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Abstract 

The characteristic endogenous circadian rhythm of plasma glucocorticoid 

concentrations is made up from an underlying ultradian pulsatile secretory 

pattern. Recent evidence has indicated that this ultradian cortisol pulsatility is 

crucial for normal emotional response in man. In this study, we investigate the 

anatomical transcriptional and cell type signature of brain regions sensitive to a 

loss of ultradian rhythmicity in the context of emotional processing. We combine 

human cell type and transcriptomic atlas data of high spatial resolution with 

functional magnetic resonance imaging (fMRI) data. We show that the loss of 

cortisol ultradian rhythm alters emotional processing response in cortical brain 

areas that are characterized by transcriptional and cellular profiles of GABAergic 

function. We find that two previously identified key components of rapid non-

genomic GC signaling – the ANXA1 gene and retrograde endocannabinoid 

signaling – show top differential expression and the most significant enrichment. 

Our results further indicate that specific cell types, including a specific NPY-

expressing GABAergic neuronal cell type, and specific G protein signaling 

cascades underly the cerebral effects of a loss of ultradian cortisol rhythm. Our 

results provide a biological mechanistic underpinning of our fMRI findings, 

indicating specific cell types and cascades as a target for manipulation in future 

experimental studies.  

 

Keywords: 
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fMRI, transcriptomics, brain, Allen human brain atlas 

 

Introduction 

 

Glucocorticoids (GCs) are a class of mammalian hormones known for their 

pleotropic effects across different bodily systems, such as metabolism, fluid 

homeostasis, immune and stress system responsivity, as well as brain function. 

The immunomodulatory capacity of these hormones has been utilised in clinical 

therapeutics for more than half a century.1 The underlying mechanisms through 

which GCs mediate such a diversity of biological processes remain a topic of 

intensive investigation. Recent evidence indicates that biorhythmicity might be of 

great importance.  GCs exhibit a circadian rhythm, with high hormonal levels being 

secreted just prior to and during the active part of the day. The circadian rhythm is 

superimposed on an underlying ultradian rhythm of more frequent episodes of GC 

secretion (i.e., hormonal pulses).2 The brain is exposed to these hormonal pulses 

and has developed mechanisms able to perceive them and translate them to 

cellular, genomic and non-genomic events.3 Thus, GC pulsatility might regulate 

various physiological -, neural -, and glial processes, under baseline and stressful 

conditions, and hormonal dysrhythmicity could be associated with cognitive and 

behavioural disorders.4 

 We designed and conducted a randomised, double-blind, placebo-

controlled, crossover study to assess functional relevance of GC pulsatility for 

human brain circuitry. We used a human model of adrenal insufficiency 
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(metyrapone-induced suppression of GC endogenous biosynthesis),5 in which GC 

deficiency was exogenously replaced via two different, pump-mediated 

subcutaneous infusion methods: one mimicking the normal adrenal function under 

baseline conditions (resembling the normal circadian and underlying ultradian, 

pulsatile rhythm) and another lacking GC ultradian pulsatility. The cumulative 

dosage of the infused hydrocortisone was equal for both methods (20mg/day). 

Exposure of the human brain to the same emotional stimuli (fearful, happy, and 

sad faces) provokes a differential response from corticolimbic regions of the right 

hemisphere, involved in emotional processing, depending on the mode (i.e., 

presence or absence of ultradian rhythmicity) of GC replacement.6 These 

functional magnetic resonance imaging (MRI) findings provide evidence that 

ultradian GC rhythm could be critical in regulating neural dynamics in human, but, 

at the same time, they raise the question why these particular brain regions show 

to be sensitive to changes in GC rhythmicity, while other brain regions did not.  

 In the current work, we approached this question from a transcriptional and 

cell type point of view: we investigated the relationship between differential GC 

rhythm-dependent brain activation in the fMRI data and anatomically patterned 

transcriptional and cell type profiles. To do this we utilized available data from the 

Allen Human Brain Atlas (AHBA).7 This is an anatomically comprehensive 

transcriptional brain atlas sampled from a number of carefully selected, clinically 

unremarkable donor brains, produced by a combination of histology-guided fine 

neuroanatomical molecular profiling and microarray-assisted mapping of gene 

expression data into MRI coordinate space.  The AHBA provides an unparalleled 
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high-resolution genome-wide map of transcript distribution and the ability to 

analyze genes underlying the function of specific brain regions.8–12  

In this context, we combined the functional MRI results of our study with 

available AHBA data to investigate which genes of the AHBA donor brains were 

differentially expressed in the GC rhythm-sensitive cortical brain areas (as 

specified by our functional MRI study) in comparison with the remaining cortical 

areas, thus specifying an anatomical transcriptomic signature of GC rhythm-

sensitive cortical brain areas. We utilized gene ontology, pathway and protein-

protein interaction databases to look for enrichment of functions (i.e., relate gene 

expression profiles of brain GC rhythm sensitiveness to enrichment of specific 

brain cell functionality). We also utilized AHBA neuronal cell type databases to 

scale up the signature of cortical brain GC rhythm sensitiveness from a transcript 

to a cell type level. In the latter case, if specific human-verified neuronal cell types 

are discovered to be enriched in the areas that show GC rhythm-responsivity, this 

could trigger a selective, preclinical, experimental investigation on the relationship 

between these human neuronal cell types and GC rhythmicity. 

 

Results 

Differential expression analysis 

The brain regions that showed significant variations in the BOLD signal responses 

to emotional stimulation (exposure to emotionally valenced faces) between the 

pulsatile and the non-pulsatile group were matched with brain coordinates of the 

AHBA samples from the left cortex, as depicted in Figure 1 (see Methods section 
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for details). Note that although lateralization in function is well described, it has 

been established in multiple studies that there are no statistically significant 

transcriptional hemispheric differences in adult brain.7,13 This indicates that post-

transcriptional factors constitute hemispheric differences in function, while left and 

right hemispheres are similar on a gene transcription level. Because only two 

donor brains have been sampled bilaterally, while all six donor brains include 

samples from the left hemisphere, we maximized spatial resolution by mapping the 

fMRI effects of the right hemisphere to cortical AHBA sample coordinates of the 

left hemisphere by inverting the x-axis coordinates in MNI-152 space (Figure 1A).  

After selection of cortical samples, based on their inclusion in the cortical 

Desikan parcellation atlas,14 61 left cortical samples were mapped to the 

differentially responsive brain areas (regions corresponding to either “mask A” or 

“mask B” in Figure 1A), and 1224 left cortical samples were selected as control 

samples (Figure 1B and Table 1). 

Despite the gene expression normalization procedures performed by the 

AHBA,15 it has been established that large inter-individual differences in gene 

expression remain in the AHBA samples.16 We too find that for the 1285 left cortical 

samples used in our differential expression analysis, samples from the same brain 

have more similar gene expression levels. To account for these between-donor 

effects, and additionally any between-sample effects in our differential expression 

analysis, we applied both within-sample and across-sample normalization 

strategies (see Methods section).16 We visualize the efficacy of these strategies 
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by running a t-distributed Stochastic Neighbor Embedding (tSNE) on all 1285 

included cortical samples before and after preprocessing steps (Figure 1C).  

 

 

After all preprocessing steps and probe selection criteria were applied, differential 

expression analysis was performed for 10015 gene transcripts, comparing 61 

AHBA samples (cases) with 1224 AHBA samples (controls). This resulted in 304 

genes that showed significant differential expression after correcting for false 

discovery rate (FDR), with the significancy threshold set at Benjamini-Hochberg 

corrected p < 0.05. 223 genes showed a differentially higher expression, and 81 

genes showed a differentially lower expression. The top 25 of differentially 

expressed genes are plotted in Figure 2A (for a full list see Supplementary Table 

1). 

Although possible donor-driven effects were mitigated by extensive 

normalization strategies, we additionally tested the possibility of incomparable 

transcriptomic signatures between donor brains (for example due to age, gender, 

ethnicity etc.) that might invalidate the differential expression analysis. We did this 

by using the differential stability (DS) metric: a correlation-based measure for the 

consistency of a gene’s differential expression pattern across brain structures.17 

We used the fact that gene expression patterning across brain structures was 

assessed for reproducibility in all six AHBA donor brains in previous works.18,19 By 

cross-referencing our differentially expressed genes list with these previous results 

(Supplementary Table 2 of the study by Hawrylycz et al.18), we find that our 

differentially expressed genes show high median differential stability in comparison 
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to other genes (median = 0.74 versus median = 0.53, p < 0.001). This indicates 

that the identified genes have reproducible gene expression patterns across all 

donor brains, regardless of sex, age and other donor related factors (Figure 2B). 

 

Differential gene expression in pulsatility-sensitive brain regions shows 

neuronal specificity and enrichment for retrograde endocannabinoid 

signaling 

We analyzed the differentially expressed genes for enrichment of gene ontology 

(GO) terms (including GO terms relating to cellular components, biological 

processes, and molecular functions) and Kyoto Encyclopedia of Genes and 

Genomes (KEGG) pathway categories (Figure 3). Using all 223 genes that showed 

higher differential expression in the pulsatility-responsive brain regions, we found 

significant enrichment for 37 different GO terms related to cellular components and 

biological processes (FDR corrected p < 0.05, see Supplementary Table 2). Most 

notably, terms relating to neurons (e.g. neuron part, neuron development, neuron 

projection) and intercellular communication (e.g. signaling, cell communication, 

synapse, response to stimulus) were found to be enriched, confirming neuronal 

specificity of differential gene expression in pulsatility-responsive brain regions. 

Significant enrichment for KEGG pathways (FDR corrected p < 0.05) was found 

for the categories ‘retrograde endocannabinoid signaling’, ‘glutamatergic synapse’, 

‘GABAergic synapse’ and ‘morphine addiction’ (see Figure 3 and Table S3). In the 

81 genes with lower differential expression, none of the positive hits in the GO term 

enrichment analysis showed statistically significance after FDR correction 

(Supplementary Table 4). Enrichment analysis for KEGG pathways in these 81 
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genes yielded one positive hit but reached no statistically significance 

(Supplementary Table 5).  

 

Differentially expressed genes in pulsatility-sensitive cortical brain regions 

show enrichment for transcriptomic signatures of stress-related psychiatric 

disease. 

Using two recent brain transcriptomic studies defining brain transcriptomic 

signatures for several psychiatric disorders based on several tissue types,20,21 we 

tested for enrichment of our higher and lower differentially expressed genes in 

these transcriptomic signatures (see Table S7 for all results). In one study 

including both MDD and PTSD brain samples,20 we found enrichment of both MDD 

and PTSD genes in our 223 higher differentially expressed genes (Table S7). 

Using a second study including multiple psychiatric diseases,21 our differentially 

higher expressed genes were enriched for genes showing higher differential 

expression in autism spectrum disorder (ASD), bipolar disorder (BD) and alcoholic 

abuse disorder (AAD). In our 81 differentially lower expressed genes, we found 

enrichment for genes showing differentially lower expression in ASD, 

schizophrenia (SCZ) and BD (Table S7). In further validation of our differential 

expression results in relation to stress-related disorders, we performed additional 

enrichment analysis using the PheWeb database: a dataset based on genome-

wide associations for EHR-derived diagnoses in the UK Biobank.22 We found the 

most enriched category (having the highest odds ratio) to be ‘Acute reaction to 

stress’ (see Figure S2). 
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Protein-protein interaction enrichment analysis reveals association of 

pulsatility-responsive brain regions with particular Giα signaling events 

 

Using the list of 223 differentially expressed genes that show higher expression in 

the pulsatility-responsive brain regions, protein-protein interaction enrichment of 

the proteins encoded by those genes was analyzed using multiple databases (see 

Methods section) to plot a network containing all proteins (encoded by our 

differentially expressed gene list) that have documented interactions with at least 

one other protein in the list. Next, using the MCODE algorithm23 for detection of 

densely connected network components within this network, we found two densely 

connected networks. One densely connected network consisted of ADRA1B, 

GNAO1, GNG2, GNG4, GNB2, GNB4 and PIK3CG. Subsequent pathway and 

process enrichment analysis of this MCODE component indicates functional 

enrichment for G beta-gamma signaling through PIK3Kgamma, more generic G-

protein beta-gamma signaling and cholinergic synapse (Figure 4). The other 

densely connected network consisted of protein-protein interactions between NPY, 

ANXA1, SST, PTGER3, OPRK1 and CXCL2, and showed functional enrichment 

for Gαi signaling events, and (more generic) G protein-coupled receptor (GPCR) 

ligand binding, as well as a subclass of GPCRs, the rhodopsin-like receptors. 

These results further support the notion that GC rhythm alterations act directly on 

the brain and will have most effect in brain regions that, on an anatomical 

transcriptional patterning level, show to be enriched for genes related to particular 

GPCR functionality. The same analysis performed on the set of genes with lower 
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differential expression did not result in any densely connected networks showing 

significant enrichment.  

 

Cortical cell type analysis reveals exclusive enrichment of GABAergic 

neurons and differentially expressed genes specific to certain cell types 

 

Using the 223 higher differentially expressed genes, human cortical cell type 

enrichment analysis showed an exclusive enrichment for GABAergic cell types. 

Specifically, the three cell types found to be enriched (Figure 5) were the 

GABAergic SP8-expressing interneurons (belonging to a cluster of neurons 

expressing PAX6 and TNFAIP8L3); EGFEM1P-expressing interneurons 

(belonging to the cluster of neurons expressing VIP and PENK); and the QRFPR-

expressing interneurons (belonging to the cluster of neurons expressing SST and 

GXYLT2). Using the 81 lower differentially expressed genes showed no 

enrichment for any of the neuronal cell types (Figure 5).  

 

For the 223 higher differentially expressed genes, cross-referencing of 

single marker genes, specific and sufficient for the classification of a single cortical 

neuronal cell type, yielded a match with the GABAergic NPY-expressing 

interneurons. When taking all marker genes for this cell type into account, the NPY-

expressing neurons failed to reach significance in our hypergeometric enrichment 

analysis, as not all marker genes were present in our differentially higher 

expressed gene set. However, in the cell type dataset, NPY gene expression was 

found to be highly specific for a single inhibitory cell type (Figure S1).24 Even 
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though the NPY-expressing neuronal cell type failed to reach significance in the 

hypergeometric test (p = 0.265), we thus consider the significantly higher 

expression of NPY in the examined brain regions an indication of an enrichment 

of the specific NPY-expressing GABAergic neurons in those regions.  

To further look on a cell type level at the MCODE component genes in the 

protein-protein interaction analysis, which also contains NPY, we used the gene 

expression levels by cell type from a recently added single nucleus RNA 

sequencing cluster-based cell type dataset, consisting of 120 distinguished human 

cortical cell types (see Methods section).25 The results are plotted in Figure 6, and 

again show a specific GABAergic neuronal cell type ("Inh L6 SST NPY”) that shows 

highly specific expression of the NPY gene. The same plot including the top-50 

higher differentially expressed genes and both cortisol receptors (GR and MR) is 

shown as Figure S1. 

In addition to the specific human cortical neuronal cell type datasets, that include 

a vast majority of cortical neuronal cell types, we also looked at enrichment in a 

larger cross-laboratory, rodent-derived dataset containing putative marker genes 

for different cell types in the brain, not specific to either cortical regions or neuronal 

subpopulations.26 We found a significant enrichment for marker genes of microglia, 

Purkinje cells and serotonergic cells (Supplementary Table 6). 

 

Discussion  

In this study we investigate the transcriptional and cell type patterning of brain 

regions that are sensitive to cortisol pulsatilty. Strikingly, both the top significant 
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differentially expressed gene (ANXA1) and the most significantly enriched KEGG 

pathway term (retrograde endocannabinoid signaling) have been identified before 

as key components of rapid non-genomic GC signaling.27–30  

 

The endocannabinoid system has emerged as an important regulator of some of 

the rapid, non-genomic glucocorticoid effects in the brain.28–30 The mechanism 

involves the glucocorticoid-mediated activation of membrane associated variants 

of the GRs at the target brain cells (mainly postsynaptic sites) to induce 

endocannabinoid synthesis and/or local release, causing retrograde cannabinoid 

type I receptor-mediated modulation of the presynaptic neuronal activity. This 

mechanism has been described as responsible for (i) the hormonal negative 

feedback regulation of excitatory synaptic inputs to hypothalamic (paraventricular 

nucleus) neuroendocrine cells,28 and (ii) the long-lasting suppression of 

spontaneous inhibitory synaptic inputs29 as well as facilitation of excitatory inputs 

to the basolateral amygdala principal neurons induced by glucocorticoids in the 

acute stress setting,31 while (iii) a similar involvement of this glucocorticoid-induced 

mechanism has been also described for the attenuation of inhibitory transmission 

in prelimbic cortex, again under stressful conditions.32 Our data suggest that 

cortical brain regions with the capacity of recruiting the retrograde 

endocannabinoid signaling pathway may be more sensitive to the characteristics 

of the ultradian glucocorticoid rhythm, i.e., able to convert changes in 

glucocorticoid pulsatility into different neurobiological effects (in our case 

differential neural activation in response to the same emotional stimuli). 
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The ANXA1 finding is also of great interest as it has been implicated as a facilitator 

in the rapid non-genomic inhibitory feedback effects of endogenous 

glucocorticoids on ACTH release.27 Although these findings were limited to the 

folliculo-stellate cells in the anterior pituitary gland, the ANXA1 gene has also been 

implicated in the neuroprotective and anti-inflammatory role of microglia.33 

Although sparse ANXA1 gene expression has been demonstrated in microglia of 

human brains,33 the extensive cortical cell type data based on single nucleus RNA 

sequencing of multiple cortical regions of the human brain25,34 that we used here, 

shows ANXA1 gene expression to be mostly apparent in excitatory neuronal cells 

(Figure S1). In this these data, ANXA1 does not show any pronounced expression 

(trimmed means > 0) in the microglial cell types of the human cortical cell type data 

(Figure S1). ANXA1 is however listed as a microglial marker gene in the 

NeuroExpresso rodent-based data.  

 

ANXA1 is also part of the defined densely connected network of protein-protein 

interactions that drives enrichment of terms related to GPCR function, more 

specifically Gαi signaling events. This enrichment can be interpreted as an 

indication of i) the involvement of a specific (set of) cortisol activated GPCR(s) 

associated with G alpha i proteins, ii) membrane GR/MR having a hitherto 

unknown association with Gαi signaling events, iii) cross-talk between GR/MR 

signaling and signaling cascades involving these G protein species. For example, 

this could mean that a cortisol pulse is linked to an inhibitory transmission effect 
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(Gαi).35 Additionally, the interaction network showed enrichment of G-protein beta 

and gamma subunits and linked this to acetylcholine receptor signaling. It was 

previously demonstrated that intracellular calcium signaling via the mAChR3 

subtype depends on the beta 2, gamma2 and gamma 4 subunits that are present 

in the MCODE-1 network.36 This suggests a link between calcium regulation and 

the sensitivity to cortisol pulses, perhaps involving annexin A1.37 

 

The results of our cell type analysis show exclusive enrichment for GABAergic 

neurons, with NPY gene expression enrichment indicating possible enrichment of 

a specific SST-NPY expressing GABAergic interneuron. This is of interest because 

evidence has consistently implicated (SST expressing) GABAergic interneuron 

dysfunction in MDD (Major Depressive Disorder) pathology.38,39 Both 

hypercortisolemia and circadian rhythm alterations have been related to MDD 

subtypes and MDD pathology in general.40 Our results additionally seem to point 

to the importance of ultradian rhythm disturbances in the process of GABAergic 

interneuron dysfunction in MDD pathology. In our differentially expressed genes, 

we did in fact find enrichment of an MDD brain transcriptomic signature as defined 

by one recent study.20 However, we did not find an MDD brain transcriptomic 

signature enrichment when using the transcriptomic signature defined by another 

study.21 

 

Although anatomical cell type enrichment in our defined brain regions appears to 

be exclusive for GABAergic neurons in the human cortical cell type data, inspection 
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of the cell type specific expression shows excitatory neuron specificity for some 

differentially expressed genes as well. Specifically, ANXA1 and NR4A2 show 

expression predominantly in glutamatergic neuronal cell types (see Figure S1). 

This implies that, although there might be an important role for GABAergic 

signaling in pulsatility sensitivity, the Gαi and Gαq signaling events implicated in 

the differential brain activational response to cortisol rhythm changes are not 

specific to GABAergic cell types but occur in glutamatergic neurons as well.  

 

No microglial enrichment was found in the human cortical cell type analysis, but it 

was found in NeuroExpresso-based results. The enrichment analysis using the 

NeuroExpresso data, however, is more difficult to interpret, as the marker gene 

data used here are rodent derived, not cortex specific and is not comparable to the 

standard of tissue processing and measuring protocols from the human cell type 

data (i.e. mainly microarray based, different labs with different procedures were 

used).25 Also, while only six marker genes were included for microglial cells in the 

human cortical cell type data,24 the NeuroExpresso datasets lists over a hundred 

unique marker genes for microglia (see Supplementary Table 6). Depending on 

the specificity of those genes, an abundance of marker genes could lead to an 

increase in false positive results. Yet, there is considerable evidence for a role of 

microglia in the stress response and transcriptomic dysregulation of microglia, 

although mostly in the context of overactivation in chronic stress.41,42   

 

Limitations and strengths 
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It is important to note that we only describe anatomical transcriptomic patterns, 

based on healthy donor brains, and do not investigate putative brain transcriptional 

effects in the brains of the participants of the pulsatility study. The aim of our 

current study was to investigate the anatomical transcriptional and cell type 

patterning of pulsatility sensitive brain regions. Notably, this is unrelated to any 

local transcriptional effects that loss of ultradian cortisol rhythm might have on 

specific brain regions, and does not include any post-transcriptional factors that 

can explain observed lateralization in function.   

 

The AHBA provides the most detailed dataset for examining spatial distribution of 

human brain transcriptomics to date but is limited to six donor brains. Another 

differential expression analysis with the same spatial resolution would not be 

possible in other publicly available data at this time. Importantly, it should be noted 

that to mitigate any donor-driven bias, and to control for any possible 

incomparability of gene expression levels due to donor-specific differences (e.g. 

age, gender, ethnicity) we 1) did thoroughly correct for any donor-driven gene 

expression bias, 2) used a regression based method that allows for repeated 

sampling from the same subjects, and 3) checked the comparability of gene 

expression patterning of differentially expressed genes across donor brains using 

the differential stability criterion. The outcome of these control measurements (see 

Figure 1C and 2B) indicate an unbiased differential expression analysis and 

reproducible results across all 6 donor brains, regardless of demographic or 

biological differences of donors. Although we estimate the sample size (i.e. n = 
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1285) coming from these six donors to be sufficient for the scope of our current 

analyses, including more donor brains with the same spatial resolution likely would 

have further improved the generalizability of the current results to brains with a 

more substantial diversity of donor characteristics. 

 

We define a cortical brain region as ‘pulsatility sensitive’, i.e. showing a differential 

pattern of neural activation between physiological pulsatile and non-pulsatile 

groups, on the basis of a task-based fMRI study. It is therefore possible that 

additional cortical regions could be defined as ‘pulsatility sensitive’ in a different 

task-based setting. Our results thus formally define transcriptional and cell type 

patterns of regions that are pulsatility sensitive in the context of emotional 

processing. Accordingly, we selected ‘rest-of-cortex’ as control samples in our 

differential expression analysis because the fMRI results are based on a whole-

brain analysis - in the context of emotional processing. Importantly, these fMRI 

results reflect significant differences in neural activation during emotional 

processing between both groups (see supplementary figure S4 of Kalafatakis et 

al).6 This means that the statistical maps we used in our analysis are unrelated 

and independent to mean task activation (i.e., a brain region might show a distinct 

mean neural response to the task, but might not at all show differential fluctuation 

of activation during task conditions between groups, and vice versa). 

Consequently, it would be invalid to select ‘control samples’ only from regions 

showing significant base neural response to the task. To illustrate, we thresholded 

a separately calculated statistical map for mean task activation to exactly include 
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all significantly differential responsive regions (meaning that the significantly 

differential responsive region with the lowest mean task activation is used as a 

threshold for “task activation”). Using this threshold, virtually the whole brain can 

be defined as ‘activated by task’. For these reasons, we chose to use “rest-of-

cortex” as control samples.  

 

The task-based setting used in our fMRI study, with a validated paradigm for 

probing emotional processing, has several advantages. First, we found differences 

in emotional processing on a functional level between pulsatility groups, meaning 

that the imaging effects correlate to functional effects as well.6 Second, by using 

the context of emotional processing, effects of loss of ultradian rhythm are likely 

related to brain functionality affected by cortisol signaling related pathologies such 

as major depressive disorder, posttraumatic stress disorder and other stress 

related psychiatric disorders. 

 

In fact, we did find enrichment of differentially expressed genes related to 

transcriptomic brain signatures described in both PTSD and MDD, but also ASD, 

BD, SCZ and AAD. A difficulty with interpreting these enrichment results is that 

defined differentially expressed gene sets in both transcriptomic studies used for 

gene set definition20,21 are based on several brain tissues from non-overlapping 

anatomical origins. None of the tissues included in these studies overlaps with the 

fMRI mask we used for our differential expression analysis. In this regard it is also 

important to note that even the same neuronal cell type can have a different 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 21, 2022. ; https://doi.org/10.1101/2022.01.05.475032doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.05.475032
http://creativecommons.org/licenses/by-nc/4.0/


 
 

20 
 

transcriptomic profile depending on the cortical region it is embedded in, indicating 

the possible loss of power using several different non-overlapping tissues.43 

Another issue is that MDD enrichment was found when using one study by Girgenti 

et al,20 but not when using the MDD gene set as defined by the study by Gandal 

et al.21 This further indicates the difficulty of comparing different brain tissues, 

especially given a lack of robust marker genes throughout tissue types (which was 

the case for the data by Girgenti et al). Although the study by Gandal et al lists 

correlated log2 fold change in differentially expressed genes across disorders, and 

results from this study that are shared amongst different brain areas and diseases 

might be more robust, there is only one gene that satisfies the condition of having 

an FDR-corrected p-value < 0.05 in all five disorders (gene: CRH). This might 

explain the lack of enrichment of our differential expression results for the ‘all-

diseases’ group of genes as defined by the Gandal study.  

 

Cell type enrichment analysis was based on human cortical cell type data, which 

we consider a strength of the study. However, as these data distinguishes more 

inhibitory than excitatory neuronal cell types, and lists approximately twice as many 

combined inhibitory marker genes than excitatory marker genes (386 versus 173), 

there is a possible bias towards inhibitory cell enrichment. The significantly higher 

expression of the NPY gene – which is highly specific for a specific SST expressing 

cluster of inhibitory neuronal cell types – , and the fact that the differentially 

expressed genes show enrichment for four inhibitory cell types, but no excitatory 
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cell types, do seem to point to the importance of a GABAergic neuronal response 

to cortisol pulsatility. 

 

As discussed in relation to microglia, the additional cell type enrichment analysis 

using NeuroExpresso cell type data might not reflect optimal marker gene 

specificity. For some enriched cell types, NeuroExpresso marker genes also seem 

to be non-specific upon further inspection (Supplementary Table 5). For example, 

the enrichment found for ‘serotonergic cells’ is based on the inclusion of two genes 

(TRH and PTGER3), that are in fact not specific for serotonergic cells. Obviously, 

serotonin producing cell bodies should be absent or very scarce in cortical cells. 

Assuming that these markers are not abundant in axonal projections of 5-HT 

neurons, and given that these ‘marker’ genes are not exclusive for 5-HT neurons, 

we consider this enrichment call to be a false positive outcome. 

 

The aim of this study was to investigate the anatomical transcriptional and cell type 

patterning of pulsatility sensitive brain regions. We show that the loss of cortisol 

ultradian rhythmicity alters emotional processing response in cortical brain areas 

that are characterized by transcriptional and cellular profiles of GABAergic 

functioning. Our results indicate that specific cell types and G protein signaling 

cascades underly the cerebral effects of loss of physiological cortisol rhythm, thus 

making these cell types and cascades a target for manipulation in future 

experimental studies.  

 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 21, 2022. ; https://doi.org/10.1101/2022.01.05.475032doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.05.475032
http://creativecommons.org/licenses/by-nc/4.0/


 
 

22 
 

Overall, in this study, we have identified target genes, signaling pathways and 

neuronal subtypes that might constitute key players in the physiological response 

to glucocorticoid pulsatility and its translation to differential biological effects in the 

human brain.     

 

 

Materials and Methods 

 

Functional MRI study 

This was a randomized, double-blind, placebo-controlled crossover study of 

different modes of hydrocortisone replacement in healthy subjects, registered with 

the United Kingdom Clinical Research Network (IRAS reference 106181, UKCRN-

ID-15236; October 23, 2013). The study followed the CONSORT guidelines for 

randomized controlled trials. Fifteen right-handed, healthy male volunteers aged 

20–33 years were included in the study. The Ethics Committee of the University of 

Bristol approved the study, and all participants provided informed written consent. 

More details on the development and validation of the human model of adrenal 

insufficiency, and the different modes of GC replacement therapy, inclusion and 

exclusion criteria of the study, recruitment process, quality control and bioethical 

concerns, randomization, and blinding processes, as well a detailed presentation 

of all outcome measures recruited (aside functional MRI), can be found 

elsewhere.4–6 
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Functional MRI data 

The functional image pre-processing steps consisted of (i) brain intensity 

normalization, (ii) 3D motion correction, (iii) B0 unwarping with assistance from the 

B0 fieldmap images, (iv) brain extraction, (v) spatial smoothing, (vi) temporal high 

pass filtering, and (vii) co-registration of the functional image with a corresponding 

high-resolution, anatomical, T1-weighted image and with MNI152 standard space. 

Bias field correction has been applied, before removing the non-brain tissue from 

the high-resolution image. For each individual/ session functional MRI dataset, a 

regression analysis was performed using a general linear model fitting the 

temporal evolution corresponding to the paradigm (emotional face presentation). 

A fraction of the temporal derivative of the blurred original waveform was added to 

the model. Temporal filtering was also applied. The form of the hemodynamic 

response function convolution method applied to the basic waveform was the 

Gamma variate. Three different effects were modelled (original exploratory 

variables); visual exposure to (i) fearful human faces, (ii) happy human faces and 

(iii) sad human faces. For the statistical analysis of the functional MRI data 

acquired during the presentation of emotional faces, we produced individual 

session/subject level maps of activity, indicating which brain regions were 

responding to the emotional face recognition (contrasting the baseline, resting 

state condition). For the comparisons between the GC pulsatile and non-pulsatile 

groups, whole-brain, group-level analyses were carried out using a mixed effects 

model. Each group-level analysis produced thresholded z-score brain region 

clusters highlighting statistically significant variations in the activation pattern 
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between the GC pulsatile and non-pulsatile groups in response to emotional face 

stimulation. In all cases, corrections for multiple comparisons were performed at 

the cluster level using Gaussian random field theory (minimum z > 2.3, cluster p 

threshold < 0.05).6 

 

Transcriptomic atlas 

The Allen Human Brain Atlas (AHBA) is a publicly available transcriptional atlas 

based on microarray measures, using a set of 58692 probes in 3702 samples 

across brainstem, cerebellum, subcortical and cortical brain structures across six 

postmortem human brains (five males and one female, age range 24 – 57, African 

American, Caucasian and Hispanic ethnicities). For limited samples of two donor 

brains, expression values were also measured by RNA sequencing. All expression 

data and metadata were downloaded from the AHBA (http://human.brain-map.org) 

on October 14th, 2019. 

 

Data analysis 

Our data analysis method can be summarized into seven distinct steps (see 

below). Many of our choices for data handling have been based on the work of 

Arnatkeviciute et al.16 For step two (probe selection) and part of step three (sample 

selection), MATLAB scripts from their processing pipeline (publicly available at 

https://github.com/BMHLab/AHBAprocessing/) were adapted and customized for 

our own analysis (with their approval), using MATLAB version R2020a. For the rest 

of the analysis steps, except for probe reannotation, the programming language R 
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(version 3.6) has been utilized. All used R packages were installed under R build 

3.6. All R code is made publicly available on GitHub at 

https://github.com/pchabets/fMRI-Transcriptomics-Ultradian-Cortisol.  

 

Step 1: Reannotation of probes 

Since the probe annotation originally provided by the Allen Institute dates from a 

decade ago, probes were first reannotated to the latest human genome version 

and reference sequence using the Re-Annotator pipeline.44 Re-Annotator is freely 

available for download at https://sourceforge.net/projects/reannotator/. The most 

recent genome and reference sequence were downloaded from the UCSC website 

on May 20th, 2020. The reannotation step resulted in the selection of 46039 probes 

annotated to a total of 20200 unique genes for inclusion into further analysis. 

 

Step 2: Probe selection 

If multiple probes were annotated to the same gene, we selected the best 

representative probe for that gene. Previous work has shown that selecting probes 

on the basis of the highest expression (intensity based filtering) improves the mean 

correlation between microarray and RNA sequencing (RNAseq) measures of gene 

expressions obtained in the same brain samples, thus improving microarray data 

reliability.16 Therefore, we first selected probes that showed a signal above noise 

signal in at least 50% of cortical and subcortical samples across all subjects. This 

resulted in 31977 remaining probes, annotated to 15719 unique genes. Next, for 

each gene, if multiple probes were annotated to that gene, one single probe was 
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selected by choosing the probe with the highest correlation to the RNAseq 

measures for the same gene in the same samples (RNA sequencing data available 

for first two donors. Data were downloaded at http://human.brain-

map.org/static/download on October 14th, 2019). To further improve reliability of 

the differential expression analysis based on microarray probe measurements, we 

removed probes from the analysis that: a) were annotated to a gene that was not 

detected by the RNAseq measurement in the same sample, b) showed a low 

correlation to RNAseq data (Spearman Rho < 0.2). This resulted in 10014 probes 

selected for 10014 unique genes. Previous work showed that functional 

enrichment analysis of genes that are removed based on these criteria show no 

enrichment for genes related to neuronal function.16  

 

Step3: Sample selection 

Two AHBA donor brains were sampled bilaterally, while the other four donor brains 

were only profiled on the left hemisphere. This was done because no significant 

interhemispheric transcriptional difference was found in the first two brains. This is 

in accordance with previous evidence indicating that indeed no statistically 

significant transcriptomic differences between the left and right hemispheres 

exist.7,13 To maximize spatial coverage, we only included AHBA samples from the 

left cerebral cortex for analysis. Because the differentially responding brain regions 

in the considered fMRI data were located on the right hemisphere, we 

symmetrically flipped the MNI-coordinates of the affected brain regions from right 

to left, to optimize spatial transcriptomic coverage. Flipping the fMRI mask from 
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right to left is a valid approach in this case, since we are looking at cortical 

anatomical transcriptional patterning only, and no statistically significant 

hemispheric difference exists on the mRNA level.  

Left hemisphere samples were selected if they could be annotated to the 

Desikan cortical parcellation atlas, using the AHBA processing pipeline available 

at https://github.com/BMHLab/AHBAprocessing/.14 In total, 1285 left cortical 

samples were included for differential gene expression analysis. Next, AHBA 

samples and fMRI masks were plotted in MNI152 space. Using trilinear 

interpolation, it was calculated for each AHBA sample whether it could be assigned 

to an “affected” brain area (meaning falling inside either of the two fMRI 

thresholded masks) or not. This resulted in 61 samples in the “affected” brain 

regions versus 1224 samples in the “unaffected” brain regions.  

 

Step 4: Normalization of expression values 

To verify the possibility that donor-driven effects could bias our differential 

expression analysis, we plotted the 1285 samples based on their respective gene 

expression values in a 2D representation using tSNE. This clearly showed 

clustering of samples by donor brain. We therefore corrected for possible donor-

driven effects by using the RemoveBatchEffect function from the limma package 

for R,45 treating each donor as a separate batch. Because the limma function uses 

linear modelling, this correction method can be sensitive to outliers. Therefore, an 

additional outlier-robust normalization strategy was performed using scaled robust 

sigmoid (SRS) normalization: 
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𝑥! =
1

1 + exp	 )	−(𝑥" − 〈𝑥〉)𝐼𝑄𝑅/1.35 6
 

 

where 〈𝑥〉 and IQR represent the median and the inter-quartile range respectively, 

followed by rescaling to a unit interval of 0-1:16,46  

 

𝑥#$%& =	
𝑥! −min	(𝑥)

max(𝑥) − min	(𝑥) 

 

Figure 1C shows the effect of this normalization strategy on the donor-driven 

clustering of samples. To also account for gene outliers within each sample (within-

sample, across-genes normalization), we additionally performed the same SRS 

and unit-interval scaling procedure within each sample, across all the measured 

gene expressions. 

 

Step 5: Testing significance of differentially expressed genes 

Differential gene expression analysis between the 61 “affected” versus 1224 

“unaffected” samples was performed using the limma package for R.39 Genes were 

ranked in order of evidence for differential expression by first fitting a linear model 

to the microarray data with the lmFit function, and then using an empirical Bayes 

method to shrink the probe-wise sample variances towards a common value and 

to augmenting the degrees of freedom for the individual variances with the eBayes 

function.45,47 To further correct for the fact that samples in the “affected” and 
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“unaffected” regions came from the same six donor brains, we included a 

correlation term for samples coming from the same donor brain using the 

duplicateCorrelation function. We passed this as argument in the lmFit function 

before passing the resulting fit to the eBayes function to allow for repeated 

measures from the same subjects. 

 

False discovery rate correction was performed by using the Benjamini-Hochberg 

(BH) procedure. BH-corrected p-values of p < 0.05 were considered significant. To 

check reproducible gene expression patterns of these differentially expressed 

genes across all donor brains, we cross-referenced publicly available results of 

calculated differential stability (DS) metrics for the same AHBA data 

(Supplementary Table 2 of the study by Hawrylycz et al.18), plotting the distribution 

of DS values for the differentially expressed genes (see Figure 2B). Differential 

stability is a correlation-based measure for the consistency of a gene’s differential 

expression pattern across brain structures.17 A difference in median differential 

stability of the differentially expressed genes in comparison with other genes was 

tested using a Mann-Whitney test.  

 

Step 6: Functional and protein-protein interaction enrichment analysis 

Functional enrichment analysis of differentially expressed genes was performed 

using the RDAVIDWebService package for R.48 Gene ontology terms for biological 

processes, molecular function and cellular components, as well as pathways 

described in the KEGG database, were considered. As a background, the 
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transcriptome wide coverage of the AHBA microarray probes was used. 

Enrichment analysis in the PheWeb database22 was performed using the 

webinterface of Enrichr,49–51 with as input the 223 differentially higher expressed 

genes. We used a hypergeometric test to test for enrichment of gene sets defined 

as differentially expressed in psychiatric diseases according to two recent 

transcriptomic signature studies.20,21 Data was extracted from DataTable S1 of the 

Gandal study,21 and from the Supplementary Tables 1 and 22 of the Girgenty 

study.20  Genes were included in a disease group if they had an FDR-corrected p-

value <= 0.05 for the defined disease, and were divided into ‘higher’ or ‘lower’ 

differentially expressed according to having a log fold change higher than 0.1 or 

lower than -0.1 respectively. More stringent criteria resulted in empty gene groups. 

Inclusion of genes and categories of diseases according to both studies are 

summarized in Table S7. For protein-protein interaction enrichment analysis and 

densely connected network discovery, Metascape52 was used with the list of 223 

differentially higher expressed genes that showed FDR-corrected p < 0.05. 

Metascape uses the following databases: STRING, BioGrid, OmniPath and 

InWeb_IM. Only physical interactions in STRING (physical score > 0.132) and 

BioGrid are used.  

 

Step 7: Cell enrichment analysis 

To translate our results from the individual gene level to a cell type level that is 

verified in human, we used the results from a recent Allen Brain Atlas dataset that 

used samples from human cortical areas (from the middle temporal gyrus) to 
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perform single nucleus RNA sequencing followed by cortical neuronal cell type 

classification.24 This dataset consists of a classification of 75 different GABAergic 

and glutamatergic cortical neuronal cell types, as well as cortical astrocytes and 

microglia. We used a hypergeometric test to test for enrichment of certain cortical 

cell types by concatenating the marker genes for each specific cell type that is 

listed in Supplementary Table 2 of the paper by Hodge et al.24 We used a threshold 

of at least five different cell markers per cell type, which excluded five cell types 

(three inhibitory, and two excitatory neuronal cell types: Inh L2-5 VIP SERPINF1, 

Inh L4-6 SST B3GAT2, Inh L4-5 SST STK32A, Exc L5-6 THEMIS C1QL3, Exc L6 

FEZF2 OR2T8). We also cross-referenced our differentially expressed gene set 

for cell types that showed a single gene to be specific as a cell type marker, as 

differential expression of such specific single-marker-genes might indicate 

differential expression of the related cell types – even if the hypergeometric test 

fails to reach significance because of missing differential expression of other less 

specific marker genes.  

To plot mean gene expression levels in human cortical cell types, we used 

recently added single nucleus RNA sequencing data, sampled from several 

locations of human cortical donor brains (middle temporal gyrus, anterior cingulate 

cortex, primary visual cortex, primary motor cortex, primary somatosensory cortex, 

primary auditory cortex), available at the AHBA cell type atlas website, listing 

trimmed mean expression for each gene per distinguished cell type.25 This dataset 

distinguishes a total of 120 different human cortical cell types. Trimmed means are 

calculated by first log2 transforming gene expression and then calculating the 
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average expression of the middle 50% of the data (data with lowest and highest 

25% of expression values removed) independently for each gene and cell type.  

Additionally, we used the NeuroExpresso database to perform a similar cell 

type enrichment analysis for the higher differentially expressed genes.26 Genes 

were converted from rat to human orthologues using the “homologene” package 

in R, which is a wrapper for the Homologene database by the National Center for 

Biotechnology Information (NCBI).53 Although rodent-derived and not specific for 

cortical neuronal cell types, this dataset contains more abundant putative marker 

genes for 20 other cell types, like microglia, oligodendrocytes and astrocytes. The 

number of included marker genes for each cell type are listed in Supplementary 

Table 5.  
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Supplementary Material 

 

Figure S1: Dot plot of trimmed mean gene expression (see Methods section for 

details) per cell type and their specificity (percentage of cell types expressing 

them). Genes included are GR, MR, and top-50 genes (higher differentially 

expressed). Genes with a trimmed mean expression of 0 in all cell types are 

omitted from the plot. 

Figure S2: Enrichment analysis results of the PheWeb database using the 

Enrichr web interface with as input the 223 differentially higher expressed genes 

from our fMRI-transcriptomics analysis.  

Table S1: Table of differentially expressed genes (Benjamini-Hochberg corrected 

p < 0.05) with additional probe and gene data. 

Table S2-3: Functional enrichment charts using all higher differentially expressed 

genes, tested for GO terms (molecular function, biological processes, cellular 

component) and KEGG pathway categories. 

Table S4-5:  Functional enrichment charts using all lower differentially expressed 

genes, tested for GO terms (molecular function, biological processes, cellular 

component) and KEGG pathway categories. 

Table S6: Results of NeuroExpresso cell type enrichment analysis, with marker 

genes listed. 

Table S7: Results of enrichment analysis of sets of genes defined as 

differentially expressed in several psychiatric diseases according to two recent 

studies.  
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Table 1. Overview of samples from the six AHBA donors in the differentially GC-rhythm responsive area and 

the control regions.   

  
Donor Donor Donor Donor Donor Donor All  
10021 12876 14380 15496 15697 9861 donors 

Differentially 
responsive 
area 

6 10 10 13 8 14 61 
  

169 168 249 209 222 207 1224  

 
Control 
region 
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Figure 1  
A. 3702 AHBA brain samples plotted with left-mapped brain regions that show differential responsiveness to 
GC pulsatility in the same three-dimensional (MNI-152) space. “Mask A” and “mask B” (black and grey dots 

in the 3D plot) correspond to the left-mapped versions of the brain regions that show differential 

responsiveness to GC pulsatility in the right hemisphere (2D images A & B). B. 1285 left cortical samples 

included in the differential expression analysis. Samples are colored depending on the Desikan parcellation 
they are mapped to (34 parcellations in total). Samples included in the mirrored fMRI mask coordinates (A 

and B from Figure 1) are presented in orange. C. tSNE on the 1285 included left cortical samples before 

(left) and after (right) applying our normalization strategy (see Methods section for details). 
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Figure 2.  
A. Boxplot of top 25 differentially expressed genes, ordered by significance from left to right (increasing p-

value from left to right). The bottom and top hinges correspond to the first and third quartiles, with the 

median shown in the interquartile range (IQR). Whiskers extend to the smallest and largest values within a 

range of 1.5*IQR from the bottom or top hinge. Values outside the 1.5*IQR range are plotted as individual 
outliers. All plotted results have FDR corrected p < 0.05 (*). B. Density plot of differential stability values, 

plotted separately for higher and lower differentially expressed genes. 

 
 

 
Figure 3  
Functional enrichment analysis results for A) KEGG pathways, B) GO categories relating to cellular 

components and C) GO categories relating to biological processes. Only term enrichments with Bonferroni-

adjusted p < 0.05 are shown. Terms are ordered according to fold enrichment relative to chance, with 
colours indicating the -log10() transformed nominal p-value (higher -log10() value means lower p-value)  
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Figure 4  

Densely connected networks of protein-protein interactions and their enrichment categories. 

GPCR: G protein-coupled receptor. 
 

 

 
Figure 5. Results of human cortical cell type enrichment analysis reveal four inhibitory neuronal cell types 
for the differentially higher expressed genes (DEG higher). For the lower expressed genes (DEG lower) no 

neuronal cell types were found to be enriched.   

 
Figure 6. Dot plot of trimmed mean gene expression per cell type for GR, MR, and the identified MCODE 

cluster, and their specificity (percentage of cell types expressing them). Genes with a trimmed mean 
expression of 0 in all cell types (meaning they show expression in less than 25% of cells for each cell type) 

are omitted from the plot (see Methods section for details). The red arrow points to high mean expression 

(dark red colored dot) of NPY very specific for a particular SST-expressing GABAergic neuronal cell type. 
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