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A Saturated Map of Common Genetic Variants Associated with Human Height 1 

from 5.4 Million Individuals of Diverse Ancestries 2 

 3 

 4 

ABSTRACT 5 

 6 

Common SNPs are predicted to collectively explain 40-50% of phenotypic variation in 7 

human height, but identifying the specific variants and associated regions requires huge 8 

sample sizes. Here we show, using GWAS data from 5.4 million individuals of diverse 9 

ancestries, that 12,111 independent SNPs that are significantly associated with height 10 

account for nearly all of the common SNP-based heritability. These SNPs are clustered 11 

within 7,209 non-overlapping genomic segments with a median size of ~90 kb, covering 12 

~21% of the genome. The density of independent associations varies across the genome and 13 

the regions of elevated density are enriched for biologically relevant genes. In out-of-14 

sample estimation and prediction, the 12,111 SNPs account for 40% of phenotypic variance 15 

in European ancestry populations but only ~10%-20% in other ancestries. Effect sizes, 16 

associated regions, and gene prioritization are similar across ancestries, indicating that 17 

reduced prediction accuracy is likely explained by linkage disequilibrium and allele 18 

frequency differences within associated regions. Finally, we show that the relevant 19 

biological pathways are detectable with smaller sample sizes than needed to implicate 20 

causal genes and variants. Overall, this study, the largest GWAS to date, provides an 21 

unprecedented saturated map of specific genomic regions containing the vast majority of 22 

common height-associated variants. 23 

 24 

 25 

INTRODUCTION 26 

 27 

Since 2007, genome-wide association studies (GWAS) have identified thousands of associations 28 

between common single nucleotide polymorphisms (SNPs) and height, primarily using studies of 29 

European ancestry. The largest GWAS published to date for adult height focussed on common 30 

variation and reported up to 3,290 independent associations in 712 loci using a sample size of up 31 

to 700,000 individuals.1 To date, adult height, which is highly heritable and easily measured, has 32 

provided a larger number of common genetic associations than any other human phenotype. In 33 

addition, a large collection of genes has been implicated in disorders of skeletal growth, and these 34 

are enriched in loci mapped by GWAS of height in the normal range. These features make height 35 

an attractive model trait for assessing the role of common genetic variation in defining the genetic 36 

and biological architecture of polygenic human phenotypes. 37 

 38 

As available sample sizes continue to increase for GWAS of common variants, it becomes important 39 

to consider whether these larger samples can “saturate” or nearly completely catalogue the 40 

information that can be derived from GWAS. This question of completeness can take several forms, 41 

including prediction accuracy compared with heritability attributable to common variation, the 42 

mapping of associated genomic regions that account for this heritability, and whether increasing 43 

sample sizes continue to provide additional information about the identity of prioritised genes and 44 

gene sets. Furthermore, because most GWAS continue to be performed largely in populations of 45 

European ancestry, it is important to address these questions of completeness in the context of 46 
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 2 

multiple ancestries. Finally, some have proposed that, when sample sizes become sufficiently large, 47 

effectively every gene and genomic region will be implicated by GWAS, rather than implicating 48 

specific subsets of genes and biological pathways.2 49 

 50 

Using data from 5,380,080 individuals, we set out to map common genetic associations with adult 51 

height, using variants catalogued in the HapMap 3 project (HM3), and to assess the saturation of 52 

this map with respect to variants, genomic regions, and likely causal genes and gene sets. We 53 

identify significant variants, explore signal density across the genome, perform out-of-sample 54 

estimation and prediction analyses within European and non-European ancestry studies, and 55 

prioritise genes and gene sets as likely mediators of the effects on height. We show that this set of 56 

common variants reaches predicted limits for prediction accuracy within European-ancestry 57 

populations and largely saturates both the genomic regions associated with height and broad 58 

categories of likely relevant gene sets; future work remains to extend prediction accuracy to non-59 

European ancestries and to more definitively connect associated regions with individual likely 60 

causal genes and variants. 61 

 62 

RESULTS 63 

 64 

An overview of our study design and analysis strategy is illustrated in Suppl. Fig. 1. 65 

 66 

Multi-ancestry GWAS meta-analysis identifies 12,111 height-associated SNPs  67 

We performed genetic analysis of up to 5,380,080 individuals from 281 studies from the GIANT 68 

consortium and 23andMe, Inc. including 4,080,687 participants of predominantly European 69 

ancestries (75.8% of total sample), 472,730 participants with predominantly East-Asian ancestries 70 

(8.8%), 455,180 participants of Hispanic ethnicity with typically admixed ancestries (8.5%), 71 

293,593 participants of predominantly African ancestries, mostly African-Americans with 72 

admixed African and European ancestries (5.5%) and 77,890 participants of predominantly South-73 

Asian ancestries (1.4%). We refer to these five groups of participants/cohorts by the shorthand 74 

EUR, EAS, HIS, AFR, and SAS, respectively, yet recognising that these commonly used groupings 75 

oversimplify the actual genetic diversity among participants. Cohort-specific information is 76 

provided in Suppl. Tables 1 – 3. We tested the association between standing height and 1,385,132 77 

autosomal bi-allelic SNPs from the HM3 tagging panel3, which contains >1,095,888 SNPs with a 78 

minor allele frequency (MAF) >1% in each of the five ancestral groups included in our meta-79 

analysis. Suppl. Fig. 2 shows the frequency distribution of HM3 SNPs across all five groups of 80 

cohorts.  81 

 82 

We first performed individual meta-analyses in each of the five groups of cohorts. We identified 83 

9863, 1888, 918, 493 and 69 quasi-independent genome-wide significant (GWS; P<5×10-8) SNPs 84 

in the EUR, HIS, EAS, AFR and SAS groups, respectively (Table 1; Suppl. Tables 4 – 8). Quasi-85 

independent associations were obtained after performing approximate conditional and joint 86 

multiple-SNP (COJO) analyses,4 as implemented in GCTA5 (Suppl. Methods). Previous studies have 87 

shown that confounding due to population stratification may remain uncorrected in large EUR 88 

GWAS meta-analyses.6,7 Therefore, we specifically investigated confounding effects in our EUR 89 

GWAS and found no evidence that these GWAS results are driven by population stratification 90 

(Suppl. Note 1, Suppl. Fig. 3). 91 

 92 
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To compare results across the five groups of cohorts, we examined the genetic and physical 93 

colocalization between SNPs identified in the largest group (EUR) with those found in the non-EUR 94 

groups. We found that over 83% of GWS SNPs detected in non-EUR are in strong linkage 95 

disequilibrium (LD; 𝑟LD
2 >0.8) with at least one variant reaching marginal genome-wide significance 96 

in EUR (Suppl. Tables 5 – 8) and  over 87% of associations detected in non-EUR meta-analyses fall 97 

within 100 kb of at least one GWS SNP identified in EUR (Suppl. Fig. 4a). In contrast, a randomly 98 

sampled HM3 SNP falls within 100 kb of a EUR GWS SNP only about 68% of the time (standard 99 

error; S.E.=0.5% over 10,000 draws). Next, we quantified the cross-ancestry correlation of allele 100 

substitution effects (𝜌𝑏) at GWS SNPs for all pairs of ancestry groups. We estimated 𝜌𝑏  using five 101 

sets of GWS SNPs identified in each of ancestry group.  After correction for winner’s curse,8,9 we 102 

found 𝜌𝑏  to range between 0.64 and 0.99 across all pairs of ancestry groups and all sets of GWS 103 

SNPs (Suppl. Fig. 5 – 9). Thus, the observed GWS height associations are substantially shared across 104 

major ancestral groups, consistent with previous studies based on smaller sample sizes.10,11     105 

 106 

To find signals that are specific to certain groups, we tested if any individual SNPs detected in non-107 

EUR GWAS are conditionally independent of signals detected in EUR GWAS. We fitted an 108 

approximate joint model that includes GWS SNPs identified in EUR and non-EUR, using LD 109 

reference panels specific to each ancestry group. After excluding SNPs in strong LD (𝑟LD
2 >0.8 in 110 

either ancestry group), we found that 2, 19, 49 and 143 of the GWS SNPs detected in SAS, AFR, EAS 111 

and HIS GWAS respectively are conditionally independent of GWS SNPs identified in EUR GWAS 112 

(Suppl. Table 9). On average these conditionally independent SNPs have a larger MAF and effect 113 

size in non-EUR than in EUR cohorts, which may have contributed to increased statistical power of 114 

detection. The largest frequency difference relative to EUR was observed for rs2463169 (height-115 

increasing G allele frequency: 23% in AFR vs. 84% in EUR) within the intron of PAWR, which codes 116 

for the prostate apoptosis response-4 protein. Interestingly, rs2463169 is located within the 117 

12q21.2 locus, where a strong signal of positive selection in West-African Yoruba populations was 118 

previously reported.12 The estimated effect at rs2463169 is 𝛽 ~0.034 standard deviation (SD) per 119 

G allele in AFR vs. 𝛽~-0.002 SD/G allele in EUR and the p-value of marginal association in EUR is 120 

PEUR =0.08, suggesting either a true difference in effect size or nearby causal variant(s) with 121 

differing LD to rs2463169.  122 

 123 

Given that our results demonstrate a strong genetic overlap of GWAS signals across ancestries, we 124 

performed a fixed-effect meta-analysis of all five ancestry groups to maximise statistical power for 125 

discovering associations due to shared causal variants. The mean Cochran’s heterogeneity Q-126 

statistic is ~34% across SNPs, which indicates moderate heterogeneity of SNP effects between 127 

ancestries. The mean chi-square association statistic in our fixed effect meta-analysis (hereafter 128 

referred to as METAFE) is ∼36, and ~18% of all HM3 SNPs are marginally GWS. Moreover, we found 129 

allele frequencies in our METAFE to be very similar to that of EUR (mean FST across SNPs between 130 

EUR and METAFE is ~0.001), as expected because our METAFE consists of >75% EUR participants 131 

and ~14% participants with admixed European and non-European ancestries (i.e. HIS and AFR). 132 

To further assess if LD in our METAFE could be reasonably approximated by the LD from EUR, we 133 

performed LD score regression analysis of our METAFE using LD scores estimated in EUR. In this 134 

analysis, we focused on the attenuation ratio statistic (RLDSC-EUR), for which values >20% classically 135 

indicate strong LD inconsistencies between a given reference and GWAS summary statistics. For 136 

example, using EUR LD scores in the GWAS of HIS, which is the non-EUR group genetically closest 137 

to EUR (FST~0.02), yields an estimated RLDSC-EUR of ~25% (S.E. 1.8%), consistent with strong LD 138 
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differences between HIS and EUR. By contrast, in our METAFE, we found an estimated RLDSC-EUR of 139 

~4.5% (S.E. 0.8%), which is significantly lower than 20% and also not statistically different from 140 

3.8% (S.E. 0.8%) in our EUR meta-analysis. Altogether, our LD score regression analyses suggest 141 

that LD in our METAFE can be reasonably approximated by LD from EUR.  142 

 143 

We therefore proceeded to identify quasi-independent GWS SNPs from the multi-ancestry meta-144 

analysis by performing a COJO analysis of our METAFE, using genotypes from ~350,000 unrelated 145 

EUR participants of the UK Biobank (UKB) as an LD reference. We identified 12,111 quasi-146 

independent GWS SNPs, including 9,920 (82%) primary signals with a GWS marginal effect and 147 

2,191 secondary signals that only reached GWS in a joint regression model (Suppl. Table 10). Of 148 

the GWS SNPs obtained from the non-EUR meta-analyses above that were conditionally 149 

independent of the EUR GWS SNPs, 0/2 in SAS, 5/19 in AFR, 27/49 in EAS, and 39/143 in HIS 150 

remained statistically significant in our METAFE (Suppl. Table 9), meaning that a small number of 151 

additional signals were only identified in the ancestry-specific analyses. 152 

 153 

We next sought replication of the 12,111 METAFE signals using GWAS data from 49,160 154 

participants of the Estonian Biobank (EBB). We first re-assessed the consistency of allele 155 

frequencies between our METAFE and the EBB set. We found a correlation of allele frequencies of 156 

~0.98 between the two datasets and a mean FST across SNPs of ~0.005, similar to estimates 157 

obtained between populations from the same continent. Of the 12,111 GWS SNPs identified 158 

through our COJO analysis, 11,847 were available in the EBB dataset, 97% of which (11,529) have 159 

MAF>1% (Suppl. Table 10). Given the large difference in sample size between our discovery and 160 

replication samples, direct statistical replication of individual associations at GWS is not achievable 161 

for most SNPs identified (Suppl. Fig. 10a). Instead, we assessed the correlation of SNP effects 162 

between our discovery and replication GWAS as an overall metric of replicability.1,13 Over the 163 

11,529/11,847 SNPs with a MAF>1% in the EBB, we found a correlation of marginal SNP effects of 164 

𝜌𝑏=0.93 (jackknife standard error; S.E. 0.01) and a correlation of conditional SNP effects using the 165 

same LD reference panel of 𝜌𝑏=0.80 (S.E. 0.03; Suppl. Fig. 11). Although we had limited power to 166 

replicate associations with 238 GWS variants that are rare in the EBB (MAF<1%), we found, 167 

consistent with expectations (Suppl. Methods; Suppl. Fig. 10b), that 60% of them have a marginal 168 

SNP effect that is sign-consistent with that from our discovery GWAS (Fisher exact test; P=0.001). 169 

The proportion of sign-consistent SNP effects was >75% (Fisher exact test; P<10-50) for variants 170 

with a MAF>1%, also consistent with expectations (Suppl. Fig. 10b). Altogether, our analyses 171 

demonstrate the robustness of our findings and show their replicability in an independent sample. 172 

 173 

Genomic distribution of height-associated SNPs 174 

To examine signal density among the 12,111 GWS SNPs detected in our METAFE, we defined a 175 

measure of local density of association signals for each GWS SNP based on the number of additional 176 

independent associations within 100 kb (Suppl. Fig. 12). We observed that 69% of GWS SNPs 177 

shared their location with another associated, conditionally independent, GWS SNP (Fig. 1). The 178 

mean signal density across the entire genome is 2.0 (LOCO-S.E. = 0.14), consistent with a non-179 

random genomic distribution of GWS SNPs. Next we evaluated signal density around 462 180 

autosomal genes curated from  the Online Mendelian Inheritance in Man (OMIM) database14 as 181 

harbouring pathogenic mutations causing syndromes of abnormal skeletal growth (“OMIM genes”; 182 

Suppl. Methods; Suppl. Table 11). We found that a high density of height-associated SNPs is 183 

significantly correlated with the presence of an OMIM gene nearby (Enrichment fold of OMIM gene 184 
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when density >1: 2.5×; P<0.001; Suppl. Methods, Suppl. Fig. 13a).15,16 Interestingly, the 185 

enrichment of OMIM genes almost linearly increases with the density of height-associated SNPs 186 

(Suppl. Fig. 13b). Thus, these 12,111 GWS SNPs nonrandomly cluster near each other and also near 187 

known skeletal growth genes. 188 

 189 

The largest density of conditionally independent associations was observed on chromosome 15 190 

near ACAN, a gene mutated in short stature and skeletal dysplasia syndromes, where 25 GWS SNPs 191 

co-localise within 100 kb of one another (Fig. 1; Suppl. Fig. 14). We show in Suppl. Note 2 and 192 

Suppl. Figs. 14-15, using haplotype- and simulation-based analyses, that a multiplicity of 193 

independent causal variants is the most likely explanation of this observation. Interestingly, we 194 

also found that signal density is partially explained by the presence of a recently identified17,18 195 

height-associated variable-number-of-tandem-repeat (VNTR) polymorphism at this locus (Suppl. 196 

Note 2). In fact, the 25 independent GWS SNPs clustered within 100 kb of rs4932198 explain >40% 197 

of the VNTR length variation in multiple ancestries (Suppl. Fig. 15e) and an additional ~0.24% 198 

(P=8.7 × 10−55) phenotypic variance in EUR above what is explained by the VNTR alone (Suppl. 199 

Fig. 15f). Altogether, our conclusion is consistent with prior evidence of multiple types of common 200 

variation influencing height through ACAN gene function, involving multiple enhancers,19 missense 201 

variants20 and tandem repeat polymorphisms.17,18  202 

 203 

Variance explained by SNPs within identified loci 204 

To quantify the proportion of height variance explained by GWS SNPs identified in our METAFE, we 205 

stratified all HM3 SNPs into two groups: SNPs in the close vicinity of GWS SNPs, hereafter denoted 206 

GWS loci, and all remaining SNPs. We defined GWS loci as non-overlapping genomic segments 207 

containing at least 1 GWS SNP, such that GWS SNPs in adjacent loci are >2×35 kb away from each 208 

other (i.e. 35 kb window on each side). We chose a 35 kb threshold based on findings from Wu et 209 

al.21 who previously showed that causal common variants are located within 35 kb of GWS SNPs 210 

with >80% probability. Accordingly, we grouped the 12,111 GWS SNPs identified in our METAFE 211 

into 7,209 non-overlapping loci (Suppl. Table 12) with lengths ranging from 70 kb (for loci 212 

containing only 1 signal) to 711 kb (for loci containing up to 25 signals). The average length of GWS 213 

loci is ~90 kb (SD 46 kb). The cumulative length of GWS loci represent ~647 Mb, or ~21% of the 214 

genome (assuming a genome length of ~3039 Mb).22 215 

 216 

To estimate what fraction of heritability is explained by common variants within the 21% of the 217 

genome overlapping GWS loci, we calculated two genomic relationship matrices (GRMs), one for 218 

SNPs within these loci and one for SNPs outside these loci, and then used both matrices to estimate 219 

a stratified SNP-based heritability (ℎSNP
2 ) of height in 8 independent samples of all five population 220 

groups represented in our METAFE (Fig. 2; Suppl. Methods). Altogether, our stratified estimation 221 

of SNP-based heritability shows that SNPs within these 7,209 GWS loci explain ~100% of ℎSNP
2  in 222 

EUR and >90% of ℎSNP
2  across all non-EUR groups, despite being drawn from less than a quarter of 223 

the genome (Fig. 2). We also varied the window size used to define GWS loci and found that 35 kb 224 

was the smallest window size for which this level of saturation of SNP-based heritability could be 225 

achieved (Suppl. Fig. 16). 226 

 227 

To further assess the robustness of this key result, we tested if the 7,209 height-associated GWS 228 

loci are systematically enriched for trait-heritability. We chose body mass index (BMI) as a control 229 

trait given its small genetic correlation with height (rg=-0.1, ref.23) and found no significant 230 
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enrichment of SNP-based heritability for BMI within height-associated GWS loci (Suppl. Fig. 17). 231 

Furthermore, we repeated our analysis using a random set of SNPs with similar EUR MAF and LD 232 

scores as the 12,111 height-associated GWS SNPs. We found this control set of SNPs to explain only 233 

~27% of ℎSNP
2  for height, consistent with the proportion of SNPs within the loci defined by this 234 

random set of SNPs (Suppl. Figs.  16 - 17). Finally, we extended our stratified estimation of SNP-235 

based heritability to all well-imputed common SNPs (i.e. beyond the HM3 panel) and found, 236 

consistently across population groups, that although more genetic variance can be explained by 237 

common SNPs not included in the HM3 panel, all information remains concentrated within these 238 

7,209 GWS loci (Suppl. Fig. 18). Thus, with this large GWAS, nearly all of the variability in height 239 

that is attributable to common genetic variants can be mapped to regions comprising ~21% of the 240 

genome. 241 

 242 

Out-of-sample prediction accuracy  243 

We quantified the accuracy of polygenic scores (PGS) for height based on GWS SNPs in 61,095 244 

unrelated individuals from 3 studies, including 33,001 participants of the UKB who were not 245 

included in our discovery GWAS (i.e. 14,587 EUR; 9,257 SAS; 6,911 AFR and 2,246 EAS; Suppl. 246 

Methods), 14,058 EUR participants from the Lifelines cohort study; and 8,238 HIS and 5,798 AFR 247 

participants from the PAGE study. Prediction accuracy (𝑅GWS
2 ) was defined as the squared 248 

correlation between the PGS and actual height (corrected for mean and variance sex differences 249 

and 20 genotypic principal components). We found that PGS based on 12,111 GWS SNPs from our 250 

METAFE systematically outperformed those based on GWS identified in ancestry-specific meta-251 

analyses (Fig. 3a). The only exception was in EUR where both PGS performed equally. The largest 252 

prediction accuracy was observed in EUR participants (𝑅GWS
2 ~40%; S.E. 0.6%) and the smallest 253 

one in AFR participants from the UKB (𝑅GWS
2 ~9.4%; S.E.  0.7%). Note that the difference in 𝑅GWS

2  254 

between the EUR and AFR ancestry cohorts is expected because of the over-representation of EUR 255 

in our METAFE and consistent with a relative accuracy (𝑅GWS
2  in AFR)/( 𝑅GWS

2  in EUR) of ~25% 256 

previously reported.24 Nevertheless, we found the accuracy of PGS based on GWS from our multi-257 

ancestry METAFE to be consistently larger than that of PGS based on GWS SNPs from a EUR GWAS 258 

(Fig. 3a). The largest improvement was observed in AFR, where the meta-analysed accuracy in AFR 259 

participants of UKB and PAGE was increased from 𝑅GWS
2 =6.6% (S.E. 0.4%) to 𝑅GWS

2 =10.8% (S.E. 260 

0.5%), i.e. almost a ~1.6-fold improvement. This observation is partly explained by the increased 261 

statistical power but also by the refined estimation of SNP effects due to the inclusion of shorter 262 

and ancestry-specific LD blocks in AFR cohorts.  263 

 264 

Furthermore, we sought to evaluate the prediction accuracy of PGS relative to that of familial 265 

information as well as the potential improvement in accuracy gained from combining both sources 266 

of information. We analysed 981 unrelated EUR trios (i.e. two parents and one offspring) and 267 

17,492 independent EUR sibling pairs from the UKB, who were excluded from our METAFE. We 268 

found that height of any first-degree relative yields a prediction accuracy between 25% and 30% 269 

(Fig. 3b). Moreover, the accuracy of the parental average is ~44% (S.E. 3.2%), which is larger but 270 

not significantly different from 𝑅GWS
2  in EUR. In addition, we found that a linear combination of the 271 

average height of parents and of the offspring’s PGS yields an unprecedented accuracy of 54% (S.E. 272 

3.2%). This observation reflects the fact that PGS can explain within-family differences between 273 

siblings, while average parental height cannot. To show this empirically, we estimate that our PGS 274 

based on GWS SNPs explain ~33% (S.E. 0.7%) of height variance between siblings (Suppl. 275 

Methods). Finally, we demonstrate that the optimal weighting between parental average and PGS 276 
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can be predicted theoretically as function of 𝑅GWS
2 , the full narrow sense heritability and the 277 

phenotypic correlation between spouses (Suppl. Note 3, Suppl. Fig. 19).  278 

 279 

In summary, the estimation of variance explained and prediction analyses in European-ancestry 280 

samples show that the set of 12,111 GWS SNPs account for nearly all of ℎSNP
2  and that combining 281 

SNP-based PGS with family history significantly improves prediction accuracy. In contrast, both 282 

estimation and prediction results show clear attenuation in samples with non-European ancestry, 283 

consistent with previous studies.24–27 284 

 285 

Relationship between GWAS discoveries, sample size and ancestry diversity  286 

Our large study offers a unique opportunity to empirically quantify how increasing GWAS sample 287 

sizes and ancestry diversity affects discovery of variants, genes and biological pathways. To 288 

address this question, we re-analysed 3 previously published GWAS of height1,15,16 and also down-289 

sampled our meta-analysis into 4 subsets (including our EUR and METAFE GWAS). Altogether we 290 

analysed 7 GWAS with a sample size increasing from ~0.13 M up to ~5.3 M individuals (Table 2).  291 

 292 

For each GWAS, we quantified 8 metrics grouped into 4 variant- and locus-based metrics (number 293 

of GWS SNPs, number of GWS loci, prediction accuracy (𝑅GWS
2 ) of PGS based on GWS SNPs, the 294 

proportion of the genome covered by GWS loci), a functional annotation-based metric (enrichment 295 

statistics from stratified LDSC28,29), 2 gene-based metrics (number of genes prioritised by 296 

Summary data based Mendelian Randomization30 (SMR; Suppl. Methods), proximity of variants 297 

with OMIM genes), and a gene-set-based metric (enrichment within clusters of gene 298 

sets/pathways). Overall, we found different patterns for the relationship between those metrics 299 

and GWAS sample size and ancestry composition, consistent with varying degrees of saturation 300 

achieved at different sample sizes.  301 

 302 

We observed the strongest saturation for the gene-set and functional annotation metrics, which 303 

capture how well general biological functions can be inferred from GWAS results using currently 304 

available computational methods. Using two popular gene set prioritisation methods (DEPICT31 305 

and MAGMA32), we found that the same broad clusters of related gene sets (including most of the 306 

clusters enriched for OMIM genes) are prioritised at all GWAS sample sizes (Suppl. Figs. 20-21; 307 

Suppl. Tables 13 – 15; Suppl. Note 4). Similarly, stratified LDSC estimates of heritability 308 

enrichment within 97 functional annotations also remain stable across the range of sample sizes 309 

(Suppl. Fig. 22). Overall, we found no significant improvement for all these higher-level metrics 310 

from adding non-EUR samples to our analyses. The latter observation is consistent with other 311 

analyses demonstrating that GWAS expectedly implicate similar biology across major ancestral 312 

groups (Suppl. Note 4; Suppl. Fig. 23). 313 

 314 

For the gene-level metric, the excess in the number of OMIM genes that are proximate to a GWS 315 

SNP (compared with matched sets of random genes) plateaus at sample sizes of N>1.5M; while the 316 

relative enrichment of GWS SNPs near OMIM genes first decreases with sample size, then plateaus 317 

when N>1.5M (Suppl. Figs. 24a-c). Interestingly, the decrease observed for N<1.5M reflects the 318 

preferential localization of larger effect variants (those identified with smaller sample sizes) closer 319 

to OMIM genes (Suppl. Fig. 24d) and, conversely, that more recently identified variants with 320 

smaller effects tend to localize further away from OMIM genes (Suppl. Fig. 24e). We also 321 

investigated the number of genes prioritised using Summary-data based Mendelian 322 
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Randomization (hereafter referred to as SMR genes; Suppl. Methods) using expression 323 

quantitative trait loci (eQTL) as genetic instruments (Suppl. Table 16) as an alternative gene-level 324 

metric and found it to saturate for N>4M (Suppl. Fig. 24f). Note that saturation of SMR genes is 325 

partly affected by the biological relevance and statistical power of eQTL studies.30 Therefore, we 326 

can expect more genes to be prioritised when integrating GWAS summary statistics from this study 327 

with that from larger eQTL studies that may be available in the future and may involve more tissue 328 

types. Gene-level metrics were also not substantially affected by adding non-EUR samples, again 329 

consistent with broadly similar sets of genes affecting height across ancestries.  330 

 331 

At the level of variants and genomic regions, we saw a steady and almost linear increase in the 332 

number of GWS SNPs as a function of sample size, as previously reported.33 However, given that 333 

newly identified variants tend to cluster near ones identified at smaller sample sizes, we also saw 334 

a saturation in the number of loci identified for N>2.5M, where the upward trend starts to weaken 335 

(Suppl. Fig. 25a). We found a similar pattern for the percentage of the genome covered by GWS 336 

loci, with the degree of saturation varying as a function of the window size used to define loci 337 

(Suppl. Fig. 25b). The observed saturation in PGS prediction accuracy (both within ancestry, i.e. in 338 

EUR; and multi-ancestry) was more noticeable than that of the number and genomic coverage of 339 

GWS loci. In fact, increasing sample size from 2.5M to 4M by adding another 1.5M EUR samples 340 

increased the number of GWS SNPs from 7,020 to 9,863 (i.e. (9,863-7,020)/7,020 = ~1.4-fold 341 

increase) but the absolute increase in prediction accuracy is less than +2.7%. This improvement is 342 

mainly observed in EUR but remains lower than +1.3% in EAS and AFR individuals. However, 343 

adding another ~1M participants of non-EUR improves the multi-ancestry prediction accuracy by 344 

over +3.4% (Suppl. Fig. 25c), highlighting the value of non-EUR populations for this purpose. 345 

 346 

Altogether, these analyses show that increasing GWAS sample size not only increases prediction 347 

accuracy but also sheds more light on the genomic distribution of causal variants and, at all but the 348 

largest sample sizes, the genes proximal to these variants. By contrast, enrichment of higher-level, 349 

broadly defined biological categories such as gene sets/pathways and functional annotations can 350 

be identified using relatively small sample sizes (N~0.25M for height). Importantly, we confirm 351 

that increased genetic diversity in GWAS discovery samples significantly improves the prediction 352 

accuracy of PGS in under-represented ancestries. 353 

 354 

 355 

DISCUSSION 356 

 357 

By performing the largest GWAS to date in 5,380,080 individuals with a primary focus on common 358 

genetic variation, we have provided new insights into the genetic architecture of height – including 359 

a saturated genomic map of 12,111 genetic associations for height. Consistent with previous 360 

studies,15,16 we have shown signal density of associations (known and novel) are not randomly 361 

distributed across the genome; rather, associated variants are more likely detected around genes 362 

previously associated with Mendelian disorders of growth. Furthermore, we observed strong 363 

genetic overlap of association across cohorts of various continental ancestries. Effect estimates are 364 

moderately to highly correlated (min=0.64, max=0.99), and while there are significant differences 365 

in power to detect an association between cohorts with European and non-European ancestries, 366 

the majority of genetic associations for height observed in populations with non-European 367 
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ancestry lie in close proximity and in linkage disequilibrium to associations identified within 368 

populations of European ancestry. 369 

 370 

By increasing our experimental sample size to >7-times that of previous studies, we have explained 371 

up to 40% of the inter-individual variation in height in independent European-ancestry samples 372 

using GWS SNPs alone, and >90% of ℎSNP
2  across diverse populations when incorporating all 373 

common SNPs within 35 kb of GWS SNPs. This result is important as it highlights that future 374 

investigation of common (MAF>1%) genetic variation associated with height in many ancestries 375 

will most likely detect signals within the 7,209 GWS loci identified in the present study. An 376 

interesting future question is whether rare genetic variants associated with height are also 377 

concentrated within the same loci. Of note, previous studies have reported significant enrichment 378 

of height heritability near genes as compared to inter-genic regions (e.g. up to >50 kb away from 379 

start/stop genomic position of genes).34 Our findings are consistent but not reducible to that 380 

observation, given that up to ~31% of GWS SNPs identified in this study lie >50 kb away from any 381 

gene.  382 

 383 

Our study provides a powerful genetic predictor of height based on 12,111 GWS SNPs, for which 384 

accuracy reaches ~40% (i.e. 80% of ℎSNP
2 ) in individuals of European ancestries and up to ~10% 385 

in individuals of predominantly African ancestries. Importantly, we show using a new method 386 

developed by Wang and colleagues27 that LD and MAF differences between European and African 387 

ancestries can explain up to ~84% (S.E. 1.5%) of the loss of prediction accuracy between these 388 

populations (Suppl. Methods), with the remaining loss being presumably explained by heritability 389 

differences between populations and/or differences in effect sizes across populations (e.g., due to 390 

gene-by-gene or gene-by-environment interactions). This observation is consistent with common 391 

causal variants for height being largely shared across ancestries. Therefore, we anticipate that fine-392 

mapping of GWS loci identified in this study, ideally using methods that can accommodate dense 393 

sets of signals and large populations with African ancestries, would substantially improve the 394 

accuracy of a derived height PGS for non-European ancestry populations. Our study has a large 395 

number of participants with African ancestries as compared with previous efforts. However, we 396 

emphasise that further increasing the size of GWAS in non-European ancestry populations, 397 

including those with diverse African ancestries, is essential to bridge the gap in prediction 398 

accuracy, particularly as most studies only partially capture the wide range of ancestral diversity 399 

both within Africa and globally. Such increased samples size would help to identify potential 400 

ancestry-specific causal variants, to facilitate ancestry-specific fine mapping, and to inform gene 401 

by environment/ancestry interactions. Another important finding of our study is to show how 402 

individual PGS can be optimally combined with familial information and thereby improve the 403 

overall accuracy of height prediction to above 54% in European ancestry populations. 404 

 405 

Although large sample sizes are needed to pinpoint the common variants responsible for the 406 

heritability of height (and larger samples in multiple ancestries will likely be required to map these 407 

at finer scale), the prioritization of relevant genes and gene sets is feasible at smaller sample sizes 408 

than that required to account for the common variant heritability. Thus, the sample sizes required 409 

for saturation of GWAS are smaller for identifying enriched gene sets, with identification of genes 410 

implicated as potentially causal and mapping of genomic regions containing associated variants 411 

requiring successively larger sample sizes. Furthermore, unlike prediction accuracy, prioritization 412 
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of likely causal genes and even mapping of associated regions is consistent across ancestries, 413 

reflecting the expected similarity in the biological architecture of human height across populations. 414 

 415 

Our study has a number of limitations. First, we focused on SNPs from the HM3 panel, which only 416 

partially capture common genetic variation. However, although a significant fraction of height 417 

variance can be explained by common SNPs outside the HM3 SNPs panel, we showed that the extra 418 

information (also referred to as ‘hidden heritability’) remains concentrated within GWS loci 419 

identified from our HM3 SNPs based analyses (Suppl. Fig. 18). This result underlines the 420 

widespread allelic heterogeneity at height-associated loci. Another limitation of our study is that 421 

we determined conditional associations using an EUR LD reference (N~350,000), which is sub-422 

optimal given that ~24% of our discovery sample is of non-EUR. We emphasise that no analytical 423 

tool with an adequately large multi-ancestry reference panel currently is available to properly 424 

address how to identify conditionally independent associations in a multi-ancestry study. Fine-425 

mapping of variants remains a particular challenge when attempted across ancestries in loci 426 

containing multiple signals (as is often the case for height). A third limitation of our study is our 427 

inability to perform well-powered replication analyses of genetic associations specific to 428 

populations with non-European ancestries, due to current limited availability of such data. Finally, 429 

as with all GWAS, definitive identification of effector genes and the mechanisms by which genes 430 

and variants influence phenotype remains a key bottleneck. Therefore, progress towards 431 

identifying causal genes from GWAS of height will be mostly driven by the availability of relevant 432 

complementary data (e.g., context-specific eQTL in relevant tissues and cell-types) and the power 433 

of computational methods that can integrate these data. 434 

 435 

In summary, our study has been able to demonstrate empirically that the combined additive effects 436 

of tens of thousands of individual variants, detectable with a large enough experimental sample 437 

size, can explain substantial variation in a human phenotype. For human height, we show that 438 

studies of the order of ~5 million participants of various ancestries provide enough power to map 439 

>90% of genetic variance explained by common SNPs down to ~21% of the genome. Height has 440 

been used as a model trait for the study of human polygenic traits, including common diseases, 441 

because of its high heritability and relative ease of measurement enabling large sample sizes and 442 

increased power. Conclusions about the genetic architecture, sample size requirements for 443 

additional GWAS discovery, and scope for polygenic prediction that were initially made for height 444 

have by-and-large agreed with those for common disease. If the results from this study can also be 445 

extrapolated to disease, this would suggest that substantially increased sample sizes could largely 446 

resolve the heritability attributed to common variation to a finite set of SNPs (and small genomic 447 

regions). These variants and regions would implicate a particular subset of genes, regulatory 448 

elements, and pathways that would be most relevant to address questions of function, mechanism 449 

and therapeutic intervention. 450 

 451 

  452 
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Table 1. Summary of results from within-ancestry and trans-ancestry GWAS meta-analyses. N denotes the 1635 
sample size for each SNP. GWS: Genome-Wide Significant (P<5×10-8). COJO SNPs: near independent GWS 1636 
SNPs identified using an approximate conditional and Joint analysis implemented in the GCTA software. 1637 
PGWAS : P-value from marginal association test. GWS loci were defined as genomic regions centred around 1638 
each GWS SNP and including all SNPs within 35 kb on each side of the lead GWS SNP. Overlapping GWS loci 1639 
were merged so that the number and cumulative length of GWS loci are calculated on non-overlapping GWS 1640 
loci. Percentage of the genome covered was calculated by dividing the cumulative of GWS loci by 3,039 Mb, 1641 
i.e. the approximated length of the human genome.  1642 

 1643 

Cohort 
Ancestry/Ethnic 
Group 

Number 
of studies 

Max N 
(Mean N) 

Number of GWS 
COJO SNPs 

(PGWAS<5×10-8) 

Number of 
GWS loci 
(35 kb) 

Cumulative length 
of non-overlapping 

GWS loci 
(% genome) 

European 
(EUR) 173 

4,080,687 
(3,612,229) 

9,863 
(8,382) 

6,386 
552.5 Mb 
(18.4%) 

East-Asian 
(EAS) 56 

472,730 
(320,570) 

918 
(807) 

821 
60.5 Mb 
(2.0%) 

Hispanic 
(HIS) 11 

455,180 
(431,645) 

1,888 
(1,332) 

1,599 
121.4 Mb 

(4.0%) 

African  
(AFR) 29 

293,593 
(222,981) 

493 
(417) 

436 
32.5 Mb 
(1.1%) 

South Asian 
(SAS) 12 

77,890 
(59,420) 

69 
(65) 

66 
4.7 Mb 
(0.2%) 

Trans-ancestry 
meta-analysis 
(METAFE) 

281 
5,314,291* 
(4,611,160) 

12,111 
(9,920) 

7,209 
647.5 Mb 
(21.6%) 

*The number of individuals in the trans-ancestry meta-analysis (N=5,314,291) is smaller than the sum of ancestry 1644 
group specific meta-analyses (N=5,380,080) because of variation in per-SNP sample sizes for SNPs included in the final 1645 
analysis. 1646 
 1647 
  1648 
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Table 2. Overview of 5 European ancestry GWAS re-analysed in our study to quantify the relationship 1649 
between sample size and discovery. Summary statistics from the 3 published GWAS were imputed using 1650 

the SSIMP software to maximise coverage of HapMap 3 SNPs (Suppl. Methods). GWS loci are defined as 1651 
in the legend of Table 1. 1652 
 1653 

Down-sampled GWAS 
Max N 

(Mean N) 
Number of GWS 

COJO SNPs 

% of the genome 
covered by GWS 

loci (35 kb) 
Lango-Allen et al.15* 130,010 

(128,942) 
240 0.5% 

Wood et al.16 241,724 
(239,227) 

633 1.4% 

Yengo et al.1 695,648 
(688,927) 

2,794 5.8% 

GIANT-EUR 
(no 23andMe) 

1,632,839 
(1,502,499) 

4,867 9.7% 

23andMe-EUR 2,502,262 
(2,498,336) 

7,020 13.6% 

*Summary-statistics from the Lango-Allen et al. study, initially over-corrected for population stratification using a 1654 
double genomic control correction, were re-inflated such that the LD score regression intercept estimated from re-1655 
inflated test statistics equals 1.1656 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 10, 2022. ; https://doi.org/10.1101/2022.01.07.475305doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.07.475305
http://creativecommons.org/licenses/by-nc-nd/4.0/


 35 

 
Fig. 1. Brisbane plot showing the genomic density of independent genetic associations with height. Each dot represents one of the 12,111 quasi-independent 
genome-wide significant (GWS; P<5×10-8) height-associated SNPs identified using approximate conditional and joint multiple-SNP (COJO) analyses of our trans-
ancestry GWAS meta-analysis. Density was calculated for each associated SNP as the number of other independent associations within 100 kb. A density of 1 means 
that a GWS COJO SNP share its location with another independent GWS COJO SNP within <100 kb. The average signal density across the genome is 2 (standard error; 
S.E. 0.14). S.E. were calculated using a Leave-One-Chromosome-Out jackknife approach (LOCO-S.E.). Sub-significant SNPs are not represented on the figure. 
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Fig. 2. Variance of height explained by HapMap 3 SNP within genome-wide significant (GWS) loci. Panel a shows stratified SNP-based heritability (ℎSNP

2 ) 
estimates obtained after partitioning the genome into SNPs within 35 kb of a GWS SNP (“GWS loci” label) vs. SNPs >35 kb away from any GWS SNP. Analyses were 
performed in samples of five different ancestry/ethnic groups: European (EUR: meta-analysis of UK Biobank (UKB) + Lifelines study), African (AFR: meta-analysis of 
UKB + PAGE study), East-Asian (EAS: meta-analysis of UKB + China Kadoorie Biobank), South-Asian (SAS: UKB) and Hispanic group (HIS: PAGE). Panel b shows that 
>90% of ℎSNP

2  in all ancestries is explained by SNPs within GWS loci identified in this study. The cumulative length of non-overlapping GWS loci is ~647 Mb, i.e. ~21% 
of the genome assuming a genome length of ~3039 Mb.22 The proportion of HapMap 3 SNPs in GWS loci is ~27%. 
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Fig. 3. Accuracy of a polygenic predictors of height (PGS) within-family and across ancestries. Prediction accuracy (𝑅2) was measured as the squared correlation 
between PGS and actual height adjusted for age, sex and 10 genetic principal components. Panel a shows the accuracy of PGSs assessed in participants of 5 different 
ancestry groups: European (EUR; N=14,587) from the UK Biobank (UKB) and the Lifelines Biobank (LLB; N=14,058) cohorts, South-Asian (SAS; N=9,257) from UKB, 
East-Asian (EAS; N=2,246) from UKB, Hispanic (HIS; N=8,238) from the PAGE study and admixed African (AFR) from UKB (N=6,911) and PAGE (N=5,798). PGSs used 
for prediction, in Panel a, are based on genome-wide significant (GWS) SNPs identified in (1) cross-ancestry meta-analysis (green bar), (2) EUR meta-analysis (yellow 
bar) and (3) ancestry-specific meta-analyses (red bars). Panel b shows the squared correlation of height between first-degree relatives of EUR participants in UKB 
and the accuracy of a predictor combining PGS (denoted , PGSGWS, as based on GWS SNPs) and familial information. PGSGWS accuracy shown in Panel b is the average 
accuracy in EUR participants from UKB and LLB from Panel a. Sibling correlation was calculated in 17,492 independent EUR sibling pairs from the UKB and parent-
offspring correlations in 981 EUR unrelated trios (i.e. two parents and 1 child) from the UKB. 
 
 
 
 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 10, 2022. ; https://doi.org/10.1101/2022.01.07.475305doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.07.475305
http://creativecommons.org/licenses/by-nc-nd/4.0/

