria (2.8% in KBNP, 3.4% in NCA), and Actinobacteria (2.0% in 486 

KBNP, 1.8% in NCA) (Figure S10), representing a diversity of microbial families (Figure 4A).  487 

 488 

 489 
Figure 4. Gut microbiome composition (A) at the family level and (B) showing population clustering in composition, using 490 
CLR Aitchison distances dendrogram based on Ward’s clustering criterion (Murtagh and Legendre 2014). 491 
 492 

 493 

Diversity and composition of the gut microbiome in Grauer’s gorillas correlates with population 494 

and social group identity  495 

Gut microbiome richness and evenness were significantly higher in the high-altitude 496 

population (richness: mean KBNP = 202.2±20.0 taxa vs. NCA = 190.2±14.0; p = 0.02; evenness: 497 
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83.7±17.8 vs. 74.2±12.8, p = 0.01), the opposite trend to diet, although neither microbiome richness 498 

nor evenness were related to altitude within KBNP (p = 0.07, 0.9; Table S13; Figure S11). While 499 

richness of the microbiome did not differ by sex (p = 0.2), females had more even microbiomes than 500 

males (85.7 vs. 78.5, p = 0.002). There were no differences by age (richness p = 0.3; evenness p = 501 

0.1). The gut microbiome alpha diversity differed significantly by population even after removing 502 

rainy season samples (excluding Chimanuka group; richness p = 0.001, evenness p = 0.008; Table 503 

S13).  504 

Gut microbiome composition differed between the two populations (KBNP and NCA) 505 

(Figure 2C) and among social groups (Figure 4A-B), with population explaining 10.5% of the total 506 

variance, and social group in KBNP explaining an additional 17.8% (p < 0.001; Table 4). Intergroup 507 

differences were significant, including among groups collected during the dry season (Table 4). 508 

Overall, gut microbiome dissimilarity was largest between individuals of different populations, 509 

followed by individuals from different social groups, and smallest between individuals from the same 510 

social group (Figure 5C). While altitude explained 12.7% of the variance across populations (N=56, p 511 

< 0.001) it only accounted for 3.8% in KBNP (N=45, p = 0.01). Genetic distance among gorillas was 512 

not a significant predictor of gut microbiome composition in NCA (N=11, ρ = -0.080, p = 0.7) or 513 

KBNP when social group was also considered (ρ = 0.015, p = 0.3). Microbiome composition did not 514 

differ by sex or age (p > 0.05, Table 4). Results using only dry season samples (Table S14A) and 515 

phylogeny-informed (phILR) distances were qualitatively similar (Table S15). 516 

We identified 42 taxa that significantly differed in abundance between NCA and KBNP (p < 517 

0.05, effect size > 1) (Table S16). At the family-level, gorilla gut microbiomes in KBNP had a higher 518 

abundance of Muribaculaceae and Erysipelotrichaceae, whereas the gut microbiomes in NCA had 519 

more Spirochaetaceae and Christensenellaceae. At a finer phylogenetic level, populations differed in 520 

abundance of specific ASVs belonging to common, shared families like Rikenellaceae, 521 

Lachnospiraceae, and Ruminococcaceae. 522 

523 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 21, 2022. ; https://doi.org/10.1101/2022.01.04.474987doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.04.474987
http://creativecommons.org/licenses/by-nc-nd/4.0/


25 
 

Table 4. PERMANOVA model of factors influencing microbiome composition 524 

Variable Df R2 F p 
Post-hoc tests 

Significant pairwise comparisons pBonferroni 

Read Count 1 0.019 1.68 0.05 – 

Population 1 0.105 7.97 <0.001 KBNP – NCA < 0.001 

Social Group 5 0.178 2.18 <0.001 Chimanuka‡ – Nouvelle Famille 
Chimanuka‡ – Mankoto 
Chimanuka‡ – Mpungwe 
Chimanuka‡ – Namadiriri 
Nouvelle Famille – Mankoto 
Nouvelle Famille – Namadiriri 
Mankoto – Mpungwe 
Mankoto – Namadiriri 

0.004 
0.01 
0.007 
0.004 
0.02 
0.01 
0.007 
0.004 

Sex 1 0.014 1.18 0.2 – 

Age class† 2 0.031 1.22 0.2 – 

†Age class (Infants (N=3), Juveniles/subadults (N=21), Adults (N=38)) was modeled separately using a reduced dataset, since only 62 of the 525 
68 samples had age estimates. In this model the other predictor variables had similar estimates as in the complete dataset. 526 
‡Samples from Chimanuka group in KBNP were collected during the rainy season, whereas all other samples were collected during the dry 527 
season. Results were similar when removing Chimanuka (Table S14A). 528 
 529 
 530 

Diet and gut microbiome co-vary across studied populations 531 

Compositional differences in dietary and gut microbial profiles showed significant co-inertia 532 

(RV = 0.557, p < 0.001; Figure 5B) and were correlated (ρ = 0.32, p < 0.001; Figure 5C), even after 533 

removing the rainy season samples from Chimanuka (RV = 0.599, p < 0.001; ρ = 0.35, p < 0.001). We 534 

detected no correspondence between dietary and gut microbial richness (p = 0.2; Figure 5A) or 535 

evenness (p = 0.1). Microbiome composition is known to change with diet in individuals and also 536 

differs between populations with different dietary preferences (e.g., Reese et al., 2021; Youngblut et 537 

al., 2019). However, in our dataset, only population and social group were significantly correlated 538 

with gut microbiome composition, whereas dietary composition, geography, and genetic relatedness 539 

had no effect after accounting for social group and population of origin (Table 5; Table S14B). As 540 

with other analyses, dataset subsampling indicated that results were robust to sample size differences 541 

between populations (Table S17). 542 

543 
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Table 5. MRM model comparing the effects of geography, diet, and sociodemographic factors on Grauer’s 544 
gorilla gut microbiome composition‡ 545 

MRM Model of Gut Microbiome Composition MRM Model Statistics 

Explanatory Variable Spearman's ρ p N R2 F-statistic 

Geographic distance 0.07 0.4 56 0.278 98.35 

Altitudinal difference -0.08 0.6 

Diet composition† -0.19 0.07 

Population 0.64 < 0.001 

Social group 0.45 < 0.001 

† Microbiome and diet composition in Aitchison distances. 546 
‡Model results without Chimanuka are shown in Table S14B. 547 

 548 
Figure 5. Relationship between diet and gut microbiome. (A) Microbiome and dietary richness, assessed as per-sample total 549 
sequence count, are not correlated (p = 0.2). (B) High multiple co-inertia (MCIA) between microbiome and diet composition 550 
in CLR-transformed space with Aitchison distance (RV = 55.7%, MC p < 0.001 based on 999 permutations). (C) 551 
Compositional differences (Aitchison distances) in diet and microbiome between samples (i.e., individual gorillas) are 552 
correlated in matrix regression. 553 

554 
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Discussion 555 

In this study, we applied fecal genotyping and DNA metabarcoding to identify Grauer’s 556 

gorilla individuals and characterize their diet and gut microbiome in three populations from across the 557 

species’ range. We were able to include a so far unstudied population from MNP and show that it is 558 

genetically distinct from two previously assessed populations KBNP and NCA (Baas et al., 2018). 559 

Grauer’s gorillas occur across the greatest altitudinal range of all gorilla taxa (Plumptre et al., 2016) 560 

and our study sites include the low and high altitude extremes. This provided us with the opportunity 561 

to test for dietary and gut microbial co-differentiation among the isolated populations of this critically 562 

endangered great ape. In particular, we set out to investigate if the gut microbiome may facilitate local 563 

adaptation by supporting digestion of diverse foods. Alternatively, the presence of conserved dietary 564 

patterns across populations along with a core gut microbiome would be indicative of a stabilizing role 565 

of gut microorganisms, which may limit ecological adaptation. Gorillas consume a wide variety of 566 

herbaceous vegetation, and fruits, when available, and their diet shows seasonal variation (Harcourt & 567 

Stewart, 2013; Rogers et al., 2004; Rothman et al., 2008; Yamagiwa et al., 1994). In Grauer’s gorillas, 568 

studies that rely on different methodologies suggested some differences in diet between populations 569 

(van der Hoek, Pazo, et al., 2021; Yamagiwa et al., 2005). However, previous studies did not assess 570 

the gut microbiome, and hence could not characterize its contribution to these differences.  571 

Our joint diet and gut microbiome analyses provide little evidence for dietary conservation 572 

across populations but uncover a stable set of gut microorganisms that are shared among 573 

geographically, genetically, and ecologically distinct populations of Grauer’s gorillas. We detect co-574 

variation in diet and microbiome, likely as a result of habitat differences and social factors among 575 

populations and social groups. Our results are thus consistent with the notion that the gut microbiome, 576 

although being conserved to some degree, provides sufficient flexibility to allow exploitation of 577 

diverse dietary resources and hence could contribute to local adaptation. In addition, we obtain 578 

evidence that dietary choice in Grauer’s gorillas is at least partially determined by plant availability, 579 

with a larger dietary repertoire at lower elevations.  580 

 581 
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New insights into Grauer’s gorilla diet and feeding behavior 582 

Grauer’s gorillas in the three study populations consumed 120 different plant taxa (Table S8), 583 

which is similar to the dietary composition and diversity reported in observational studies (116 and 584 

100 different plants; van der Hoek, Pazo, et al., 2021; Yamagiwa et al., 2005; respectively). Low 585 

altitude populations consumed a greater diversity of plants than high altitude populations (Figure 3; 586 

Figure S7; Table S9), consistent with higher biodiversity (including plant diversity) at lower altitudes 587 

(Imani et al., 2016; Rahbek, 1995). We documented an average of 54-66 different plant taxa in each 588 

fecal sample, which is considerably more than reported daily diversity of consumed plants per 589 

individual based on behavioral observations (17 plant taxa per day on average in KBNP; Yamagiwa et 590 

al., 2005). In captivity, gorilla gut retention time was estimated to be 24 to 60 hours (Remis, 2000). 591 

Therefore, each fecal sample could represent plants consumed over the period of up to three days, with 592 

some items digested faster than others. Alternatively, our method could capture taxa that are missed in 593 

observational studies because they are consumed infrequently or in small quantities, at times of the 594 

day that are rarely observed (early in the morning or late in the evening), or which may be 595 

contaminants, parts of nest building material or involved in play or display and unrelated to diet. We 596 

discuss other potential limitations of molecular dietary analyses in detail below. 597 

We detected 21 plant taxa that have, to our knowledge, not been reported as Grauer’s gorilla 598 

foods (Table S8; Figure S6). Some of these plants grow in KBNP (Spira et al., 2018) and are 599 

consumed by mountain gorillas (e.g., Solanoideae; Rothman et al., 2014; Watts, 1984) or western 600 

lowland gorillas (e.g., Laruales; Remis et al., 2001). Other plants, such as Gnetum and Humiriaceae, 601 

have not been documented in KBNP but are western lowland gorilla foods (Rogers et al., 2004; 602 

Takenoshita & Yamagiwa, 2008), which is consistent with their significantly higher abundance in the 603 

low-altitude sites of MNP and NCA.  604 

Grauer’s gorillas in different populations consumed distinct diets (Figure 2, 3; Table 1, 2), 605 

with only two taxa shared across all three populations at an average abundance >1% per sample: Ficus 606 

sp. and Apocynoideae sp. (likely Baissea sp., Funtumia sp., or Motandra sp. based on plant 607 

distribution; Spira et al., 2018). At broader taxonomic scales, all individuals consumed four plant 608 
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families (Urticaceae, Apocynaceae, Moraceae, and Vitaceae), but the relative abundances varied 609 

considerably across populations, from less than 1% to up to 42%. The detection of shared taxa 610 

suggests that the same plants or their close relatives are present in the habitat of all three populations. 611 

However, the pronounced differences in their relative abundance suggest either that (1) their 612 

availability differs across study sites, and gorilla dietary choice is essentially passive and primarily 613 

based on food availability, or (2) that gorilla dietary choice is strongly determined by social factors, 614 

and food selection is a result of variation in culturally-transmitted feeding preference that differ across 615 

populations and social groups. Higher dietary diversity of low-altitude populations supports the first 616 

notion of rather opportunistic consumption of available plants. However, we also uncover distinct 617 

dietary signatures of social groups from the same population, which is consistent with social factors 618 

playing a role. Since gorilla groups show extensive range overlap, they would be well-suited for future 619 

investigations into the role of cultural versus ecological factors affecting dietary choices by evaluating 620 

if group-specific dietary patterns persist even when different social groups use the same habitat.   621 

 622 

The role of Grauer’s gorilla gut microbiome in ecological adaptation 623 

In accordance with previous studies (Amato et al., 2019; Campbell et al., 2020; Gomez et al., 624 

2016b; Moeller et al., 2014), we detect evidence for the presence of a Grauer’s gorilla core gut 625 

microbiome (Table 3, Figure 4). We identified eleven taxa belonging to cellulose- and other 626 

carbohydrate-degrading clades that were present in all study samples. Many of the microbial phyla, 627 

families, genera that are conserved across Grauer’s gorilla samples are also common in other great ape 628 

gut microbiomes, including western lowland gorillas, chimpanzees, and humans (Campbell et al., 629 

2020; Fontsere et al., 2021; Gomez et al., 2015, 2016b; Hicks et al., 2018; Nishida & Ochman, 2019). 630 

Despite shared taxa, the gut microbiome composition in Grauer’s gorillas differed by population and 631 

to a lesser extent by social group, but considerably less so than dietary composition. This could be 632 

explained by the functional constraints placed on the gut microbiome, with key taxa required to 633 

perform essential functions in digestion. Other taxa may be allowed to vary and co-diversify with the 634 

host. Indeed, inter-species studies in primates find a strong effect of host evolutionary relationships on 635 
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gut microbiome structure and composition (Amato et al., 2019) and we expect to detect similar, albeit 636 

less pronounced differences across isolated populations.  637 

Our results indicate that dietary choice is not constrained by the gut microbiome. This is in 638 

line with many studies showing that animals, including all subspecies of gorillas (Harcourt & Stewart, 639 

2013), experience seasonal dietary changes, which are also accompanied by gut microbiome changes 640 

(Baniel et al., 2021; Gomez et al., 2016a; Hicks et al., 2018; Orkin et al., 2019; Sharma et al., 2020). 641 

Here we detect differences between isolated populations, sampled during the same season, which are 642 

likely the joint result of gut microbiome-host co-diversification and plasticity of the gut microbial 643 

community that may facilitate local adaptation to different environmental conditions. Inter-population 644 

differences tended to derive from differential abundance of specific taxa within common bacterial 645 

families, like Lachnospiraceae and Rikellenaceae, which is consistent with the presence of the core 646 

microbiome in our study populations. There were, however, several differences at the family level that 647 

exemplify microbiome plasticity. For example, compared to KBNP, Treponema (ASV322, 648 

Spirochaetaceae) was significantly more abundant in NCA, where the plant taxa Marantaceae and 649 

Zingiberaceae were more abundant. Hicks et al. (2018) found the same correspondence between these 650 

gut microbial and dietary taxa in western lowland gorillas and suggested that it was due to the high 651 

fiber content of these fallback foods, which are also important for Grauer’s gorillas at low-elevation 652 

(van der Hoek, Pazo, et al., 2021).  653 

We detect no effects of genetic relatedness or geographic distance on gut microbiome 654 

composition, despite clear group-specific microbiome patterns. Our findings thus support previous 655 

studies that show the influence of sociality on gut microbiome composition in primates (chimpanzees, 656 

Degnan et al., 2012; Moeller et al., 2016; baboons, Tung et al., 2015; colobus monkeys, Wikberg et 657 

al., 2020; black howler monkeys, Amato et al., 2017; sifakas, Perofsky et al., 2017, 2021; Rudolph et 658 

al., 2022; humans, Dill-McFarland et al., 2019) and other group-living animals (e.g. bighorn sheep, 659 

Couch et al., 2020). Members of the same social group travel together and experience the same 660 

environments over extended periods of time, which could synchronize their diet and also their 661 

microbiome. The gut microbiome may in addition be directly influenced by social interactions, such as 662 
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grooming and coprophagy (Amato et al., 2016; Archie & Tung, 2015; Graczyk & Cranfield, 2003). 663 

However, this does not mean that host genetics are unimportant, as longitudinal studies in Amboseli 664 

baboons have shown that the primate gut microbiome is highly heritable, which cannot easily be 665 

detected in shorter-term studies (Grieneisen et al., 2021).  666 

The plasticity of the gut microbiome supports its potential role in facilitating adaptation to 667 

different ecological conditions, which has important consequences for species evolution, dispersal and 668 

conservation. Adaptation to changes in ecological conditions as a result of climate change, range 669 

expansion, or population dispersal into novel habitats may be supported by the ability to digest diverse 670 

foods. Several studies have reported habitat-biased dispersal in mammals, including in mountain 671 

gorillas (Guschanski et al., 2008), where individual dispersal decisions appear to be driven by the 672 

availability of familiar foods. If the microbiome was implicated in restricting dietary choice, we would 673 

expect much greater conservation of dietary items across populations than what we observe here, 674 

particularly as similar food plants appear to be available in different regions. This means that gut 675 

microbiome flexibility may provide the necessary support for translocations of individuals or 676 

populations into different habitats, which is an open question in conservation management (West et 677 

al., 2019). Nevertheless, the gut microbiome may impose constraints on the diet by driving selection 678 

of foods of similar nutrient content, even if they differ taxonomically. For example, giant pandas have 679 

typical carnivore gut microbiomes despite being bamboo specialists because the nutritional value of 680 

consumed bamboo is similar to that of meat (Nie et al., 2019). Similarly, the gut microbiome of wild 681 

rhesus macaques is strongly correlated to seasonal patterns of macronutrient intake, but not food type 682 

(e.g., fruit, leaves, etc.) (Cui et al., 2021). Metabolic analyses of gorilla diet, as performed for different 683 

social groups and seasons in other gorilla species (e.g., Gomez et al., 2015; Rothman et al., 2008), will 684 

enable investigating whether nutritional values are conserved in different populations.  685 

 686 

Understanding diet and ecology of wild animals requires a combination of approaches 687 

As every method, the metabarcoding approach to diet and microbiome faces limitations, 688 

specifically in the form of marker gene selection, reference database bias, threshold decisions, and 689 
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interpretation of abundance. While Grauer’s gorillas predominantly feed on vegetative plants, they 690 

occasionally consume insects and fungi (van der Hoek, Pazo, et al., 2021; Yamagiwa et al., 1991). By 691 

choosing a chloroplast gene, trnL, we restricted dietary characterization in this study to plants only. 692 

For dietary analysis of species with omnivorous diets, expanding to multiple loci that are able to 693 

characterize the diversity of consumed foods would be necessary (Taberlet et al., 2018). Further, 694 

metabarcoding relies on a reference database for taxonomic identification, making it limited by the 695 

content of these databases, which may be incomplete for biodiversity-rich or extreme habitats and 696 

unstudied microbiomes (Hird, 2017; Taberlet et al., 2018). Similarly, chosen thresholds for sequence 697 

identity and relative abundance could remove genuine dietary or microbial constituents. We used 698 

conservative sequence identity and relative abundance thresholds similar to those employed in other 699 

studies of diet and gut microbiome (Deagle et al., 2019; Hibert et al., 2013; Quéméré et al., 2013; 700 

Srivathsan et al., 2016). However, this does not completely guard against removal of genuine taxa, 701 

particularly for dietary characterization, due to the small size and high variability of the trnL locus. 702 

Additionally, estimated abundances of the different plant and microbial taxa may not accurately reflect 703 

their abundances (Deagle et al., 2019; Gloor et al., 2017). DNA copy number can be biased by plant 704 

tissue type (i.e., fruit, pith, leaves, the latter of which contain more chloroplasts; Egea et al., 2010), the 705 

copy number of the rRNA locus, relative digestibility (i.e., amount of fiber), and PCR amplification 706 

success (reviewed by Deagle et al., 2019). However, other methods for dietary characterization also 707 

face biases. For example, accuracy of macroscopic fecal analysis depends on the types of tissues 708 

consumed and the extent of digestion (King & Schoenecker, 2019). Observational studies can 709 

overestimate the dietary importance of foods with longer handling times (Matthews et al., 2020) and 710 

require habituating study animals, which may make them more vulnerable to poaching and increase 711 

exposure to human-transmitted diseases (Green & Gabriel, 2020). Hence, understanding ecological 712 

and particularly dietary diversity of different animal species would benefit from a combination of 713 

approaches. Molecular methods are particularly suited for the study of unhabituated animals, in 714 

regions where tracking over a long time period is not feasible or desirable.  715 
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The use of shotgun metagenomics will ameliorate many of the limitations described above and 716 

allow for more complete interpretation by also enabling functional characterization of gut microbial 717 

communities. It would thus be feasible to test if the gut microbiome differs in functional profiles as a 718 

result of dietary differences across populations, or if functions remain conserved, suggesting that 719 

nutritional values of different diets are indeed similar. With the decrease in sequencing costs and 720 

massive growth of whole genome reference databases that become available as a result of genome 721 

sequencing initiatives (Formenti et al., 2022; Lewin et al., 2018), the use of shotgun metagenomics 722 

will increase in the coming years, fueling the application of the hologenomic framework to wild 723 

animal populations. 724 

 725 

Conclusions 726 

Our results suggest that the animal gut microbiome may contribute to adaptation to new 727 

environments, while retaining a core set of potentially essential constituents. We provide evidence that 728 

this microbial plasticity is associated with dietary flexibility, and as such the gut microbiome may 729 

enable the host to exploit new resources, a precursor to local adaptation. If so, the microbiome may 730 

indirectly encourage subsequent cultural adaptation to feeding on new dietary items. We emphasize 731 

the utility of fecal sampling for minimally-invasive population monitoring of different aspects of 732 

endangered species biology, from genetics to ecology and foraging behavior. Despite its limitations, a 733 

molecular approach can reveal otherwise clandestine insights into the biology of elusive animals and 734 

is particularly powerful when combined with traditional observational methods. Our results highlight 735 

the importance of incorporating multiple axes of population differentiation into studies of endangered 736 

animals, since safeguarding ecological and genetic biodiversity is the primary objective of species 737 

conservation.  738 

739 
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