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Imaging technologies are increasingly used to generate high-resolution reference maps of brain struc-
ture and function. Modern scientific discovery relies on making comparisons between new maps (e.g.
task activations, group structural differences) and these reference maps. Although recent data shar-
ing initiatives have increased the accessibility of such brain maps, data are often shared in disparate
coordinate systems (or “spaces”), precluding systematic and accurate comparisons among them. Here
we introduce the neuromaps toolbox, an open-access software package for accessing, transforming,
and analyzing structural and functional brain annotations. We implement two registration frameworks
to generate high-quality transformations between four standard coordinate systems commonly used in
neuroimaging research. The initial release of the toolbox features >40 curated reference maps and bio-
logical ontologies of the human brain, including maps of gene expression, neurotransmitter receptors,
metabolism, neurophysiological oscillations, developmental and evolutionary expansion, functional
hierarchy, individual functional variability, and cognitive specialization. Robust quantitative assess-
ment of map-to-map similarity is enabled via a suite of spatial autocorrelation-preserving null models.
By combining open-access data with transparent functionality for standardizing and comparing brain
maps, the neuromaps software package provides a systematic workflow for comprehensive structural
and functional annotation enrichment analysis of the human brain.

Keywords: neuroimaging | annotations | atlas | registration | coordinate system | software | connectomics |
gradients

INTRODUCTION

Imaging and recording technologies such as magnetic
resonance imaging (MRI), electro- and magnetoen-
cephalography (E/MEG), and positron emission tomog-
raphy (PET) are used to generate high-resolution maps
of the human brain. These maps offer insights into
the brain’s structural and functional architecture, in-
cluding grey matter morphometry [9, 17], myelination
[13, 28, 36, 88], gene expression [3, 33], cytoarchitec-
ture [66], metabolism [72], neurotransmitter receptors
and transporters [8, 32, 55, 94], laminar differentiation
[83], intrinsic dynamics [24, 52, 67] and evolutionary
expansion [34, 60, 87, 91]. Such maps are increas-
ingly shared on open-access repositories like NeuroVault
[29] or BALSA [77], which, collectively, offer a compre-
hensive multimodal perspective of the central nervous
system. However, these data-sharing platforms are re-
stricted to either surface or volumetric data, and do not
integrate standardized analytic workflows.

If researchers generate novel brain maps in their
work—such as task fMRI activations or case-control cor-
tical thickness contrasts—how can they interpret them?
Ideally there should be a way to systematically com-
pare and contextualize new maps with respect to exist-
ing structural and functional annotations, using rigorous
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statistical methods. In adjacent fields, such as bioinfor-
matics, there already exist multiple widely-used compu-
tational methods for functional profiling and pathway
enrichment analysis of gene lists [6, 61]. A compara-
ble structural and functional enrichment tool for neu-
roimaging would have to support three specific capa-
bilities: (1) a method for generating high-quality trans-
formations across multiple coordinate systems, (2) a cu-
rated repository of brain maps in their native space, and
(3) a method for estimating map-to-map similarity that
accounts for spatial autocorrelation.

Creating brain maps frequently requires collating and
aggregating data from many individuals, a multi-step
procedure involving myriad methodological decisions.
One critical step in this process, however, is the trans-
formation of individual data to a common coordinate
system [19, 74]. This transformation is often performed
to account for anatomical differences between individual
subjects prior to group aggregation, and makes derived
maps more comparable across datasets. Data collected
from MRI are traditionally represented as volumetric im-
ages and are therefore commonly transformed to a stan-
dard “population” image in volumetric space (e.g., the
MNI ICBM 152 template; [22, 49]); however, standard-
ized triangular (i.e., “surface”) meshes are increasingly
used to represent data as well (e.g., the fsaverage, fsLR,
and CIVET surfaces; [20, 21, 23, 76]). Ultimately, how
researchers choose to represent their data can have im-
portant impacts on their analyses, and use of both vol-
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Figure 1. The neuromaps toolbox functionality | The neuromaps software package features a method for generating high-quality
transformations across multiple coordinate systems, a curated repository of brain maps in their native systems, and a method for
estimating map-to-map similarity that accounts for spatial autocorrelation. For example, user may provide a novel brain map from
their own empirical data (e.g. in MNI-152 space), transform it to multiple coordinate systems, and compare it against a library of
gradients from the published literature, using spatial autocorrelation preserving null models.

umetric and surface-based coordinate systems remains
prevalent in the literature.

Transforming individual, subject-level data between
different representations and coordinate systems is non-
trivial and has been the focus of significant research over
the past several decades [5, 15, 30, 54, 63, 64, 71, 89,
93]. Comparatively less attention has been given to
generating standardized transformations between coor-
dinate systems for group-level or averaged brain maps
[42, 43, 57, 90]. However, as researchers continue to
produce and share new maps, there is a growing need to
both implement robust and accurate group transforma-
tions between coordinate systems, and examine whether
and how choice of coordinate system may impact com-
parisons between maps.

In the current report we introduce a new open-access
Python toolbox, neuromaps, to enable researchers to sys-
tematically share, transform, and compare brain maps
(Fig. 1). First, we generate a set of group-level trans-
formations between four standard coordinate systems
widely used in neuroimaging and integrate them via
a set of accessible, uniform interfaces. Next, we cu-
rate over 40 reference brain maps from literature pub-
lished over the past decade to facilitate contextualizing
novel brain annotations. Finally, we implement spa-
tial autocorrelation-preserving null models for statisti-
cal comparison between brain maps that will help re-
searchers perform standardized, reproducible analyses
of brain maps. Collectively, this represents a first step
towards creating systematized knowledge and rapid al-
gorithmic decoding of the multimodal multiscale archi-
tecture of the brain.

METHODS AND MATERIALS

Code and data availability

All code used for data processing, analysis, and
figure generation is available on GitHub (https:
//github.com/netneurolab/markello_neuromaps) and
directly relies on the following open-source Python
packages: BrainSMASH [14], BrainSpace [82], IPython
[59], Jupyter [41], Matplotlib [38], NiBabel [11],
Nilearn [1], NumPy [56, 73], Pandas [50], PySurfer
[86], Scikit-learn [58], SciPy [81], Seaborn [85],
and SurfPlot (https://github.com/danjgale/surfplot).
Additional software used in the reported analy-
ses includes CIVET (v2.1.1, http://www.bic.mni.
mcgill.ca/ServicesSoftware/CIVET [2]), FreeSurfer
(v6.0.0, http://surfer.nmr.mgh.harvard.edu/
[21]), and the Connectome Workbench (v1.5.0,
https://www.humanconnectome.org/software/
connectome-workbench [45]).

The neuromaps toolbox

Source code for neuromaps is available on GitHub
(https://github.com/netneurolab/neuromaps) and is
provided under the Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License
(CC-BY-NC-SA; https://creativecommons.org/licenses/
by-nc-sa/4.0/). We have integrated neuromaps with
Zenodo, which generates unique digital object iden-
tifiers (DOIs) for each new release of the toolbox.
Researchers can install neuromaps as a Python pack-
age via the PyPi repository (https://pypi.org/project/
neuromaps), and can access comprehensive online
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documentation via GitHub Pages (https://netneurolab.
github.io/neuromaps).

Human Connectome Project

Generating transformations between coordinate sys-
tems requires high-quality data from a large cohort of in-
dividuals; for the transformations in the neuromaps tool-
box we use data from the Human Connectome Project
(HCP [78]). Raw T1- and T2-weighted structural MRI
data were downloaded for N = 1113 subjects from the
HCP S1200 release. After data processing and omitting
subjects that did not successfully complete the CIVET
processing pipeline, N = 1045 subjects remained.

HCP processing pipeline All structural data were
preprocessed using the HCP minimal preprocessing
pipelines [27, 78]. Briefly, T1- and T2- weighted MR
images were corrected for gradient nonlinearity, and
when available, images were co-registered and averaged
across repeated scans for each individual. Corrected T1w
and T2w images were co-registered and cortical surfaces
were extracted using FreeSurfer 5.3.0-HCP [17, 20].
Subject-level surfaces were aligned using a multimodal
surface matching (MSMAll) procedure [25].

CIVET processing pipeline Images were separately
processed with the minc-bpipe-library (https://
github.com/CoBrALab/minc-bpipe-library), which per-
forms N4 bias correction, cropping of the neck re-
gion, and brain mask generation. Outputs of
minc-bpipe-library were then processed through the
CIVET pipeline (v2.1.0 [2]), which performs non-linear
registration to the MNI ICBM 152 volumetric template,
cortical surface extraction, and registration of subject
surface meshes to the MNI ICBM 152 surface template.
Due to CIVET processing failures N = 68 subjects were
omitted from further analysis.

Standard coordinate systems

Here we briefly describe the four standard coordinate
systems (one volumetric and three surface) considered
in the current report. Although other coordinate systems
are used in neuroimaging research, these four arguably
represent the most commonly-used systems in the pub-
lished literature.

The MNI-152 system

A significant body of work has been dedicated to ex-
plaining what is meant when researchers refer to “MNI
152 space”, as several variations of this space exist de-
pending on researchers’ choice of template [10]. In ad-
dition to variations on the MNI-152 template, there exist
many other MNI spaces which differ from one another
enough to impact downstream analyses [44]. Here we
use the MNI-152 space as defined by the template from
the Minn/Wash-U Human Connectome Project group
[78], which is a variation of MNI ICBM 152 non-linear

6th generation symmetric template (identical to the MNI
template provided with the FSL distribution [39]). This
template was selected because it is the default template
in HCP processing pipelines, of which some were used
to generate transformations between coordinate systems.
This template was created by averaging the T1w MRI im-
ages of 152 healthy young adults that had been linearly
and non-linearly (over six iterations) transformed to a
symmetric model in Talaraich space.

The fsaverage system

The fsaverage system, used by FreeSurfer, represents
data on the “fsaverage” template, a triangular surface
mesh created via the spherical registration of 40 indi-
viduals using an energy minimization algorithm to align
surface-based features (e.g., convexity; [20, 21]). In
current distributions of FreeSurfer there are five scales
of the fsaverage template (fsaverage and fsaverage3-6),
ranging in density from 642–163,842 vertices per hemi-
sphere. The fsaverage system is roughly aligned to the
space of the MNI-305 volumetric system.

The fsLR system

Proposed by Van Essen et al. [76], the fsLR coordinate
system was created to overcome perceived shortcomings
of the fsaverage system: namely, hemispheric asymme-
try. That is, the left and right hemispheres of the fsaver-
age surface are not in geographic correspondence, such
that vertex A in the left hemisphere does not correspond
to the same brain region as vertex A in the right hemi-
sphere. Researchers used landmark surface-based reg-
istration to align the two hemispheres of the fsaverage
surface with a common hybrid target. fsLR templates are
available in densities ranging from 32,492–163,842 ver-
tices per hemisphere. The fsLR system is roughly aligned
to the space of the MNI-152 volumetric system.

The CIVET system

The coordinate system used by the CIVET software is
a surface reconstruction of the volumetric MNI ICBM
152 non-linear 6th generation template [23]. In its
most commonly-used format each hemisphere is repre-
sented with 41,962 vertices; a high-resolution version
with 163,842 vertices per hemisphere is also available.
Because this system is derived from the volumetric MNI
template, it ensures that aligned surfaces have good cor-
respondence with volumetric images in the MNI-152 sys-
tem.

Generating transformations between systems

Although there are numerous methods for transform-
ing data between coordinate systems, high-quality map-
pings for group-averaged data are limited [42, 43,
90]. In creating the neuromaps toolbox, we used two
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Figure 2. Transformations between coordinate systems | (a) Registration fusion provides a framework for directly projecting
group-level volumetric data to the surface. Here, a probabilistic atlas for the central sulcus [90] has been depicted independently
on the CIVET (41k), fsLR (32k), and fsaverage (164k) surfaces. (b) Multimodal surface matching (MSM) provides a framework
for aligning spherical surface meshes. Here, we show sulcal depth information (originally defined in fsLR space) on spherical
meshes that are aligned across the different coordinate systems, where each row represents a different coordinate system and
each column represents the space to which that system is aligned. (c) Example of a volumetric brain map (the first principal
component of cognitive terms from NeuroSynth [92]) that has been transformed to all surface-based coordinate systems using
alignments derived from registration fusion. (d) Example of a surface brain map (the first principal component of gene expression
from the Allen Human Brain Atlas [33]) that has been transformed to all other surface-based coordinate systems using alignments
derived from MSM. Note that because the original data are represented on the cortical surface, transformation to volumetric space
is ill-defined and therefore not shown here.

previously-validated frameworks to generate transforma-
tions between all four standard coordinate systems de-
scribed above (Fig. 2).

Registration fusion framework

Originally proposed by Buckner et al. [12] and later
developed by Wu et al. [90], registration fusion is a
framework for projecting data between volumetric and
surface coordinate systems. In its most well-known im-
plementation, researchers used data from the Brain Ge-
nomics Superstruct Project (GSP [35]) to generate non-
linear mappings between MNI152 space and the 164k

fsaverage surface [90].

Registration fusion works by generating two sets of
mappings for a group of subjects: (1) a mapping between
each subject’s native image and MNI152 space, and (2) a
mapping between each subjects native image and fsaver-
age space. These mappings are concatenated (MNI152
to native to fsaverage) and then averaged across sub-
jects, yielding a single, high-fidelity mapping that can be
applied to new datasets.

Here we generated mappings via registration fusion
between the MNI152 volumetric and the fsaverage, fsLR,
and CIVET surface-based coordinate systems using data
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Figure 3. Brain maps from the published literature | Collection of brain maps obtained from the published literature over the
past decade that are currently available in the neuromaps distribution. The maps capture the normative multiscale structural and
functional organization of the brain, including molecular, cellular, metabolic, and neurophysiological features. Refer to Table S2
for more information on the coordinate system, resolution, and original publication for each brain map. Colormaps were chosen
to maximize similarity with how data were represented in the original publication. Note that two of the maps (second column:
evo and devel expansion) only have data for the right hemisphere, and the MEG timescale is log-transformed. Additionally, only
a selection of four of the 36 neurotransmitter receptor maps are shown here [32, 40, 53, 65, 68]. The repository is continuously
updated and the most current list of maps can be found at: https://netneurolab.github.io/neuromaps/. The neuromaps toolbox
supports a data contribution pipeline and will continue to expand.

from the HCP (Methods: Data). All mappings used func-
tionality from the Connectome Workbench [45] rather
than FreeSurfer to ensure standardization of methodol-
ogy irrespective of target coordinate systems.

MNI152 to CIVET Unlike for fsaverage and fsLR sur-
faces, CIVET surfaces are extracted from subject T1w vol-
umes after the images have been transformed to the stan-
dard MNI152 system. As such, there is no need to gen-
erate composite mappings for CIVET surfaces as for the
other coordinate systems. Instead, we simply computed
the mapping from each subject’s MNI152-transformed
T1w volume to the subject’s native CIVET surface, and
then applied the CIVET-generated surface resampling to
register the mapping to the CIVET standard template sys-

tem. These mappings were then averaged across subjects
to generate a single, group-level transformation.

fsaverage/fsLR/CIVET to MNI152 Although every sur-
face vertex has a corresponding voxel representation in
volumetric space, not every voxel has a corresponding
vertex representation in surface space. As such, generat-
ing transformations from the surface coordinate systems
to the MNI152 volumetric system cannot yield a “dense”
output map. When Wu et al. [90] proposed the current
registration fusion framework they adopted a nearest-
neighbors, ribbon-filling approach to handle this short-
coming; however, this is only a viable approach when
applied to label data (i.e., integer-based parcellation im-
ages). We reproduce their approach for completeness,
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but caution against the application of surface-to-volume
projections for continuous data and omit such projec-
tions from our analyses.

Multimodal surface matching (MSM) framework

The multimodal surface matching (MSM) framework,
initially developed by Robinson et al. [63] and later ex-
panded in Robinson et al. [62], aims to align surfaces
defined on different meshes using information from vari-
ous descriptors of brain structure and function. This pro-
cedure has been previously used to generate mappings
between the fsaverage and fsLR coordinate systems.

Here, we used MSM to generate a mapping between
the CIVET and fsLR systems by aligning HCP subject
data processed through the CIVET pipeline with the same
data processed through the HCP processing pipeline. As
MSM requires input data be provided on spherical sur-
face meshes—a representation not produced in the stan-
dard CIVET pipeline—we used FreeSurfer functionality
to generate spherical mesh representations and sulcal
depth information for each subject’s CIVET-derived white
matter surfaces. We used these spherical meshes and sul-
cal depth measurements to drive alignment between the
CIVET and fsLR systems via two rounds of the MSM pro-
cedure. The first round was used to generate a rotational
affine transform to align gross features of the CIVET and
fsLR systems; the generated affines were averaged across
all subjects and used to seed a second round of finer-
resolution alignment, similar to the procedure described
in Robinson et al. [62]. The final, aligned subject-level
spherical surfaces defined in the CIVET system were av-
eraged to create a single, group-level surface that could
be used in future transformations.

The CIVET-to-fsaverage mapping was generated as the
composite of the transformations between the CIVET-
and-fsLR and fsLR-and-fsaverage systems.

Parcellations

Performing analyses at the voxel or vertex level can
be computationally intensive. The neuromaps software
package can be extended to parcellated data and also in-
tegrates easy-to-use tools for parcellating volumetric and
surfacic data. The base parcellating function assumes
that the given parcellation indexes each region with a
unique value, where values of 0 are ignored. However,
helper functions are provided to flexibly handle alterna-
tive parcellation formats, for example, where both hemi-
spheres are indexed with the same range of values.

Published brain maps

We curated a selection of brain maps from the pub-
lished literature of the past decade (Fig. 3). Maps were
obtained in their original coordinate system. A complete
list of maps and their coordinate systems is provided in
Table S2. The neuromaps data repository will continue

to evolve and supports a single-function data contribu-
tion pipeline for the neuroimaging community to share
novel brain annotations in volumetric or surface-based
coordinate spaces.

A portion of these maps were originally defined in co-
ordinate systems that are now deprecated. We briefly de-
scribe the transformations we used to project these maps
to one of the current standard coordinate systems (see
Methods: Standard coordinate systems).

PALS-TA24 to fsLR Data obtained from Hill et al. [34]
were originally aligned to a study-specific PALS-TA24
template (derived using a similar landmark-based pro-
cedure to the PALS-B12 template; [75]), which has been
supplanted by the fsLR coordinate system (see Methods:
The fsLR system). In order to project data from the PALS-
TA24 template to the fsLR system we applied the de-
formation map provided by the original researchers for
transforming data between these spaces using nearest
neighbors interpolation.

CIVET v1 to v2 The maps obtained from Reardon
et al. [60] were originally created using surface tem-
plates from CIVET v1.1.12; however, with the release of
CIVET v2.0.0 in 2014 the population surface templates
provided with the CIVET distribution were updated, ef-
fectively deprecating the older templates. In order to
project data from the CIVET v1.1.12 templates to the
CIVET v2.0.0 templates we used a nearest neighbors in-
terpolation, matching vertex coordinates in the newer
template to coordinates in the older template and assign-
ing the value corresponding to the closest vertex [60].

Spatial null frameworks

Recent research has consistently highlighted the im-
portance of spatially-constrained null models when sta-
tistically comparing brain maps [4, 14, 48]. The
neuromaps software package integrates nine different
spatial null frameworks, described in Markello and Misic
[48]. These include six spatial permutation models and
three parametrized data models which, collectively, can
be constructed for surface-based, volumetric, and par-
cellated data [4, 7, 13, 14, 16, 79, 80, 82]. Note that
four of the null models are adaptations of the original
spatial permutation framework proposed by Alexander-
Bloch et al. [4] when applied to parcellated data [7,
16, 79, 80]. These frameworks differ in how they re-
assign the medial wall—for which most brain maps con-
tain no data—whether that be by discarding missing data
[7, 16], ignoring the medial wall entirely [79], or reas-
signing missing data to the nearest parcel [80]. The three
parametrized data models circumvent spatial rotations
by applying generative frameworks such as a spatial lag
model [13], spectral randomization [82], or variogram
matching [14].

For analyses in the current report using surface-based
coordinate systems we apply the procedure proposed by
Alexander-Bloch et al. [4]; for analyses using volumet-
ric systems we apply the procedure described by Burt
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et al. [14]. Null distributions were systematically derived
from 1,000 null maps generated by each framework. The
mechanism for each null framework used for analyses in
the present work is described briefly below.

Spatial permutation null model

The procedure proposed by Alexander-Bloch et al. [4]
generates spatially-constrained null distributions by ap-
plying random rotations to spherical projections of a cor-
tical surface. A rotation matrix (R) is applied to the
three-dimensional coordinates of the cortex (V) to gen-
erate a set of rotated coordinates (Vrot = VR). The
permutation is constructed by replacing the original val-
ues at each coordinate with those of the closest rotated
coordinate. Rotations are generated independently for
one hemisphere and then mirrored across the anterior-
posterior axis for the other.

Variogram estimation null model

The procedure described by Burt et al. [14] oper-
ates in two main steps: first the values in a given im-
age are randomly permuted, then the permuted values
are smoothed and re-scaled to reintroduce spatial auto-
correlation characteristic of the original, non-permuted
data. Reintroduction of spatial autocorrelation onto
the permuted data is achieved via the transformation
y = |β|1/2x′ + |α|1/2z, where x′ is the permuted data,
z ∼ N (0, 1) is a vector of random Gaussian noise, and
α and β are estimated via a least-squares optimization
between variograms of the original and permuted data.

Assessing the impact of coordinate system

When transforming two datasets (i.e., a “source” and
“target” dataset) defined in distinct coordinate spaces to
a common system there are at least three options avail-
able: (1) transform the source dataset to the system of
the target, (2) transform the target dataset to the sys-
tem of source, or (3) transform both source and target
datasets to an alternate system. If comparisons are being
made across several pairs of datasets a fourth option be-
comes available: (4) always transform the higher resolu-
tion dataset to the system of the lower resolution dataset.

To examine whether the choice of coordinate system
impacts statistical relationships estimated between brain
maps we performed several analyses. First, we trans-
formed a selection of twenty brain maps (see Methods:
Published brain maps) into every other coordinate system
(e.g., fsaverage → fsLR/CIVET/MNI152, fsLR → fsaver-
age/CIVET/MNI152, and so on). We then correlated ev-
ery pair of these brain maps according to each of the
four possible resampling options described above. When
transforming both source and target datasets to an al-
ternate system (option 3, above), we comprehensively
tested every target coordinate system and data resolu-
tion. Spatial null models were used to assess the signifi-

cance of all correlations.

RESULTS

In this report we introduce the neuromaps tool-
box, an open-access software package designed to
streamline and standardize analyses of neuroimaging-
derived brain maps (available at https://github.com/
netneurolab/neuromaps). The neuromaps toolbox pro-
vides a uniform interface for transforming brain maps
between coordinate systems, contextualizing novel brain
maps with respect to canonical structural and functional
annotations, and assessing relationships between maps
using spatial null models. In the following section we
highlight features available in neuromaps, demonstrate
typical workflows enabled by its functionality, and use
neuromaps to examine how choice of coordinate system
can impact statistical analyses of brain maps.

The neuromaps data repository

The neuromaps toolbox provides programmatic access
to templates for four standard coordinate systems: fsav-
erage, fsLR, CIVET, and MNI-152 (see Methods: Standard
coordinate systems). For surface-based coordinate sys-
tems, we distribute template geometry files, sulcal depth
maps, and average vertex area shape files (computed
from HCP participants) in standard GIFTI format. For
volumetric coordinate systems, we distribute T1-, T2-,
and PD-weighted template files, a brain mask, and prob-
abilistic segmentations of gray matter, white matter, and
cerebrospinal fluid in standard gzipped NIFTI format.

Beyond template files, the neuromaps toolbox offers
access to a repository of brain maps obtained from the
published literature (Fig. 3; Table S2). These maps were
generated using multiple imaging techniques, including
magnetic resonance imaging, magnetoencephalography,
positron emission tomography and microarray gene ex-
pression. Brain maps are provided in the original coor-
dinate system in which they were defined to avoid errors
caused by successive interpolation. Collectively, these
maps represent more than a decade of human brain map-
ping research and encompass phenotypes including: the
first principal component of gene expression [33], 36
neurotransmitter receptor PET tracer images [32], glu-
cose and oxygen metabolism [72], cerebral blood flow
and volume [72], cortical thickness [78], T1w/T2w ra-
tio [25], 6 canonical MEG frequency bands [70, 78], in-
trinsic timescale [70, 78], evolutionary expansion [34],
3 maps of developmental expansion [34, 60], the first
10 gradients of functional connectivity [46], intersub-
ject variability [51], and the first principal component
of Neurosynth-derived cognitive activation [92]. This
repository of data is organized by tags and can be eas-
ily downloaded directly from neuromaps.

The neuromaps toolbox makes it easy to contextual-
ize novel brain maps to a range of molecular, struc-
tural, temporal, and functional features. This will fa-
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Figure 4. Correlations between brain maps across systems | (a) Correlation matrices between a selection of twenty brain
maps in the neuromaps toolbox for each of the surface-based coordinate systems. Because transformations from surface-based to
volumetric systems are ill-defined for continuous data we omit those associations. (b) A spring-embedded representation of the
correlation matrix among the twenty brain maps, shown here for the fsLR 32k system. (c) An example of two brain maps—the
principal functional gradient from Margulies et al. [46] and allometric scaling from Reardon et al. [60]—whose association is
significant in one system (CIVET 41k; r = 0.223, p = 0.049) and not in another (fsLR 32k; r = 0.217, p = 0.097).

cilitate an expansion of research questions, allowing re-
searchers to bridge brain topographies across several
spatial scales and across disciplines outside of their im-
mediate scope. Additionally, annotations will be regu-
larly added to the repository, resulting in an increasingly
rich toolbox. The neuromaps toolbox also integrates an
easy-to-use workflow for researchers who wish to share
new brain maps in any of the four supported coordinate
systems; information on contributing new brain maps
can be found in the online documentation for the soft-
ware (https://netneurolab.github.io/neuromaps/).

Transformations between coordinate systems

Despite the multiscale, multimodal collection of brain
phenotypes in neuromaps, data cannot be readily com-
pared to one another because they exist in different
native coordinate systems. Indeed, a common chal-
lenge when relating novel neuroimaging data to the
broader literature is finding a common coordinate space
or parcellation in which to conduct the analyses. The

neuromaps module provides transformations between
four supported coordinates systems as well as a stan-
dardized set of functions for their application. Trans-
formation between volumetric- and surface-based coor-
dinate systems were derived with a registration fusion
framework (Fig. 2a; [90]), whereas transformations be-
tween surface-based coordinate systems were derived us-
ing a multimodal surface matching (MSM) framework
(Fig. 2b; [62, 63]). We leverage tools from the Con-
nectome Workbench to provide functionality for apply-
ing transformations between surface systems; however,
users do not need to interact directly with these Work-
bench commands. In addition to transforming individ-
ual annotations, the neuromaps software package in-
cludes functionalities that resample images to each oth-
ers’ spaces. By default, data is only ever downsampled,
which ensures neuromaps does not artificially create new
data. Collectively, the neuromaps toolbox facilitates ro-
bust transformations between coordinate systems, facili-
tating the standardization of neuroimaging workflows.
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Assessing relationships between brain maps

The primary goal for transforming maps to a common
coordinate system is to statistically compare their spatial
topographies. The neuromaps software package uses a
flexible framework for examining relationships between
brain maps, offering researchers the ability to provide
their own image similarity metric or function, as well
as easy handling of missing data. By default, the pri-
mary map comparison workflows use the standard Pear-
son correlation to test the association between provided
maps. The neuromaps comparison workflow also inte-
grates multiple methods of performing spatial permuta-
tions for significance testing.

Multiple spatial null model frameworks allow for sta-
tistical comparison between brain maps while account-
ing for spatial autocorrelation [4, 7, 13, 14, 16, 79, 80,
82]; however, the implementation of these models varies
and, to-date, there has been limited effort to provide a
standardized interface for their use. We have incorpo-
rated nine null models into the neuromaps toolbox, of-
fering a common user interface for each model that can
be easily integrated with other aspects of the toolbox.
Given the computational overhead of these models, our
implementations offer mechanisms for caching interme-
diate results to enable faster re-use across multiple anal-
yses. Spatial null models are enabled by default in the
primary map comparison workflows to encourage their
broader adoption. Based on prior work benchmarking
the accuracy and computational efficiency of these mod-
els [48] we set the non-parametric method originally de-
scribed in Alexander-Bloch et al. [4] as the default for
use with surface data, and the parameterized generative
method described in Burt et al. [14] as the default for
use with volumetric data.

To demonstrate the utility of neuromaps, we analyzed
a sample of 20 brain maps from the published litera-
ture over the past decade (2011–2021), including two
microstructural, four metabolic, three functional, four
expansion, six band-specific electrophysiological signal
power, and one genomic annotation. We then used
neuromaps to transform these maps from their original
representation to the space defined by each of four stan-
dard coordinate systems, for a total of seven different
representations (Fig. 3). Finally, we computed the pair-
wise correlations between all maps in each of the sys-
tems and assessed the statistical significance of these re-
lationships using spatial null models (see Methods: Spa-
tial null frameworks). The goal of this analysis was two-
fold. First, we sought to assess the extent to which co-
ordinate transforms could influence map-to-map com-
parisons. Second, given the growing interest in how
these system-level maps or “gradients” are related to one
another, we sought to assess patterns of relationships
among them [37, 69].

Fig. 4a shows that for most map-to-map comparisons,
choice of coordinate system has a minimal effect: corre-
lations between maps on average only change by |r| =

0.018. There are also instances in which associations be-
tween maps are statistically significant in one coordinate
system and not significant in another (Fig. 4c); however,
in most cases the p-value for these relationships often
fell very close to the statistical alpha (i.e., p ≤ 0.05)
such that the actual effect size only changed by r ≤ 0.10.
Across all examined systems, we find that the brain maps
tend to form two distinct clusters (Fig. 4b), largely re-
capitulating previously-established relationships observ-
ing anterior-posterior and unimodal-transmodal axes of
variation [31, 46, 67]. These results are encouraging,
suggesting that transforming brain annotations between
different systems generally preserves their relationships.

DISCUSSION

Neuroimaging researchers are constantly generating
new datasets that offer unique perspectives into the
structural and functional architecture of the human
brain. Contextualizing new datasets with multiscale,
multimodal brain organization requires both a curated
repository of annotations and transparent functionality
for transforming and comparing brain maps. Here we
introduced the neuromaps toolbox which offers both a
repository of widely-used brain map datasets as well as
a set of standardized methods for transforming them be-
tween different coordinate systems and contextualizing
novel findings within the broader literature.

Given the proliferation of such datasets in recent years,
a large body of work has arisen focused on investigating
similarities across brain maps [7, 18, 24, 31, 67, 80, 84].
Indeed, researchers have observed significant concor-
dance in the spatial topology of brain maps derived from
a wide variety of phenotypes, suggesting that these maps
may reflect a fundamental organizational principle of the
human brain. We reproduce this phenomenon in our ex-
ample analyses, wherein twenty datasets provided with
the neuromaps toolbox seem to group into two distinct
clusters (Fig. 4). One cluster contains maps including the
T1w/T2w ratio [26], the principal component of gene
expression [13, 47], cerebral blood flow, and metabolic
glucose uptake [72], whereas the other is composed of
maps like the principal functional gradient [46], inter-
subject functional variability [51], and developmental
and evolutionary expansion [34]. In both cases, these
clusters recapitulate a number of associations previously
reported in the literature [13, 26, 31, 67].

Functionality for easing the computation of and stan-
dardizing such comparisons in the future is necessary
to ensure that new datasets can be integrated into
our broader understanding of the human brain. The
neuromaps toolbox offers just such functionality, includ-
ing workflows to transform, compare, and contextual-
ize brain maps. The neuromaps distribution contains
high-quality, group-level transformations between four
standard coordinate systems, uniform interfaces for com-
paring brain maps, and access to nine null models for
use in generating statistical inferences. By develop-
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ing the toolbox openly on GitHub (https://github.com/
netneurolab/neuromaps), it is our hope that neuromaps
can serve as a community tool for broad use in brain
mapping research moving forward.

One consideration researchers must be aware of when
using the neuromaps toolbox is that the provided trans-
formations between coordinate systems are meant to be
applied to group-level data; however, in general, when
subject-level data are available it is better to repro-
cess them in the desired coordinate system rather than
transforming group-level aggregate data. Unfortunately,
in practice, subject-level data for many commonly-used
brain maps are not available to researchers, and so hav-
ing high-quality transformations between systems is crit-
ical to ensuring that analyses are performed in the most
accurate manner possible. We have based the provided
transformations on state-of-the-art frameworks (i.e., reg-
istration fusion and multimodal surface matching) which
have been rigorously assessed and validated on other
datasets [62, 63, 90]. Moving forward, as new frame-
works arise for mapping between coordinate systems we
will endeavor to provide updated transformations when
possible.

Altogether, the current report introduces a new open-
source Python package, neuromaps, for use in human
brain mapping research. The toolbox offers researchers
access to a wide repository of brain maps taken from
the published literature, high-quality transformations be-
tween four standard coordinate systems, and uniform in-
terfaces for statistical comparisons between brain maps.
As the rate at which new brain maps are generated in
the field continues to grow, we hope that neuromaps will

provide researchers a set of standardized workflows for
better understanding what these data can tell us about
the human brain.
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Table S1. Standard coordinate system files available in neuromaps

Coordinate system Density / resolution Provided files
fsLR 4k midthickness, inflated, sphere
fsLR 8k midthickness, inflated, sphere
fsLR 32k midthickness, inflated, very inflated, sphere
fsLR 164k midthickness, inflated, very inflated, sphere
fsaverage 3k white, pial, inflated, sphere
fsaverage 10k white, pial, inflated, sphere
fsaverage 41k white, pial, inflated, sphere
fsaverage 164k white, pial, inflated, sphere
CIVET 41k white, midthickness, inflated, very inflated, sphere
MNI152 1mm T1w, T2w, PD, brainmask
MNI152 2mm T1w, T2w, PD, brainmask
MNI152 3mm T1w, T2w, PD, brainmask

Table S2. Published brain maps available in neuromaps

Map name Coordinate system Density Citation
Myelin map fsLR 32k Glasser et al. [25]
Cortical thickness fsLR 32k Glasser et al. [25]
Allen Human Brain Atlas PC1 fsaverage 10k Markello et al. [47]
Delta power fsLR 4k Van Essen et al. [78]
Theta power fsLR 4k Van Essen et al. [78]
Alpha power fsLR 4k Van Essen et al. [78]
Beta power fsLR 4k Van Essen et al. [78]
Low gamma power fsLR 4k Van Essen et al. [78]
High gamma power fsLR 4k Van Essen et al. [78]
Intrinsic timescale fsLR 4k Van Essen et al. [78]
Developmental expansion fsLR 164k Hill et al. [34]
Evolutionary expansion fsLR 164k Hill et al. [34]
Functional gradient fsLR 32k Margulies et al. [46]
Inter-subject functional variability fsaverage 1k Mueller et al. [51]
NeuroSynth PC1 MNI152 2mm Yarkoni et al. [92]
Cerebral blood flow (CBF) fsLR 164k Vaishnavi et al. [72]
Cerebral blood volume (CBV) fsLR 164k Vaishnavi et al. [72]
Oxygen metabolism (CMRO2) fsLR 164k Vaishnavi et al. [72]
Glucose metabolism (GMRGlu) fsLR 164k Vaishnavi et al. [72]
Allometric scaling (PNC) CIVET 41k Reardon et al. [60]
Allometric scaling (NIH) CIVET 41k Reardon et al. [60]
Neurotransmitter receptors/transporters MNI152 — Hansen et al. [32]
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