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Abstract

Background: Recent studies in the area of transcriptomics performed on
single-cell and population levels reveal noticeable variability in gene expression
measurements provided by different RNA sequencing technologies. Due to
increased noise and complexity of single-cell RNA-Seq (scRNA-Seq) data over
the bulk experiment, there is a substantial number of variably-expressed genes
and so-called dropouts, challenging the subsequent computational analysis and
potentially leading to false positive discoveries. In order to investigate factors
affecting technical variability between RNA sequencing experiments of different
technologies, we performed a systematic assessment of single-cell and bulk
RNA-Seq data, which have undergone the same pre-processing and sample
preparation procedures.

Results: Our analysis indicates that variability between gene expression
measurements as well as dropout events are not exclusively caused by biological
variability, low expression levels, or random variation. Furthermore, we propose
FAVSeq, a machine learning-assisted pipeline for detection of factors contributing
to gene expression variability in matched RNA-Seq data provided by two
technologies. Based on the analysis of the matched bulk and single-cell dataset,
we found the 3'-UTR and transcript lengths as the most relevant effectors of the
observed variation between RNA-Seq experiments, while the same factors
together with cellular compartments were shown to be associated with dropouts.

Conclusions: Here, we investigated the sources of variation in RNA-Seq profiles
of matched single-cell and bulk experiments. In addition, we proposed the FAVSeq
pipeline for analyzing multimodal RNA sequencing data, which allowed to identify
factors affecting quantitative difference in gene expression measurements as well
as the presence of dropouts. Hereby, the derived knowledge can be employed
further in order to improve the interpretation of RNA-Seq data and identify genes
that can be affected by assay-based deviations. Source code is available under the
MIT license at https://github.com/slipnitskaya/FAVSeq.

Keywords: machine learning; data integration; pipeline; RNA sequencing;
RNA-Seq; scRNA-Seq; technical variability; dropouts

Background
High-throughput single-cell RNA sequencing (scRNA-Seq) provides a powerful tool

for profiling gene expression patterns at single-cell resolution that has revolutionized

transcriptomic studies and advanced the knowledge of biological systems. RNA

samples for bulk sequencing are typically derived from a heterogeneous population
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of cells and thus, cell-type specific transcriptomic changes may be lost as the final

data represents an average expression across thousands of cells from different types

[1]. However, while single-cell technology allows to overcome some limitations of

standard bulk RNA-Seq, data complexity and noise increases as well as the detection

limit and RNA amount present a challenge, for example, to identify and filter out

low-quality genes for reliable and reproducible results. Therefore, in addition to

the larger variability of single-cell technology compared to traditional bulk RNA

sequencing, the subsequent downstream analysis gives rise to new computational

challenges in analyzing data and interpreting the findings.

The increased noise in scRNA-Seq data can be explained by both biological and

technical reasons, for example, lower amount of input material, batch effects, am-

plification biases, cells being in distinct phases of the cell cycle, and transcriptional

bursts [2]. Another reason that makes the computational analysis challenging re-

lates to dropout events. Previous studies show that single-cell technology typically

suffers from dropouts, i.e., transcripts which exist in a biological replicate or a cell,

but are not detected by the sequencing technology. In contrast to RNAs that are

simply not present at the time of cell isolation, dropouts have non-zero expression

but are not identified due to limitations of experimental protocols as well as other

biological and technical reasons [3].

Often these dropouts are caused by low expression, but additional factors may

contribute. For instance, dropouts can be potentially caused in different ways by dif-

ficulty in isolating single cells from low starting input volumes, cell-specific capture

efficiency (e.g., inefficient mRNA to cDNA capture, dilution of cell libraries, and

amplification) as well as by the low amounts of mRNA in individual cells [4]. Ad-

ditional challenges affecting the difference in RNA-Seq experiments can arise from

differences in library preparation protocols [5, 6] and computational downstream

analysis pipelines [7]. Several studies aimed at understanding the difference be-

tween matched RNA-Seq experiments performed a comparative analysis of dataset

with available matched bulk and scRNA-Seq samples [8–10]. However, these stud-

ies have been are usually limited by the number of sequenced cells and analysed

samples [11].

All of that motivated us to perform a detailed comparison of RNA-Seq expe-

riments in order to investigate the most relevant factors affecting the difference

between them. To do so, we analysed paired data—scRNA-Seq and bulk from the

same sample—to limit the biological sample-to-sample variation. We focus on the

analysis of the difference among gene expression measurements and also provide

FAVSeq, a machine learning (ML)-based pipeline, which identifies features (e.g., ge-

nomic factors) affecting variability in matched single-cell and bulk RNA-Seq data.

Results suggest that 3'-UTR and transcript lengths influence the gene expression

difference between experiments at the most. Likewise, these features together with

cellular compartments were found to be relevant for global dropouts. Thus, the

analysis presented in this paper provides the basis for further experimental inves-

tigations of identified factors, as well as the subsequent improvements at the level

of RNA-Seq experimental analysis and data pre-processing that allow to facilitate

the fundamental research and biomedical applications based on RNA sequencing

technologies.
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Results
Matched bulk and single-cell experiments allow for a detailed analysis of

differences in gene expression measurements

With the aim to assess sources of variation provided by different RNA-Seq technolo-

gies, we based our analysis of gene expression measurements performed in multiple

biological replicates (hereinafter referred to as samples). Thus, considering distinct

samples allows for improving the efficiency of statistical testing and the reliability

of the findings. In order to perform a comparative analysis of bulk and scRNA-

Seq experiments, both sequencing technologies were applied to eight retina samples

(6 domestic pigs and 2 minipigs). The unified sample preparation procedures en-

sured high comparability of resulting measurements. Specifically, all samples were

processed according to the (10x Chromium) single cell RNA-Seq sample prepara-

tion protocol—including single cell dissociation—before fractions were split for the

two experiments providing matched scRNA-Seq and bulk RNA-Seq measurements.

Subsequently, RNA-Seq libraries for bulk sequencing were prepared using the NEB-

Next Ultra mRNA, followed by paired-end Illumina sequencing (2 x 75 bp). The

scRNA-Seq experiment, performed using paired-end sequencing 10x Single Cell 3’

v2, produced a total of 2,111,208 cells with an average number of 263,901 cells per

sample (Supplementary Figure S1A). For a more detailed comparison of experi-

mental protocols of the matched RNA sequencing experiments see Methods and

Supplementary Table S1.

In order to compare gene expression measurements provided by different expe-

riments, we aggregated scRNA-Seq data by summing up raw read counts across

single cells from each sample, followed by its gene length and per sample normali-

zation, which we termed “pseudobulk”. The latter was shown to be highly similar

(ρ = 0.96) to original measurements provided at the single-cell level (Figure S1B).

Out of 25,322 annotated genes in the Sus Scrofa genome, 21,372 genes were de-

tected and showed non-zero expression in at least one out of eight samples in either

of the matched experiments. Among all samples, 19,965 and 19,436 genes were

detected in at least one sample of the scRNA-Seq and the bulk experiment, re-

spectively (Figure 1A). Specifically, in the bulk experiment we found an average

number of 17,283 genes per sample, while the scRNA-Seq provided the average

number of 16,733 (Figure 1B), indicating a slightly lower detection rate for the

single-cell protocol. Among these detected genes, 18,029 (> 71 %) were common,

i.e., showed non-zero expression in at least one sample of both scRNA-Seq and bulk

measurements (blue intersection in Figure 1A). At the same time, we observe genes

with missing expression in one experimental modality (e.g., scRNA-Seq), while be-

ing detected in the matched sample provided by another experiment (e.g., bulk

RNA-Seq), which we term as sample-wise dropouts (gray areas in Figure 1A).

Analysis of gene sets in individual experiments indicates (Figure 1C) that the

bulk RNA-Seq provided a slightly higher proportion of the most confident genes

that were detected across all samples, i.e. 97.6 % (13,100) of genes were detected by

the bulk RNA-Seq in all samples against 96.4 % (12,950) detected by the scRNA-Seq

experiment. The total of 12,623 genes are found to be common or expressed in all

available 16 samples across matched experiments (blue intersection in Figure 1C).

Besides, we also found genes with the available expression values in 8 samples in only
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one of the experiments (referred later as global dropouts). Accordingly, both single-

cell as well as bulk global dropouts exist with the total of 804 genes (gray areas

in Figure 1C) that have been systematically found in the combined experiments

(Figure S1C).

Figure 1 Comparison of the bulk and single-cell gene expression profiles in matched RNA-Seq
experiments. A. Amount of uniquely expressed genes detected in the bulk and scRNA-Seq, where
blue color represents genes which are expressed in both experiments and gray indicates dropouts
(DO) or genes with missing expression across all samples in the one of experiments. B.
Quantitative analysis of common and unique (missing in one of the experiments) genes detected
by different RNA-Seq technologies. C. Amount of genes detected either in all samples in both
RNA-Seq experiments (intersection area, blue), or missing genes that are expressed in 8 samples
(a.k.a. global dropouts) in only one of the matched experiments (disjunctive union, gray). D.
Distribution of averaged expression measurements of most confident common genes detected in
all samples (blue intersection in Figure 1C) in the bulk and aggregated scRNA-Seq experiments.
E. Sample-wise correlation of transcriptomic profiles of common genes (blue intersection in
Figure 1C) measured in the bulk experiment. F. Sample-wise correlation of transcriptomic profiles
of common genes measured in the matched dataset. G. Sample-wise correlation of transcriptomic
profiles of common genes measured by scRNA-Seq.
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We further found a profound difference in expression profiles between bulk and

pseudobulk measurements. While many common genes were detected in matched

experiments, the quantitative expression levels differ between bulk and pseudobulk

datasets at the global level. Comparison of mean expression levels of genes detected

in both matching experiments (Figure 1D) indicates the higher detection rate in the

bulk experiment demonstrating the consistency with reported studies [3]. Figure 1D

shows a substantial difference in expression measurements with lower gene expres-

sion measured in the single cell experiment with an average of log2 TPM = 2.14

when compared to the bulk experiment with median expression of log2 TPM = 4.44.

As the ground-truth of expression in genes with missing values is unknown, we

can only obtain such an information from samples of the matching experiments.

Consequently, in order to ensure the validity of the derived results, we performed an

ML-assisted analysis using the subset of the most confident genes (Figure 1C). Thus,

for the analysis of the quantitative difference we used data related to common genes

with available expression measurements in all samples in both RNA-Seq experiments

(blue intersection area; regression task), while for the analysis of the qualitative

difference (dropouts) we also include those with expression measurements detected

in 8 samples in the matched experiments only (gray areas; classification task).

Technical noise is the major contributor to difference between single-cell

and bulk RNA-Seq

In order to assess the contribution of technical and biological variation, we per-

formed a sample-wise correlation analysis within and between the two sequencing

experiments. Figure 1E-G indicates how transcriptomic profiles produced from the

scRNA-Seq experiment are different to that of the bulk RNA-Seq for genes expressed

across all samples and both modalities (blue intersection in Figure 1C). For each

of the sequencing protocols, the expression measurements showed a little across-

sample variation with correlation coefficients close to 1 in both the bulk RNA-Seq

(ρ > 0.97) and aggregated into pseudobulk scRNA-Seq (ρ > 0.96) experiments as

represented in Figure 1E and Figure 1G, respectively.

This suggests that the effect of the biological noise is negligible in the tested

setup. Results also indicate a slightly increased gene expression variability level

in aggregated single cells compared to bulk RNA-Seq. As droplet based scRNA-

Seq systems (i.e., 10x Genomics Chromium) amplifies cDNA fragments close to

polyadenylation (polyA) tails, the corresponding gene expression measurements are

highly biased to the 3'-end, while the full transcript coverage was captured in the

bulk data. Due to the generated single-cell data are often confounded by the quality

of 3'-UTR annotation, this increase in variability of gene expression measurements

was expected.

On the other hand, correlation between bulk and pseudobulk samples was compar-

atively low (ρ = 0.59±0.01), suggesting the presence of technical variation between

matched RNA-Seq experiments (Figure 1F). Thus, the correlation analysis reveals a

negligible impact of batch effects on gene expression indicating that technical noise

is the major contributor to the difference between matched RNA-Seq experiments.
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Dropouts are systematically observed in data and are only partially

caused by lowly expressed genes

Dropout events relate to a common phenomenon observed in RNA-Seq data im-

plying that specific transcripts cannot be detected by the sequencing technology

[4]. As the presence of dropouts highlights possible limitations in the sequencing

and/or pre-processing protocols, which, in turn, may introduce bias in downstream

analysis and interpretation of the data, we investigated these genes in more detail.

Supplementary Figure S1C provides an overview of the experiment-wise sparsity

rates of dropouts identified in the matched dataset, where the sparsity rate is de-

fined as the number of genes with missing expression (TPM = 0) across different

proportions of samples. Results of this analysis together with Figure 1B indicate

that sample-wise dropouts are not likely to occur randomly or by chance in matched

RNA sequencing data. Here, the sparsity rate of zero indicates dropouts with the

available expression values in all 8 samples in only one of the experiments.

Given that our experimental design provided gene expression measurements across

several biological samples, we introduce a more specific definition of high-confidence

dropouts (here and later as global dropouts), in which we consider them as genes

representing missing expression in all samples in only one of the matched RNA-

Seq experiments, while being detected (TPM 6= 0) across all samples by another

technology. Based on eight matched bulk and pseudobulk samples in our dataset, we

found 804 global dropouts, with a higher number in the single cell experiment (gray

areas in Figure 1C and bar 0 in Figure S1C). Specifically, a quantitative analysis

of global dropouts indicates 477 genes were not detected in scRNA-Seq data, while

being expressed in all samples of the bulk data. Conversely, 327 genes show no

expression in any of the bulk samples, while being strongly expressed across all

samples in single cells.

Figure 2 Gene expression levels of most confident global dropouts. Measurements in the
matched experiment are shown. A. Expression levels of genes that are global dropouts in
scRNA-Seq and exhibit a high-expression in the bulk experiment. B. Expression levels of genes
that are global dropouts in the bulk experiment and exhibit a high-expression in scRNA-Seq.

Since the previous research suggests that weakly expressed genes tend to pro-

duce more differences than highly expressed genes at the single-cell level [2], we
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analyzed mRNA expression level of global dropouts in the matched experiment

(Figure S1D). Subsequently, comparison of expression measurements indicates the

similar average expression levels of these genes in the bulk and scRNA-Seq expe-

riments. As expected, we also observed the majority of global dropout genes to

be lowly expressed in the matched experiment. However, a substantial number of

dropouts showed non-marginal (high) expression, as can also be seen for specific

examples. Closer examination of global dropouts that are highly expressed in the

matched experiment (Figure 2A and Figure 2B for single-cell and bulk RNA-Seq

data, respectively), reveals that these genes represent variable expression patterns

and therefore, cannot be explained by the low expression level only.

Proposing a computational approach to analyse the difference in RNA-

Seq experiments

In order to identify which factors determine whether genes are differently detected

in matched RNA-Seq experiments, we introduce FAVSeq (Factors Affecting Vari-

ability in Sequencing data), a machine learning-assisted pipeline, those design in-

tends to support researchers in disclosing potential root causes of the difference—in

terms of gene expression measurements and dropouts–observed between RNA-Seq

technologies. FAVSeq enables to select features obtaining the strongest predictive

power for estimation of technical variability between RNA sequencing modalities.

The pipeline includes the following steps (Figure 3):

1 Create the target by calculating the ordinary least squares (OLS) residuals in

gene expression levels.

2 Generate gene-associated features based on GTF annotation file and open-

access databases (e.g., BioMart, Jensen Compartments).

3 Optionally, recover missing values in features using a chosen imputation ap-

proach (e.g., model-based one).

4 Optimization of hyper-parameters of models through the 5-fold cross-validated

(CV) grid-search. Selection of the top-performance model.

5 Rank features w.r.t. their influence on the objective using the top-performance

model and based on recursive feature elimination (RFE) in 5-fold CV.

6 Output the summary reports, including statistics for the core features that

contribute to the difference between experimental modalities.

Thus, steps 1-3 provide us with the independent (features) and dependent (quan-

titative or dropouts-related target differences) variables. Feature selection is not a

trivial task, especially in case of genomics databases that often consist of partially

incomplete data, which, in turn, may affect the performance of machine learning

models. To address this issue, we integrated a missing data imputation module into

FAVSeq (step 3). The introduced module supports both non- and parametric im-

putation strategies, including k-Nearest Neighbors (kNN), that was shown to be

effective to handle missing and/or corrupted values in genomic and transcriptomic

data [12–14].

Then, based on the created dataset, the subset of the most relevant features

is being selected using the machine learning-assisted feature selection approach

(steps 4-5), which, in turn, consists of two main parts. The first part serves to

select the most suitable model to predict the target difference between experiments
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(training, evaluation and optimization of hyper-parameters), and the latter part

serves to select the subset of the most relevant features among the set of tested

ones w.r.t. the objective (Mean Squared Error or Balanced Accuracy for regression

and classification tasks, respectively).

Figure 3 Framework utilized in the FAVSeq pipeline for ranking and selection of features
affecting the technical variability in RNA-Seq datasets of matched experiments. The raw input
acquired from different sources (on the left) is being pre-processed in order to build a set of
features to be fed into an ML-model (e.g., random forest). The full set of input samples is used to
perform search for optimal hyper-parameters of the ML-model using 5-fold CV. The chosen
hyper-parameters serve then to perform selection of most relevant features based on the
underlying ML model (framework’s output, on the right) using RFE feature selection technique
that allows to determine most informative features, according to the ML model’s scores.

While analysing features w.r.t. quantitative difference (regression task), the ran-

dom forest model was used because it’s agnostic to variable types (numerical or

categorical). Furthermore, given that smallest and largest values of some features

differ by several orders of magnitude, such a model can provide sufficient number of

estimators, so individual trees cover particular ranges of the input. Also, the model

preserves monotony of transformations applied to the input variables, and is not

sensitive to outliers in the input samples. For the classification-based analysis of

dropouts-associated features, we used a multilayer perceptron (MLP) model, those

training and evaluation followed the same steps. To derive an optimal subset of fea-

tures relevant for the difference between experiments, we utilized RFE, which is a

model-agnostic meta-learning method allowing to exclude the least important ones

according to the model’s scores on each iteration. The algorithm works until the

acquisition of the most important features w.r.t. the objective (target difference).

Finally, the pipeline provides the summary reports (step 6) in a form of tables

and visuals (i.e., best hyper-parameters chosen, comparison of the performance of

models), which allow interpreting the obtained results as well as guiding on further

experiments to be performed.

Aggregating gene expression difference in matched RNA-Seq experi-

ments

In order to define a quantitative metric for comparing RNA-Seq sequencing expe-

riments, the aggregated per-sample gene expression difference was calculated and
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used as a dependent variable for the regression analysis. Specifically, we calculated

the averaged minimized sum of square differences between measured gene expres-

sions in bulk and aggregated single cells using the OLS method, as described in

Methods section. Log-transformation of expression values was done beforehand to

make them conform more closely to the normal distribution.

Figure S2A represents how the quantitative difference—residuals of gene expres-

sion measurements—is estimated for the sample one for genes found in pseudo-

(y-axis) and bulk (x-axis) RNA-Seq datasets, showing the higher measurements in

the bulk accordingly with the analysis depicted in Figure 1D. Gray color indicates

dropouts and blue indicates genes detected in both matched RNA-Seq experiments

for the total of 13,427 genes. At a global level (Figure S2B), we further notice that

the quantitative difference—averaged residuals of gene expression measurements—

aggregated across all samples is also higher for genes in the bulk experiments in

comparison with those in the aggregated single cells. Thus, the calculated quanti-

tative difference indicates how close measurements in matched experiments are by

relating gene expression in pseudobulk to bulk RNA-Seq and serves as a basis for

further regression-based feature selection analysis. At the same time, the dropouts-

related difference (non-/dropout) will be used later for binary classification task

while identifying features contributing to the presence of dropout events.

Creating the feature representation of genes by aggregating data from

genomic databases

In order to identify the most relevant features for the difference between gene ex-

pression measurements, we generate prospective features representing factors for

genes available in both experiments (listed in Table 1). These features comprise the

subcellular localization of a gene product, the chromosome at which the gene is

located as well as metrics describing the dimensions (e.g., transcript length, UTR

length) or expression of a gene (transcript count). Collection of data from genomic

databases for the further feature engineering was done for 12,623 common genes

that are expressed in all samples across matched experiments (blue intersection in

Figure 1C), also considering 804 global dropouts (gray areas in Figure 1C) for the

further identification of features affecting the quantitative difference and dropouts

events, respectively.

For this purpose, a diverse data corresponding to genes were integrated from

different sources, such as COMPARTMENTS [15], BioMart [16] and GTF (Ensembl

v.86) annotation data [17]. Since the chosen features were of both numerical and

categorical types, the latter ones were transformed into numerical representation

by enumerating the categories and assigning the corresponding indices. As a result,

we created a set of 10 prospective features representative for matched sequencing

experiments.

Since machine learning models greatly benefit from high quality training data,

it is necessary to assure such a property of the input data. One of the factors

that can be potentially harmful to ML-models is multicollinearity, i.e. statistically

non-independent relationships between features. In order to determine whether ad-

ditional feature selection is required as a pre-processing step before the use of the

FAVSeq pipeline, we performed a cross-correlation analysis that allowed to assess
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Table 1 Summary of the generated gene-specific features

Feature name Description Sources

compartment subcellular localization COMPARTMENTS [15]

TSS transcription start site BioMart [16]

GC-content guanine-cytosine content ratio BioMart [16]

cDNA length length of complementary DNA BioMart [16]

transcript count number of transcripts BioMart [16]

chromosome chromosomes/scaffolds id GTF (Ensembl v.86)

transcript length length of transcript GTF (Ensembl v.86)

3'UTR length length of 3'untranslated region GTF (Ensembl v.86)

5'UTR length length of 5'untranslated region GTF (Ensembl v.86)

CDS length length of coding DNA region GTF (Ensembl v.86)

biotype transcript variant type (ex. coding) GTF (Ensembl v.86)

the occurrence of high inter-correlations among independent variables. Its results

suggest (Supplementary Figure S2C) that filtering of the features is not necessary,

since they do not exhibit strong dependencies between each other [18]. Addition-

ally, we performed the comparison of pairwise feature correlations according to

Pearson and Spearman (upper rights and lower left in Figure S2C, respectively)

that suggests the existence of non-linear relationships between some features (e.g.,

|ρGCcontent
Spearman | > |ρGCcontent

Pearson |), which we consider later while choosing among suitable

machine learning models. With the aim to disclose a subset of the most relevant

features for the aggregated target difference, we performed an ML-assisted analysis.

Identification of factors affecting the gene expression difference in RNA-

Seq experiments

Using the proposed FAVSeq, we analysed the influence of generated features on bulk

vs. scRNA-Seq gene expression differences calculated for the matched experiments.

For that, we considered 5134 genes with no missing values in any tested features

(data of 0% sparsity; Table S2). The model performance on the gene expression

difference prediction task was assessed using MSE that served as a loss metric.

Additionally, we used simple linear regression as a baseline in order to show how

the errors are measured on the same data in comparison with those calculated based

on analysis using random forest with optimized hyper-parameters. Comparison of

the performance of regression models indicate the random forest as the most suitable

model to predict the quantitative difference between experiments based on the set

of tested features (Figure 4A). Here, the best performance was achieved using an

ensemble of 512 trees with the depth of 8. During the model training, at least 16

samples were needed before splitting tree’s internal nodes, while leaf nodes contained

4 or more samples.

Subsequently, we derived an optimal subset of relevant features using recursive

feature elimination based on random forest (RFE-RF) to obtain rankings within

differently sized subsets of features in a 5-fold cross-validation. Figure 4B indicates

how well the difference can be explained by the tested subset of features based on

the RFE-RF approach. The cross-validation loss curve (lower is better) shows that

the model error decreases with the number of features used and reaches the global

minimum when using a subset of size 9. Then we determined the optimal number of

features through the search for the first stationary point of the objective function by
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Figure 4 Identification of features contributing to the quantitative and qualitative (dropouts)
differences in the matched RNA-Seq experiments. A. Comparison of the performance of machine
learning models—random forest (RF) and linear regression (LR)—in prediction of the quantitative
difference based on tested features in terms of MSE (lower is better) in 5-fold CV. B. Solution on
the optimal number of features based on RFE-RF used to examine feature importance across
different subset sizes (x-axis). Cross-validation loss (y-axis) indicates how the model performs
based on differently-sized subsets of features in 5-fold CV, showing the steep drop in mean loss
values around the subset of three features. Dashed vertical line indicates the optimal number of
features. C. Ranking results for features affecting the quantitative difference between experiments.
X-axis indicates feature relevance values derived using the RFE-based-on-RF model and y-axis
indicates feature names. D. Ranking results for features affecting dropouts in both experiments
and derived using RFE-MLP. E. Ranking results for features affecting dropouts in scRNA-Seq and
derived using RFE-MLP. F. Ranking results for features affecting dropouts in the bulk RNA-Seq
and derived using RFE-MLP.

calculating second-order differences, which indicate the steepest drop of the curve.

We see noticeable deceleration of the drop of the loss curve after the feature set’s

size reaches value of 3, indicating these features as the most important ones w.r.t.

the difference discovered between the RNA-Seq experiments (dashed vertical line

in Figure 4B).

The same model was then used to rank features w.r.t. their influence on changes

in the target variable. As random forest ranking considers both feature set com-

pleteness and non-linear interactions within it, we drawn the conclusions about the

feature importance upon its scores. Closer look at the importance scores indicates

the major impact of three particular features—3'-UTR, transcript length and GC

content—on the quantitative difference between matched RNA-Seq experiments, as

also shown in Figure 4C. In total, the aforementioned factors are responsible for

more than 51 % of the entire relevance of the features for the regression target.

Table 2 Characteristics associated with top-relevant identified features in least and most different
genes according to the analysis of matched RNA-Seq experiments

Statistics (Mean±SD; N=100) 3'-UTR length Transcript length GC content ratio

Least different genes 944.8±1 059.5 21 051.2±22 175.2 47.4±7.9

Most different genes 506.7±787.6 48 851.2±62 090.0 49.6±7.2
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In order to provide a more in-depth understanding on how these features may

vary between subsets of genes, we calculated first and second central moments

of the top-identified features for the least and most different genes according to

the previously calculated measure of the difference in the matched experiments,

as shown in Table 2. Interestingly, we observe the shortened length of 3'-UTRs in

the most different genes, suggesting the higher level of gene expression as well as

the possible differences in their mRNA metabolisms (e.g., sub-cellular localization,

stability and the rate of translation of mRNAs [19, 20]).

Identification of factors affecting the presence of dropouts in RNA-Seq

experiments

In the previous Sections, we focused on quantitative expression differences between

single cells and bulk RNA-sequencing. Here, we applied the similar approach intro-

duced in the FAVSeq pipeline for the classification task in order to identify the most

relevant factors associated with the occurrence of dropouts. We asked whether the

generated features in Table 1 affect the presence of dropouts (qualitative difference)

in RNA-Seq experiments and therefore we adapted our machine learning approach

to this group of genes. For this analysis we chose 13,427 genes, including 804 global

dropouts, representing expression measurements across all samples in the opposite

experiment (Figure 1C, gray areas). As the features generated in the previous step

consist of missing values (Table S2), these values were imputed using a k-NN model

as it was shown to be more accurate on dropouts prediction task (Figure S2D).

Unlike regression, the classification task implies estimation of discrete (class la-

bels) rather than continuous values. In a such setup, one has to take into account

class imbalance, since strong domination of one class may introduce severe bias

into the model’s predictions. As the presence of a dropout—and the corresponding

class in the data—is a quite rare event (< 6 %), the complementary class, namely

the absence of a dropout, is highly over-represented, since the corresponding sam-

ples occur roughly 15.6 times more frequently (Table S2). To address this issue,

one can utilize the oversampling approach for the training data or choose a model,

those training procedure allows to re-weight classes assigning higher importance to

the under-represented class (dropouts). The latter is possible using an MLP model

trained using weighted cross-entropy loss as the optimization objective. In order

to account the class imbalance during the performance evaluation, we also applied

class-wise averaged recall (a.k.a. balanced accuracy) to assess the model’s prediction

accuracy. Results of the feature ranking w.r.t. global dropouts found in both expe-

riments indicate that cellular compartments, 3'-UTR and transcript lengths affect

the presence of dropouts in the combined bulk and scRNA-Seq dataset (Figure 4D).

The best model performance was achieved for the MLP containing 512 hidden neu-

rons trained using learning rate η = 0.01 and regularization term α = 0.0001. Ex-

act values of the aforementioned hyper-parameters were obtained through the grid

search over a predefined hyper-parameter space. Furthermore, we utilized this ap-

proach to analyse features w.r.t. their influence on experiment-wise global dropouts

(including 477 and 327 in scRNA-Seq and bulk, respectively). Latter results indicate

the similar factors to be relevant for dropouts in individual single-cell (Figure 4E)

and bulk (Figure 4F) RNA-Seq, while the 3'-UTR exhibits a particular importance

for dropouts in the single cell experiment.
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Discussion
The proposed here FAVSeq pipeline allowed to investigate the impact of a variety

of factors (i.e., genomic and transcriptomic) on the variability in RNA-Seq data

of matched experiments. Our results suggest that 3'-UTR and transcript lengths,

as well as GC content influence the gene expression difference between the bulk

and scRNA-Seq profiles. Similarly, 3'-UTR and cellular compartments were found

to be relevant for dropouts at the most. Some of these identified features have

been already reported to affect gene expression variability in RNA-Seq data. In

particular, 3'-UTR was shown in determining expression differences in RNA-Seq.

From the technological standpoint, the potential reason for 3'-UTR to be appeared

as one of the core factors affecting gene expression variability is that reads can

be biased towards the 3'-UTR in single cell sequencing. Droplet-based single-cell

RNA-Seq methods (e.g., 10x Genomics Chromium), have the majority of the reads

mapped to UTR (mainly 3'-UTR) [21], while in the bulk both ends are typically

used for tagging of mRNA fragments (cell-barcode + UMI). This could lead to the

result we see, that 3'-UTR length contributes to a difference between the expression

levels. Thus, the 3'-UTR in such a case should be more relevant in measuring gene

abundance. Moreover, in the case of the pig data the 3'-UTR can be identified as the

most influential feature because this non-model organism has less well annotated

3'-UTR regions [22], while bulk doesn’t have 3'-bias, so it wasn’t affected so much.

In order to explore deeper the differences between scRNA-Seq and bulk, one can

further utilize FAVSeq for the matched data from non-model organism (e.g., mouse

as provided by Chen et al., 2020 [23]).

Additionally, the following approaches can be employed to extend the current

analysis at different levels (data preparation and analysis steps), such as: A) test how

additional features can affect the gene expression variability; B) further optimize

the hyper-parameters of the model; C) try out other algorithms. With regards

to the data preparation step, additional features extracted from the unprocessed

sequencing data (e.g., BAM, FASTQ) can be considered. Thus, the feature selection

analysis based on data with the least of downstream processing steps will allow

to investigate in more detail the experiment-related factors affecting the technical

variability between sequencing protocols. Another possibility addressing individual

model’s performance in the data analysis step is to further explore hyper-parameters

of the model during the optimization phase. Thus, the performance of the model can

be further improved by searching for more optimal values in the increased hyper-

parameters’ space. Accordingly, the number of hyper-parameters can be expanded

and/or the model can be calibrated by the analysis of out-of-bag (OOB) errors that

serves as cross-validation loss to approximate a suitable number of trees at which

the error stabilizes.

Furthermore, the ML pipeline can be extended by testing other machine learning

algorithms and meta-learning approaches (e.g., Support Vector Machine, Boosting,

k-Best) to achieve higher predictive power. For instance, boosting of the regres-

sion trees can be used in order to improve further the model performance on the

gene expression difference prediction task. Thus, the FAVSeq-based analysis can be

extended by, for instance, introduction of additional features (e.g., cell specificity)—

that are dependent on the scientific question formulated by a researcher—in order

to verify their relevance for the difference between RNA-Seq technologies of interest.
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Conclusions
In this study we demonstrated computational framework to investigate the sources

of variation in RNA-Seq profiles obtained from the same population of biological

replicates based on different RNA sequencing technologies. Based on the analysis

of matched single-cell and bulk RNA-Seq data, we found high similarity in gene

expression measurements for the majority of genes and also discovered that this

difference is primarily subjected to a technical variation given the negligible effect

of biological variation in the tested setup. In addition, we performed an in-depth

analysis of dropouts which were found to be systematically present in both expe-

riments and to be not explained by low-expression genes only, as it was generally

accepted in the preceding studies.

Furthermore, we proposed an ML-based pipeline, namely FAVSeq, for detection

of important factors (i.e., genomic and transcriptomic) affecting quantitative (gene

expression levels) and qualitative (dropouts) difference in matched RNA-Seq expe-

riments. We analysed matched single-cell and bulk dataset to discover that 3'-UTR

and transcript lengths affect gene expression variability between these sequencing

experiments at the most. Subsequently, we applied FAVSeq for identification of fea-

tures associated with the occurrence of dropouts and found out the same features

together with cellular compartments to be relevant for presence of global dropouts

as well. We also demonstrated how to reconstruct missing values in data generated

from metadata and genomic databases based on the k-NN approach.

Therefore, the proposed computational framework enables to investigate the

sources of variability in RNA-Seq experiments, which, in turn, allows to improve

the interpretability and reduce the complexity of the further in-depth analysis of

gene expression data provided by different RNA-Seq technologies.

Methods
Data sets

To analyse the core factor affecting the difference between RNA sequencing experi-

ments, we examined single-cell (scRNA-Seq) and mRNA (bulk RNA-Seq) datasets

measured on the same population of retina cells extracted from eight pig animals

(Sus scrofa) and provided in the study of Shen et al., 2021 [22].

Library preparation and processing of RNA-Seq datasets

In short, single cell suspension from retina was originated from 8 pig animals (6

pigs and 2 mini pigs), followed by library preparation done using the Single Cell

3'Reagent Kit v2 (10x Genomics). Matched sequencing experiments were performed

on the same biological samples to measure gene expression patterns. In order to

mitigate the difference between sequencing procedures, the same scRNA-Seq cell

preparation procedure was used in both experiments. For each library pool the

sequencing was performed on the Illumina HiSeq 4000 platform to generate scRNA-

Seq and the bulk dataset with single-indexed paired-end and dual-indexed 2x75 bp

paired-end runs, respectively. Sequencing reads for both datasets were mapped and

annotated on a gene level using the same version of Sus scrofa reference genome

(version 10.2.86 primary assembly). Transcripts per million (TPM) was calculated

subsequently to measure gene abundance in the RNA-Seq experiment.
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Experimental setup

In order to identify the most relevant contributors to the variability in RNA-Seq

experiments, we utilized embedded and wrapper feature selection methods to access

the importance of a variety of factors (i.e., genomic and transcriptomic) on the

quantitative (gene expression levels) and qualitative (dropout events) difference in

matched bulk and single-cell RNA-Seq dataset.

Creation of pseudobulk from scRNA-Seq

In order to enable the comparative analysis of data from different experiments,

single cell counts were aggregated by summing up raw read counts across single

cells from each sample, followed by its gene length and per sample normalization

giving transcript counts per million.

Extraction and aggregation of gene-associated features

Data corresponding to genes were integrated from different sources, such as COM-

PARTMENTS [15], BioMart [16] (v.86) and Ensembl v.86 (parsed from GTF) an-

notation data [17]. As features representing a length (i.e., transcript length) consist

of duplicates, the longest entries were chosen for the analysis. For the same rea-

son (presence of duplicates), an averaged GC content was calculated for the cor-

responding feature. Chromosome feature provides the information on chromosome

localization, where numerical entries (i.e., chromosome 2) are designated by their

chromosome numbers.

A feature representing cellular compartments was generated as described below.

First, genes with the most reliable entries were selected w.r.t. the reliability index

[24], evidence codes were joined into top-level groups as suggested by [25]. As the

compartment dataset consists of missing values corresponding to a single gene,

duplicated entries were removed based on the most evident results, i.e., the higher

priority was assigned to the entries verified by experiments and curated information.

Subsequently, the subgroups were merged into the top-level group (e.g., ”Organelle”

and ”Organelle part” into ”Organelle”) in order to reduce the complexity of high-

dimensional data. Most commonly-validated compartments were selected among

duplicates. Finally, compartment names were updated by the corresponding GO

term indices (”Membrane” localization into ”GO:0016020” GO term into ”16020”

GO encoded) in order to preserve associations between the categories.

Imputation of missing values in generated feature matrix

Since some of the features (Table S2) consist of missing values, these values were

imputed using a k-Nearest Neighbors (k-NN) approach. The exact behavior of the k-

NN imputation model depends on the chosen distance metric. Here, given a sample

containing a missing value indicator (NaN) for a feature, the value is being replaced

by the average feature value calculated for K = 100 samples that are closest to the

considered one, according to the Euclidean distance.

Calculation the averaged gene expression difference between experiments

In order to define a quantitative metric for comparing sequencing experiments, the

aggregated per-sample gene expression difference was measured and used as a de-

pendent variable for the regression analysis. Log-transformation of gene expression
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values was done to decrease variability within the sequencing data and make it con-

form more closely to the normal distribution. Gene expression data was represented

as an M |G|x|S| matrix of genes vs. samples for S∈A∈B, where A and B are pseudo-

and bulk RNA-Seq, respectively, and |SA| = |SB | = N . Then, the slope and in-

tercept of the regression line can be estimated as shown in Equations 1-2, so that

the sum of squared errors (SSE) is minimized (Equation 3). Then, the difference is

measured as the observable error from the estimated coefficients of OLS.

ĝB = MAβ + ε (1)

β = (MT
AMA)−1MT

AgA (2)

SSE =

|G|∑
i=1

|SB |∑
j=1

(gB − ĝB) (3)

Assessment of feature importance using model-based feature selection

To choose the most suitable model w.r.t. feature selection, we trained and evaluated

different machine learning algorithms in 5-fold cross validation, as well as bench-

marked them against the baseline estimator (linear and logistic regression models

for regression and classification tasks, respectively) in order to access the goodness

of predictions. Random forest is the one of embedded approaches that was employed

to rank features w.r.t. their influence on changes in the quantitative difference and

leverage performance of decision trees, while mitigating its tendency to overfitting.

For the regression task, standard deviation served as a measure of impurity, those

decrease has been defining hierarchical split of the training samples [26]. Afterwards,

we estimated importance of a feature proportionally to its closeness to the tree's
root node, which is defined through the information gain [27]. Finally, averaging by

trees in the forest produces the joint estimation of the feature importance. In order

to rank features w.r.t. their relevance for dropouts (classification task), we applied

an MLP model [28]. Assessment of feature importance scores using this model was

done through the accumulation of absolute values of gradient of the loss w.r.t. input

during the model training [29].

Optimization of hyper-parameters of regression and classification models by the

5-fold CV grid-search over all possible combinations in the parameter space as the

following: 1) Split the data into 4 training and 1 test folds. 2) Perform feature

pre-processing to make values follow the normality assumption. 3) Train the model

on the training folds and evaluate on the test fold. 4) Choose hyper-parameters

corresponding to the best model. Hyper-parameter search for the random forest

model was done for the number of estimators (from 32 to 1024), their maximum

depth (4-32), minimum number of samples required to split an internal node (2-16)
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and the minimum number of samples in a leaf node (1-8). Optimization of hyper-

parameters for the MLP model was done for the number of neurons in hidden layers

(32-1024), learning rate (0.001-0.1), and L2-regularization term (α; 0.0001-0.1). The

MLP’s output was mapped non-linearly using logistic activation function, and its

weights were adjusted during the training using Adam optimizer [30].

Identification of the core relevant features using recursive feature elimination

To identify an optimal subset of the features relevant for the gene expression dif-

ference between matched RNA-Seq experiments, we applied recursive feature elim-

ination (RFE) [31], which performs an iterative elimination of least scored features

w.r.t. to an external estimator (e.g., random forest). In contrast to the full search

through all possible feature combinations, the RFE-based selection solves the task

in a linear time, thus providing a valuable speed-up.

The optimal number of features is determined by computing index of the first sta-

tionary point of the objective function based on the RFE-provided objective values

L ∈ RNfeatures using first- (∆) and second-order (∆2) differences (Equation 4).

Noptimal =

⌊
1

Nfolds

Nfolds∑
n=1

argmin
Nfeatures

(
∆sign

(
∆2Ln

)
= 0

)⌉
+ 2 (4)

Statistical analysis

The correlation analysis is based on Spearman’s rank and Pearson correlation co-

efficients.
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