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ABSTRACT

Redundancy in the genetic code allows for differences in transcription and/or translation efficiency

between mRNA molecules carrying synonymous polymorphisms, with potential phenotypic impact at the

molecular  and at  the  organismal level.  A combination of  neutral  and selective processes determines  the

global genome codon usage preferences, as well as local differences between genes within a genome and

between positions along a single gene. The relative contribution of evolutionary forces at shaping codon

usage  bias  in  eukaryotes  is  a  matter  of  debate,  especially  in  mammals.  The  main  riddle  remains

understanding the sharp contrast between the strong molecular impact of gene expression differences arising

from codon usage preferences and the thin evidence for codon usage selection at the organismal level. Here

we  report  a  multiscale  analysis  of  the  consequences  of  alternative  codon  usage  on  heterologous  gene

expression in human cells.

We generated synonymous versions of the shble  antibiotic resistance gene, fused to a fluorescent

reporter, and expressed independently them in human HEK293 cells. We analysed: i) mRNA-to-DNA and

protein-to-mRNA ratios for each shble version; ii) cellular fluorescence, using flow cytometry, as a proxy for
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single cell-level construct expression; and iii) real-time cell proliferation in absence or presence of antibiotic,

as a proxy for the cellular fitness. 

Our results show that differences in codon usage preferences in our focal gene strongly impacted the

molecular and the cellular phenotype: i) they elicited large differences in mRNA and in protein levels, as

well in mRNA-to-protein ratio; ii) they introduced splicing events not predicted by current algorithms; iii)

they  lead  to  reproducible  phenotypic  heterogeneity  as  different  multimodal  distributions  of  cellular

fluorescence EGFP; iv) they resulted in a trade-off between burden of heterologous expression and antibiotic

resistance. While certain codon usage-related variables monotonically correlated with protein expression,

other variables (e.g. CpG content or mRNA folding energy) displayed a bell-like behaviour. We interpret that

codon usage preferences strongly shape the molecular and cellular phenotype in human cells through a direct

impact on gene expression.

INTRODUCTION

The cellular  phenotype  is the integrated result  of  deterministic,  statistical and random molecular

processes.  The  canonical  scenario  for  gene  expression,  the  “sequence  hypothesis”,  posits  that  a  DNA

sequence is first transcribed into messenger RNAs (mRNAs) that are secondly translated into proteins, such

as one given sequence of nucleotides encodes one predictable sequence of amino acids (Crick, 1970). The

initial  version of this  scenario did not  provide any explanation on how a unique set  of  genes could be

associated with several cellular phenotypes, but plethora of studies on gene expression have addressed this

question through the last decades, and revealed multi-level regulation mechanisms increasing the diversity of

the proteomic landscape available for expression from a given genome. Genetic information flow relies on

the genetic code, which establishes a chemical correspondence between the DNA coding informative units

(i.e. the codon, a triplet of nucleotides, 64 in total) and the protein building blocks (i.e. the amino acids, 20 in

total). The genetic code is degenerate as 18 amino acids can individually be encoded by a group of two,

three, four or six codons, known as synonymous codons. In a first  null hypothesis approach, one would

expect  synonymous codons  to  display similar  frequencies.  Instead,  codon usage biases  (i.e. the  uneven

representation  of  synonymous  codons  (Grantham et  al.,  1980) have  been  reported  in  a  multiplicity  of

organisms, and vary not only between species but also within a given genome or even along positions in a

gene (Duret, 2002; Gouy & Gautier, 1982; Ikemura, 1982; Kanaya et al., 1999; Novoa et al., 2019; Sharp &

Li, 1986).

The  evolutionary  origin  and  the  identification  of  the  role  and  contribution  of  different  forces

contributing to codon usage preferences constitute a classical research subject in evolutionary genetics. The

scientific debate is centered in identifying the differential explanatory power of neutral mechanisms and of

natural  selection  at  having  shaped  global  and  local  codon  usage  preferences.  An  extensive  body  of

knowledge has established that variation in codon usage preferences can indeed be under selection, as it
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might  constitute  an  additional  layer  of  information  allowing  for  differences  in  gene  expression  (J.  V.

Chamary et  al.,  2006;  Hanson & Coller,  2017;  Plotkin & Kudla,  2010).  And indeed,  in  parallel  to  the

scientific controversy, genetic engineering and the revolution of affordable gene synthesis have  extensively

resorted to codon usage recoding for enhancing heterologous protein production, for its use in industrial

applications or for vaccine design (Angov et al.,  2008; Fath et al.,  2011; Mauro & Chappell,  2014) The

hypothesis of  translational  selection proposes that  differences in codon usage preferences result  in gene

expression differences  that  ultimately  lead  to  phenotypic  differences,  which could  be subject  to  natural

selection. Besides the plethora of succesful  gene recoding strategies, the differential  interaction between

codon usage preferences and the translation machinery has been well established, for instance in:  i)  the

evolutionary co-variation of genomic codon usage and the tRNA content, from unicellular organisms (Dong

et  al.,  1996;  Ikemura,  1981;  Kanaya  et  al.,  1999) to  metazoa  (Caenorhabditis  elegans (Duret,  2000),

Drosophila (Akashi, 1994; Moriyama & Powell, 1997; Powell & Moriyama, 1997),  or humans (Urrutia &

Hurst,  2001);  ii)  the  correspondence between codon usage preferences  and expression  level  in  bacteria

(Lithwick & Margalit, 2003) or in yeast (Ghaemmaghami et al., 2003; Tuller et al., 2007); iii) the increase in

translation efficiency iun bacteria when supplementing  in trans  with rare tRNAs  (Burgess-Brown et al.,

2008); iv) the changes in tumorigenic phenotype in mice when switching from rare to common codons in the

sequence of a cancer-related GTPase (Lampson et al., 2013).

One may argue that only successful gene recoding strategies are communicated, thus introducing an

important literature and knowledge bias that overstates the importance of codon usage preferences in gene

expression. Actually, a number of studies have communicated the lack of covariation between codon usage

and gene expression (in bacteria, yeast, or human) (Kudla et al., 2009; Li et al., 2014; Pop et al., 2014; Vogel

et al., 2010); or even a negative impact of a presupposed “optimization”, which may in fact decrease the

expression or the activity of the protein product (Agashe et al., 2013; Zucchelli et al., 2017). To address these

conflicting results, it is important to tease apart the underlying mechanisms, as it is allowed by combining

genomics,  system  biology,  and  predictive  models.  It  has  hitherto  been  established  that  codon  usage

preferences  can  impact  the  molecular,  cellular  and  organismal  phenotype  by  modifying:  1.  mRNA

localisation,  stability and decay (S.  Chen et  al.,  2017;  Harigaya & Parker,  2016;  Presnyak et  al.,  2015;

Radhakrishnan et al., 2016; Radhakrishnan & Green, 2016), 2. translation initiation (Bettany et al., 1989; De

Smit & Van Duin, 1990; Gu et al., 2010; Kudla et al., 2009), 3. translation efficiency (Akashi, 1994; Gardin

et al., 2014; Hussmann et al., 2015; Ingolia et al., 2009; Johnston et al., 1984; Johnston & Parker, 1985;

Kurland, 2003; Marais & Duret, 2001; M. Robinson et al., 1984; Sørensen et al., 1989; Sørensen & Pedersen,

1991; Stoletzki & Eyre-Walker, 2007; Tuller, Waldman, et al., 2010; Weinberg et al., 2016; Xia, 2014); 4. co-

translational  protein folding  (Chaney et al., 2017; Pechmann & Frydman, 2012; Zhao et al., 2017). The

respective contribution of each mechanism, if any, depends on the specific expression system (e.g. in which

organism, whether the expressed gene is autologous or heterologous gene, whether it has been recoded or

not).  To date,  no universal  rules have been identified,  and the explanatory power of  our interpretations
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remains  limited,  even  when  using  large-scale  heuristic  approaches  in  tractable  experimental  systems

(Cambray et al., 2018). 

In  this  study,  we  aim at  providing  an  integrated  view of  the  molecular  and  cellular  impact  of

alternative codon usage (and the associated nucleotide composition) of a heterologous gene in human cells.

We designed six  synonymous  version  of  the shble  antibiotic  resistance  gene  with  distinct  codon usage

preferences, coupled them to a egfp reporter gene, that allows for further single-cell assessment of the gene

expression and transfected them into cultured cells. By combining transcriptomics, proteomics, fluorescence

analysis and cell growth evaluation, we attempt to describe qualitatively, and to quantify as far as possible,

the impact of codon usage bias and sequence composition on the molecular and cellular phenotype of human

cells in culture.

RESULTS 

1. Codon usage preferences of the shble heterologous gene resulted in differences in mRNA abundance,

and alternative splicing profile.

The expected transcript was a 1,602 base pair (bp) long mRNA encompassing a 1,182bp coding

sequence (CDS).  The CDS spanned an  AU1-tag sequence in  5',  a  shble CDS,  a  P2A peptide sequence

inducing  ribosomal  skipping,  and  an  EGFP reporter  CDS (Sup.  Fig.  1).  Only  the  shble CDS  differed

between constructs,  and was characterized by distinct degrees of similarity to the average human codon

usage (estimated using the COdon Usage Similarity Index, COUSIN) (Bourret et al., 2019), GC composition

at the third nucleotide of codons (GC3), and CG dinucleotide percentage (CpG). Modifications in the shble

sequence also entailed variations on the mRNA folding energy (Table 1). All these four parameters allowed

for a good discrimination of all constructs (Sup. Fig. 2), prtly reflecting sequence similarity (Sup. Table 1).

Table  1.  Experimental  conditions:  description  of  the  different  constructs,  and  their  composition
variables.

Condition Description COUSIN
index

%GC3 %CpG Transcript 
folding energy
(kcal/mol)

shble#1 The most common codons in the human genome 2.93 93.08 18.46 -649.34

shble#2 The GC-richest among the two most common codons 2.982 99.23 22.56 -673.07

shble#3 The AT-richest among the two most common codons -0.414 20.00 4.62 -581.47

shble#4 The rarest codons in the human genome -1.651 33.85 20.51 -613.49

shble#5 The GC-richest among the two rarest codons 0.973 91.54 35.90 -687.76

shble#6 The AT-richest among the two rarest codons -0.924 9.23 0.51 -543.50

#empty No shble but only EGFP CDS n.a. n.a. n.a. n.a.

#superempty Neither shble nor EGFP CDS n.a. n.a. n.a. n.a.

mock No plasmid n.a. n.a. n.a. n.a.
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Transcriptomic  analysis  (RNA-seq),  through  the  observation  of  the  read  distribution  along  the

plasmid sequence, revealed the presence of splicing events for the two constructs with the lowest similarity

to the human average codon usage, namely shble#4 (construct using the rarest codon for each amino acid)

and shble#6 (using rare  and AT-rich codons) (Sup.  Fig.  3).  The  shble#6 transcript  presented two splice

alternatives, using the same 5’ donor position and differing in three nucleotides at the 3’ acceptor position.

The shble#4 transcript presented one splice alternative, with donor and acceptor positions in the precise same

location than shble#6, despite the lack of identity in the intron-exon boundaries. In all  cases the spliced

intron (either 306 or 309 nucleotides long) was fully comprised within the 396 bp long shble sequence (Sup.

Fig. 4), and the event did not involve any frameshift. Thus, shble splicing resulted in ablation of the SHBLE

protein coding potential without affecting the EGFP coding potential. It is important to state that none of

these  alternative  splicing  events  was  predicted  by  the  HSF  (Human  Splicing  Finder)  (Desmet  et  al.,

2009) nor the SPLM (Solovyev, 2004) splice detection algorithms used for sequence scanning during design.

The mRNA abundances, expressed as transcript per millions (TPM), showed that the spliced isoform

1 represented about 30% of the heterologous transcripts in the condition shble#4, and 56% for shble#6. The

spliced  isoform  2,  exclusively  found  in  condition  shble#6, corresponded  to 22%  of  the  heterologous

transcripts (Figure 1). The full-length mRNA, albeit present in all conditions, was differentially represented

depending on the construct version, as follows: (i) the highest values were found in shble#3 (using the AT-

richest among common codons); (ii) the variance was largest in shble#5 (using the GC-richest among rare

codons); and (iii) shble#4 and shble#6 displayed the lowest mRNA abundance even when considering the

sum of all isoforms (Figure 1, Sup. Table 2). We further verified that variations in transcript levels were not

related to variations in transfection efficiency, by correcting the TPM values after the plasmid DNA levels in

each  sample  as  estimated  by  qPCR.  After  this  normalisation,  the  above  described  pattern  remained

unchanged (Sup. Fig. 5). This suggests that variations in mRNA levels are not due to differences in the DNA

level, and may instead be linked to the differentially recoded shble sequences.

In order to allow further comparison between mRNA and protein levels, while accounting for the

differential splice events, we considered that the SHBLE protein could be translated exclusively from the

full-length mRNA, while the EGFP protein could be translated from any of the three transcript isoforms.

Hence, we used the ratio full-length mRNA over total transcripts (i.e. full-to-total ratio) to estimate the ratio

of SHBLE-encoding over EGFP-encoding transcripts.  For  shble#4 this ratio was about 69 %, while for

shble#6 it  was close to 21 % (Sup. Table 2).  For the rest of the constructs,  there was virtually no read

corresponding to spliced transcripts and the ratio was in all cases above 99.96 % (Sup. Table 2).
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Figure 1. Transcript abundance after transfection with the different shble gene versions. mRNA-levels
are expressed as transcripts per million values (TPM) for the full form (in dark blue) as well as for the two
spliced forms (in  green and  yellow).  Median values  are  given in  Sup.  Table 2.  Pie  charts  illustrate  the
proportions of the spliced transcript forms detected in shble#4 and shble#6 conditions. The experiment was
performed on six biological replicates.  Dark blue letters above the different bars refer to the results of a
Wilcoxon rank sum test.  Conditions associated with a same letter do not  display different median TPM
values for the full mRNA (p<0.05 after Benjamini-Hochberg correction).

2. Codon usage preferences of the shble heterologous gene modulate SHBLE and EGFP protein levels.

Label-free  proteomic  analysis  allowed  to  detect  EGFP proteins  for  all  constructs,  with  EGFP

abundance in shble#3 and shble#6 being significantly lower than in other conditions (respectively 2.05 and

1.35 normalized iBAQ values, compared to an overall median of 10.08 for the other constructs) (Figure 2C,

Sup. Table 3). The SHBLE protein was detected in all conditions but for shble#6 it displayed extremely low

abundance in five replicates and was not detected in one replicate (overall normalized iBAQ value of 0.03

for shble#6) (Figure 2B, Sup. Table 3). Further, the shble#3 condition displayed lower SHBLE protein levels

than the remaining four other constructs (normalized iBAQ value 0.93 for shble#3, compared to an overall

median of 3.83) (Figure 2B, Sup. Table 3). Within a given condition, values for SHBLE and EGFP protein

levels displayed a strong, positive correlation (Pearson R coefficients ranging from 0.82 to 0.95 depending

on the condition; all p-values < 0.05;  Figure 2A). The overall SHBLE-to-EGFP ratio was 0.46±0.1 for all

constructs (ranging between 0.36 and 0.56 for the individual constructs), the exception being shble#6, which

displayed a ratio close to zero, linked to the very low SHBLE levels (Figure 2D). Label-free proteomic

quantification  results  were  validated  by  semi-quantitative  western  blot experiments  on  nine  biological

replicates (Sup. Fig. 6, 7 and 8).
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Figure 2. Expression of SHBLE and EGFP at the proteomic level, and relation between them. Panel A:
Pearson's correlation between SHBLE (y axis) and EGFP (x axis) protein levels. Six different conditions are
shown: shble#1 (dark green), shble#2 (orange), shble#3 (purple), shble#4 (pink), shble#5 (light green) and
shble#6 (yellow). Marginal boxplots (panels B and C) respectively show SHBLE and EGFP protein levels
expressed as normalized iBAQ values. Median values are given in Sup. Table 3. The SHBLE-to-EGFP ratio
for each of the six conditions (median of the ratios for each replicate) are given in panel D. Six replicates are
shown (with three of them corresponding to two pooled biological replicates). Letters in the different panels
refer to the results of a pairwise Wilcoxon rank sum test. Within each panel, conditions associated with a
same letter do not display different median values of the corresponding variable (p<0.05 after Benjamini-
Hochberg correction).

3. Codon usage preferences of the shble heterologous gene modulate the match between transcriptomic

and proteomic phenotypes.

After analysing separately mRNA and protein levels in cells transfected with the different  shble

versions, we aimed at establishing a connection between the transcriptomic and the proteomic phenotypes.

Figure 3A presents the positive and significant  correlation between variation in the full-to-total  ratio of

heterologous transcripts, and variation in the SHBLE-to-EGFP ratio of protein levels. This correlation is

dominated by (i) the very low SHBLE protein levels detected in shble#6, as described above, and also by (ii)

the match in mRNA and protein variation in shble#4. Indeed, for shble#4, the SHBLE-to-EGFP protein ratio

(0.36, Figure 2D) corresponded to 73% of the median of the other four remaining constructs (0.50, calculated
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from Sup. Table 3), which is close to the 69% fraction of the full-to-total transcripts (the full-length mRNA

being the only one with SHBLE coding potential) (Sup. Table 2). When considering the SHBLE protein

alone, variation in full-length transcripts levels explained 45% of the variation in the SHBLE protein levels

(Sup. Fig. 9). Interestingly, the shble#3 condition behaved differently from the rest and rendered similar

SHBLE protein values for all replicates, independently of the variation in transcript levels (Figure 3B, Sup.

Fig.  9).  When  removing  this  shble#3  condition  from  the  correlation  analysis,  variation  in  full-length

transcripts levels explained 83% of the variation in the SHBLE protein levels (Sup. Fig. 9).

We  explored  subsequently  the  explanatory  potential  of  sequence  composition  and  mRNA

physicochemical  parameters  in  order  to  understand the  differential  matches  between transcriptomic  and

proteomic  phenotypes.  Regarding nucleotide  composition,  an  increase  of  the  match  between  the  shble

condition and the human average codon usage (as evaluated using the COUSIN index), and of the GC3

content, corresponded monotonically to an increase in the SHBLE protein-to-transcript ratio (respectively

Pearson’s R=0.67, p=6.6e-6, Figure 3C; and Pearson’s R=0.81, p=1.5e-9, Figure 3D). Such shared behaviour

is not unexpected,  as COUSIN and GC3 values are highly correlated (Pearson’s R=0.88, p=0.02, data not

shown).  However,  variation  in  CpG  dinucleotides  abundance  in  the  recoded  shble coding  sequence

corresponded to a bell-shaped variation in SHBLE protein-to-transcript ratio, so that high CpG values (as in

shble#5) resulted in decreased protein-to-transcript ratio (Figure 3E). Interestingly, the maximum value was

observed for the shble#1 version, which uses exclusively the most common codon for each amino acid. A

similar bell-shape was observed when displaying variation in SHBLE protein-to-transcript ratio as a function

of the full mRNA folding energies: very strong folding energies (as in shble#5) or very weak folding energies

(as in shble#3 or shble#6) resulted in a decreased protein-to-transcript ratio (Figure 3F). Once again, the

shble#1 version displayed the highest values of the dependent variable. Interestingly, the shble#3 condition

(using  the  AT-richest  among  the  most  used  codons)  combined  suboptimal  values  for  all  the  studied

characteristics (low COUSIN, GC3 and CpG content  values, and low folding energy).  We interpret that

codon usage bias and the associated mRNA chemistry could explain the loss of concordance between high

mRNA levels and low protein abundance (Figure 3B). A similar reasoning would explain for shble#4 (using

the rarest codons) the good protein-to-mRNA ratio, as despite the low COUSIN value, CpG content is close

to the optimum (Figure 3E) and mRNA folding energy displays intermediate values (Figure 3F).
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Figure 3. Relation between the transcriptomic and the proteomic phenotypes, and potential explicative
parameters for variations in SHBLE protein levels.  Six different conditions are shown, using the colour
code: shble#1 (dark green), shble#2 (orange), shble#3 (purple), shble#4 (pink), shble#5 (light green) and
shble#6 (yellow).  Panel A: Pearson's correlation of the SHBLE-to-EGFP protein ratio and the full-to-total
transcript  level  (a  proxy for  shble-to-EGFP mRNA ratio).  Panel  B: Combined  distribution  of  SHBLE
protein level (y axis - normalized iBAQ) and shble transcript level (x axis - TPM); individual construct boxes
are condensed in a single one when the squares defined by the first and third quartiles overlaps (which is the
case for shble#1, shble#2, shble#4 and shble#5, shown condensed in dark green). Correlations per condition
are  shown in  Sup.  Fig.  9. Panel  C: Pearson’s  correlation  between SHBLE protein-to-mRNA ratio  and
COUSIN index of the shble recoded version. Panel D: Pearson’s correlation between the SHBLE protein-to-
mRNA ratio and the GC3 percentage of the shble recoded version. Panel E: SHBLE protein-to-mRNA ratio
variations depending on CpG percentage of the shble recoded version. Black bars represent the median for
each  condition.  Panel  F: Correspondence  between  the  SHBLE  protein-to-mRNA ratio  and  the  folding
energy of the corresponding transcript. Black bars represent the median for each condition. The results for
six biological replicates are shown,  each of them with independent RNAseq measurements but pooled by
pairs for the label-free proteomic analysis.

4. Codon usage of the shble heterologous gene modifies cellular fluorescence intensity.

We have demonstrated above that the EGFP reporter was a relevant proxy for SHBLE abundance, as

their iBAQ values were highly correlated, and have also shown that differences in SHBLE-to-EGFP ratios

were largely attributable to splice events at the mRNA level. On these basis we performed analyses based on

the cell-based fluorescence values to further characterise our experimental model.

We aimed at  assessing the  phenotypic  variation  at  single-cell  level  by performing an extensive

fluorescence analysis on 16 transfection replicates, overall corresponding to 480,000 cells per condition. We

verified first that the total fluorescence signal was strongly correlated to the EGFP level, as estimated by

label-free proteomic, strengthening the results reported in the previous sections (Pearson’s R=0.86, p=4.8e-
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15, Sup. Fig. 10). We observed then that for all conditions expressing EGFP the distribution of fluorescence

intensity was multimodal (Figure 4A, Sup. Fig. 11), and that the underlying distribution for each condition is

different  from  that  obtained  with  cells  expressing  EGFP alone  (i.e.  the  “#empty”  control;  individual

Anderson-Darling test results are shown in Table 2). We tried to describe these multimodal populations by

means  of  curve  deconvolution,  and  showed  that  an  approximation  based  on  two  underlying  Gaussian

populations  fitted  well  the  observed  distributions  (Sup.  Fig.  12).  We  chose  further  to  summarise  the

fluorescence  behaviour  of  the  full  cellular  population  by  describing  for  each  condition  the  following

summary statistics:  (i)  the  fraction of  cells  displaying fluorescence over  99th percentile  of  the  “mock”

fluorescence distribution (i.e. 14,453 fluorescence units, which corresponds to cellular autofluorescence, as

the mock does not carry any plasmid); (ii) the total fluorescence value for all cells in the population; (iii) the

median fluorescence value for the cellular population; (iv) the mean fluorescence value for each underlying

Gaussian populations; and (v) the fraction of the cellular population displaying fluorescence values stratified

into five log10-width intervals, between the fluorescence positivity threshold and the highest fluorescence

value detected by our cytometer (respectively labeled as “neg” and “i4”, Figure 4A) (Table2).

The analysis of the results showed that the central fluorescence value of the population correlates

very well with the overall fluorescence (R=0.85, p-value<2.2e-16, Sup. Fig. 13). Further,  condition shble#6

(and, to a lesser extent, condition shble#3 as well) displayed significantly lower global fluorescence values

(Table 2,  Sup. Fig. 13). The global lower fluorescence for these two conditions is related to a population-

level shift, as both underlying Gaussian curves displayed also lower mean fluorescence values (Table 2, Sup.

Fig. 14). Consistently, condition shble#6 displayed the highest fraction of non-fluorescent cells, and shble#3

and shble#6 presented the lowest fractions of strongly positive cells (Figure 4B). When combining all our

summary statistic  variables  for  describing the  population cellular  fluorescence we observed that  indeed

shble#6, and to a lesser extent shble#3, were the most divergent conditions, characterised by the highest

proportion of negative or low-fluorescent cells, while shble#1 and shble#2 displayed very similar behaviour

characterised by high fluorescence values in all scores (Sup. Fig. 15). 

Table 2. Quantitative parameters of green fluorescence signal distribution per condition. “AD”, results
of an Anderson-Darling test for distribution similarity, comparing each curve distribution in Figure 4 against
that obtained for the “empty” condition (the null hypothesis being that the samples compared could have
been drawn from a common population).  For  the three last  parameters,  the statistical  test  is  a pairwise
Wilcoxon rank sum test. Conditions associated with a same letter do not display different median values for
the corresponding variable (p<0.05 after Benjamini-Hochberg correction).

Condition Distribution similarity
to #empty 
(AD score and 
associated p-value) 

Percentage
of 
fluorescent
cells

Total fluorescence 
value for the whole 
population

Mean fluorescence value 
for the underlying first 
Gaussian subpopulation 
(log10)

Mean fluorescence 
value for the underlying
second Gaussian 
subpopulation (log10)

#shble1 1580 0 89.56 % 105.269 e9 bc 4.84 a 6.61 c
#shble2 1480 0 90.17 % 98.311 e9 b 4.78 a 6.59 c
#shble3 497 4.637 e-272 79.37 % 39.384 e9 d 4.31 b 5.86 ab
#shble4 463 7.325 e-254 88.00 % 63.395 e9 ac 4.58 a 6.28 bc
#shble5 108 4.244 e-59 83.85 % 70.719 e9 abc 4.63 a 6.32 abc
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#shble6 11600 0 51.78 % 13.990 e9 e 3.97 c 5.05 d
#empty 0 1 82.26 % 57.692 e9 a 4.44 ab 6.18 ab
#superempty 64100 0 0.45 % 135.449 e6 na na na na na
mock 62500 0 1.00 % 141.163 e6 na na na na na

Figure 4. Distribution of the fluorescence signal for the different constructs. Panel A depicts the density
of the green fluorescence signal (log10(FITC-A)) considering the  480,000 studied events (i.e. individual
cells)  for each  condition:  shble#1  (most  common codons,  dark  green),  shble#2  (common and  GC-rich
codons, orange), shble#3 (common and AT-rich codons, purple), shble#4 (rarest codons, pink), shble#5 (rare
and GC-rich codons, orange light green), shble#6 (rare and AT-rich codons, yellow). The positive control is
“empty” (i.e. transfected cells, expressing EGFP without expressing SHBLE, in dark grey); and the negative
controls are “superempty” (i.e. transfected cells, not expressing EGFP nor SHBLE, in medium grey) and
“mock” (i.e. untransfected cells,  in light grey). The dashed black line shows the threshold for positivity
(14,453 green fluorescence units, corresponding to 4.16 in a log10 scale). The coloured squares along the x
axis  correspond  to  the  five  intervals  of  fluorescence  used  for  further  analyses  (see  panel  B).  Panel  B
represents the proportion of events after stratification into different arbitrary fluorescence intervals: negative
cells in dark purple, “i1” in dark blue, “i2” in dark green, “i3” in light green and “i4” in yellow. Letters in
panel B refer to the results of a pairwise Wilcoxon rank sum test performed vertically, for each fluorescence
intensity category; conditions associated with a same letter do not display different median values of the
corresponding variable (p<0.05 after Benjamini-Hochberg correction). Panel C illustrates cell fluorescence
as  observed  in  microscopy  with  identical  capture  settings  immediately  before  sampling,  for  four
representative conditions: the negative control « mock », the positive control « empty », the rarest version
#4, and the most common version #1 (indicated scale of 1050µm). Two other replicates are shown as Sup.
Fig. 16.
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5. Codon usage preferences of the shble heterologous gene resulted in different cell growth dynamics.

To  assess  the  functional  impact  of  the  different  molecular  phenotypes  described  above,  we

performed a real-time cell growth analysis as a proxy for cellular fitness, both in presence and in absence of

antibiotics. We anticipated a trade-off between a potential benefit through antibiotic resistance ( i.e. resistance

to bleomycin conferred by the SHBLE protein), and a potential cost through protein overexpression and the

associated burden. We monitored over time a functional parameter named “Cell Index”, that integrates cell

density, adhesion intensity, morphology and viability, and evaluated the total area below the curve as a proxy

for cellular growth (Sup. Method 2.8,  Sup. Fig. 17). We fitted to a Hill’s equation the values of cellular

growth as a function of the antibiotic concentration to recover, for each condition, the estimation for the

maximum growth in the absence of antibiotic as well as the estimation for the antibiotic concentration value

that inhibited cellular growth to half the maximum (IC50). 

We observed that simple transfection with an empty vector not expressing EGFP nor SHBLE (i.e. the

“superempty” control)  resulted in  a drop of  about  50% in maximum cellular  growth in  the  absence of

antibiotic (Figure 5, y axis) and in a drop of about 85% in IC50 value (Figure 5, x axis), with respect to the

mock. All cellular populations transfected with any of the shble constructs displayed further lower maximum

growth  values  in  the  absence  of  antibiotics  than  the  “superempty”  control  (Figure  5,  y  axis).  Further,

variance  in  SHBLE  protein  levels  resulted  in  different  degrees of  bleomycin  resistance  although,

surprisingly,  all  transfected  cells  resisted  less  the  presence  of  antibiotics  than  the  mock,  untransfected

control,  independently  of  the  construct  used  (as  evaluated  using  IC50,  Figure  5,  x  axis).  Even  if  no

significant correlation could be established because of the limited number of experimental conditions, a very

interesting trend appeared: variation in cell fitness in absence of antibiotics seemed to be inversely related to

variation in total amount of heterologous proteins (using fluorescence as a proxy, showed as  dot size in

Figure 5), so that conditions displaying strong cellular fluorescence (e.g. shble#1) grew less in the absence of

antibiotics, and resisted worse the presence of antibiotics, than conditions displaying lower fluorescence (e.g.

shble#6) (Figure 5 , Sup. Fig. 17). Our results suggested thus first the existence of an important stress related

to plasmid transfection, and second the establishment of a trade-off between the benefit  of heterologous

protein expression conferring resistance and the additional burden of fluorescent protein expression coupled

to the resistance.

To disentangle the effects linked to the total expression of heterologous proteins (SHBLE + EGFP),

and the  effect  of  the  antibiotic  resistance  gene  alone,  we  further  synthesised  and tested  two additional

constructs solely containing versions shble#1 and shble#4 of the shble gene, not linked to the EGFP reporter

(labelled shble#1* and shble#4* in Figure 5 and Sup. Fig. 17). Very interestingly, both versions displayed a

similar  increase  in  growth  in  absence  of  antibiotics  with  respect  to  their  shble#1  and  shble#4  relative

counterparts (respectively 38% and 24%, shown as coloured arrows on Figure 5, y axis). However, while the

IC50 of shble#4* and shble#4 remained similar,  antibiotic resistance for  version shble#1* dramatically

increased with respect to that of shble#1 (around 300 times increase, shown as green arrow on Figure 5, x

axis). Indeed, shble#1* condition is the only one in which resistance to the antibiotic is actually better than
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for the untransfected cells, in spite of a remaining substantial negative impact on maximum growth on the

absence of antibiotics.

Figure  5.  Variation  of  cell  growth  in  presence  or  in  absence  of  antibiotics.  The  y  axis  represents
maximum cellular growth in absence of antibiotics, proxied as the area under the curve of the delta Cell
Index  (AUC,  log  scale).  The  x  axis  represents  the  bleomycin  concentration  reducing  to  50%  the
corresponding maximum growth (e.g. IC50; log10 scale). Represented central values were estimated fitting
Cell Index data to Hill’s equation (pooled data, 3 to 6 biological replicates),  and bars correspond to the
standard error (left standard error for superempty IC50 was out of the graph limit and is not plotted – but see
Sup.  Fig.  18 for  representation  on  linear  axes).  Statistical  tests  are  Welch  modified  two-sample  t-tests,
performed for  the  AUC (small  letters,  y axis)  or  the  IC50 (big letters,  x  axis):  for  each size  of letters,
conditions associated with a same letter do not display different median values of the corresponding variable
(p<0.05 after  Benjamini-Hochberg correction). The size of the dots is  proportional  to the corresponding
median of fluorescence,  which is used as a proxy for the level  of  heterologous proteins.  Nine different
conditions  are  shown:  mock control  (dark grey),  superempty control  (light  grey),  shble#1 (dark green),
shble#2 (orange),  shble#3 (purple),  shble#4 (pink),  shble#5 (light  green),  shble#6 (yellow) and versions
shble#1* (dark green) and shble#4* (pink) lacking the EGFP reporter gene. Arrows on the margins represent
the shift of values (expressed as percentage of the initial value) for shble#1* and shble#4* against shble#1
and shble#4 respectively.

DISCUSSION

The origin and meaning (if any) of differences in codon usage preferences between species and

between genes within a genome are classical questions of evolutionary genetics. Two main non-exclusive

hypotheses are usually presented aiming at explaining the evolution of codon usage bias, respectively based

on neutralist and selectionist arguments (Bulmer, 1991; Duret, 2002; Duret & Galtier, 2009; Nicolas Galtier

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 10, 2022. ; https://doi.org/10.1101/2022.01.07.475042doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.07.475042


et al., 2018; Hershberg & Petrov, 2008). The neutral hypothesis posits that differences in average genome

codon usage bias are linked to non-selective processes, such as biochemical biases during DNA synthesis or

repair  (e.g. polymerase bias)  (S.  L.  Chen et  al.,  2004).  Additionally,  local  composition bias such as the

alternation  between  GC-rich  and  AT-rich  stretches  in  vertebrates  chromosomes,  known  as  isochores

(Caspersson et al., 1968), strongly shape the codon usage preferences of the genes therein residing, further

enhanced by GC-biased gene conversion mechanisms  (N. Galtier et al., 2001). The selective explanation,

often referred to as “translational selection”, proposes that different codons may led to differences in gene

expression, by changes in alternative splicing patterns, mRNA localisation or stability, translation efficiency,

or protein folding. If such codon-bias induced variation in gene expression were associated with phenotypic

variation that results in fitness differences,  it  may,  by definition, be subject  to natural  selection.  Indeed,

biotechnology  engineering  approaches  show  that  codon  recoding  is  a  powerful  tool  for  ameliorating

heterologous gene expression  (Mauro & Chappell,  2014),  viral codon recoding is currently applied on a

regular basis for most vaccine development (Garmory et al., 2003), and a number of medical conditions in

humans have been mapped to synonymous polymorphisms (Sauna & Kimchi-Sarfaty, 2011). Nevertheless,

differences in fitness associated with individual synonymous changes seem to be mostly of low magnitude,

so that selection may only act effectively in organisms with large population sizes  (Nicolas Galtier et al.,

2018) such as bacteria (E. coli (Sharp & Li, 1986)), yeast (S. cerevisae (Sharp et al., 1986)), nematodes (C.

elegans (Stenico et al., 1994)), but also in fruit flies (Akashi, 1994; Bierne & Eyre-Walker, 2006; Moriyama

& Powell, 1997; Shields et al., 1988),  branchiopods (Daphnia pulex (Lynch et al., 2017))  and amphibians

(Xenopus laevi (Musto et al., 2001)). In mammals, and particularly in humans, evidences of selection for (or

against) certain codons remain nevertheless controversial (Urrutia & Hurst, 2001). 

The main conundrum for scientists approaching codon usage bias remains the contrast between on

the one hand the large and sound body of knowledge showing the strong molecular and cellular impact of

gene expression differences arising from codon usage preferences and on the other hand the thin evidence for

codon usage selection at the organismal level. In the present manuscript, we have intended to contribute to

this debate by exploring the phenotypic consequences of codon usage differences of heterologous genes in

human cells. We have analysed here the multilevel molecular cis-effects of codon usage preferences on gene

expression, and have further explored higher-level integration consequences at the cellular level. The global

trans-effects of codon usage preferences of our focal gene on the expression levels of other cellular genes

have  been  analysed  and  described  in  an  accompanying  paper  (Jallet  et  al.,  2021).  We  summarize  our

observations of these  cis-effects in  Figure 6, which displays variation in the each of the composition and

phenotypic variables monitored for the different genotypes analysed. This representation highlights that a

combination of synonymous changes, even if minor, as between shble#1 and shble#2, results in important

multilevel changes in gene expression levels and leads to dramatic differences in the cellular phenotype.
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Figure 6. Summarizing combination of sequence composition parameters and multi-level phenotypes
for each customized version of the shble antibiotic resistance gene. The six versions, designed with the
one amino acid – one codon strategy, are showed by decreasing similarity to the human codon usage (i.e.
cousin score). They are defined as follow: A. shble#1 (most common codons, cousin > 1, in dark green), B.
shble#2 (common and GC-rich codons, cousin > 1, in orange), C. shble#5 (rare and GC-rich codons, cousin
~ 1, in light green), D. shble#3 (common and AT-rich codons, cousin < 0, in purple),  E. shble#6 (rare and
AT-rich codons,  cousin < 0,  yellow) and  F.  shble#4 (rarest  codons,  cousin < 0,  in pink).  The sequence
characteristics are from the top to the left: "cousin" (expressing the similarity to the human genome codon
bias), "CpG" (the CG dinucleotide proportion), "GC3" (the GC content at the third base of the codons), and
"fold" (the mRNA folding energy). The different phenotypes, from the bottom to the right: "rna" (the SHBLE
coding full  mRNA amount),  "prot"  (the  SHBLE protein amount),  "fluo" (the  total  fluorescence signal),
"growth" (proxy of the cellular fitness in absence of antibiotics) and "ic50" (proxy of the cellular fitness in
presence of antibiotics).

Codon usage  preferences  modify  mRNA levels  and modify  alternative  splice  patterns.  The

behaviour of the two shble versions recoded with the most dissimilar codon usage preferences with respect to

the human average (shble#4 and shble#6) was characterized by splicing events, which reduced the coding

potential of the resulting mRNA by 30 to 80 % and ablated synthesis of our focal protein, SHBLE, in the

spliced transcripts. Further, splicing efficiency was largely dependent on the precise codon recoding around

these novel splice sites, with ca. 20% of the total shble#4 transcripts being spliced compared to the ca. 80%

for shble#6. It should be emphasised that none of these spliced events was detected by leading splice site

predicting algorithms (Desmet et al., 2009; Solovyev, 2004). Such potential impact at modifying the exon-

intron nucleotide context, which serves as the basis for directing transcript splicing, is classically recognised

as one of the potential effects of synonymous mutations (Callens et al., 2021). Codon usage variation across

intron-exon boundaries  has  indeed been described in  several  eukaryotes  (e.g. human,  fishes,  fruit  flies,

nematodes,  plants  (Eskesen et  al.,  2004;  Plotkin & Kudla,  2010;  Willie & Majewski,  2004)),  albeit  the
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pattern  of  codon  distribution  varied  between  species.  Additional  splicing  regulatory  motifs  that  can  be

disrupted by synonymous mutations have also been described close to the intron–exon boundary in mammals

(J. V. Chamary et al., 2006; Eskesen et al., 2004; Fairbrother et al., 2002; Louie et al., 2003; Parmley &

Hurst, 2007). A reduced SNP density and decreased rate of synonymous substitutions have been reported in

these regulatory regions, which is a signature for selective pressure (J. V. Chamary & Hurst, 2005; Orban &

Olah, 2001). In humans, splicing defects can have a dramatic impact on the phenotype and cause disease

(Faustino  & Cooper,  2003).  Thus,  selection  against  mRNA mis-processing  can  constitute  an  important

selective force that results in concomitant selection for a precise local codon usage (Callens et al., 2021), and

this  selective  force  has  even  been  propose  to  outperform  translational  selection  in  D.  melanogaster

(Warnecke  &  Hurst,  2007).  Overall,  our  results  highlight  thus  the  direct  impact  of  local  codon  usage

preferences at introducing diversity during transcription. 

We describe here how variation in codon usage preferences leads to differences in mRNA levels

that do not necessarily translate into differences in protein levels. In our experiments, variation in mRNA

abundance between conditions was independent variation in DNA abundance, ruling out a possible effect of

differential transfection efficacy. We interpret instead that specific compositional properties of the different

mRNA transcripts, arising from differences during codon recoding, may lead to differential mRNA stability ,

as has been described for bacteria (E. coli (Boël et al., 2016)), unicellular eukaryotes (S. cerevisae, S. pombe

(Harigaya & Parker,  2016),  N. crassa,  T.  brucei  (Jeacock et  al.,  2018; Nascimento et  al.,  2018)),  and

metazoa (fruit  fly  (Burow et  al.,  2018) or zebrafish (Mishima & Tomari,  2016)).  Beyond differences in

mRNA levels between conditions, in our experimental setup variations in the mRNA levels explain only

around 40% of the variation in protein levels, which fits well previous descriptions in the literature for a wide

diversity  of  experimental  systems  (De  Sousa  Abreu  et  al.,  2009;  Vogel  & Marcotte,  2012).  This  weak

explanatory power would not be expected if mRNAs were translated at a constant rate, and has motivated

studies to elucidate which explanatory factors are involved in the regulation of translation ((De Sousa Abreu

et al., 2009) for review). We also evidenced that this discrepancy between mRNA and protein level was

unequal between conditions: particularly, the version using the AT-rich codons among the two most common

(shble#3) displayed the highest mRNA levels but contrasting low amount of protein. We interpret that this

phenotype arises from the combination of suboptimal variables directly or inderectly linked to codon usage

preferences (similarity to human average codon usage, GC3 and CpG content, and mRNA folding energy),

which we have shown to be good  predictors of the match between mRNA and protein levels. As reviewed

by Plotkin and Kudla (Plotkin & Kudla, 2010), a role in optimizing the expression of heterologous genes had

already been evidenced for those four parameters. Regarding similarity in codon preferences between the

focal gene and the expression system, gene versions with a better match to the average human codon usage

bias resulted in higher protein-to-mRNA ratios. This result is in disagreement with previous reports, as well

as with descriptions showing the very limited impact  of  codon usage preferences on gene expression in

mammals, compared to other features (Lu et al., 2006; Vogel et al., 2010). Nevertheless, it is complicated to
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disentangle the effect of codon usage preferences from other composition characteristics, such as GC and

GC3 content.  It is even more difficult to interpret them in terms of neutralist or selectionist origin, as both

evolutionary hypotheses could account for variation in either parameter  (Hanson & Coller,  2017).  While

variation in GC3 was monotonically related to variation in protein expression, this was not the case for

variation in CpG dinucleotides. We report instead a bell-shaped correlation with the protein-to-mRNA ratio,

defined by extreme values of CpG (either too high or too low) resulting in lower translation levels, and with

the  maximum response  corresponding  to  the  gene  recoded  version  close  to  the  human  preferences.  In

eukaryotic genes, selection for presence or absence of CpG dinucleotides usually focuses on the upstream

regulatory region and is usually explained in terms of epigenetic control of gene expression (Callens et al.,

2021). The consequences of CpG dinucleotide content is usually more assessed at the transcriptomic than at

the translational level. Nonetheless, it has been shown to impact heterologous protein amount, but through its

impact on  de novo transcription rather than on translation efficiency  (Bauer et al., 2010). For the mRNA

folding energy,  we report  a bell-shaped correlation with the protein-to-mRNA ratio,  defined by extreme

values of folding energy predicting a sub-optimal translation. The impact of the secondary structures along

the transcript has rarely been adressed, but recent studies highlighted its role in the functional half life of

mRNA (Mauger et al., 2019). Besides, several studies focusing on the 5' region established the importance of

the  mRNA secondary  structure  in  translation  initiation,  and  highlighted  a  shared  trend (bacteria,  yeast,

protists,  and mammals  (Kudla  et  al.,  2009;  Mauger  et  al.,  2019;  Shah et  al.,  2013;  Wang et  al.,  2020;

Weinberg et al., 2016)): a reduced mRNA stability near the site of translation initiation, correlated to a higher

protein production. Indeed, in bacteria and yeast, strong folding around the start codon prevents ribosome

recruitment (Kudla et  al.,  2009;  Shah et al.,  2013); and an analysis of  more than 400 bacteria genomes

highlighted that  codons reducing the mRNA folding are  overrepresented at  the  beginning of  the  genes,

independently of their representation in the rest of the genome (Bentele et al., 2013). Molecular modeling,

along with experimental studies, suggest an higher impact of translation initiation than elongation (Gu et al.,

2010; Riba et al., 2019; Shah et al., 2013). Nonetheless, de Sousa Abreu et al, 2009 that described no effect

of the initiation rate  on translation efficiency in  human transcripts.  In  addition,  it  has been described a

"ramp" of rare codon along the 50 to 100 first nucleotides of the genes, of mRNA which is thought to reduce

the mRNA folding,  and to  avoid ribosome stack  (Bentele et  al.,  2013;  Tuller,  Carmi,  et  al.,  2010).  We

propose here that a complex secondary structure of the mRNA (and not of the upstream sequence only) can

have an impact on the translation; but, contrarily to what has been recently described (Mauger et al., 2019;

Tuller, Waldman, et al., 2010), this role won't be monotonous, but rather display an 'optimal' state.  Anyhow,

a complex combination of parameters seem to be at play, and recent study interesingly has shown that   an

optimized  sequence  (i.e.  leading  to  the  higher  level  of  protein  protduction)  would  actually  be  mosaic,

including rare codon at specific positions, rather than a sequence fully composed of frequent codons (Perach

et  al.,  2021).  This  is  important  for  further  strategy  of  codon  optimization  and  actually  meet  previous

suggestion of randomization or harmonization strategies (Angov et al., 2008; Menzella, 2011). 
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The cell by cell fluorescence analysis revealed that, each transfected cell population was in fact

formed by  at  least  two  subpopulations  expressing  the  EGFP reporter at  different  level,  but  that

variations in codon usage affected them equally. This can be explained in light of previous published

observations suggesting a cell cycle-dependent regulation of transcription under the CMV promoter/enhancer

(Brightwell et al., 1997). When comparing conditions, the concerted shift of both subpopulations towards

higher  (e.g.  for  the  most  used  and/or  GC-rich  codons)  or  lower  (e.g.  for  AT-rich  codons)  values  of

fluorescence intensity suggests that the codon usage version of shble impacts gene expression whatever the

cell stage. Nonetheless, our model is not refined enough to adress the question of cell-cycle dependent codon

usage oscillation that was reported before (Frenkel-Morgenstern et al., 2012). 

We highlighted a physiological impact linked to the expression of heterologous proteins which

seems  "stronger"  than  the  conferred  antibiotic  resistance.  And,  when  decreasing  the  quantity  of

heterologous proteins  (by removing  EGFP),  the  antibiotic  resistance  is  effective (also  meaning that  the

produced  protein  are  functional).  This  observation  can  be  discussed  in  the  light  of  previous  reports

evidencing the competition for the transcriptional machinery. First, Kudla et al. (Kudla et al., 2009) reported

that rare codons in an over-expressed heterologous gene decreased cellular fitness, because of the ribosome

sequestration along the non-adapted mRNA (also consistent with Andersson 1990  (Andersson & Kurland,

1990)). Indeed, considering that almost all the ribosomes are engaged in translational process at any moment,

they are a limitating component  (Princiotta et al., 2003).  They alternatively propose that common codons

would reduce the errors in protein conformations that are deleterious for the cell  (Drummond et al., 2005;

Stoletzki & Eyre-Walker, 2007). A further study precised that the limitating factor was in fact the tRNA

matching  rare  codons,  because  by  supplying  the  system with  those  codons,  they  recovered  the  fitness

(Frumkin et al., 2018). The proposed selective mechanism beyond these observation is that selection act in

fact at the genome wide scale and that highly expressed genes and lowly expressed gene use different codon

in order to allow the homeostasy of the cell.  This would be particularly true in conditions of stress,  or

changes in nutritional  status  (Hanson & Coller,  2017). For instance in bacteria,  genes that  are essential

during amino acid starvation (e.g. amino acid biosynthetic enzymes) preferentially use rare codons that do

not match the typical pool of tRNAs, but instead match starvation-induced tRNA pools (Dittmar et al., 2005;

Elf et al., 2003).

To conclude, the present study highlighted that most of the potential evolutionary forces at play in

shaping human codon usage (and related nucleotide content), select for a strict control of mRNA processing:

splicing, secondary structure and decay. In contrast, we could not evidence proper translational selection, but

more investigation of the secondary structure along the coding sequence remain to explore.  Whether these

predictors are relevant in the light of the evolutionary theories can not be stated, but further studies involving

experimental evolution may shed light on these mechanisms.
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MATERIAL AND METHODS

Design of the  shble synonymous versions and plasmid constructs.  Six synonymous versions of

the shble gene were designed applying the “one amino acid - one codon” approach, i.e., all instances of one

amino acid in the  shble sequence were recoded with the same codon, depending on their frequency in the

human genome (Table 1): shble#1 used the most  frequent codons in the human genome; shble#2 used the

GC-richest among the two most frequent codons; shble#3 used the AT-richest among the two most frequent

codons; shble#4 used the least frequent codons; shble#5 used the GC-richest among the two less frequent

codons; and shble#6 used the AT-richest among the two less frequent codons. An invariable AU1 sequence

was  added as  N-terminal  tag  (amino  acid  sequence  MDTYRI)  to  all  six  versions.  Nucleotide  contents

between versions are compared in Sup. Table 1. The normalized COUSIN 18 score (COdon Usage Similarity

Index), which compares the codon usage preference of a query against a reference, was calculated on the

online tool (http://cousin.ird.fr)  (Bourret et al., 2019). A score value below 0 informs that the codon usage

preferences (CUPrefs) of the query sequence is opposite to the reference CUPrefs; a value close to 1 informs

that the query CUPrefs is similar to the reference CUPrefs, and a value above 1 informs that the query

CUPrefs  is  similar  the  reference  CUPrefs,  but  of  larger  magnitude  (Bourret  et  al.,  2019).  All  shble

synonymous  sequences  were  chemically  synthesised  and  cloned  on  the  XhoI restriction  site  in  the

pcDNA3.1+P2A-EGFP  plasmid  (InvitroGen),  in-frame  with  the P2A-EGFP  reporter  cassette.  In  this

plasmid,  the  expression  of  the  reporter  gene  is  located  under  the  control  of  the  strong  human

cytomegalovirus (CMV) promoter and terminated by the bovine growth hormone polyadenylation signal. All

constructs encode for a 1,602 bp transcript, encompassing a 1,182 bp au1-shble-P2A-EGFP coding sequence

(Sup. Fig. 1).  The folding energy of the 1,602 bp transcripts was calculated on the  RNAfold Webserver

(http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi),  with  default  parameters  (Table  1).  During

translation, the P2A peptide (sequence NPGP) induces ribosome skipping (Ryan et al., 1991), meaning that

the ribosome does not perform the transpeptidation bond and releases instead the AU1-SHBLE moiety and

continues translation of the EGFP moiety. The HEK293 human cell line used here is proficient at performing

ribosome skipping on the P2A peptide  (J. H. Kim et al., 2011) The transcript encodes thus for one single

coding sequence but translation results in the production of two proteins: SHBLE (theoretical molecular

mass 17.2 kDa) and EGFP (27.0 kDa). As controls we used two plasmids: (i) pcDNA3.1+P2A-EGFP (named

here “empty”), which encodes for the EGFP protein; (ii) pcDNA3.1+ (named here “superempty”) which does

not  express  any transcript  from the CMV promoter  (Table 1). In  order to  explore  the burden of EGFP

expression  we  generated  two  additional  constructs  by  subcloning  the  AU1-tagged  shble#1  and  shble#4

coding  sequences  in  the  XhoI  restriction  site  of  the  pcDNA3.1+  backbone,  resulting  in  the  constructs

shble#1* and shble#4*, lacking the P2A-EGFP sequence.

Transfection and differential cell sampling. As mentioned above, all experiments were carried out

on  HEK293 cells.  Cell culture conditions, transfection methods and related reagents are detailed in  Sup.
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Methods  2.2.  Cells  were harvested two days after  transfection and submitted to  analyses  at  four  levels

(Figure  6):  (i)  nucleic  acid  analyses  (qPCR and RNAseq);  (ii)  proteomics  (label-free  quantitative  mass

spectrometry analysis and western blot immuno-assays); (iii) flow cytometry; and (iv) real-time cell growth

analysis  (RTCA).  Overall,  the  different  experiments  were  performed  on  33  biological  replicates,

corresponding to a variable number of repetitions depending on the considered analysis (Sup. Method 1).

Transfection efficiency was evaluated by means of qPCR targeting two invariable regions of the plasmid and

revealed no significant differences between the constructs (Sup. Methods 2.3).

Figure 7. Overview of the sampling protocol and the measured phenotypes. HEK293 cells were seeded

on 6-well plates (A) one day before transfection with the customized pcDNA3.1 plasmids (B). Transfected

cells were harvested two days later (C). mRNA levels were assessed by RNAseq (D), protein levels were

measured by label-free proteomics (E), EGFP fluorescence was assessed at the single cell  level by flow

cytometry (F) and cell growth was assessed by xCELLigence RTCA (Real Time Cell growth Analysis) in

presence of different concentrations of the bleomycin antibiotic (G).

RNA sequencing and data analysis.  The transcriptomic analysis was performed on six biological

replicates and eight conditions: shble#1 to shble#6, #empty, and mock (for which the sample is submitted to

the  exact  same procedures,  including  the  transfection  agent,  but  in  absence  of  plasmid).  Paired  150bp

Illumina reads were trimmed (Trimmomatic  v0.38)  (Bolger  et  al.,  2014) and mapped on  eight  different

genomic references (HISAT2 v2.1.0) (D. Kim et al., 2015), corresponding to the concatenation of the human

reference genome (GCF_000001405.38_GRCh38.p12_genomic.fna, NCBI database, 7th of February 2019)

and the corresponding full  sequence of  the plasmid.  For the mock condition,  we considered the human

genome and all possible versions of the plasmid. Virtually no read of those negative controls mapped to the

plasmid sequences. For  all  other  conditions,  read distribution patterns  along the plasmid sequence were

evaluated with IGVtool (J. T. Robinson et al., 2011). In all cases the au1-shble-p2a-EGFP coding sequence

displayed  highly  similar  coverage  shape  for  all  constructs,  except  for  shble#4  and  shble#6  for  which
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respectively one and two alternative splicing events were observed (Sup. Fig. 3 and 4). None of these splice

sites were predicted when the theoretical transcripts were evaluated using  Human Splicing Finder (HSF,

accessed via https://www.genomnis.com/access-hsf) (Desmet et al., 2009), or with SPLM - Search for human

potential  splice  sites  using  weight  matrices (accessed  via  http://www.softberry.com/)  (Solovyev,  2004).

When relevant, the three alternative transcript isoforms identified were further used as reference for read

pseudomapping and quantification with Kallisto (v0.43.1)  (Bray et al., 2016). Details on RNA preparation

and bioinformatic pipeline are provided in Sup. Methods 2.4 and Sup. Methods 3.

Label-free  proteomic  analysis.  The  label-free  proteomic  was  performed  on  nine  biological

replicates (three of them measured independently, and six pooled by two), and eight different conditions:

shble#1 to shble#6, #empty, and mock. 20 to 30 µg of proteins were in-gel digested and resulting peptides

were analyzed online using  a  Q Exactive HF mass  spectrometer coupled with  an Ultimate  3000 RSLC

system (Thermo Fisher Scientific). MS/MS analyses were performed using the Maxquant software (v1.5.5.1)

(Tyanova, Temu, & Cox, 2016). All MS/MS spectra were searched by the Andromeda search engine (Cox et

al., 2011) against a decoy database consisting in a combination of  Homo sapiens entries from Reference

Proteome  (UP000005640,  release  2019_02,  https://www.uniprot.org/),  a  database  with  classical

contaminants, and the sequences of interest (SHBLE and EGFP). After excluding the usual contaminants, we

obtained a final set of 4,302 proteins detected at least once in one of the samples. Intensity based absolute

quantification (iBAQ) was used to compare protein levels between samples (Tyanova, Temu, Sinitcyn, et al.,

2016).

Western blot immunoassays and semi-quantitative analysis.  Western blot immunoassays were

performed on nine replicates  and nine conditions:  shble#1 to shble#6,  #empty,  #superempty,  and mock.

Three different proteins were targetted:  β-TUBULIN, EGFP, and SHBLE (via the invariable AU1 epitope

tag). Semi-quantitative analysis from enzyme chemoluminiscence data was performed with ImageJ (Rueden

et al., 2017) by «plotting lanes» to obtain relative density plots (Sup. Fig. 7). 

Flow  cytometry  analysis.  Flow  cytometry  experiments  were  performed  on  a  NovoCyte  flow

cytometer  system  (ACEA biosciences).  50,000  ungated  events  were  acquired  with  the  NovoExpress

software, and further filtering of debris and doublets was performed in R with an in-house script  (filtering

strategy is detailed in Sup. Method 2.7). For subsequent analysis, 30,000 events were randomly picked up

from each sample. Seven samples had less than 30,000 events and, in order to ensure the same sample size

for all conditions, the four corresponding replicates were excluded. After a first visualization of the data, two

replicates were ruled out because they displayed a typical pattern of failed transfection for the condition

shble#1 (Sup. Method 2.7), resulting in 16 final replicates being fully examined.

Real time cell growth analysis (RTCA). RTCA was carried out on an xCELLigence system for the

mock and the superempty controls, and further eight constructs: the previously analysed shble#1 to shble#6,

plus  the  shble#1*  and  shble#4*  lacking  the  EGFP  reporter  gene.  Cells  were  grown  under  different

concentrations of the Bleomycin antibiotic ranging from 0 to 5000 μg/mL (Sup. Method 2.8). Three to six
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biological replicates were performed, including technical duplicates for each replicate. Cells were grown on

microtiter  plates  with  interdigitated  gold  electrodes  that  allow  to  estimate  cell  density  by  means  of

impedance  measurement.  Measures  were  acquired  every  15  minutes,  over  70  hours  (280  time  points).

Impedance measurements are reported as “Cell Index” values, which are compared to the initial baseline

values to estimate changes in cellular performance linked to the expression of the different constructs. For

each construct we estimated first cellular fitness by calculating the area below the curve for the delta-Cell

index  vs time for the cells grown in the absence of antibiotics. We estimated then the ability to resist the

antibiotic  conferred  by  each  construct  through calculation  of  IC50 as  the  bleomycin  concentration  that

reduces the area below the curve to half of the one estimated in the absence of antibiotics (detailled methods

in Sup. Method 2.8).
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