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Abstract

The arbovirus vector Aedes albopictus (Asian tiger mosquito) is common throughout the 

Indo-Pacific region, where most global dengue transmission occurs. We analysed population 

genomic data and tested for cryptic species in 160 Ae. albopictus sampled from 16 locations 

across this region. We found no evidence of cryptic Ae. albopictus but found multiple 

intraspecific COI haplotypes partitioned into groups representing three Asian lineages: East 

Asia, Southeast Asia and Indonesia. Papua New Guinea (PNG), Vanuatu and Christmas Island 

shared recent coancestry, and Indonesia and Timor-Leste were likely invaded from East 

Asia. We used a machine learning trained on morphologically sexed samples to classify 

sexes using multiple genetic features and then characterized the wAlbA and wAlbB 

Wolbachia infections in 664 other samples. The wAlbA and wAlbB infections as detected by 

qPCR showed markedly different patterns in the sexes. For females, most populations had a 

very high double infection incidence, with 67% being the lowest value (from Timor-Leste). 

For males, the incidence of double infections ranged from 100% (PNG) to 0% (Vanuatu). 

Only 6 females were infected solely by the wAlbA infection, while rare uninfected 

mosquitoes were found in both sexes. The wAlbA and wAlbB densities varied significantly 

among populations. For mosquitoes from Torres Strait and Vietnam, the wAlbB density was 

similar in single-infected and superinfected (wAlbA and wAlbB) mosquitoes. There was a 

positive association between wAlbA and wAlbB infection densities in superinfected Ae. 
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albopictus. Our findings provide no evidence of cryptic species of Ae. albopictus in the 

region and suggest site-specific factors influencing the incidence of Wolbachia infections 

and their densities. We also demonstrate the usefulness of SNPs as sex-specific mosquito 

markers. The results provide baseline data for the exploitation of Wolbachia-induced 

cytoplasmic incompatibility (CI) in dengue control.
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Introduction

The mosquito Aedes albopictus is an important disease vector, capable of transmitting 

dengue, chikingunya and other arboviruses. As such, it has been targeted for control in 

many countries around the world, including areas where it has invaded relatively recently 

from its origin in east Asia such as North America and Europe [1]. Aedes albopictus is 

common throughout the Indo-Pacific region, where 70% of global dengue transmission 

occurs [2]. Control is challenging due to a variety of factors including the evolution of 

pesticide resistance [3, 4] and the wide range of hosts and habitats used by Ae. albopictus 

[5], which has led to renewed interest in developing alternative methods of control and 

disease suppression. These include using the endosymbiotic bacterium Wolbachia, where 

males carrying a novel Wolbachia infection are released to sterilise females [6-8], or to 

spread through populations to reduce arboviral transmission by the mosquitoes [9, 10]. 

When applying Wolbachia technology, it is important to understand both the taxonomic 

identity of the mosquito target as well as the status of natural Wolbachia infections in the 

mosquito target. Both factors are important in the case of Ae. albopictus, as a cryptic Ae. 

albopictus subspecies has been described from China [11] and Vietnam [12] and because Ae. 

albopictus in the field naturally harbor the Wolbachia strains wAlbA or wAlbB (and are often 

superinfected with both strains) [13, 14]. Patterns of population genetic structure can 

indicate areas where mosquito genetic backgrounds are likely to be similar or different to 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 6, 2022. ; https://doi.org/10.1101/2022.01.05.475177doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.05.475177
http://creativecommons.org/licenses/by/4.0/


those of target populations [15] – an important consideration for widespread species such 

as Ae. albopictus that can be locally adapted to different conditions [16].

Both suppression and invasion of populations by novel Wolbachia depend on interactions 

between the novel strain and extant Wolbachia strains as well as their impacts on host 

fitness and transmission efficiency [17]. In Ae. albopictus, wAlbA and wAlbB have been 

reported as increasing host fecundity [18]. Both wAlbA and wAlbB infections also induce 

cytoplasmic incompatibility (CI), the phenomenon where males carrying a particular 

Wolbachia strain are incompatible with females lacking that strain, resulting in the 

production of unviable embryos, which is a common phenotype in insects [19]. Females 

infected with only wAlbA or wAlbB strain show CI when crossed with superinfected males 

resulting in unidirectional CI [13]. However, this CI phenotype may be rarely expressed in 

nature if there is a high frequency of individuals carrying both wAlbA and wAlbB and a low 

level of polymorphism within these infections [20]. Other factors influencing the incidence 

of these infections in natural populations include maternal transmission efficiency which 

can be imperfect for Wolbachia [19] and may be somewhat lower for the wAlbA strain than 

for wAlbB (estimates of 97.5 versus 99.6%, respectively for one region) [14]. Both fitness 

effects and transmission of Wolbachia may relate partly to Wolbachia density; high 

densities of endosymbionts are more likely to decrease host fitness but maintain a high level 

of maternal transmission and CI [17]. Moreover, variability in density is important because 

crosses between individuals with the same strain but different densities can produce CI [21].  

In this paper, we build on existing work to provide an overview of wAlbA and wAlbB 

infections among Ae. albopictus in the Indo-Pacific region. We aim to characterise the 

incidence of these infections from field collections across the region. We also test for the 

cryptic species status of the collections given that Wolbachia may be absent from one of the 

cryptic subspecies [12]. We focus on any sex-related differences in infection frequencies 

given that the incidence of wAlbA in particular may differ between males and females [22, 

23]. To test associations between Wolbachia and sex in samples that were only available to 

us without sexing (e.g. larval samples, DNA samples), we develop a method based on 

previously collected SNP data to sex the mosquitoes given that the sexes of Aedes 

mosquitoes can be differentiated through SNPs at multiple pseudosex regions [24]. Finally, 

we consider variation in the field density of the Wolbachia infections to test whether there 
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are possible interactions between the infections given that the presence of one 

endosymbiont in an invertebrate host can influence the density of another endosymbiont 

[25]. We discuss our results with respect to future Wolbachia-based strategies against Ae. 

albopictus.  

Material and Methods

Sample collection

Aedes albopictus were sampled from 17 locations from Mauritius to Fiji to Japan (Fig. 1, 

Table 1). We considered mosquitoes collected within the same country to be from the same 

population. Genome sequencing data obtained from a total of 664 Ae. albopictus individuals 

among these populations have been used for population genetic analysis in our previous 

study [15]. Here, we used SNPs to predict sex and classify Wolbachia infection status by sex 

(see below). 

Figure 1. Approximate locations of the 17 Aedes albopictus populations. Each letter 

corresponds to a collection from a different country. Note that in some cases multiple 

samples from nearby locations were combined (Table 1).

Table 1 Details of Aedes albopictus sampled from 17 populations. See Figure 1 for map ID 

locations.
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Map ID Country Year(s)
collected

Locations combined Life stage

a Mauritius 2017 adult

b Sri Lanka 2017 larva

c Thailand 2016 adult

d Malaysia 2015/2017 Pahang, Johor, 
Selangor and Perlis adult

e Singapore 2015 adult

f Vietnam 2014 adult

g Christmas Island 2018 larva

h Indonesia 2016/2017 Jakarta, Bandung 
and Bali

Jakarta and Bandung: 
adult, Bali: larva

i China 2017 adult

j Taiwan 2016 most likely adults

k Philippines 2016 most likely adult

l Japan 2015 adult

m Vanuatu 2018 most likely adults

n Fiji 2018 most likely adult

o Torres Strait 2018 multiple islands adult

p Papua New Guinea 
(PNG) 2019 Port Moresby and 

Madang adult

q Timor-Leste 2019 adult

Mitochondrial COI as a DNA barcode

The universal barcode region of the CO1 gene (658 bp) of individual Ae. albopictus was 

amplified using the common primers (LCO1490 5’ GGTCAACAAATCATAAAGATATTGG 

3’ and HCO2198 5’ TAAACTTCAGGGTGACCAAAAAATCA 3’) [26]. Amplifications were 

performed in a Thermal Cycler (Eppendorf, Germany) with an adjusted annealing 

temperature of 55 °C. PCR amplicons from individuals were sequenced in both forward and 

reverse directions using Sanger Sequencing (Macrogen, Inc., Geumcheongu, Seoul, South 

Korea). The trimmed 623 bp sequence was analysed with Geneious 9.18 software (Kearse et 

al., 2012) to investigate SNP variation among samples.

The CO1 gene sequencing data obtained from 160 mosquitoes were analysed with the 

Molecular Evolutionary Genetics Analysis (MEGA) program version 7.0 (Tamura et. al., 

2013). A phylogenetic tree was constructed with a neighbour-joining model applied to a 
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genetic distance matrix with the Kimura-2 parameter model implemented with 1000 

bootstrap replications in MEGA. 

ML sex classification with ddRAD-seq

To build a machine learning (ML) classifier, we used a semi-supervised learning approach 

with 91 individuals from Torres Strait that had both sexing based on morphology and ddRAD 

sequencing data, and 134 unsexed samples with ddRAD sequencing data only. For each 

sample BWA-MEM v0.7.17 [27] was used to map sequencing reads to the Ae. albopictus 

reference genome (GenBank accession no. GCA_006496715.1) and determined the relative 

sequencing depths of 26,782 100kbp sized regions. For each of these 100kbp regions, a 

linear model was fit to identify if sex had a significant effect on depth, using sex and 

sequencing batch as predictor variables. We identified 85 regions with significant sex effects 

after multiple hypothesis testing correction. A PCA plot using the sequencing depths of 

significant regions showed two distinct clusters (Fig. S1a), however, we observed 15 

individuals not clustering with their expected group suggesting some samples may have 

been assigned the incorrect sex. These samples were removed from the training set. Using 

the e1071 R library [28], a preliminary SVM model was trained using the significant regions 

as features and the 135 unsexed samples were classified using this model (Fig. S1b).

For the purposes of creating a stand-alone program for classifying new ddRAD samples, we 

used samples with classification probability > 70% from the preliminary model and 

extracted candidate ddRAD tags within the identified 100kbp regions as candidate features. 

From these, we used linear models to identify 42 ddRAD tag features that had their 

sequencing depths associated with sex. In addition, 109 negative control ddRAD tags not 

associated with sex were included for sequence depth normalisation purposes. A SVM 

model was trained using the e1071 library and the classifier has been made available on 

GitHub (https://github.com/pearg/albo_spm).

To validate the model, we obtained an additional 127 sexed individuals from different 

populations (Indonesia, Japan, Vietnam, and Torres Strait). 124 of these had sufficient 

sequencing depth to predict sex, and we compared the sex predicted from our model to the 

sex obtained from morphology. A confusion matrix (predicted versus actual cases) was used 
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to test the quality of the classification model with a Matthews correlation coefficient 

computed to quantify the agreement.

ML Wolbachia infection classification with ddRAD-seq

Due to insufficient observations of uninfected samples and samples infected with wAlbA 

only, we limited our classifier to single wAlbB infected samples and superinfected (wAlbA 

and wAlbB) samples. To build the Wolbachia strain classifier, we first obtained SNP sites 

between the wAlbA strain and the wAlbB strain by comparing the Wolbachia wAlbA FL2016 

strain contig-level assembly (GenBank accession no. GCA_002379155.2) to the wAlbB 

complete assembly (GenBank accession no. GCA_004171285.1) by simulating 100bp reads 

from the wAlbA reference and mapping them to the wAlbB reference. Using only the 

uniquely mapping reads, we used samtools mpileup [29] to obtain sites with single 

nucleotide differences between the two references, resulting in 9,697 sites. 

Wolbachia-infected Ae. albopictus ddRAD-seq samples were aligned using Bowtie2 v2.3.4.3 

[30] to the wAlbB reference assembly and variant calling was performed with FreeBayes 

v1.3.5 [31]. We then selected SNPs that were previously identified in the wAlbA/wAlbB 

reference assembly comparison, resulting in 649 SNP sites. Samples with fewer than 10 

allelic observations were removed, leaving 478 wAlbB infected (n = 63) or superinfected (n = 

415) samples. The data was split into a training and test set of 80% and 20% respectively. 

For each sample, a score was created using the number of observed wAlbA alleles divided 

by the total number of alleles observed, then Laplace smoothed with a pseudocount of 1. A 

univariate logistic regression model was built using the natural log of the score. The test 

dataset was used to assess the performance of the model. As with the sexing prediction, a 

confusion matrix (predicted versus actual cases) was used to test the performance of the 

classification model.

Wolbachia detection via qPCR assay

For real-time PCR detection, we used a LightCycler® 480 High Resolution Melting Master 

(HRMM) kit (Roche; Cat. No. 04909631001, Roche Diagnostics Australia Pty. Ltd., Castle Hill 

New South Wales, Australia) and IMMOLASETM DNA polymerase (5 U/µl) (Bioline; Cat. No. 

BIO-21047) as described by Lee et al. (2012) [32]. The PCR conditions for DNA amplification 
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began with a 10-minute pre-incubation at 95°C (Ramp Rate = 4.8 °C/s), followed by 40 cycles 

of 95 °C for 5 seconds (Ramp Rate = 4.8°C/s), 53°C for 15 seconds (Ramp Rate = 2.5°C/s), 

and 72°C for 30 seconds (Ramp Rate = 4.8°C/s).

One set of Ae. albopictus-specific primers was used to confirm that individual mosquitoes 

were correctly identified as Ae. albopictus and as a qPCR positive control. Primer sets 

specific to either wAlbA or wAlbB were used to infer the presence or absence of wAlbA and 

wAlbB infection (wAlbB1 CCTTACCTCCTGCACAACAA, GGATTGTCCAGTGGCCTTA wAlbA-F 

GTAGTATTTACCCCAGCAG QArev2 CACCAGCTTTTACTTGACC) [33]. Crossing point (Cp) values 

of three consistent replicate runs were averaged to produce the results. Differences in Cp 

values between the Ae. albopictus marker and the wAlbA and wAlbB markers were 

transformed by 2n to produce relative Wolbachia density measures. 

Statistical analyses

We compared the proportion of superinfected individuals among the sexes and populations 

using a generalized linear model with a binomial distribution. We also directly compared the 

distribution of superinfected and wAlbB singly infected individuals across sexes in some 

populations with relatively larger sample sizes, treating these as contingency tables. All 

these analyses were run in IBM Statistics SPSS version 26.

For the Wolbachia density data, we examined variation in density across populations and 

sexes following logarithmic transformation of the data for normality, focussing on those 

individuals carrying both infections. We also examined associations between wAlbA and 

wAlbB infection density at the individual level within each population by computing 

Pearson’s correlations on logarithmically transformed densities and treating the sexes 

separately given the density differences observed between the sexes (see below). Linear 

regressions were also computed to see if the density of wAlbA could predict that of wAlbB. 

We only considered correlations and regressions for populations where data from at least 

10 individuals were available. Finally, we tested if there was a difference between wAlbB 

densities in singly and superinfected females and males; we focussed on the Torres Strait 

and Vietnam populations, where samples falling into both categories were available, and 

included sex and infection type as factors for Torres Strait and only infection type in 

Vietnam since only females had sufficient numbers of each infection type.  
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Results

Variation in Ae. albopictus

PCR amplification and sequencing of the mtDNA CO1 gene resulted in a 623 bp fragment for 

each individual Ae. albopictus with no insertions or deletions. A total of 23 haplotypes were 

identified from 160 individuals collected in the Indo-Pacific region. Haplotype diversity 

varied for each region with Indonesia (31 individuals, 8 haplotypes), Vietnam (16 individuals, 

6 haplotypes) and Thailand (8 individuals, 5 haplotypes) having substantially higher 

haplotype diversities than Taiwan (14 individuals, 3 haplotypes), Sri Lanka (14 individuals, 2 

haplotypes), Malaysia (12 individuals, 2 haplotypes), PNG (11 individuals, 2 haplotypes), 

Singapore (8 individuals, 2 haplotypes) and Vanuatu (19 individuals, 1 haplotype). 

Three predominant haplotypes were identified in Ae. albopictus populations: H1 (17.5%) 

detected in Vanuatu, PNG and Christmas Island, suggesting recent co-ancestry; H2 (15.0%) 

detected in Indonesia, Torres Strait, Timor-Leste and Philippines; and H11 (18.8%) detected 

in a wide range of populations, including Malaysia, Singapore, Thailand, Indonesia, Fiji, 

Philippines, Vietnam and PNG. Other haplotypes were either unique to a specific population 

or had a limited geographical coverage.

To determine the relationships among samples, we constructed a median-joining network 

using haplotypes based on sequence variation. Haplotypes were connected when the 

probability of parsimony was at least 95%. The COI haplotype network (Fig. 2) suggested 

some mitochondrial genetic structure between regions. The spatial distribution of ancestral 

lineages among Ae. albopictus can be interpreted with reference to the native and invasive 

ranges of this species. A network analysis of Ae. albopictus partitioned haplotypes into three 

haplogroups representing three native range lineages. The northernmost of these (red 

dotted circle) showed a common heritage among East Asian populations. This lineage was 

also dominant in Mauritius. The second native range lineage (blue dotted circle) had a 

common heritage among Southeast Asian populations (excluding Indonesia), and was also 

found in Christmas Island, Fiji, PNG and Vanuatu. Differentiation was low between these 

lineages. The Indonesian Ae. albopictus lineage (green dotted circle) was distinct from the 

East and Southeast Asian native range lineages and was also found in the Torres Strait 
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Islands and Timor-Leste. The Philippine haplotypes were split into two groups, Southeast 

Asia and Indonesia. This likely reflects the Philippine population as having ancestry from 

both groups. A further split was observed in the phylogenetic tree based on CO1 sequence 

variation from the 23 haplotypes in this study, the 2 Ae. albopictus cryptic haplotypes 

(KY765450.1 and KY765459) [11], as well as the outgroup Ae. scutellaris (KP843372, Fig. 3). 

The maximum divergence observed in the 23 haplotypes was 1.6% (Table S1), significantly 

lower than interspecific divergence (12.8%), indicating that cryptic Ae. albopictus are not 

present across the samples of the Indo-Pacific region tested here.

Figure 2. Haplotype network for COI. Each coloured node represents an observed 

haplotype with circle size indicating the number of individuals with each numbered 

haplotype and the slash along the connecting lines indicating the number of nucleotide 

differences.
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Figure 3. Phylogenetic analysis based on CO1 haplotype variation. Neighbor-joining trees 

constructed via Kimura-2 parameter model using MEGA. Numbers at branches represent 

bootstrap values of 1000 replicates (values > 50 are shown). Sequences from different 

outgroup species of the genus Aedes were selected from GenBank (Ae. albopictus cryptic 

haplotypes KY765450.1 and KY765459 and Ae. scutellaris KP843372). Abbreviations: Thai, 

Thailand; VT, Vietnam; Sri, Sri Lanka; SNGP, Singapore; Vanu, Vanuatu; Xmas, Christmas 

Island; PNG, Papua New Guinea; TL, Timor-Leste; TS, Torres Strait; Indo, Indonesia; PH, 

Philippines.

Sex Determination 

As shown in Table 2, the classification performance on the 124 samples in the test set 

yielded a model accuracy of 97.6% with three incorrect classifications. The model had a 

Matthews correlation coefficient (MCC) of 0.940.   

Table 2. Test set confusion matrix for sex prediction of mosquitoes based on SNP markers 
identified from a Torres Strait dataset but tested against sexed samples from other 
populations.
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          Predicted sex

Female Male

Female 89 3

M
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ed

 se
x 

Male 0 32

We then used our model to classify a further 510 samples without morphological sexing 

(Table 4, excluding Torres Strait samples).

Wolbachia infection classification

As shown in Table 3, the classification performance of the 95 samples in the test set yielded 

a model accuracy of 87.3%. However, the dataset was imbalanced with most samples being 

superinfected, thus only yielding an MCC of 0.634. The majority of the discordant samples 

were predicted to be superinfected but were only scored as singly infected with wAlbB in 

the qPCR assay, producing the low MCC value. We suspect that this relates to the limit of 

detection of wAlbA in the qPCR assay rather than inaccurate classification of the samples 

(see discussion). 

Table 3. Test set confusion matrix of Wolbachia infection classification for wAlbB and 

superinfected (wAlbA and wAlbB) individuals from different populations, with values 

scored from the qPCR assay being predicted by the ML SNP-based method.

                                        Predicted infection

wAlbA and 
wAlbB

wAlbB

wAlbA and 
wAlbB 81 2

qP
C

R
 d

et
er

m
in

ed
 

in
fe

ct
io

n

wAlbB
5 7

Sex-specific distribution and classification of Wolbachia infection
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A total of 664 Ae. albopictus individuals among 15 populations were processed and 

screened for the presence of Wolbachia using qPCR. Overall, wAlbA and wAlbB infections 

showed markedly different patterns with regard to sex (Table 4). The incidence of 

superinfected individuals was almost always higher in females than in males. For females, 

most of the populations had a very high superinfection incidence, with 6 populations 

showing a superinfection incidence of 100% in females: Taiwan, Thailand, Singapore, 

Philippines, Japan and Mauritius. The lowest incidence of superinfection (67%) was in 

females from Timor-Leste. There was substantial variation in the incidence of 

superinfections in males detected by qPCR. Excluding populations which had sample sizes 

less than 3, the PNG population had the highest superinfection incidence in males (100%) 

while Vanuatu had the lowest incidence (0%). When we analysed the populations with the 

largest sample sizes for each sex and considered only the wAlbB and superinfected 

individuals (N>5 per sex), a generalized linear model indicated a significant interaction 

among sex and population X2 = 1493.2, df = 4, P < 0.001). In each population, the frequency 

of individuals infected with only wAlbB was lower in females than in males and sex 

differences were significant (P < 0.05) in four of the five populations by contingency tests. 

We also found 6 females that were singly infected with wAlbA, while rare uninfected (0% - 

6.7%) mosquitoes were equally likely to occur in either sex. 

Table 4. Wolbachia infection status in Ae. albopictus females and males as assessed by 

qPCR screening. Sexes were identified morphologically or through the ML sequencing-based 

approach as indicated. 

 

Infection status (%)
Population Sex 

wAlbA wAlbB  wAlbA and 
wAlbB Uninfected 

Number of 
individuals

Male (M) 0 52.4 47.6 0 63Torres Strait 
(multiple islands) Female (M) 0 12.2 87.7 1.1 90

Male (P) 0 7.4 88.9 3.7 27Malaysia (Pahang, 
Johor, 

Selangor and Perlis) Female (P) 0 1.1 97.8 1.1 89

Male (M) 0 28.6 71.4 0 14
Timor-Leste

Female (M) 11.1 15.5 66.7 6.7 45

Indonesia (Jakarta, Male (P) 0 50 50 0 6
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Bandung 
and Bali)

Female (P) 0 0 100 0 36

Male (M) 0 50 50 0 2Vietnam (Ho Chi 
Minh City) Female (M) 0 22.2 72.2 5.6 18

Male (P) 0 62.5 37.5 0 8
Taiwan

Female (P) 0 0 100 0 10

Male (P) 0 100 0 0 9
Vanuatu

Female (P) 0 14.3 85.7 0 7

Fiji (Nadi) Female (P) 0 12.5 87.5 0 16

Male (P) 0 0 0 100 2Thailand (Chiang Mai, 
BKK) Female (P) 0 0 100 0 7

Singapore Female (P) 0 0 100 0 8

Male (P) 0 0 100 0 1
Philippines (Manlia)

Female (P) 0 0 100 0 6

Male (P) 0 33.3 66.7 0 3
Japan (Matsuyama)

Female (P) 0 0 100 0 3

Male (P) 0 50 50 0 2
Mauritius

Female (P) 0 0 100 0 4

China (Guangzhou) Female (P) 0.7 1.3 98 0 151

Male (P) 0 0 100 0 3PNG (Port Moresby 
and Madang) Female (P) 0 0 97 3.0 33

Abbreviation: M, sexed based on morphology; P, sexed based on prediction using the ML 
model. 

Similar patterns to those presented in Table 4 were detected when the wAlbB and 

superinfection was identified through SNPs (Table 5). Although numbers are lower, these 

results also highlight the higher incidence of the superinfection in females compared to 

males in several populations. 

Table 5. Sex and strain distribution of Wolbachia infection status in Ae. albopictus using 

classification results. Only samples with > 60% classification probability in both sex and 

Wolbachia strain prediction are included.

Number of individuals

Population Predicted 
Sex Predicted 

wAlbB

Predicted 
wAlbA and 

wAlbB
Total

Female 0 151 151
China (Guangzhou)

Male 0 1 1

Female 0 12 12
Indonesia (Bandung)

Male 0 2 2
Indonesia (Bali) Female 0 8 8
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Male 0 2 2

Female 0 17 17
Indonesia (Jakarta)

Male 0 0 0

Female 0 5 5
Japan (Matsuyama

Male 0 1 1

Female 0 61 61Malaysia (Pahang, 
Johor, 

Selangor and Perlis) Male 0 15 15

Female 0 3 3
Mauritius

Male 2 0 2

Female 0 16 16
Fiji (Nadi)

Male 0 0 0

Female 0 6 6
Philippines

Male 0 1 1

Female 0 8 8
Singapore

Male 0 0 0

Female 0 0 0
Sri Lanka

Male 0 1 1

Female 1 8 9
Taiwan

Male 4 1 5

Female 0 123 123
Torres Strait

Male 38 25 63

Female 0 7 7
Vanuatu

Male 4 3 7

Female 0 6 6
Vietnam

Male 1 0 1

Wolbachia density comparisons

Wolbachia density was influenced by sex and the location where samples were collected 

(Fig 4). For wAlbA density, there was a significant effect of sex (F (1, 345) = 38.800, P = 0.001) 

and population (F (12, 345) = 24.397, P < 0.001) on density as well as a marginally significant 

interaction effect (F (8, 345) =2.278, P = 0.022) when considering only superinfected 

individuals. For wAlbB, only the main effect of population was highly significant (F (13, 460) = 

20.165, P < 0.001) whereas the overall effect of sex (F (1, 460) = 0.008, P = 0.926) was not 

significant and there was only a marginally significant interaction (F (10, 460) = 2.028, P = 

0.029). The PNG population had the highest density of wAlbA, while Sri Lanka had the 

lowest. Additionally, for wAlbB, the population of Vanuatu had the highest density, while Sri 

Lanka again had the lowest density.
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Wolbachia density of the wAlbB infection did not differ in the singly infected and 

superinfected mosquitoes from Torres Strait (Fig 5A-B: F (1, 132) = 0.399, P = 0.529) and there 

was also no sex effect (F (1, 132) = 1.188, P 0.278) or interaction (F (1, 132) = 1.676, P = 0.198). 

For Vietnam females, there was also no difference between the infection type in density (Fig 

5C; F (1, 13) = 1.048, P = 0.325).  

There was a significant association between wAlbA and wAlbB infections in superinfected 

Ae. albopictus females in most populations (Fig 6A-F). Correlations between densities of the 

two infections were always positive and significant (P < 0.05) in the samples and regression 

analyses where the wAlbA density was used to predict the density of wAlbB were also 

always significant with positive slopes in each case (Fig 6). On the other hand, we found no 

associations between the density of the infections in males in the two populations with 

moderate sample sizes (>10) available for analyses (Fig 6G-H)

 

Figure 4.  wAlbA density (A) and wAlbB density (B) in Aedes albopictus from each 

population. Vertical lines and error bars represent medians and 95% confidence intervals.

 A B

A B

C
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Figure 5. Female (A) and male (B) wAlbB density in single-infected and superinfected Ae. 

albopictus from Torres Strait and female (C) wAlbB density in single- and superinfected 

Ae. albopictus from Vietnam. Vertical lines and error bars represent medians and 95% 

confidence intervals.

A

C D

E F

B
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Figure 6. wAlbA density and wAlbB density in individual females (A-F) and males (G, H) 

across populations. Data are shown separately for samples from Torres Strait Island (A, G), 

Malaysia (B, H), Indonesia (C), Timor-Leste (D), China (E) and Taiwan (F). Regression lines are 

included where significant linear associations were detected.

Discussion 

Population history

Overall, we found 23 mtDNA haplotypes in the Indo-Pacific samples of Ae. albopictus but no 

evidence of cryptic species.  Minard et al. (2017) reported a novel cryptic species of Ae. 

albopictus in Vietnam which lacked Wolbachia [12]. Additionally, Guo et al. (2018) reported 

cryptic species of Ae. albopictus in China which were separated by substantial genetic 

distances from the other Ae. albopictus populations sampled from various regions within 

the country; Wolbachia was infrequent or absent in these populations of the putative 

cryptic species [11]. In contrast, we failed to detect the cryptic Ae. albopictus suggesting 

G H
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that they are not common across the Indo-Pacific region. This also implies that the cryptic 

lineage is not contributing to variation in the incidence of wAlbA and wAlbB across 

populations. Despite this, we found substantial variation in the incidence of Wolbachia 

infections, with a low incidence particularly in Timor-Leste despite the proximity of this 

sample to those we collected from Indonesia where both wAlbA and wAlbB infections were 

common. 

Previous genetic analysis of Ae. albopictus populations from Asia with SNPs [15, 34] 

suggested three main regions of genetic similarity, one in East Asia, one in Southeast Asia 

(excluding Indonesia), and one in Indonesia. Some populations outside the native range 

showed clear signs of recent invasion from these regions; specifically, Mauritius from East 

Asia, and Fiji and Christmas Island from Southeast Asia [15]. A second study identified three 

major genetic groups: Torres Strait/Indonesia/Timor-Leste; East Asia/Southeast Asia/Fiji; 

and PNG/Vanuatu [34]. Gene flow from PNG into the Torres Strait was suggested by the 

higher co-ancestry between PNG and some Torres Strait genotypes. 

Our mtDNA data confirmed three Asian range lineages of Ae. albopictus. The Indonesian 

lineage was highly differentiated from the others, indicating a common heritage between 

East Asian and Southeast Asian lineages. Shared haplotypes (H1) between PNG, Vanuatu, 

and Christmas Island provided the evidence of contemporaneous invasion of these 

populations. Shared haplotypes between Christmas Island and Sri Lanka (H9) as well as PNG, 

Fiji and other Southeast Asian populations (H11) grouped with all the other Southeast Asian 

haplotypes, suggesting recent co-ancestry between these invading populations and 

Southeast Asia. The presence of cryptic species in Sri Lankan populations had been 

previously hypothesized [15], but our phylogenetic analysis suggests there is no cryptic 

species within Sri Lanka populations. Nevertheless, the incongruence between the mtDNA 

and nuclear DNA results from the Sri Lanka samples remains of interest.

Initial genetic investigation of the Torres Strait showed that the invasion was most likely 

from Indonesia via a “stepping-stone” in the “Southern Fly” region of PNG [35, 36]. Our 

results are accord with these findings. Haplotype 2 (H2) was found in all individuals from the 

Torres Strait and some individuals from the Philippines, Timor-Leste, and Indonesia, while 

this haplotype was not found in PNG. Considering the findings in Schmidt, Swan (34), where 

the Torres Strait nuclear genetic background was more like Indonesia than to Timor-Leste, 
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Indonesia is supported as the most likely source of the Torres Strait invasion. H2 was 

connected to the East Asian haplogroup through a private haplotype from Timor-Leste (H8), 

which differed from H2 by one mutation step at nucleotide position 39. These results 

suggest an invasion scenario in which Ae. albopictus invaded Indonesia and Timor-Leste 

from East Asia, and subsequently colonised the Torres Strait.

Variation in Wolbachia infections across populations

Although the wAlbA and wAlbB superinfection predominated in most populations, we did 

find some variation in the frequencies and densities of the two infections across populations 

and across sexes. Once at a high frequency, a superinfection should be maintained in a 

population unless transmission rates are low and host fitness costs are particularly high [19]. 

Invasion by a superinfection is expected to take place when the superinfection increases in 

frequency beyond a specific point dictated by host fitness costs, strength of CI and rate of 

maternal transmission. Aedes albopictus females with superinfections may have higher 

oviposition rates and live longer [20]. However, the fitness effects of Wolbachia in Ae. 

albopictus appear to be complex and dependent on conditions [37] as they are in other 

insect systems where an infection that might appear to be deleterious can nevertheless still 

be beneficial in some situations [38]. Transmission of both the single infections and the 

superinfection appears to be close to 100% in Ae. albopictus [14] but transmission can also 

vary dramatically with environmental conditions as demonstrated by rearing Aedes under 

hot conditions [39]. 

Our findings reinforce the notion that there are sex differences in infection frequencies, and 

that the frequency of wAlbB as a single infection is higher in males than in females due to 

apparent loss of wAlbA in males [22]. Loss of an infection in the male sex is unlikely to alter 

the population dynamics of Wolbachia in mosquito populations that rely on transmission 

and selection through the female sex [40]. A single wAlbA infection can cause high levels of 

CI, allowing it to spread into an uninfected population [20, 41], but ongoing selection may 

have led to a decrease of wAlbA in males, producing a decline of wAlbA-induced CI [20]. 

Incompatible matings effectively lower the fertility of infected males, leading selection to 

reduce infection density in males before sexual maturation, and wild-type superinfected Ae. 
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albopictus males with very low wAlbA titres induce significantly lower levels of CI [6]. 

Superinfected females will remain compatible with males that lose the wAlbA strain as well 

as other males [20]. Alleles that favour loss of infection in males may therefore not 

necessarily be selected against in the absence of paternal transmission. In Drosophila there 

is also at least one CI infection that is often lost in males, although in this case the males 

retain a reduced capacity to cause CI in matings with uninfected females [42, 43]. 

Apart from sex differences, we also found substantial variation in both density and 

incidence of the wAlbB and wAlbA infections across populations. We can compare our 

results to the Wolbachia infection status of Ae. albopictus in the Indo-Pacific region 

determined in previous studies [11, 14, 22, 23, 44-56] (Table S2). These studies and ours 

highlight that the wAlbA/wAlbB superinfection or wAlbB single infection are present in most 

natural Ae. albopictus populations [22, 23]. Single infections of wAlbA can occur in Ae. 

albopictus populations but appear variable in frequency at least in samples from Malaysia, 

China, and India [11, 46, 53]. Some caution is required in making comparisons between 

studies, given that the density of wAlbA can be low and its likelihood of detection may 

therefore be variable depending on the sensitivity of assays used by different laboratories. It 

is also possible that sample preservation following collection influences Wolbachia density 

and detection. 

Several non-technical factors could contribute to the substantial variation in Wolbachia 

density across populations, including environmental conditions known to influence density 

such as temperature [57] and low levels of environmental antibiotics [58]. Age and life stage 

at collection also affect Wolbachia density [6, 22, 59], and Wolbachia density  can be 

affected by nuclear factors as evident from the variation in density when introduced to 

different host backgrounds [60, 61]. Variation in Wolbachia genomes could also contribute 

to density differences, given that between-population variation exists within wAlbB [62, 63] 

and that closely related Wolbachia variants can differ in density [64]. 

Wolbachia infections can interact, or they can be independent in the host, but our density 

data provides no evidence of competition between the two Wolbachia strains. Although 

there was a lower density of wAlbA in mosquitoes as has previously been noted [6, 65], we 

found no evidence that the presence or density of wAlbA had a negative effect on the 

density of wAlbB and vice versa. In superinfected mosquitoes, there was a consistent 
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positive association of these infections in females from all samples and an absence of any 

pattern in males, highlighting the absence of antagonistic interactions among the infections.  

Strain characterization via SNPs

Our sexing data shows the usefulness of SNPs not only in population studies but also as 

markers that can be repeatedly used to investigate new issues as they arise. SNP markers 

have previously provided information on population structure and history across the Indo-

Pacific region [15] and provided information on quarantine risk identification [66]. We also 

applied these markers to dissect patterns of selection on pesticide resistance markers [67] 

and have now used them to identify genomic features that have their sequencing depths 

associated with sex. With sufficient sequencing depth, RAD sequencing is a viable way to 

determine the sex of Ae. albopictus. Whereas sexing using morphology can be time 

consuming and impossible for immature samples and poorly preserved material, sex 

classification using ML can be automated as part of the processing workflow when working 

with RAD-seq data.

While SNP-based sexing worked well, we found a moderate amount of disagreement 

between the Wolbachia infection status from the SNP-based ML model and the status given 

from the qPCR assay. There are several possible explanations for this. First, the SNP features 

chosen for the ML model may not truly be able to separate the two Wolbachia strains. 

Second, cross-sample contamination of DNA may have led to the presence of wAlbA or 

wAlbB sequencing reads in non-infected samples. Lastly, extremely low density of 

Wolbachia may lead to screening inaccuracies when densities fall under the limit of 

detection by qPCR [68, 69].

The results from the strain classification model were also heavily influenced by the relative 

proportions of classes in the training data. Due to being trained on a dataset where the 

number of superinfected individuals was approximately six times greater than the number 

of single wAlbB individuals, a sample with a low number of allelic observations, either due 

to low sequencing depth or low Wolbachia density, is more likely to be classified as 

superinfected than singly infected by wAlbA. Additionally, since there were insufficient 

singly infected wAlbA samples to train the model to classify singly infected wAlbA cases, 

new data with wAlbA would likely be classified as superinfected. Therefore, when classifying 
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future samples from different populations, thus having different priors of wAlbA/wAlbB 

proportions, the existing model should perhaps be discarded, and the relative numbers of 

observed alleles from wAlbA/wAlbB could instead be used as a heuristic to classify samples.

Applied implications

In the absence of cryptic species of Ae. albopictus and given the substantial variation in 

infection frequency, we suspect that Wolbachia-based interventions targeting this species 

are applicable across the Indo-Pacific region. Strains generated through transinfection and 

utilised in one location [70] may therefore be suitable for other regions as long as the 

nuclear background of the strain is altered to match that of the target population in case of 

local adaptation and local pesticide resistance levels [71].  However, given the 

preponderance of superinfected mosquitoes, it will be important to release individuals with 

new infections that are capable of invading local populations or supressing them via CI. We 

also emphasize the usefulness of SNPs in applied population studies more generally and as 

markers that can be repeatedly reanalysed to investigate new issues as these arise. 
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