A Saturated Map of Common Genetic Variants Associated with Human Height from 5.4 Million Individuals of Diverse Ancestries

ABSTRACT

Common SNPs are predicted to collectively explain 40-50% of phenotypic variation in human height, but identifying the specific variants and associated regions requires huge sample sizes. Here we show, using GWAS data from 5.4 million individuals of diverse ancestries, that 12,111 independent SNPs that are significantly associated with height account for nearly all of the common SNP-based heritability. These SNPs are clustered within 7,209 non-overlapping genomic segments with a median size of ~90 kb, covering ~21% of the genome. The density of independent associations varies across the genome and the regions of elevated density are enriched for biologically relevant genes. In out-ofsample estimation and prediction, the 12,111 SNPs account for 40% of phenotypic variance in European ancestry populations but only ~10%-20% in other ancestries. Effect sizes, associated regions, and gene prioritization are similar across ancestries, indicating that reduced prediction accuracy is likely explained by linkage disequilibrium and allele frequency differences within associated regions. Finally, we show that the relevant biological pathways are detectable with smaller sample sizes than needed to implicate causal genes and variants. Overall, this study, the largest GWAS to date, provides an unprecedented saturated map of specific genomic regions containing the vast majority of common height-associated variants.

INTRODUCTION

Since 2007, genome-wide association studies (GWAS) have identified thousands of associations between common single nucleotide polymorphisms (SNPs) and height, primarily using studies of European ancestry. The largest GWAS published to date for adult height focussed on common variation and reported up to 3,290 independent associations in 712 loci using a sample size of up to 700,000 individuals. To date, adult height, which is highly heritable and easily measured, has provided a larger number of common genetic associations than any other human phenotype. In addition, a large collection of genes has been implicated in disorders of skeletal growth, and these are enriched in loci mapped by GWAS of height in the normal range. These features make height an attractive model trait for assessing the role of common genetic variation in defining the genetic and biological architecture of polygenic human phenotypes.

As available sample sizes continue to increase for GWAS of common variants, it becomes important to consider whether these larger samples can "saturate" or nearly completely catalogue the information that can be derived from GWAS. This question of completeness can take several forms, including prediction accuracy compared with heritability attributable to common variation, the mapping of associated genomic regions that account for this heritability, and whether increasing sample sizes continue to provide additional information about the identity of prioritised genes and gene sets. Furthermore, because most GWAS continue to be performed largely in populations of European ancestry, it is important to address these questions of completeness in the context of

multiple ancestries. Finally, some have proposed that, when sample sizes become sufficiently large, effectively every gene and genomic region will be implicated by GWAS, rather than implicating specific subsets of genes and biological pathways.²

Using data from 5,380,080 individuals, we set out to map common genetic associations with adult height, using variants catalogued in the HapMap 3 project (HM3), and to assess the saturation of this map with respect to variants, genomic regions, and likely causal genes and gene sets. We identify significant variants, explore signal density across the genome, perform out-of-sample estimation and prediction analyses within European and non-European ancestry studies, and prioritise genes and gene sets as likely mediators of the effects on height. We show that this set of common variants reaches predicted limits for prediction accuracy within European-ancestry populations and largely saturates both the genomic regions associated with height and broad categories of likely relevant gene sets; future work remains to extend prediction accuracy to non-European ancestries and to more definitively connect associated regions with individual likely causal genes and variants.

RESULTS

47

48 49

50

51 52

53

54

55 56

57

58 59

60

61 62 63

64 65

66

67

68

69 70

71 72

73

74 75

76

77 78

79

80

81

82

83 84

85

86

87

88

89 90

91

92

An overview of our study design and analysis strategy is illustrated in Suppl. Fig. 1.

Multi-ancestry GWAS meta-analysis identifies 12,111 height-associated SNPs

We performed genetic analysis of up to 5,380,080 individuals from 281 studies from the GIANT consortium and 23andMe, Inc. including 4,080,687 participants of predominantly European ancestries (75.8% of total sample), 472,730 participants with predominantly East-Asian ancestries (8.8%), 455,180 participants of Hispanic ethnicity with typically admixed ancestries (8.5%), 293,593 participants of predominantly African ancestries, mostly African-Americans with admixed African and European ancestries (5.5%) and 77,890 participants of predominantly South-Asian ancestries (1.4%). We refer to these five groups of participants/cohorts by the shorthand EUR, EAS, HIS, AFR, and SAS, respectively, yet recognising that these commonly used groupings oversimplify the actual genetic diversity among participants. Cohort-specific information is provided in Suppl. Tables 1 – 3. We tested the association between standing height and 1,385,132 autosomal bi-allelic SNPs from the HM3 tagging panel³, which contains >1,095,888 SNPs with a minor allele frequency (MAF) >1% in each of the five ancestral groups included in our metaanalysis. Suppl. Fig. 2 shows the frequency distribution of HM3 SNPs across all five groups of cohorts.

We first performed individual meta-analyses in each of the five groups of cohorts. We identified 9863, 1888, 918, 493 and 69 quasi-independent genome-wide significant (GWS; P<5×10-8) SNPs in the EUR, HIS, EAS, AFR and SAS groups, respectively (Table 1; Suppl. Tables 4 - 8). Quasiindependent associations were obtained after performing approximate conditional and joint multiple-SNP (COJO) analyses, ⁴ as implemented in GCTA⁵ (**Suppl. Methods**). Previous studies have shown that confounding due to population stratification may remain uncorrected in large EUR GWAS meta-analyses.^{6,7} Therefore, we specifically investigated confounding effects in our EUR GWAS and found no evidence that these GWAS results are driven by population stratification (Suppl. Note 1, Suppl. Fig. 3).

To compare results across the five groups of cohorts, we examined the genetic and physical colocalization between SNPs identified in the largest group (EUR) with those found in the non-EUR groups. We found that over 83% of GWS SNPs detected in non-EUR are in strong linkage disequilibrium (LD; $r_{\rm LD}^2$ >0.8) with at least one variant reaching marginal genome-wide significance in EUR (Suppl. Tables 5 – 8) and over 87% of associations detected in non-EUR meta-analyses fall within 100 kb of at least one GWS SNP identified in EUR (Suppl. Fig. 4a). In contrast, a randomly sampled HM3 SNP falls within 100 kb of a EUR GWS SNP only about 68% of the time (standard error; S.E.=0.5% over 10,000 draws). Next, we quantified the cross-ancestry correlation of allele substitution effects (ρ_b) at GWS SNPs for all pairs of ancestry groups. We estimated ρ_b using five sets of GWS SNPs identified in each of ancestry group. After correction for winner's curse,^{8,9} we found ρ_b to range between 0.64 and 0.99 across all pairs of ancestry groups and all sets of GWS SNPs (Suppl. Fig. 5 – 9). Thus, the observed GWS height associations are substantially shared across major ancestral groups, consistent with previous studies based on smaller sample sizes.^{10,11}

To find signals that are specific to certain groups, we tested if any individual SNPs detected in non-EUR GWAS are conditionally independent of signals detected in EUR GWAS. We fitted an approximate joint model that includes GWS SNPs identified in EUR and non-EUR, using LD reference panels specific to each ancestry group. After excluding SNPs in strong LD ($r_{\rm LD}^2 > 0.8$ in either ancestry group), we found that 2, 19, 49 and 143 of the GWS SNPs detected in SAS, AFR, EAS and HIS GWAS respectively are conditionally independent of GWS SNPs identified in EUR GWAS (Suppl. Table 9). On average these conditionally independent SNPs have a larger MAF and effect size in non-EUR than in EUR cohorts, which may have contributed to increased statistical power of detection. The largest frequency difference relative to EUR was observed for rs2463169 (heightincreasing G allele frequency: 23% in AFR vs. 84% in EUR) within the intron of PAWR, which codes for the prostate apoptosis response-4 protein. Interestingly, rs2463169 is located within the 12q21.2 locus, where a strong signal of positive selection in West-African Yoruba populations was previously reported. 12 The estimated effect at rs2463169 is $\beta \sim 0.034$ standard deviation (SD) per G allele in AFR vs. $\beta \sim -0.002$ SD/G allele in EUR and the p-value of marginal association in EUR is P_{EUR} =0.08, suggesting either a true difference in effect size or nearby causal variant(s) with differing LD to rs2463169.

Given that our results demonstrate a strong genetic overlap of GWAS signals across ancestries, we performed a fixed-effect meta-analysis of all five ancestry groups to maximise statistical power for discovering associations due to shared causal variants. The mean Cochran's heterogeneity Q-statistic is $\sim 34\%$ across SNPs, which indicates moderate heterogeneity of SNP effects between ancestries. The mean chi-square association statistic in our fixed effect meta-analysis (hereafter referred to as METAFE) is ~ 36 , and $\sim 18\%$ of all HM3 SNPs are marginally GWS. Moreover, we found allele frequencies in our METAFE to be very similar to that of EUR (mean FST across SNPs between EUR and METAFE is ~ 0.001), as expected because our METAFE consists of > 75% EUR participants and $\sim 14\%$ participants with admixed European and non-European ancestries (i.e. HIS and AFR). To further assess if LD in our METAFE could be reasonably approximated by the LD from EUR, we performed LD score regression analysis of our METAFE using LD scores estimated in EUR. In this analysis, we focused on the attenuation ratio statistic (RLDSC-EUR), for which values > 20% classically indicate strong LD inconsistencies between a given reference and GWAS summary statistics. For example, using EUR LD scores in the GWAS of HIS, which is the non-EUR group genetically closest to EUR (FST ~ 0.02), yields an estimated RLDSC-EUR of $\sim 25\%$ (S.E. 1.8%), consistent with strong LD

differences between HIS and EUR. By contrast, in our META_{FE}, we found an estimated $R_{LDSC-EUR}$ of ~4.5% (S.E. 0.8%), which is significantly lower than 20% and also not statistically different from 3.8% (S.E. 0.8%) in our EUR meta-analysis. Altogether, our LD score regression analyses suggest that LD in our META_{FE} can be reasonably approximated by LD from EUR.

We therefore proceeded to identify quasi-independent GWS SNPs from the multi-ancestry metaanalysis by performing a COJO analysis of our META_{FE}, using genotypes from $\sim 350,000$ unrelated EUR participants of the UK Biobank (UKB) as an LD reference. We identified 12,111 quasiindependent GWS SNPs, including 9,920 (82%) primary signals with a GWS marginal effect and 2,191 secondary signals that only reached GWS in a joint regression model (Suppl. Table 10). Of the GWS SNPs obtained from the non-EUR meta-analyses above that were conditionally independent of the EUR GWS SNPs, 0/2 in SAS, 5/19 in AFR, 27/49 in EAS, and 39/143 in HIS remained statistically significant in our META_{FE} (Suppl. Table 9), meaning that a small number of additional signals were only identified in the ancestry-specific analyses.

We next sought replication of the 12,111 META_{FE} signals using GWAS data from 49,160 participants of the Estonian Biobank (EBB). We first re-assessed the consistency of allele frequencies between our METAFE and the EBB set. We found a correlation of allele frequencies of \sim 0.98 between the two datasets and a mean F_{ST} across SNPs of \sim 0.005, similar to estimates obtained between populations from the same continent. Of the 12,111 GWS SNPs identified through our COJO analysis, 11,847 were available in the EBB dataset, 97% of which (11,529) have MAF>1% (Suppl. Table 10). Given the large difference in sample size between our discovery and replication samples, direct statistical replication of individual associations at GWS is not achievable for most SNPs identified (Suppl. Fig. 10a). Instead, we assessed the correlation of SNP effects between our discovery and replication GWAS as an overall metric of replicability.^{1,13} Over the 11,529/11,847 SNPs with a MAF>1% in the EBB, we found a correlation of marginal SNP effects of ρ_b =0.93 (jackknife standard error; S.E. 0.01) and a correlation of conditional SNP effects using the same LD reference panel of ρ_h =0.80 (S.E. 0.03; Suppl. Fig. 11). Although we had limited power to replicate associations with 238 GWS variants that are rare in the EBB (MAF<1%), we found, consistent with expectations (Suppl. Methods; Suppl. Fig. 10b), that 60% of them have a marginal SNP effect that is sign-consistent with that from our discovery GWAS (Fisher exact test; *P*=0.001). The proportion of sign-consistent SNP effects was >75% (Fisher exact test; $P<10^{-50}$) for variants with a MAF>1%, also consistent with expectations (Suppl. Fig. 10b). Altogether, our analyses demonstrate the robustness of our findings and show their replicability in an independent sample.

Genomic distribution of height-associated SNPs

139

140141

142

143144

145

146

147148

149

150151

152153154

155

156

157

158159

160

161

162

163164

165

166167

168169

170

171

172

173174

175

176

177

178179

180 181

182183

184

To examine signal density among the 12,111 GWS SNPs detected in our META_{FE}, we defined a measure of local density of association signals for each GWS SNP based on the number of additional independent associations within 100 kb (Suppl. Fig. 12). We observed that 69% of GWS SNPs shared their location with another associated, conditionally independent, GWS SNP (Fig. 1). The mean signal density across the entire genome is 2.0 (LOCO-S.E. = 0.14), consistent with a nonrandom genomic distribution of GWS SNPs. Next we evaluated signal density around 462 autosomal genes curated from the Online Mendelian Inheritance in Man (OMIM) database¹⁴ as harbouring pathogenic mutations causing syndromes of abnormal skeletal growth ("OMIM genes"; **Suppl. Methods**; Suppl. Table 11). We found that a high density of height-associated SNPs is significantly correlated with the presence of an OMIM gene nearby (Enrichment fold of OMIM gene

when density >1: $2.5\times$; P<0.001; **Suppl. Methods,** Suppl. Fig. 13a). ^{15,16} Interestingly, the enrichment of OMIM genes almost linearly increases with the density of height-associated SNPs (Suppl. Fig. 13b). Thus, these 12,111 GWS SNPs nonrandomly cluster near each other and also near known skeletal growth genes.

The largest density of conditionally independent associations was observed on chromosome 15 near ACAN, a gene mutated in short stature and skeletal dysplasia syndromes, where 25 GWS SNPs co-localise within 100 kb of one another (Fig. 1; Suppl. Fig. 14). We show in **Suppl. Note 2** and Suppl. Figs. 14-15, using haplotype- and simulation-based analyses, that a multiplicity of independent causal variants is the most likely explanation of this observation. Interestingly, we also found that signal density is partially explained by the presence of a recently identified ^{17,18} height-associated variable-number-of-tandem-repeat (VNTR) polymorphism at this locus (**Suppl. Note 2**). In fact, the 25 independent GWS SNPs clustered within 100 kb of rs4932198 explain >40% of the VNTR length variation in multiple ancestries (**Suppl. Fig. 15e**) and an additional ~0.24% (P=8.7 × 10⁻⁵⁵) phenotypic variance in EUR above what is explained by the VNTR alone (**Suppl. Fig. 15f**). Altogether, our conclusion is consistent with prior evidence of multiple types of common variation influencing height through ACAN gene function, involving multiple enhancers, ¹⁹ missense variants²⁰ and tandem repeat polymorphisms. ^{17,18}

Variance explained by SNPs within identified loci

To quantify the proportion of height variance explained by GWS SNPs identified in our METAFE, we stratified all HM3 SNPs into two groups: SNPs in the close vicinity of GWS SNPs, hereafter denoted GWS loci, and all remaining SNPs. We defined GWS loci as non-overlapping genomic segments containing at least 1 GWS SNP, such that GWS SNPs in adjacent loci are $>2\times35$ kb away from each other (i.e. 35 kb window on each side). We chose a 35 kb threshold based on findings from Wu et al.²¹ who previously showed that causal common variants are located within 35 kb of GWS SNPs with >80% probability. Accordingly, we grouped the 12,111 GWS SNPs identified in our METAFE into 7,209 non-overlapping loci (Suppl. Table 12) with lengths ranging from 70 kb (for loci containing only 1 signal) to 711 kb (for loci containing up to 25 signals). The average length of GWS loci is ~90 kb (SD 46 kb). The cumulative length of GWS loci represent ~647 Mb, or $\sim21\%$ of the genome (assuming a genome length of ~3039 Mb).²²

To estimate what fraction of heritability is explained by common variants within the 21% of the genome overlapping GWS loci, we calculated two genomic relationship matrices (GRMs), one for SNPs within these loci and one for SNPs outside these loci, and then used both matrices to estimate a stratified SNP-based heritability ($h_{\rm SNP}^2$) of height in 8 independent samples of all five population groups represented in our META_{FE} (Fig. 2; **Suppl. Methods**). Altogether, our stratified estimation of SNP-based heritability shows that SNPs within these 7,209 GWS loci explain ~100% of $h_{\rm SNP}^2$ in EUR and >90% of $h_{\rm SNP}^2$ across all non-EUR groups, despite being drawn from less than a quarter of the genome (Fig. 2). We also varied the window size used to define GWS loci and found that 35 kb was the smallest window size for which this level of saturation of SNP-based heritability could be achieved (Suppl. Fig. 16).

To further assess the robustness of this key result, we tested if the 7,209 height-associated GWS loci are systematically enriched for trait-heritability. We chose body mass index (BMI) as a control trait given its small genetic correlation with height (r_g =-0.1, ref.²³) and found no significant

enrichment of SNP-based heritability for BMI within height-associated GWS loci (Suppl. Fig. 17). Furthermore, we repeated our analysis using a random set of SNPs with similar EUR MAF and LD scores as the 12,111 height-associated GWS SNPs. We found this control set of SNPs to explain only \sim 27% of $h_{\rm SNP}^2$ for height, consistent with the proportion of SNPs within the loci defined by this random set of SNPs (Suppl. Figs. 16 - 17). Finally, we extended our stratified estimation of SNP-based heritability to all well-imputed common SNPs (i.e. beyond the HM3 panel) and found, consistently across population groups, that although more genetic variance can be explained by common SNPs not included in the HM3 panel, all information remains concentrated within these 7,209 GWS loci (Suppl. Fig. 18). Thus, with this large GWAS, nearly all of the variability in height that is attributable to common genetic variants can be mapped to regions comprising \sim 21% of the genome.

Out-of-sample prediction accuracy

231

232233

234

235

236237

238

239

240241

242243

244245

246

247

248

249250

251

252

253

254255

256

257258

259

260

261262

263264265

266267

268

269

270

271

272273

274

275

276

We quantified the accuracy of polygenic scores (PGS) for height based on GWS SNPs in 61,095 unrelated individuals from 3 studies, including 33,001 participants of the UKB who were not included in our discovery GWAS (i.e. 14,587 EUR; 9,257 SAS; 6,911 AFR and 2,246 EAS; Suppl. Methods), 14,058 EUR participants from the Lifelines cohort study; and 8,238 HIS and 5,798 AFR participants from the PAGE study. Prediction accuracy (R_{GWS}^2) was defined as the squared correlation between the PGS and actual height (corrected for mean and variance sex differences and 20 genotypic principal components). We found that PGS based on 12,111 GWS SNPs from our META_{FE} systematically outperformed those based on GWS identified in ancestry-specific metaanalyses (Fig. 3a). The only exception was in EUR where both PGS performed equally. The largest prediction accuracy was observed in EUR participants ($R_{GWS}^2 \sim 40\%$; S.E. 0.6%) and the smallest one in AFR participants from the UKB ($R_{\rm GWS}^2 \sim 9.4\%$; S.E. 0.7%). Note that the difference in $R_{\rm GWS}^2$ between the EUR and AFR ancestry cohorts is expected because of the over-representation of EUR in our META_{FE} and consistent with a relative accuracy $(R_{GWS}^2$ in AFR)/ $(R_{GWS}^2$ in EUR) of ~25% previously reported.²⁴ Nevertheless, we found the accuracy of PGS based on GWS from our multiancestry METAFE to be consistently larger than that of PGS based on GWS SNPs from a EUR GWAS (Fig. 3a). The largest improvement was observed in AFR, where the meta-analysed accuracy in AFR participants of UKB and PAGE was increased from R_{GWS}^2 =6.6% (S.E. 0.4%) to R_{GWS}^2 =10.8% (S.E. 0.5%), i.e. almost a ~1.6-fold improvement. This observation is partly explained by the increased statistical power but also by the refined estimation of SNP effects due to the inclusion of shorter and ancestry-specific LD blocks in AFR cohorts.

Furthermore, we sought to evaluate the prediction accuracy of PGS relative to that of familial information as well as the potential improvement in accuracy gained from combining both sources of information. We analysed 981 unrelated EUR trios (i.e. two parents and one offspring) and 17,492 independent EUR sibling pairs from the UKB, who were excluded from our METAFE. We found that height of any first-degree relative yields a prediction accuracy between 25% and 30% (Fig. 3b). Moreover, the accuracy of the parental average is \sim 44% (S.E. 3.2%), which is larger but not significantly different from $R_{\rm GWS}^2$ in EUR. In addition, we found that a linear combination of the average height of parents and of the offspring's PGS yields an unprecedented accuracy of 54% (S.E. 3.2%). This observation reflects the fact that PGS can explain within-family differences between siblings, while average parental height cannot. To show this empirically, we estimate that our PGS based on GWS SNPs explain \sim 33% (S.E. 0.7%) of height variance between siblings (**Suppl. Methods**). Finally, we demonstrate that the optimal weighting between parental average and PGS

can be predicted theoretically as function of R_{GWS}^2 , the full narrow sense heritability and the phenotypic correlation between spouses (Suppl. Note 3, Suppl. Fig. 19).

In summary, the estimation of variance explained and prediction analyses in European-ancestry samples show that the set of 12,111 GWS SNPs account for nearly all of $h_{\rm SNP}^2$ and that combining SNP-based PGS with family history significantly improves prediction accuracy. In contrast, both estimation and prediction results show clear attenuation in samples with non-European ancestry, consistent with previous studies.^{24–27}

Relationship between GWAS discoveries, sample size and ancestry diversity

Our large study offers a unique opportunity to empirically quantify how increasing GWAS sample sizes and ancestry diversity affects discovery of variants, genes and biological pathways. To address this question, we re-analysed 3 previously published GWAS of height^{1,15,16} and also downsampled our meta-analysis into 4 subsets (including our EUR and META_{FE} GWAS). Altogether we analysed 7 GWAS with a sample size increasing from ~ 0.13 M up to ~ 5.3 M individuals (Table 2).

For each GWAS, we quantified 8 metrics grouped into 4 *variant*- and *locus*-based metrics (number of GWS SNPs, number of GWS loci, prediction accuracy ($R_{\rm GWS}^2$) of PGS based on GWS SNPs, the proportion of the genome covered by GWS loci), a *functional annotation*-based metric (enrichment statistics from stratified LDSC^{28,29}), 2 *gene*-based metrics (number of genes prioritised by Summary data based Mendelian Randomization³⁰ (SMR; **Suppl. Methods**), proximity of variants with OMIM genes), and a *gene-set*-based metric (enrichment within clusters of gene sets/pathways). Overall, we found different patterns for the relationship between those metrics and GWAS sample size and ancestry composition, consistent with varying degrees of saturation achieved at different sample sizes.

We observed the strongest saturation for the *gene-set* and *functional annotation* metrics, which capture how well general biological functions can be inferred from GWAS results using currently available computational methods. Using two popular gene set prioritisation methods (DEPICT³¹ and MAGMA³²), we found that the same broad clusters of related gene sets (including most of the clusters enriched for OMIM genes) are prioritised at all GWAS sample sizes (Suppl. Figs. 20-21; Suppl. Tables 13 – 15; Suppl. Note 4). Similarly, stratified LDSC estimates of heritability enrichment within 97 functional annotations also remain stable across the range of sample sizes (Suppl. Fig. 22). Overall, we found no significant improvement for all these higher-level metrics from adding non-EUR samples to our analyses. The latter observation is consistent with other analyses demonstrating that GWAS expectedly implicate similar biology across major ancestral groups (Suppl. Note 4; Suppl. Fig. 23).

For the *gene*-level metric, the excess in the number of OMIM genes that are proximate to a GWS SNP (compared with matched sets of random genes) plateaus at sample sizes of N>1.5M; while the relative enrichment of GWS SNPs near OMIM genes first decreases with sample size, then plateaus when N>1.5M (Suppl. Figs. 24a-c). Interestingly, the decrease observed for N<1.5M reflects the preferential localization of larger effect variants (those identified with smaller sample sizes) closer to OMIM genes (Suppl. Fig. 24d) and, conversely, that more recently identified variants with smaller effects tend to localize further away from OMIM genes (Suppl. Fig. 24e). We also investigated the number of genes prioritised using Summary-data based Mendelian

Randomization (hereafter referred to as SMR genes; **Suppl. Methods**) using expression quantitative trait loci (eQTL) as genetic instruments (Suppl. Table 16) as an alternative *gene*-level metric and found it to saturate for N>4M (Suppl. Fig. 24f). Note that saturation of SMR genes is partly affected by the biological relevance and statistical power of eQTL studies.³⁰ Therefore, we can expect more genes to be prioritised when integrating GWAS summary statistics from this study with that from larger eQTL studies that may be available in the future and may involve more tissue types. Gene-level metrics were also not substantially affected by adding non-EUR samples, again consistent with broadly similar sets of genes affecting height across ancestries.

At the level of variants and genomic regions, we saw a steady and almost linear increase in the number of GWS SNPs as a function of sample size, as previously reported.³³ However, given that newly identified variants tend to cluster near ones identified at smaller sample sizes, we also saw a saturation in the number of loci identified for N>2.5M, where the upward trend starts to weaken (Suppl. Fig. 25a). We found a similar pattern for the percentage of the genome covered by GWS loci, with the degree of saturation varying as a function of the window size used to define loci (Suppl. Fig. 25b). The observed saturation in PGS prediction accuracy (both within ancestry, i.e. in EUR; and multi-ancestry) was more noticeable than that of the number and genomic coverage of GWS loci. In fact, increasing sample size from 2.5M to 4M by adding another 1.5M EUR samples increased the number of GWS SNPs from 7,020 to 9,863 (i.e. (9,863-7,020)/7,020 = \sim 1.4-fold increase) but the absolute increase in prediction accuracy is less than +2.7%. This improvement is mainly observed in EUR but remains lower than +1.3% in EAS and AFR individuals. However, adding another \sim 1M participants of non-EUR improves the multi-ancestry prediction accuracy by over +3.4% (Suppl. Fig. 25c), highlighting the value of non-EUR populations for this purpose.

Altogether, these analyses show that increasing GWAS sample size not only increases prediction accuracy but also sheds more light on the genomic distribution of causal variants and, at all but the largest sample sizes, the genes proximal to these variants. By contrast, enrichment of higher-level, broadly defined biological categories such as gene sets/pathways and functional annotations can be identified using relatively small sample sizes ($N\sim0.25M$ for height). Importantly, we confirm that increased genetic diversity in GWAS discovery samples significantly improves the prediction accuracy of PGS in under-represented ancestries.

DISCUSSION

By performing the largest GWAS to date in 5,380,080 individuals with a primary focus on common genetic variation, we have provided new insights into the genetic architecture of height – including a saturated genomic map of 12,111 genetic associations for height. Consistent with previous studies,^{15,16} we have shown signal density of associations (known and novel) are not randomly distributed across the genome; rather, associated variants are more likely detected around genes previously associated with Mendelian disorders of growth. Furthermore, we observed strong genetic overlap of association across cohorts of various continental ancestries. Effect estimates are moderately to highly correlated (min=0.64, max=0.99), and while there are significant differences in power to detect an association between cohorts with European and non-European ancestries, the majority of genetic associations for height observed in populations with non-European

ancestry lie in close proximity and in linkage disequilibrium to associations identified within populations of European ancestry.

By increasing our experimental sample size to >7-times that of previous studies, we have explained up to 40% of the inter-individual variation in height in independent European-ancestry samples using GWS SNPs alone, and >90% of $h_{\rm SNP}^2$ across diverse populations when incorporating all common SNPs within 35 kb of GWS SNPs. This result is important as it highlights that future investigation of common (MAF>1%) genetic variation associated with height in many ancestries will most likely detect signals within the 7,209 GWS loci identified in the present study. An interesting future question is whether rare genetic variants associated with height are also concentrated within the same loci. Of note, previous studies have reported significant enrichment of height heritability near genes as compared to inter-genic regions (e.g. up to >50 kb away from start/stop genomic position of genes). Our findings are consistent but not reducible to that observation, given that up to ~31% of GWS SNPs identified in this study lie >50 kb away from any gene.

Our study provides a powerful genetic predictor of height based on 12,111 GWS SNPs, for which accuracy reaches $\sim 40\%$ (i.e. 80% of $h_{\rm SNP}^2$) in individuals of European ancestries and up to $\sim 10\%$ in individuals of predominantly African ancestries. Importantly, we show using a new method developed by Wang and colleagues²⁷ that LD and MAF differences between European and African ancestries can explain up to ~84% (S.E. 1.5%) of the loss of prediction accuracy between these populations (**Suppl. Methods**), with the remaining loss being presumably explained by heritability differences between populations and/or differences in effect sizes across populations (e.g., due to gene-by-gene or gene-by-environment interactions). This observation is consistent with common causal variants for height being largely shared across ancestries. Therefore, we anticipate that finemapping of GWS loci identified in this study, ideally using methods that can accommodate dense sets of signals and large populations with African ancestries, would substantially improve the accuracy of a derived height PGS for non-European ancestry populations. Our study has a large number of participants with African ancestries as compared with previous efforts. However, we emphasise that further increasing the size of GWAS in non-European ancestry populations, including those with diverse African ancestries, is essential to bridge the gap in prediction accuracy, particularly as most studies only partially capture the wide range of ancestral diversity both within Africa and globally. Such increased samples size would help to identify potential ancestry-specific causal variants, to facilitate ancestry-specific fine mapping, and to inform gene by environment/ancestry interactions. Another important finding of our study is to show how individual PGS can be optimally combined with familial information and thereby improve the overall accuracy of height prediction to above 54% in European ancestry populations.

Although large sample sizes are needed to pinpoint the common variants responsible for the heritability of height (and larger samples in multiple ancestries will likely be required to map these at finer scale), the prioritization of relevant genes and gene sets is feasible at smaller sample sizes than that required to account for the common variant heritability. Thus, the sample sizes required for saturation of GWAS are smaller for identifying enriched gene sets, with identification of genes implicated as potentially causal and mapping of genomic regions containing associated variants requiring successively larger sample sizes. Furthermore, unlike prediction accuracy, prioritization

 of likely causal genes and even mapping of associated regions is consistent across ancestries, reflecting the expected similarity in the biological architecture of human height across populations.

Our study has a number of limitations. First, we focused on SNPs from the HM3 panel, which only partially capture common genetic variation. However, although a significant fraction of height variance can be explained by common SNPs outside the HM3 SNPs panel, we showed that the extra information (also referred to as 'hidden heritability') remains concentrated within GWS loci identified from our HM3 SNPs based analyses (Suppl. Fig. 18). This result underlines the widespread allelic heterogeneity at height-associated loci. Another limitation of our study is that we determined conditional associations using an EUR LD reference (N~350,000), which is suboptimal given that ~24% of our discovery sample is of non-EUR. We emphasise that no analytical tool with an adequately large multi-ancestry reference panel currently is available to properly address how to identify conditionally independent associations in a multi-ancestry study. Finemapping of variants remains a particular challenge when attempted across ancestries in loci containing multiple signals (as is often the case for height). A third limitation of our study is our inability to perform well-powered replication analyses of genetic associations specific to populations with non-European ancestries, due to current limited availability of such data. Finally, as with all GWAS, definitive identification of effector genes and the mechanisms by which genes and variants influence phenotype remains a key bottleneck. Therefore, progress towards identifying causal genes from GWAS of height will be mostly driven by the availability of relevant complementary data (e.g., context-specific eQTL in relevant tissues and cell-types) and the power of computational methods that can integrate these data.

In summary, our study has been able to demonstrate empirically that the combined additive effects of tens of thousands of individual variants, detectable with a large enough experimental sample size, can explain substantial variation in a human phenotype. For human height, we show that studies of the order of ~ 5 million participants of various ancestries provide enough power to map > 90% of genetic variance explained by common SNPs down to $\sim 21\%$ of the genome. Height has been used as a model trait for the study of human polygenic traits, including common diseases, because of its high heritability and relative ease of measurement enabling large sample sizes and increased power. Conclusions about the genetic architecture, sample size requirements for additional GWAS discovery, and scope for polygenic prediction that were initially made for height have by-and-large agreed with those for common disease. If the results from this study can also be extrapolated to disease, this would suggest that substantially increased sample sizes could largely resolve the heritability attributed to common variation to a finite set of SNPs (and small genomic regions). These variants and regions would implicate a particular subset of genes, regulatory elements, and pathways that would be most relevant to address questions of function, mechanism and therapeutic intervention.

REFERENCES

453

485 486

- 1. Yengo, L. *et al.* Meta-analysis of genome-wide association studies for height and body mass index in ~700000 individuals of European ancestry. *Hum. Mol. Genet.* **27**, 3641–3649 (2018).
- 456 2. Flint, J. & Ideker, T. The great hairball gambit. *PLOS Genetics* **15**, e1008519 (2019).
- 3. International HapMap 3 Consortium *et al.* Integrating common and rare genetic variation in diverse human populations. *Nature* **467**, 52–58 (2010).
- 4. Yang, J. *et al.* Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. *Nature Genetics* **44**, 369–375 (2012).
- 5. Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: A Tool for Genome-wide Complex Trait Analysis. *The American Journal of Human Genetics* **88**, 76–82 (2011).
- 6. Berg, J. J. *et al.* Reduced signal for polygenic adaptation of height in UK Biobank. *eLife* **8**, e39725 (2019).
- 7. Sohail, M. *et al.* Polygenic adaptation on height is overestimated due to uncorrected stratification in genome-wide association studies. *eLife* **8**, e39702 (2019).
- 8. Palmer, C. & Pe'er, I. Statistical correction of the Winner's Curse explains replication variability in quantitative trait genome-wide association studies. *PLoS Genet.* **13**, e1006916 (2017).
- 470 9. Zhong, H. & Prentice, R. L. Bias-reduced estimators and confidence intervals for odds ratios in genome-wide association studies. *Biostatistics* **9**, 621–634 (2008).
- 472 10. Galinsky, K. J. *et al.* Estimating cross-population genetic correlations of causal effect sizes. 473 *Genetic Epidemiology* **43**, 180–188 (2019).
- 474 11. Guo, J. *et al.* Quantifying genetic heterogeneity between continental populations for human height and body mass index. *Sci Rep* **11**, 5240 (2021).
- 12. Voight, B. F., Kudaravalli, S., Wen, X. & Pritchard, J. K. A Map of Recent Positive Selection in the Human Genome. *PLoS Biol* **4**, e72 (2006).
- 13. Turley, P. *et al.* Multi-trait analysis of genome-wide association summary statistics using MTAG. *Nat. Genet.* **50**, 229–237 (2018).
- 480 14. Lui, J. C. *et al.* Synthesizing genome-wide association studies and expression microarray reveals novel genes that act in the human growth plate to modulate height. *Hum Mol Genet* 482 **21**, 5193–5201 (2012).
- 483 15. Lango Allen, H. *et al.* Hundreds of variants clustered in genomic loci and biological pathways affect human height. *Nature* **467**, 832–838 (2010).
 - 16. Wood, A. R. *et al.* Defining the role of common variation in the genomic and biological architecture of adult human height. *Nature Genetics* **46**, 1173–1186 (2014).
- 17. Beyter, D. *et al.* Long-read sequencing of 3,622 Icelanders provides insight into the role of structural variants in human diseases and other traits. *Nat Genet* **53**, 779–786 (2021).
- 489 18. Mukamel, R. E. *et al.* Protein-coding repeat polymorphisms strongly shape diverse human phenotypes. *bioRxiv* 2021.01.19.427332 (2021) doi:10.1101/2021.01.19.427332.
- 491 19. Hu, G., Codina, M. & Fisher, S. Multiple enhancers associated with ACAN suggest highly redundant transcriptional regulation in cartilage. *Matrix Biol* **31**, 328–337 (2012).
- 20. Marouli, E. *et al.* Rare and low-frequency coding variants alter human adult height. *Nature* 542, 186–190 (2017).
- 495 21. Wu, Y., Zheng, Z., Visscher, P. M. & Yang, J. Quantifying the mapping precision of genome-wide association studies using whole-genome sequencing data. *Genome Biol* **18**, (2017).
- 22. Sun, H., Ding, J., Piednoël, M. & Schneeberger, K. findGSE: estimating genome size variation within human and Arabidopsis using k-mer frequencies. *Bioinformatics* **34**, 550–557 (2018).
- 23. Bulik-Sullivan, B. *et al.* An Atlas of Genetic Correlations across Human Diseases and Traits. *Nat Genet* **47**, 1236–1241 (2015).
- 501 24. Martin, A. R. *et al.* Current clinical use of polygenic scores will risk exacerbating health disparities. *Nat Genet* **51**, 584–591 (2019).
- 503 25. Duncan, L. *et al.* Analysis of polygenic risk score usage and performance in diverse human populations. *Nat Commun* **10**, 3328 (2019).

- 505 26. Marnetto, D. *et al.* Ancestry deconvolution and partial polygenic score can improve susceptibility predictions in recently admixed individuals. *Nat. Commun.* **11**, (2020).
- 507 27. Wang, Y. *et al.* Theoretical and empirical quantification of the accuracy of polygenic scores in ancestry divergent populations. *Nature Communications* **11**, 3865 (2020).
- 509 28. Finucane, H. K. *et al.* Partitioning heritability by functional annotation using genome-wide association summary statistics. *Nature Genetics* **47**, 1228–1235 (2015).
- 511 29. Gazal, S. *et al.* Linkage disequilibrium-dependent architecture of human complex traits shows action of negative selection. *Nat. Genet.* **49**, 1421–1427 (2017).
- 30. Zhu, Z. *et al.* Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. *Nature Genetics* **48**, 481–487 (2016).
- 31. Pers, T. H. *et al.* Biological interpretation of genome-wide association studies using predicted gene functions. *Nat Commun* **6**, 5890 (2015).
- 32. de Leeuw, C. A., Mooij, J. M., Heskes, T. & Posthuma, D. MAGMA: generalized gene-set analysis of GWAS data. *PLoS Comput Biol* **11**, e1004219 (2015).
- 33. Visscher, P. M. *et al.* 10 Years of GWAS Discovery: Biology, Function, and Translation. *Am. J. Hum. Genet.* **101**, 5–22 (2017).

34. Yang, J. *et al.* Genome-partitioning of genetic variation for complex traits using common SNPs. *Nat Genet* **43**, 519–525 (2011).

LIST OF AUTHORS

524

525 Loic Yengo*,#,1, Sailaja Vedantam*,2,3, Eirini Marouli*,4,5, Julia Sidorenko1, Eric Bartell6,2,3, Saori Sakaue7,8,3,9, 526 Marielisa Graff¹⁰, Anders U. Eliasen^{11,12}, Yunxuan Jiang¹³, Sridharan Raghavan^{14,15}, Jenkai Miao^{2,3}, Joshua D. 527 Arias¹⁶, Ronen E. Mukamel^{17,3,18}, Cassandra N. Spracklen^{19,20}, Xianyong Yin²¹, Shyh-Huei Chen²², Teresa 528 Ferreira²³, Yingjie JI²⁴, Tugce Karedera^{25,26}, Kreete Lüll²⁷, Kuang Lin²⁸, Deborah E. Malden²⁸, Carolina 529 Medina-Gomez²⁹, Moara Machado¹⁶, Amy Moore³⁰, Sina Rüeger^{31,32}, Tarunveer S. Ahluwalia^{33,34}, Masato 530 Akiyama^{7,35}, Matthew A. Allison³⁶, Marcus Alvarez³⁷, Mette K. Andersen³⁸, Alireza Ani^{39,40}, Vivek Appadurai⁴¹, 531 Liubov Arbeeva⁴², Seema Bhaskar⁴³, Lawrence F. Bielak⁴⁴, Sailalitha Bollepalli⁴⁵, Lori L. Bonnycastle⁴⁶, Jette 532 Bork-Jensen³⁸, Jonathan P. Bradfield^{47,48}, Yuki Bradford⁴⁹, Peter S. Braund^{50,51}, Jennifer A. Brody⁵², Kristoffer 533 S. Burgdorf^{53,54}, Brian E. Cade^{55,6}, Hui Cai⁵⁶, Qiuyin Cai⁵⁶, Archie Campbell⁵⁷, Marisa Cañadas-Garre⁵⁸, Eulalia 534 Catamo⁵⁹, Jin-Fang Chai⁶⁰, Xiaoran Chai^{61,62}, Li-Ching Chang⁶³, Yi-Cheng Chang^{64,65}, Chien-Hsiun Chen⁶³, 535 Alessandra Chesi^{66,67}, Seung Hoan Choi⁶⁸, Ren-Hua Chung⁶⁹, Massimiliano Cocca⁵⁹, Maria Pina Concas⁵⁹, 536 Christian Couture⁷⁰, Gabriel Cuellar-Partida^{71,13}, Rebecca Danning⁷², E. Warwick Daw⁷³, Frauke 537 Degenhard⁷⁴, Graciela E. Delgado⁷⁵, Alessandro Delitala⁷⁶, Ayse Demirkan^{77,78}, Xuan Deng⁷⁹, Poornima Devineni⁸⁰, Alexander Dietl^{81,82}, Maria Dimitriou⁸³, Latchezar Dimitrov⁸⁴, Rajkumar Dorajoo^{85,86}, Arif B. 538 539 Ekici⁸⁷, Jorgen E. Engmann⁸⁸, Zammy Fairhurst-Hunter²⁸, Aliki-Eleni Farmaki⁸⁹, Jessica D. Faul⁹⁰, Juan-Carlos 540 Fernandez-Lopez⁹¹, Lukas Forer⁹², Margherita Francescatto⁹³, Sandra Freitag-Wolf⁹⁴, Christian Fuchsberger⁹⁵, Tessel E. Galesloot⁹⁶, Yan Gao⁹⁷, Zishan Gao^{98,99,100}, Frank Geller¹⁰¹, Olga Giannakopoulou⁴, 541 Franco Giulianini⁷², Anette P. Gjesing³⁸, Anuj Goel^{102,26}, Scott D. Gordon¹⁰³, Mathias Gorski⁸¹, Sarah E. 542 543 Graham¹⁰⁴, Jakob Grove^{105,106,107}, Xiuqing Guo¹⁰⁸, Stefan Gustafsson¹⁰⁹, Jeffrey Haessler¹¹⁰, Thomas F. Hansen^{41,111,54}, Aki Havulinna^{45,112}, Simon J. Haworth^{113,114}, Jing He⁵⁶, Nancy Heard-Costa^{115,116}, Prashantha 544 545 Hebbar¹¹⁷, George Hindy^{3,118}, Yuk-Lam A. Ho¹¹⁹, Edith Hofer^{120,121}, Elizabeth Holliday¹²², Katrin Horn^{123,124}, 546 Whitney E. Hornsby¹⁰⁴, Jouke-Jan Hottenga¹²⁵, Hongyan Huang¹²⁶, Jie Huang^{127,128}, Alicia Huerta-Chagoya^{129,130}, Jennifer E. Huffman¹¹⁹, Yi-Jen Hung¹³¹, Shaofeng Huo¹³², Mi Yeong Hwang¹³³, Hiroyuki Iha¹³⁴, 547 548 Daisuke D. Ikeda¹³⁴, Masato Isono¹³⁵, Anne U. Jackson²¹, Susanne Jäger^{136,137}, Iris E. Jansen^{138,139}, Ingegerd Johansson^{140,141}, Jost B. Jonas^{142,143,144,145}, Anna Jonsson³⁸, Torben Jørgensen¹⁴⁶, Joanna-Panagiota Kalafati⁸³, 549 550 Masahiro Kanai^{7,8,3}, Stavroula Kanoni⁴, Line L. Kårhus¹⁴⁶, Anuradhani Kasturiratne¹⁴⁷, Tomohiro Katsuya¹⁴⁸, Takahisa Kawaguchi¹⁴⁹, Rachel L. Kember¹⁵⁰, Katherine A. Kentistou^{151,152}, Han-Na Kim^{153,154}, Young Jin 551 Kim¹³³, Marcus E. Kleber^{75,155}, Maria J. Knol⁷⁷, Azra Kurbasic¹⁵⁶, Marie Lauzon¹⁰⁸, Phuong Le^{157,158}, Rodney 552 553 Lea¹⁵⁹, Jong-Young Lee¹⁶⁰, Hampton L. Leonard^{161,162,163}, Shengchao A. Li¹⁶, Xiaohui Li¹⁰⁸, Xiaoyin Li^{164,165}, Jingjing Liang¹⁶⁴, Honghuang Lin¹⁶⁶, Shih-Yi Lin¹⁶⁷, Jun Liu^{28,77}, Xueping Liu¹⁰¹, Ken Sin Lo¹⁶⁸, Jirong Long⁵⁶, 554 555 Laura Lores-Motta¹⁶⁹, Jian'an Luan¹⁷⁰, Valeriya Lyssenko^{171,172}, Leo-Pekka Lyytikäinen^{173,174,175}, Anubha Mahajan^{2,6}, Vasiliki Mamakou¹⁷⁶, Massimo Mangino^{177,178}, Ani Manichaikul¹⁷⁹, Jonathan Marten¹⁸⁰, Manuel 556 557 Mattheisen^{105,181,182}, Laven Mavarani¹⁸³, Aaron F. McDaid^{31,32}, Karina Meidtner^{136,137}, Tori L. Melendez¹⁰⁴, Josep M. Mercader^{184,185,18,186}, Yuri Milaneschi¹⁸⁷, Jason E. Miller^{188,189}, Jona Y. Millwood^{28,190}, Pashupati P. 558 Mishra^{173,174,175}, Ruth E. Mitchell^{113,191}, Line T. Møllehave¹⁴⁶, Anna Morgan⁵⁹, Soeren Mucha¹⁹², Matthias 559 Munz¹⁹², Masahiro Nakatochi¹⁹³, Christopher P. Nelson^{50,51}, Maria Nethander^{194,195}, Chu Won Nho¹⁹⁶, Aneta 560 A. Nielsen¹⁹⁷, Ilja M. Nolte³⁹, Suraj S. Nongmaithem^{43,198}, Raymond Noordam¹⁹⁹, Ioanna Ntalla⁴, Teresa 561 562 Nutile²⁰⁰, Anita Pandit²¹, Paraskevi Christofidou¹⁷⁷, Katri Pärna^{39,201}, Marc Pauper¹⁶⁹, Eva R. B. Petersen²⁰², 563 Liselotte V. Petersen^{203,106}, Niina Pitkänen^{204,205}, Ozren Polašek^{206,207}, Alaitz Poveda¹⁵⁶, Michael H. Preuss^{208,209}, Saiju Pyarajan^{80,55,6}, Laura M. Raffield¹⁹, Hiromi Rakugi¹⁴⁸, Julia Ramirez⁴, Asif Rasheed²¹⁰, 564 Dennis Raven²¹¹, Nigel W. Rayner^{212,213,26,198}, Carlos Riveros²¹⁴, Rebecca Rohde¹⁰, Daniela Ruggiero^{200,215}, 565 566 Sanni E. Ruotsalainen⁴⁵, Kathleen A. Ryan^{216,217}, Maria Sabater-Lleal^{218,219}, Richa Saxena^{3,186}, Markus Scholz^{123,124}, Anoop Sendamarai⁸⁰, Botong Shen²²⁰, Jingchunzi Shi¹³, Jae Hun Shin²²¹, Carlo Sidore²²², Xueling 567 568 Sim⁶⁰, Colleen M. Sitlani⁵², Roderick C. Slieker^{223,224}, Roelof A. J. Smit^{208,225}, Albert V. Smith^{44,226}, Jennifer A. Smith^{44,90}, Laura J. Smyth⁵⁸, Lorraine Southam^{212,227}, Valgerdur Steinthorsdottir²²⁸, Liang Sun¹³², Fumihiko 569 Takeuchi¹³⁵, Divya Sri Priyanka Tallapragada^{43,229}, Kent D. Taylor¹⁰⁸, Bamidele O. Tayo²³⁰, Catherine 570 Tcheandjieu^{231,232}, Natalie Terzikhan⁷⁷, Paola Tesolin⁹³, Alexander Teumer^{233,234}, Elizabeth Theusch²³⁵, 571 Deborah J. Thompson^{236,237}, Gudmar Thorleifsson²²⁸, Paul R. H. J. Timmers^{180,151}, Stella Trompet^{199,238}, 572 573 Constance Turman¹²⁶, Simona Vaccargiu²²², Sander W. van der Laan²³⁹, Peter J. van der Most³⁹, Jan B. van Klinken^{240,241,242}, Jessica van Setten²⁴³, Shefali S. Verma⁶⁶, Niek Verweii²⁴⁴, Yogasudha Veturi⁴⁹, Carol A. 574 Wang^{245,214}, Chaolong Wang^{246,247}, Lihua Wang⁷³, Zhe Wang²⁰⁸, Helen R. Warren^{4,248}, Wen Bin Wei²⁴⁹, Ananda 575 R. Wickremasinghe¹⁴⁷, Matthias Wielscher^{250,251}, Kerri L. Wiggins⁵², Bendik S. Winsvold^{252,253}, Andrew 576 577 Wong²⁵⁴, Yang Wu¹, Matthias Wuttke^{255,256}, Rui Xia²⁵⁷, Tian Xie³⁹, Ken Yamamoto²⁵⁸, Jingyun Yang^{259,260}, Jie 578 Yao¹⁰⁸, Hannah Young²⁶¹, Noha A. Yousri^{262,263}, Lei Yu^{259,260}, Lingyao Zeng²⁶⁴, Weihua Zhang^{265,266}, Xinyuan Zhang⁴⁹, Jing-Hua Zhao¹⁷⁰, Wei Zhao⁴⁴, Wei Zhou^{267,268,3,269}, Martina E. Zimmermann⁸¹, Magdalena 579 580 Zoledziewska²²², Linda S. Adair^{270,271}, Hieab H. H. Adams^{272,273}, Carlos A. Aguilar-Salinas^{274,275}, Fahd Al-Mulla¹¹⁷, Donna K. Arnett²⁷⁶, Folkert W. Asselbergs^{243,277,278}, Bjørn Olav Åsvold^{279,280,281}, John Attia¹²², 581

582 Bernhard Banas²⁸², Stefania Bandinelli²⁸³, David A. Bennett^{259,260}, Tobias Bergler²⁸², Dwaipayan Bharadwaj²⁸⁴, Ginevra Biino²⁸⁵, Hans Bisgaard¹¹, Eric Boerwinkle²⁸⁶, Carsten A. Böger^{282,287,288}, Klaus 583 Bønnelykke¹¹, Dorret I. Boomsma¹²⁵, Anders D. Børglum^{105,106,289,290}, Judith B. Borja^{291,292}, Claude 584 Bouchard²⁹³, Donald W. Bowden^{84,294}, Ivan Brandslund^{295,296}, Ben Brumpton^{279,297}, Julie E. Buring^{72,6}, Mark J. 585 Caulfield^{4,248}, John C. Chambers^{298,266,265,299}, Giriraj R. Chandak^{43,300}, Stephen J. Chanock¹⁶, Nish Chaturvedi²⁵⁴, 586 587 Yii-Der Ida Chen¹⁰⁸, Zhengming Chen^{28,190}, Ching-Yu Cheng^{61,301}, Ingrid E. Christophersen^{302,303}, Marina Ciullo^{200,215}, John W. Cole^{304,305}, Francis S. Collins⁴⁶, Richard S. Cooper²³⁰, Miguel Cruz³⁰⁶, Francesco 588 589 Cucca^{222,76}, L. Adrienne Cupples^{79,116}, Michael J. Cutler³⁰⁷, Scott M. Damrauer^{308,309,49}, Thomas M. Dantoft¹⁴⁶, 590 Gert J. de Borst³¹⁰, Lisette C. P. G. M. de Groot³¹¹, Philip L. De Jager^{312,3}, Dominique P. V. de Kleijn³¹⁰, H. Janaka 591 de Silva¹⁴⁷, George V. Dedoussis⁸³, Anneke I. den Hollander¹⁶⁹, Shufa Du^{270,271}, Douglas F. Easton^{237,313}, Petra J. M. Elders³¹⁴, A. Heather Eliassen^{55,126}, Patrick T. Ellinor^{315,316,68}, Sölve Elmståhl³¹⁷, Jeanette Erdmann¹⁹², 592 Michele K. Evans²²⁰, Diane Fatkin^{318,319,320}, Bjarke Feenstra³²¹, Mary F. Feitosa⁷³, Luigi Ferrucci³²², Ian 593 Ford³²³, Myriam Fornage^{257,324}, Andre Franke⁷⁴, Paul W. Franks^{156,325,326}, Barry I. Freedman³²⁷, Paolo 594 595 Gasparini^{59,93}, Christian Gieger^{99,137}, Giorgia Girotto^{59,93}, Michael E. Goddard^{328,329}, Yvonne M. Golightly^{42,10,330,331}, Clicerio Gonzalez-Villalpando³³², Penny Gordon-Larsen^{270,271}, Harald Grallert^{99,137}, 596 Struan F. A. Grant^{47,333,334,335}, Niels Grarup³⁸, Lyn Griffiths¹⁵⁹, Leif Groop^{45,172}, Vilmundur Gudnason^{226,336}, 597 Christopher Haiman³²¹, Hakon Hakonarson^{47,333,337,338}, Torben Hansen³⁸, Catharina A. Hartman²¹¹, Andrew 598 599 T. Hattersley³³⁹, Caroline Hayward¹⁸⁰, Susan R. Heckbert³⁴⁰, Chew-Kiat Heng^{341,342}, Christian 600 Hengstenberg³⁴³, Alex W. Hewitt^{344,345,346}, Haretsugu Hishigaki¹³⁴, Carel B. Hoyng¹⁶⁹, Paul L. Huang^{347,315,6}, Wei Huang³⁴⁸, Steven C. Hunt^{349,262}, Kristian Hveem^{279,280}, Elina Hyppönen^{350,351}, William G. Iacono²⁶¹, Sahoko 601 602 Ichihara³⁵², M. Arfan Ikram⁷⁷, Carmen R. Isasi³⁵³, Rebecca D. Jackson³⁵⁴, Marjo-Riitta Jarvelin^{250,355,356,357}, Zi-Bing Jin^{358,359}, Karl-Heinz Jöckel¹⁸³, Peter K. Joshi¹⁵¹, Pekka Jousilahti¹¹², J. Wouter Jukema^{238,360,361}, Mika 603 604 Kähönen^{362,363}, Yoichiro Kamatani^{7,364}, Kui Dong Kang³⁶⁵, Jaakko Kaprio⁴⁵, Sharon L. R. Kardia⁴⁴, Fredrik 605 Karpe^{213,366}, Norihiro Kato¹³⁵, Frank Kee⁵⁸, Thorsten Kessler^{264,367}, Amit V. Khera^{186,3}, Chiea Chuen Khor²⁴⁷, Lambertus A. L. M. Kiemeney^{96,368}, Bong-Jo Kim¹³³, Eung Kwon Kim³⁶⁹, Hyung-Lae Kim³⁷⁰, Paulus 606 Kirchhof^{371,372,373,374}, Mika Kivimaki³⁷⁵, Woon-Puay Koh³⁷⁶, Heikki A. Koistinen^{112,377,378}, Genovefa D. 607 Kolovou³⁷⁹, Jaspal S. Kooner^{265,299,380,381}, Charles Kooperberg¹¹⁰, Anna Köttgen²⁵⁵, Peter Kovacs³⁸², Adriaan 608 609 Kraaijeveld²⁴³, Peter Kraft¹²⁶, Ronald M. Krauss²³⁵, Meena Kumari³⁸³, Zoltan Kutalik^{31,32}, Markku Laakso³⁸⁴, Leslie A. Lange³⁸⁵, Claudia Langenberg^{170,386}, Lenore J. Launer²²⁰, Loic Le Marchand³⁸⁷, Hyejin Lee³⁸⁸, Nanette 610 R. Lee²⁹¹, Terho Lehtimäki^{173,174,175}, Huaixing Li¹³², Liming Li^{389,390}, Wolfgang Lieb³⁹¹, Xu Lin^{132,392}, Lars 611 Lind¹⁰⁹, Allan Linneberg^{146,393}, Ching-Ti Liu⁷⁹, Jianjun Liu²⁴⁷, Markus Loeffler^{123,124}, Barry London³⁹⁴, Steven 612 A. Lubitz^{315,316,68}, Stephen J. Lye³⁹⁵, David A. Mackey^{346,344}, Reedik Mägi²⁷, Patrik K. E. Magnusson³⁹⁶, Gregory 613 M. Marcus³⁹⁷, Pedro Marques Vidal^{398,399}, Nicholas G. Martin¹⁰³, Winfried März^{75,400}, Fumihiko Matsuda¹⁴⁹, 614 615 Robert W. McGarrah^{401,402}, Matt McGue²⁶¹, Amy Jayne McKnight⁵⁸, Sarah E. Medland⁴⁰³, Dan Mellström^{194,404}, Andres Metspalu²⁷, Braxton D. Mitchell^{216,217,405}, Paul Mitchell⁴⁰⁶, Dennis O. Mook-Kanamori^{407,408}, Andrew 616 D. Morris⁴⁰⁹, Lorelei A. Mucci¹²⁶, Patricia B. Munroe^{4,248}, Mike A. Nalls^{161,162,163}, Saman Nazarian⁴¹⁰, Amanda 617 618 E. Nelson^{42,411}, Matt J. Neville^{213,366}, Christopher Newton-Cheh^{315,412}, Christopher S. Nielsen^{413,414}, Markus M. 619 Nöthen⁴¹⁵, Claes Ohlsson^{194,416}, Albertine J. Oldehinkel²¹¹, Lorena Orozco⁴¹⁷, Katja Pahkala^{204,205,418}, Päivi 620 Pajukanta^{37,419}, Colin N. A. Palmer⁴²⁰, Esteban J. Parra¹⁵⁸, Cristian Pattaro⁹⁵, Oluf Pedersen³⁸, Craig E. Pennell^{245,214}, Brenda W. J. H. Penninx¹⁸⁷, Louis Perusse^{70,421}, Annette Peters^{100,422,137}, Patricia A. Peyser⁴⁴, 621 David J. Porteous⁵⁷, Danielle Posthuma¹³⁸, Chris Power⁴²³, Peter P. Pramstaller⁹⁵, Michael A. Province⁷³, 622 Qibin Qi³⁵³, Jia Qu³⁵⁹, Daniel J. Rader^{424,49}, Olli T. Raitakari^{204,205,425}, Sarju Ralhan⁴²⁶, Loukianos S. Rallidis⁴²⁷, 623 Dabeeru C. Rao⁴²⁸, Susan Redline^{55,6}, Dermot F. Reilly⁴²⁹, Alexander P. Reiner^{430,110}, Sang Youl Rhee⁴³¹, Paul 624 625 M. Ridker^{72,6}, Michiel Rienstra²⁴⁴, Samuli Ripatti^{45,3,432}, Marylyn D. Ritchie⁴⁹, Dan M. Roden⁴³³, Frits R. $Rosendaal^{407}\text{, Jerome I. Rotter}^{108}\text{, Igor Rudan}^{151}\text{, Femke Rutters}^{224}\text{, Charumathi Sabanayagam}^{61,301}\text{, Danish Rosendaal}^{407}\text{, Danish Rosendaal}^{407}\text{, Danish}^{407}\text{, Danish}^{4$ 626 Saleheen^{434,210}, Veikko Salomaa¹¹², Nilesh J. Samani^{50,51}, Dharambir K. Sanghera^{435,436,437,438}, Naveed Sattar⁴³⁹, 627 Börge Schmidt¹⁸³, Helena Schmidt⁴⁴⁰, Reinhold Schmidt¹²⁰, Matthias B. Schulze^{136,137,441}, Heribert 628 629 Schunkert⁴⁴², Laura J. Scott²¹, Rodney J. Scott⁴⁴³, Peter Sever³⁸¹, Eric J. Shiroma²²⁰, M. Benjamin Shoemaker⁴⁴⁴, Xiao-Ou Shu⁵⁶, Eleanor M. Simonsick³²², Mario Sims⁹⁷, Jai Rup Singh⁴⁴⁵, Andrew B. 630 Singleton¹⁶¹, Moritz F. Sinner^{446,367}, J. Gustav Smith^{447,448,449}, Harold Snieder³⁹, Tim D. Spector¹⁷⁷, Meir J. 631 632 Stampfer^{126,450,55}, Klaus J. Stark⁸¹, David P. Strachan⁴⁵¹, Leen M. t Hart^{223,224,452}, Yasuharu Tabara¹⁴⁹, Hua Tang⁴⁵³, Jean-Claude Tardif^{168,454}, Thangavel A. Thanaraj¹¹⁷, Nicholas J. Timpson^{113,191}, Anke Tönjes³⁸², 633 634 Angelo Tremblay^{70,421}, Tiinamaija Tuomi^{455,45,456,172}, Jaakko Tuomilehto^{112,457,458}, Maria-Teresa Tusié-Luna^{459,460}, Andre G. Uitterlinden²⁹, Rob M. van Dam^{60,461,462}, Pim van der Harst^{244,243}, Nathalie Van der 635 636 Velde^{463,464}, Cornelia M. van Duijn^{28,77}, Natasja van Schoor⁴⁶⁵, Veronique Vitart¹⁸⁰, Uwe Völker^{466,234}, Peter Vollenweider^{398,399}, Henry Völzke^{233,234}, Scott Vrieze²⁶¹, Niels H. Wacher-Rodarte⁴⁶⁷, Mark Walker⁴⁶⁸, Ya Xing 637 Wang¹⁴⁵, Nicholas J. Wareham¹⁷⁰, Richard M. Watanabe^{469,470,471}, Hugh Watkins^{102,26}, David R. Weir⁹⁰, Thomas 638 639 M. Werge^{41,393,472}, Elisabeth Widen⁴⁵, Lynne R. Wilkens³⁸⁷, Gonneke Willemsen¹²⁵, Walter C. Willett^{450,126,55},

640 James F. Wilson^{151,180}, Tien-Yin Wong^{61,301}, Jeong-Taek Woo⁴³¹, Alan F. Wright⁴⁷³, Jer-Yuarn Wu^{63,474}, Huichun 641 Xu^{216,217}, Chittaranjan S. Yajnik⁴⁷⁵, Mitsuhiro Yokota⁴⁷⁶, Jian-Min Yuan^{477,478}, Eleftheria Zeggini^{212,227,479}, 642 Babette S. Zemel^{337,67,335,49}, Wei Zheng⁵⁶, Xiaofeng Zhu¹⁶⁴, Joseph M. Zmuda⁴⁷⁸, Alan B. Zonderman²²⁰, John-643 Anker Zwart^{252,480}, 23andMe Research Team¹³, VA Million Veteran Program⁴⁸¹, DiscovEHR (DiscovEHR and 644 MyCode Community Health Initiative)⁴⁸², eMERGE (Electronic Medical Records and Genomics Network)⁴⁸³, 645 Lifelines Cohort Study⁴⁸⁴, Regeneron Genetics Center⁴⁸⁵, The PRACTICAL Consortium⁴⁸⁶, Understanding Society Scientific Group⁴⁸⁷, Daniel I. Chasman^{72,6}, Yoon Shin Cho²²¹, Iris M. Heid⁸¹, Mark I. McCarthy^{^,26,213}, 646 647 Maggie C. Y. Ng^{84,488}, Christopher J. O'Donnell^{127,55,6}, Fernando Rivadeneira²⁹, Unnur Thorsteinsdottir^{228,336}, 648 Yan V. Sun^{489,490}, E. Shyong Tai^{461,60}, Michael Boehnke²¹, Panos Deloukas^{4,491}, Anne E. Justice^{492,10}, Cecilia M. 649 Lindgren^{23,26,3}, Ruth J. F. Loos^{208,493,209,494}, Karen L. Mohlke¹⁹, Kari E. North¹⁰, Kari Stefansson^{228,336}, Robin G. 650 Walters^{28,190}, Thomas W. Winkler⁸¹, Kristin L. Young¹⁰, Po-Ru Loh^{17,3,18}, Jian Yang^{495,496,1}, Tõnu Esko²⁷, 651 Themistocles L. Assimes^{231,232}, Adam Auton¹³, Goncalo R. Abecasis²¹, Cristen J. Willer^{104,267,497}, Adam E. Locke⁴⁹⁸, Sonja I. Berndt¹⁶, Guillaume Lettre^{168,454}, Timothy M. Frayling²⁴, Yukinori Okada^{§,#,7,8,499,500}, Andrew 652 653 R. Wood§,#,24, Peter M. Visscher§,#,1, Joel N. Hirschhorn§,#,2,501,502

654 655

656

657

658

659

660

661

662

663 664

665

666

667

668 669

670

671

672

673

674

675

676

677

678 679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

¹Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia, ²Division of Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA, ³Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA, 4William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BO, UK, ⁵Centre for Genomic Health, Life Sciences, Oueen Mary University of London, London, UK, ⁶Harvard Medical School, Boston, MA 02115, USA, 7Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan, ⁸Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan, 9Divisions of Genetics and Rheumatology, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA, ¹⁰Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27516, USA, ¹¹COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark, ¹²Section for Bioinformatics, Department of Health Technology, Technical University of Denmark, Copenhagen, Denmark, ¹³23andMe, Inc, Sunnyvale, CA 94086, USA, ¹⁴Department of Veterans Affairs, Eastern Colorado Healthcare System, Aurora, CO 80045, USA, 15 Division of Biomedical Informatics and Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA, ¹⁶Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD USA 20850, ¹⁷Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA, ¹⁸Department of Medicine, Harvard Medical School, Boston, MA 02115, USA, ¹⁹Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA, ²⁰Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA 01003, USA, 21Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA, ²²Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA, ²³Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK, ²⁴Genetics of Complex Traits, College of Medicine and Health, University of Exeter, Exeter, UK, 25Center for Health Data Science, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark, ²⁶Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK, ²⁷Institute of Genomics, Estonian Genome Centre, University of Tartu, 51010, Tartu, Estonia, ²⁸Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK, ²⁹Laboratory of Population Genomics, Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, 3015 GD, the Netherlands, 30Division of Biostatistics and Epidemiology, RTI International, Durham, NC 27709, USA, ³¹Center for Primary Care and Public Health, University of Lausanne, Lausanne, Switzerland, 32Swiss Institute of Bioinformatics, Switzerland, 33Steno Diabetes Center Copenhagen, Gentofte, Denmark, 34Department of Biology, The Bioinformatics Center, University of Copenhagen, Copenhagen, Denmark, 35Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan, ³⁶Department of Family Medicine, University of California, San Diego, La Jolla, CA 92093, USA, ³⁷Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA, 38Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark, ³⁹Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, 9700 RB, the Netherlands, ⁴⁰Department of Bioinformatics, Isfahan University of Medical Sciences, Isfahan, 8174673461, Iran, 41Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, Copenhagen, Denmark, 42Thurston Arthritis Research Center, University of North Carolina at

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713 714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

Chapel Hill, Chapel Hill, NC 27599, USA, 43Genomic Research on Complex diseases (GRC-Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India, 44Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA, 45Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, FI-00014, Finland, 46 Molecular Genetics Section, Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA, ⁴⁷Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA, ⁴⁸Quantinuum Research LLC, Wayne, PA, USA, ⁴⁹Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA, 50 Department of Cardiovascular Sciences, University of Leicester, Leicester, UK, 51NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK, ⁵²Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98195, USA, 53Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark, 54NovoNordic Center for Protein Research, Copenhagen University, Copenhagen, Denmark, 55Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA, 56Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA, ⁵⁷Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK, 58Centre for Public Health, Queen's University of Belfast, Northern Ireland, UK, ⁵⁹Institute for Maternal and Child Health – IRCCS, Burlo Garofolo, 34127, Trieste, Italy, ⁶⁰Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, 117549, Singapore, 61Ocular Epidemiology, Singapore Eye Research Institute, Singapore National Eye Centre, 168751, Singapore, ⁶²Department of Ophthalmology, National University of Singapore and National University Health System, 119228, Singapore, 63Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan, ⁶⁴Graduate Institute of Medical Genomics and Proteomics, Medical College, National Taiwan University, Taipei, Taiwan, 65Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan, 66 Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA, ⁶⁷Center for Spatial and Functional Genomics, Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA, 68 Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA, ⁶⁹Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan, ⁷⁰Department of Kinesiology, Faculty of Medicine, Université Laval, 2300 rue de la Terrasse, Québec QC, G1V 0A6, Canada, 71Diamantina Institute, The University of Queensland, Brisbane, OLD 4072, Australia, 72Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA, 73 Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, 520 South Euclid Avenue, Campus Box 8506-98-601, St Louis, MO 63110-1093, USA, 74 Institute of Clinical Molecular Biology, Christian-Albrechts University of Kiel, Kiel, Germany, 75Vth Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Baden-Württemberg, 68167, Germany, ⁷⁶Dipartimento di Scienze Biomediche, Università degli Studi di Sassari, Sassari, Italy, ⁷⁷Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, 3015 GD, the Netherlands, ⁷⁸Section of Statistical Multi-omics, Department of Clinical and Experimental Medicine, University of Surrey, Guildford, UK, ⁷⁹Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA, 80Center for Data and Computational Sciences, VA Boston Healthcare System, Boston, MA, USA, ⁸¹Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany, ⁸²Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany, 83 Department of Nutrition & Dietetics, School of Health & Education, Harokopio University of Athens, Athens, 17676, Greece, 84Center for Precision Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA, 85Genome Institute of Singapore, Agency for Science, Technology, and Research, Singapore, 86Health Services and Systems Research, Duke-NUS Medical School Singapore, Singapore, 87Institute of Human Genetics, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany, 88Institute of Cardiovascular Science, Faculty of Population Health, University College London, London, WC1E 6BT, UK, ⁸⁹Harokopio University Athens, Athens, 17671, Greece, ⁹⁰Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI 48104, USA, 91Computational Genomics Department, National Institute of Genomic Medicine, Mexico City, Mexico, 92 Institute of Genetic Epidemiology, Medical University of Innsbruck, 6020 Innsbruck, Austria, 93 Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149, Trieste, Italy, 94Institute of Medical Informatics and Statistics, Kiel University, University Hospital Schleswig-Holstein, Kiel, Germany, 95Eurac Research, Institute for Biomedicine, Affiliated Institute of the University of Lübeck, Bolzano, Italy, 96Radboud University Medical Center, Radboud Institute for Health Sciences, Department for Health Evidence, Nijmegen, the Netherlands, ⁹⁷Jackson Heart Study, Department of Medicine, University of Mississippi, Jackson, MS 39216, USA, ⁹⁸Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China, 99Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München Research Center for Environmental Health,

757

758

759

760 761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

Neuherberg, Germany, 100Institute of Epidemiology, Helmholtz Zentrum München Research Center for Environmental Health, Neuherberg, Germany, 101 Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark, 102 Cardiovascular Medicine/Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, Oxfordshire, OX3 9DU, UK, 103Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia, 104 Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI 48109, USA, 105 Department of Biomedicine (Human Genetics) and iSEQ Center, Aarhus University, Aarhus, Denmark, 106The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark, 107BiRC - Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark, 108The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA, ¹⁰⁹Department of Medical Sciences, Uppsala University, Sweden, ¹¹⁰Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA, ¹¹¹Danish Headache Center, Department of Neurology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark, 112Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki 00271, Finland, 113MRC Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK, 114Bristol Dental School, University of Bristol, Bristol, BS1 2LY, UK, 115Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA, 116Framingham Heart Study, Framingham, MA 01701, USA, ¹¹⁷Department of Genetics & Bioinformatics, Dasman Diabetes Institute, Kuwait, ¹¹⁸Department of Clinical Sciences in Malmö, Lund University, Sweden, ¹¹⁹Veterans Affairs Boston Healthcare System, Boston, MA 02132, USA, 120Clinical Division of Neurogeriatrics, Department of Neurology, Medical University of Graz, 8036 Graz, Austria, 121 Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, 8036 Graz, Austria, 122School of Medicine and Public Health, University of Newcastle, Callaghan NSW 2305 Australia, 123University of Leipzig, Medical Faculty, Institute for Medical Informatics, Statistics and Epidemiology, 04107 Leipzig, Germany, 124University of Leipzig, Medical Faculty, LIFE Research Center for Civilization Diseases, 04103 Leipzig, Germany, 125 Department of Biological Psychology, Behaviour and Movement Sciences, Vrije Universiteit Amsterdam, the Netherlands, ¹²⁶Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA, ¹²⁷Department of Medicine, Veterans Affairs Boston Healthcare System, Boston, MA 02132, USA, ¹²⁸Department of Global Health, Peking University of Global Health, Beijing, China, ¹²⁹Unidad de Biología Molecular y Medicina Genómica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, ¹³⁰Consejo Nacional de Ciencia y Tecnología, Mexico, ¹³¹Division of Endocrine and Metabolism, Tri-Service General Hospital Songshan Branch, Taipei, Taiwan, 132 Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China, 133Division of Genome Science, Department of Precision Medicine, National Institute of Health, 28159 Republic of Korea, 134Biomedical Technology Research Center, Tokushima Research Institute, Otsuka Pharmaceutical Co., Ltd., Tokushima, 771-0192, Japan, ¹³⁵Research Institute, National Center for Global Health and Medicine, Tokyo, Japan, ¹³⁶Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, 14558, Germany, 137German Center for Diabetes Research (DZD), Neuherberg, 85764, Germany, ¹³⁸Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands, ¹³⁹Department of Child and Adolescent Psychiatry and Pediatric Psychology, Section Complex Trait Genetics, Amsterdam Neuroscience, Vrije Universiteit Medical Center, Amsterdam, the Netherlands, ¹⁴⁰Department of Biobank Research, Umeå University, Umeå, Sweden, ¹⁴¹Department of Odontology, Umeå University, Umeå, Sweden, 142 Institute of Molecular and Clinical Ophthalmology Basel, Switzerland, ¹⁴³Privatpraxis Prof Jonas und Dr Panda-Jonas, Heidelberg, Germany, ¹⁴⁴Department of Ophthalmology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany, 145Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China, 146Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark, ¹⁴⁷Faculty of Medicine, University of Kelaniya, Sri Lanka, ¹⁴⁸Osaka University Graduate School of Medicine, Osaka, Japan, ¹⁴⁹Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan, 150 Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA, 151Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, EH8 9DX, Scotland, 152Centre for Cardiovascular Sciences, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, Scotland, ¹⁵³Medical Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, 03181, Republic of Korea, ¹⁵⁴Department of Clinical Research Design & Evaluation, SAIHST, Sungkyunkwan University, Seoul, 06355, Republic of Korea, 155SYNLAB MVZ Humangenetik Mannheim, Mannheim, Baden-Württemberg, 68163, Germany, ¹⁵⁶Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University,

841

861

871

814 Malmö, Sweden, 157 Department of Computer Science, University of Toronto, Toronto, ON M5S 2E4, Canada, 815 ¹⁵⁸Department of Anthropology, University of Toronto at Mississauga, Mississauga, ON L5L 1C6, Canada, 816 ¹⁵⁹Institute of Health and Biomedical Innovation, The University of QueenGenomics Research Centre, Centre 817 for Genomics and Personalised Health, School of Biomedical Sciences, Qld University of Technology, 60 Musk Ave, Kelvin Grove Qld, Australia, 160Oneomics, Soonchunhyang Mirai Medical Center, Gyeonggi-do, 818 819 14585, Korea, 161 Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, 820 Bethesda, MD 20892, USA, ¹⁶²Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD 20892, USA, ¹⁶³Data Tecnica International, Glen Echo, MD 20812, USA, ¹⁶⁴Department of 822 Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH 44106, USA, 823 165current address: Department of Mathematics and Statistics, St. Cloud State University, St Cloud, MN 824 56301, USA, 166Section of Computational Biomedicine, Department of Medicine, Boston University School of 825 Medicine, Boston, MA 02118, USA, 167Center for Geriatrics and Gerontology, Taichung Veterans General 826 Hospital, Taichung, Taiwan, 168 Montreal Heart Institute, Montreal, Quebec, H1T 1C8, Canada, 169 Department 827 of Ophthalmology, Radboud University Medical Center, Nijmegen, 6525 GA, the Netherlands, 170MRC 828 Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, 829 Strangeways Research Laboratory, Wort's Causeway, Cambridge CB1 8RN, 171 Department of Clinical 830 Science, Center for Diabetes Research, University of Bergen, Bergen, Norway, 172 Department of Clinical 831 Sciences, Lund University Diabetes Centre, Malmö, Sweden, ¹⁷³Department of Clinical Chemistry, Fimlab 832 Laboratories, Tampere 33520, Finland, 174Department of Clinical Chemistry, Finnish Cardiovascular 833 Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere 834 33014, Finland, ¹⁷⁵Department of Cardiology, Heart Center, Tampere University Hospital, Tampere 33521, 835 Finland, ¹⁷⁶National and Kapodistrian University of Athens, Dromokaiteio Psychiatric Hospital, Athens, 836 Greece, ¹⁷⁷Department of Twin Research and Genetic Epidemiology, King's College London, London SE1 837 7EH, UK, ¹⁷⁸NIHR Biomedical Research Centre at Guy's and St Thomas' Foundation Trust, London SE1 9RT, 838 UK, ¹⁷⁹Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA 839 22908, USA, ¹⁸⁰MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, 840 Western General Hospital, Edinburgh EH4 2XU, Scotland, ¹⁸¹Department of Psychiatry and Department of Community Health and Epidemiology, Dalhousie University, Halifax, NS, Canada, ¹⁸²Institute of Psychiatric 842 Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany, 183 Institute for 843 Medical Informatics, Biometry and Epidemiology, University Hospital Essen, Essen, 45130, Germany, 844 ¹⁸⁴Programs in Metabolism and Medical and Population Genetics, Broad Institute of Harvard and MIT, 845 Cambridge, MA 02142, USA, ¹⁸⁵Diabetes Unit, Massachusetts General Hospital, Boston, MA 02114, USA, 846 ¹⁸⁶Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA, ¹⁸⁷Department of 847 Psychiatry, Amsterdam Public Health and Amsterdam Neuroscience, Amsterdam UMC/Vrije Universiteit, 848 Amsterdam, 1081 HL, the Netherlands, ¹⁸⁸Biomedical and Translational Informatics Institute, Geisinger, 849 Danville, PA 17821, USA, ¹⁸⁹Department of Genetics, Institute for Biomedical Informatics, Perelman School 850 of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA, 190MRC Population Health Research 851 Unit, Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK, 191 Population 852 Health Sciences, Bristol Medical School, University of Bristol, BS8 2BN, UK, 192Institute for 853 Cardiogenetics, University of Lübeck, 23562, Lübeck, Germany, 193 Public Health Informatics Unit, 854 Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, 461-855 8673, Japan, ¹⁹⁴Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical 856 Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden, 857 ¹⁹⁵Bioinformatics Core Facility, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden, 858 ¹⁹⁶Korea Institute of Science and Technology, Gangneung Institute of Natural Products, Gangneung, 859 Gangwon-do, 25451, Republic of Korea, 197 Department of Clinical Biochemistry, Lillebaelt Hospital, Kolding, 860 Denmark, ¹⁹⁸Department of Human Genetics, Wellcome Sanger Institute, Hinxton, CB10 1SA, UK, ¹⁹⁹Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical 862 Center, Leiden, the Netherlands, ²⁰⁰Institute of Genetics and Biophysics A. Buzzati-Traverso, CNR, Naples, 80131 Italy, ²⁰¹Institute of Genomics, University of Tartu, 51010, Tartu, Estonia, ²⁰²Department of Clinical 863 864 Biochemistry and Immunology, Hospital of Southern Jutland, 6200 Aabenraa, Denmark, 203The National 865 Centre for Register-based Research, University of Aarhus, Aarhus, Denmark, 204Centre for Population Health Research, University of Turku and Turku University Hospital, Turku 20014, Finland, 205Research Centre of 866 867 Applied and Preventive Cardiovascular Medicine, University of Turku, Turku 20014, Finland, ²⁰⁶Medical 868 School, University of Split, Šoltanska 2, 21000 Split, Croatia, ²⁰⁷Algebra University College, Ilica 242, Zagreb, 869 Croatia, ²⁰⁸The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount 870 Sinai, New York, NY 10029, USA, ²⁰⁹Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA, 210Center for Non-Communicable Diseases, Karachi,

877

881

882

883

891

892

897

901

911

917

921

925

Pakistan, 211Department of Psychiatry, Interdisciplinary Center Psychopathology and Emotion Regulation, 873 University of Groningen, University Medical Center Groningen, Groningen, 9700 RB, the Netherlands, 874 ²¹²Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for 875 Environmental Health, Neuherberg, Germany, 213Oxford Centre for Diabetes, Endocrinology and 876 Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK, ²¹⁴Hunter Medical Research Institute, New Lambton Heights, NSW 2308, Australia, ²¹⁵IRCCS Neuromed, 878 Pozzilli (IS), 86077 Italy, ²¹⁶Department of Medicine, Division of Endocrinology, Diabetes & Nutrition, 879 University of Maryland School of Medicine, Baltimore, MD 21201, USA, 217 Program for Personalized and 880 Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA, 218Unit of Genomics of Complex Diseases. Research Institute Hospital de la Santa Creu i Sant Pau. IIB Sant Pau. Barcelona, Spain, ²¹⁹Cardiovascular Medicine Unit, Department of Medicine, Karolinska Institutet, Center for Molecular Medicine, Stockholm, Sweden, 220Laboratory of Epidemiology and Population Sciences, 884 National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA, ²²¹Department of 885 Biomedical Science, Hallym University, Chuncheon, Gangwon-do, 24252, Republic of Korea, 222 Istituto di 886 Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Cagliari, Italy, ²²³Department of 887 Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands, ²²⁴Department of 888 Epidemiology and Data Science, Amsterdam Public Health Institute, Amsterdam Cardiovascular Sciences 889 Institute, Amsterdam UMC, location VUmc, Amsterdam, the Netherlands, ²²⁵Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, Netherlands, ²²⁶Icelandic Heart Association, 890 Holtasmari 1,201 Kopavogur, Iceland, ²²⁷Wellcome Sanger Institute, Hinxton, CB10 1SA, UK, ²²⁸deCODE Genetics/Amgen inc., Reykjavik, Iceland, ²²⁹Mohn Nutrition Research Laboratory, Department of Clinical 893 Science, University of Bergen, Bergen, Norway, ²³⁰Department of Public Health Sciences, Parkinson School 894 of Health Sciences and Public Health, Loyola University Chicago, Maywood, IL 60153, USA, ²³¹VA Palo Alto 895 Health Care System, Palo Alto, CA, USA, ²³²Department of Medicine, Stanford University School of Medicine, 896 Stanford, CA 94305, USA, 233Institute for Community Medicine, University Medicine Greifswald, W.-Rathenau-Str. 48, Greifswald, 17475, Germany, ²³⁴DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, 17475, Germany, 235Cardiology Division, Department of Pediatrics, 898 899 University of California San Francisco, Oakland, CA 94609, USA, ²³⁶Centre for Cancer Genetic Epidemiology, 900 University of Cambridge, Cambridge, UK, ²³⁷Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK, ²³⁸Department of Cardiology, Leiden University Medical Center, Leiden, the 902 Netherlands, ²³⁹Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, 903 University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, the Netherlands, ²⁴⁰Department of 904 Human Genetics, Leiden University Medical Center, Leiden, the Netherlands, ²⁴¹Laboratory Genetic 905 Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology and 906 Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands, ²⁴²Core Facility 907 Metabolomics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands, 243 Department of 908 Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, 3584 CX 909 Utrecht, the Netherlands, ²⁴⁴Department of Cardiology, University of Groningen, University Medical Center 910 Groningen, Groningen, 9700 RB, the Netherlands, ²⁴⁵School of Medicine and Public Health, College of Health, Medicine and Wellbeing, The University of Newcastle, New South Wales, Australia, ²⁴⁶Department of 912 Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of 913 Science and Technology, Wuhan, China, ²⁴⁷Genome Institute of Singapore, Agency for Science, Technology 914 and Research, 138672, Singapore, ²⁴⁸NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The 915 London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK, 916 ²⁴⁹Department of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, China, ²⁵⁰Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of 918 Public Health, Imperial College London, London, W2 1PG, UK, ²⁵¹Department of Dermatology, Medical 919 University of Vienna, Vienna, Austria, 252 Department of Research and Innovation, Division of Clinical 920 Neuroscience, Oslo University Hospital, Oslo, Norway, ²⁵³Department of Neurology, Oslo University Hospital, Oslo, Norway, ²⁵⁴MRC Unit for Lifelong Health and Ageing at UCL, Institute of Cardiovascular 922 Science, UCL, London, WC1E 6BT, UK, ²⁵⁵Institute of Genetic Epidemiology, Faculty of Medicine and Medical 923 Center - University of Freiburg, Freiburg, Germany, ²⁵⁶Department of Medicine IV - Nephrology and Primary 924 Care, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany, 257Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, 926 Houston, TX 77030, USA, ²⁵⁸Department of Medical Biochemistry, Kurume University School of Medicine, 927 Kurume, 830-0011, Japan, ²⁵⁹Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL 928 60612, USA, ²⁶⁰Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, 929 USA, ²⁶¹Department of Psychology, University of Minnesota, Minneapolis, MN 55455, USA, ²⁶²Department of

930 Genetic Medicine, Weill Cornell Medicine, Doha, Qatar, 263Department of Computer and Systems 931 Engineering, Alexandria University, Egypt, ²⁶⁴Department of Cardiology, German Heart Centre Munich, 932 Technical University Munich, Munich, Germany, ²⁶⁵Department of Cardiology, Ealing Hospital, London 933 North West University Healthcare NHS Trust, Middlesex UB1 3HW, UK, ²⁶⁶Department of Epidemiology and 934 Biostatistics, Imperial College London, London W2 1PG, UK, ²⁶⁷Department of Computational Medicine and 935 Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA, ²⁶⁸Analytic and Translational Genetics 936 Unit, Massachusetts General Hospital, Boston, MA 02114, USA, ²⁶⁹Stanley Center for Psychiatric Research, 937 Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA, ²⁷⁰Department of Nutrition, Gillings School 938 of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27516, USA, 271Carolina 939 Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27516, USA, ²⁷²Department 940 of Clinical Genetics, Erasmus MC, Rotterdam, 3015 GD, the Netherlands, ²⁷³Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, 3015 GD, the Netherlands, 274Unidad de Investigacion de 941 942 Enfermedades Metabolicas and Direction of Nutrition, Instituto Nacional de Ciencias Medicas y Nutricion, Mexico City, Mexico, 275Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, 943 944 NL, 64710, México, ²⁷⁶Department of Epidemiology and Dean's Office, College of Public Health, University 945 of Kentucky, Lexington, KY 40536, USA, 277 Institute of Cardiovascular Science, Faculty of Population Health 946 Sciences, University College London, London, WC1E 6BT, UK, 278 Health Data Research UK and Institute of 947 Health Informatics, University College London, London NW1 2DA, UK, 279KG Jebsen Center for Genetic 948 Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, NTNU, Norway, ²⁸⁰HUNT Research Centre, Department of 949 950 Public Health and Nursing, Norwegian University of Science and Technology, Levanger, Norway, 951 ²⁸¹Department of Endocrinology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway, 952 ²⁸²Department of Nephrology, University Hospital Regensburg, Regensburg, Germany, ²⁸³Geriatric Unit, 953 Azienda Toscana Centro, Florence, Italy, ²⁸⁴Systems Genomics Laboratory, School of Biotechnology, 954 Jawaharlal Nehru University (JNU), New Delhi 110 067, India, ²⁸⁵Institute of Molecular Genetics, National 955 Research Council of Italy, Pavia, Italy, ²⁸⁶Center for Human Genetics and Dept. of Epidemiology, University 956 of Texas Health Science Center at Houston, Houston, TX 77030, USA, ²⁸⁷Department of Nephrology and 957 Rheumatology, Kliniken Südostbayern, Regensburg, Germany, ²⁸⁸KfH Kidney Center Traunstein, Traunstein, 958 Germany, ²⁸⁹Center for Genomics and Personalized Medicine (CGPM), Aarhus University, Aarhus, Denmark, 959 ²⁹⁰Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark, ²⁹¹USC-Office of Population 960 Studies Foundation, Inc., University of San Carlos, Cebu City, Philippines, ²⁹²Department of Nutrition and 961 Dietetics, University of San Carlos, Cebu City, Philippines, ²⁹³Human Genomics Laboratory, Pennington 962 Biomedical Research Center, Baton Rouge, LA 70808, USA, 294Department of Biochemistry, Wake Forest 963 School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA, ²⁹⁵Department of Clinical 964 Biochemistry, Lillebaelt Hospital, Vejle, Denmark, ²⁹⁶Institute of Regional Health Research, University of 965 Southern Denmark, Odense, Denmark, 297Clinic of Medicine, St. Olavs Hospital, Trondheim University 966 Hospital, Trondheim, Norway, ²⁹⁸Lee Kong Chian School of Medicine, Nanyang Technological University, 967 Singapore 308232, Singapore, ²⁹⁹Imperial College Healthcare NHS Trust, Imperial College London, London 968 W12 0HS, UK, 300 Adjunct Faculty, JSS University Academy of Higher Education and Research, Mysuru, India, 969 ³⁰¹Ophthalmology & Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, 970 169857, Singapore, ³⁰²Department of Medical Genetics, Oslo University Hospital, Oslo, Norway, 971 303 Department of Medical Research, Bærum Hospital, Vestre Viken Hospital Trust, Gjettum, Norway, 972 ³⁰⁴Department of Neurology, Division of Vascular Neurology, University of Maryland School of Medicine, 973 Baltimore, MD 21201, USA, 305 Baltimore Veterans Affairs Medical Center, Department of Neurology, 974 Baltimore, MD 21201 USA, 306Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades, 975 Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, 06720 Mexico City, Mexico, 976 ³⁰⁷Intermountain Heart Institute, Intermountain Medical Center, Murray, UT 84107, USA, ³⁰⁸Department of 977 Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA, 309Corporal Michael J. Crescenz VA 978 Medical Center, Philadelphia, PA 19104, USA, 310 Department of Vascular Surgery, University Medical Center 979 Utrecht, University of Utrecht, 3584 CX Utrecht, the Netherlands, 311Department of Human Nutrition, 980 Wageningen University, Wageningen, the Netherlands, 312Center for Translational and Computational 981 Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York, NY 10032, 982 USA, 313Department of Oncology, University of Cambridge, Cambridge, UK, 314Department of General 983 Practice, Amsterdam Public Health Institute, Amsterdam UMC, location VUmc, Amsterdam, The 984 Netherlands, 315 Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA, 985 ³¹⁶Cardiac Arrhythmia Service, Massachusetts General Hospital, Boston, MA 02114, USA, ³¹⁷Department of 986 Health Sciences, Division of Geriatric Medicine, Lund University, Sweden, 318 Molecular Cardiology Division, 987 Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia, 319Cardiology Department, St

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032 1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

Vincent's Hospital, Darlinghurst, NSW, 2010, Australia, 320 Faculty of Medicine, UNSW Sydney, Kensington, NSW 2052, Australia, 321 Department of Preventive Medicine, Keck School of Medicine of USC, Los Angeles, CA 90089, USA, 322Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA, 323Robertson Center for Biostatistics, University of Glasgow, UK, ³²⁴Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX 77030, USA, 325Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden, ³²⁶Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, ³²⁷Department of Internal Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA, 328 Faculty of Veterinary and Agricultural Science, Na, Parkville, Victoria, 3010, Australia, 329 Agriculture Victoria Research, Department of Jobs, Precincts and Regions, Bundoora, Victoria, 3083, Australia, 330Injury Prevention Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA, ³³¹Division of Physical Therapy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA, ³³²Centro de Investigacion en Salud Poblacional Instituto Nacional de Salud Publica and Centro de Estudios en Diabetes, Ahuacatitlan CP 62100 Cuernavaca Morelos, Mexico, 333 Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA, 334Departments of Pediatrics and Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA, 335 Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA, 336Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland, 337 Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA, 338Division of Pulmonary Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA, ³³⁹Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK, 340Cardiovascular Health Research Unit, Department of Epidemiology, University of Washington, Seattle, WA 98195, USA, 341Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 342Khoo Teck Puat - National University Children's Medical Institute, National University Health System, Singapore, 343 Department of Cardiology, Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria, 344Menzies Research Institute Tasmania, University of Tasmania, Hobart, 7000, Tasmania, Australia, 345Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, University of Melbourne, Melbourne, 3002, Victoria, Australia, ³⁴⁶Centre for Ophthalmology and Vision Science, Lions Eye Institute, University of Western Australia, Perth, 6009, Western Australia, Australia, 347 Cardiology Division, Massachusetts General Hospital, Boston, MA 02114, USA, ³⁴⁸Department of Genetics, Shanghai-MOST Key Laboratory of Heath and Disease Genomics, Chinese National Human Genome Center and Shanghai Industrial Technology Institute, Shanghai, China, ³⁴⁹Department of Internal Medicine, University of Utah, Salt Lake City, UT 84132, USA, ³⁵⁰Australian Centre for Precision Health, Clinical and Health Sciences, University of South Australia, Adelaide, Australia, 351 South Australian Health and Medical Research Institute, Adelaide, Australia, 352 Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, Shimotsuke, 329-0498, Japan, 353Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA, 354Division of Endocrinology, Diabetes and Metabolism, School of Medicine, Ohio State University, Columbus OH 43210, USA, 355Center for Life Course Health Research, Faculty of Medicine, University of Oulu, FI-90014 Oulun yliopisto, Finland, 356Unit of Primary Health Care, Oulu University Hospital, OYS, 90220 Oulu, Finland, 357 Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, Middlesex UB8 3PH, UK, 358Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Sciences Key Laboratory, 100730 Beijing, China, 359The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China, 360 Einthoven Laboratory for Experimental Vascular Medicine, LUMC, Leiden, the Netherlands, 361Netherlands Heart Institute, Utrecht, the Netherlands, ³⁶²Department of Clinical Physiology, Tampere University Hospital, Tampere 33521, Finland, ³⁶³Department of Clinical Physiology, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere 33014, Finland, 364Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan, 365 Department of Ophthalmology, The Catholic University of Korea Incheon St. Mary's Hospital, Incheon, 21431, Republic of Korea, 366NIHR Oxford Biomedical Research Centre, Churchill Hospital, Oxford, UK, 367German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany, 368Radboud University Medical Center, Radboud Institute for Health Sciences, Department of Urology, Nijmegen, the Netherlands, ³⁶⁹Yonsei University Severance Eye Hospital, Seodaemun-gu, Seoul, 03718, Republic of Korea, ³⁷⁰Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul, 07804, Republic of Korea, ³⁷¹Department of Cardiology, University Heart and Vascular Center UKE Hamburg, Hamburg, Germany, ³⁷²Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham,

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

B15 2GW, UK, ³⁷³German Center for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Germany, ³⁷⁴Atrial Fibrillation NETwork, Münster, Germany, ³⁷⁵Department of Epidemiology and Public Health, UCL Institute of Epidemiology and Health Care, University College London, UK, 376Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, ³⁷⁷University of Helsinki and Department of Medicine, Helsinki University Hospital, Helsinki 00029, Finland, ³⁷⁸Minerva Foundation Institute for Medical Research, Helsinki 00290, Finland, ³⁷⁹Director of Preventive Cardiology, Lipoprotein Apheresis Unit and Lipid Disorders Clinic, Metropolitan Hospital, 185 47, Athens, Greece, 380MRC-PHE Centre for Environment and Health, Imperial College London, London W2 1PG, UK, ³⁸¹National Heart and Lung Institute, Imperial College London, London, UK, ³⁸²Medical Department III – Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04103 Leipzig, Germany, ³⁸³Institute for Social and Economic Research, University of Essex, Wivenhoe Park CO4 3SQ, UK, ³⁸⁴Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio 70210, Finland, ³⁸⁵Department of Medicine, University of Colorado at Denver, Aurora, CO 80045, USA, ³⁸⁶Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Germany, ³⁸⁷Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA, 388 Department of Internal Medicine, Ewha Womans University School of Medicine, Seoul, 07985, Republic of Korea, 389Department of Epidemiology and Biostatistics, Peking University Health Science Center, Beijing 100191, China, ³⁹⁰Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing 100191, China, ³⁹¹Institute of Epidemiology and Biobank Popgen, Kiel University, Kiel, Germany, ³⁹²Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, 310024, China, 393Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark, ³⁹⁴Division of Cardiovascular Medicine and Abboud Cardiovascular Research Center, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA, 395 Alliance for Human Development, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Ontario, Canada, 396Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, ³⁹⁷Division of Cardiology, University of California San Francisco, San Francisco, CA 94143, USA, ³⁹⁸Department of Medicine, Internal Medicine, Lausanne University Hospital, Lausanne, Switzerland, 399University of Lausanne, Lausanne, Switzerland, 400SYNLAB Academy, SYNLAB Holding Deutschland GmbH, P5 7, Mannheim, Baden-Württemberg, 68161, Germany, ⁴⁰¹Department of Medicine, Division of Cardiology, Duke University School of Medicine, Durham, NC 27710, USA, 402 Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, USA, ⁴⁰³Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia, ⁴⁰⁴Geriatric Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden, 405 Geriatrics Research and Education Clinical Center, Baltimore Veterans Administration Medical Center, Baltimore, MD, 406Centre for Vision Research and Department of Ophthalmology, Westmead Millennium Institute of Medical Research, University of Sydney, Sydney, 2022, New South Wales, Australia, ⁴⁰⁷Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands, 408 Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, the Netherlands, 409Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK, 410 Electrophysiology Section, Division of Cardiovascular Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA, 411 Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA, 412Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA, 413 Department of Chronic Diseases and Ageing, Norwegian Institute of Public Health, Oslo, Norway, 414 Department of Pain Management and Research, Oslo University Hospital, Oslo, Norway, 415 Institute of Human Genetics, School of Medicine & University Hospital Bonn, Bonn, 53127, Germany, 416Sahlgrenska University Hospital, Department of Drug Treatment, Gothenburg, Sweden, 417 Laboratorio de Inmunogenómica y Enfermedades Metabólicas, Instituto Nacional de Medicina Genómica, CDMX, Mexico, 418Paavo Nurmi Centre, Sports and Exercise Medicine Unit, Department of Physical Activity and Health, Turku 20014, Finland, 419Institute for Precision Health, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA, 420Pat MacPherson Centre for Pharmacogenetics and Pharmacogenomics, Division of Population Health and Genomics, School of Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, DD1 9SY, UK, 421Centre Nutrition, santé et société (NUTRISS), Institute of Nutrition and Functional Foods, Université Laval, Québec QC, G1V 0A6, 422 IBE-Chair of Epidemiology, LMU Munich, 85764 Neuherberg, Germany, 423 Population, Policy and Practice, UCL Great Ormond Street Hospital Institute of Child Health, London, UK, 424 Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA, 425Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku 20014, Finland, ⁴²⁶Hero DMC Heart Institute, Dyanand Medical College, Ludhiana, Punjab, 14100, India, 427Second Department of Cardiology, Medical School, National and

1104 Kapodistrian University of Athens, University General Hospital Attikon, Athens, Greece, 428 Division of 1105 Biostatistics, Washington University School of Medicine, St. Louis, MO, 63110, USA, 429Genetics, Merck Sharp 1106 & Dohme Corp., Kenilworth, NJ 07033, USA, 430Department of Epidemiology, University of Washington, 1107 Seattle, WA 98195, USA, 431 Department of Endocrinology and Metabolism, Kyung Hee University School of Medicine, Dongdaemun-gu, Seoul, 02447, Korea, 432Department of Public Health, Clinicum, Faculty of 1108 1109 Medicine, University of Helsinki, Helsinki, Finland, 433Departments of Medicine, Pharmacology, and 1110 Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37232, USA, 434 Department of 1111 Cardiology and Department of Medicine, Columbia University, NY 10032, USA, 435 Department of Pediatrics, 1112 Section of Genetics, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 1113 73104 USA, ⁴³⁶Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, 1114 Oklahoma City, OK 73104, USA, 437Department of Physiology, University of Oklahoma Health Sciences 1115 Center, Oklahoma City, OK 73104, USA, 438Oklahoma Center for Neuroscience, University of Oklahoma 1116 Health Sciences Center, Oklahoma City, OK 73104, USA, 439BHF Glasgow Cardiovascular Research Centre, Faculty of Medicine, Glasgow, UK, 440 Gottfried Schatz Research Center (for Cell Signaling, Metabolism and 1117 1118 Aging), Medical University of Graz, 8010 Graz, Austria, 441Institute of Nutritional Science, University of 1119 Potsdam, Nuthetal, 14558, Germany, 442 Deutsches Herzzentrum München, Cardiology, and Technische 1120 Universität München, 80636, Germany, 443School of Biomedical Science and Pharmacy, University of 1121 Newcastle, Callaghan NSW 2305 Australia, 444Department of Medicine, Vanderbilt University Medical 1122 Center, Nashville, TN 37232, USA, 445Central University of Punjab, Bathinda, 151001, India, 446Department 1123 of Medicine I, University Hospital, LMU Munich, 81377, Munich, Germany, 447 Department of Cardiology, 1124 Clinical Sciences, Lund University and Skåne University Hospital, SE-221 85 Lund, Sweden, 448The 1125 Wallenberg Laboratory/Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg 1126 University and the Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden, 1127 449 Wallenberg Center for Molecular Medicine and Lund University Diabetes Center, Lund University, Lund, 1128 Sweden, 450 Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA, 1129 ⁴⁵¹Population Health Research Institute, St George's, University of London, London SW17 0RE, UK, 1130 ⁴⁵²Molecular Epidemiology Section, Department of Biomedical Data Sciences, Leiden University Medical 1131 Center, Leiden, the Netherlands, 453Department of Genetics, Stanford University School of Medicine, 1132 Stanford, CA 94305, USA, 454Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, 1133 Ouebec, H3I 1I4, Canada, 455Helsinki University Central Hospital, Research Program for Clinical and 1134 Molecular Metabolism, University of Helsinki, Helsinki, Finland, 456Folkhälsan Research Center, Helsinki, 1135 Finland, ⁴⁵⁷Department of Public Health, University of Helsinki, Helsinki, Finland, ⁴⁵⁸Diabetes Research 1136 Group, King Abdulaziz University, Jeddah, Saudi Arabia, 459Unidad de Biología Molecular y Medicina 1137 Genómica, Instituto de Investigaciones Biomédicas, UNAM, Mexico City, Mexico, 460 Instituto Nacional de 1138 Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, 461Yong Loo Lin School of Medicine, National 1139 University of Singapore and National University Health System, 119228, Singapore, 462Milken Institute 1140 School of Public Health, The George Washington University, Washington DC 20052, USA, 463 Department of 1141 Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, 3015 GD, the Netherlands, 464Dept Geriatric Medicine, Amsterdam Public Health, Amsterdam UMC, location AMC, 1142 1143 Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands, 465Department of Epidemiology and Data Science, 1144 Amsterdam UMC, Amsterdam, the Netherlands, 466Interfaculty Institute for Genetics and Functional 1145 Genomics, University Medicine Greifswald, Felix-Hausdorff-Str. 8, Greifswald, 17475, Germany, 467Unidad 1146 de Investigación Médica en Epidemiología Clínica, Hospital de Especialidades, Centro Médico Nacional Siglo 1147 XXI, Instituto Mexicano del Seguro Social, 06720 Mexico City, Mexico, 468Institute of Cellular Medicine, 1148 Newcastle University, Newcastle upon Tyne NE2 4HH, UK, 469 Department of Population and Public Health 1149 Sciences, Keck School of Medicine of USC, Los Angeles, CA 90089, USA, 470 Department of Physiology & 1150 Neuroscience, Keck School of Medicine of USC, Los Angeles, CA 90089, USA, 471USC Diabetes and Obesity 1151 Research Institute, Keck School of Medicine of USC, Los Angeles, CA 90089, USA, 472Lundbeck Foundation 1152 Center for GeoGenetics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark, 473MRC Human 1153 Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Crewe 1154 Road, Edinburgh EH4 2XU, Scotland, 474School of Chinese Medicine, China Medical University, Taichung, 1155 Taiwan, ⁴⁷⁵Diabetes Unit, KEM Hospital and Research Centre, Pune, India, ⁴⁷⁶Kurume University School of 1156 Medicine, Kurume, 830-0011, Japan, 477 Division of Cancer Control and Population Sciences, UPMC Hillman 1157 Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA, 478Department of Epidemiology, 1158 Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15232, USA, ⁴⁷⁹TUM School of 1159 Medicine, Technical University of Munich and Klinikum Rechts der Isar, 81675 Munich, Germany, 1160 ⁴⁸⁰Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway, ⁴⁸¹VA Million Veteran 1161 Program, ⁴⁸²DiscovEHR and MyCode Community Health Initiative, ⁴⁸³Electronic Medical Records and

Genomics Network, 484Lifelines Cohort Study, Groningen, the Netherlands, 485Regeneron Genetics Center, Tarrytown, NY 10591, USA, 486The Institute of Cancer Research, London, SM2 5NG, UK, 487Understanding Society Scientific Group, 488Vanderbilt Genetics Institute, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA, 489Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA 30322, USA, 490 Atlanta VA Health Care System, Decatur, GA 30033, USA, ⁴⁹¹Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders (PACER-HD), King Abdulaziz University, Jeddah, Saudi Arabia, ⁴⁹²Department of Population Health Sciences, Geisinger, Danville, PA 17822, USA, 493The Mindich Child Health and Developmet Institute, Icahn Shool of Medicine at Mount Sinai, New York, NY 10029, USA, 494The Novo Nordisk Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark, ⁴⁹⁵School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China, 496Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China, 497 Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA, 498McDonnell Genome Institute and Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA, 499Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka 565-0871, Japan, 500 Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka 565-0871, Japan, 501 Programs in Metabolism and Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA, 502 Departments of Pediatrics and Genetics, Harvard Medical School, Boston, MA 02115.

- ^Current address: Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
- 1183 *These authors contributed equally
 - §These authors co-directed the study
 - #Corresponding author

1162

1163

1164

1165

1166 1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181 1182

1184

1185

1186 1187

1188

1189

1190 1191 1192

1193 1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

ACKNOWLEDGEMENTS

We gratefully acknowledge the participants in each cohorts contributing to this study. Additional acknowledgements are listed in **Supplementary information**. Support for title page creation and format was provided by *AuthorArranger*, a tool developed at the National Cancer Institute.

This research was supported by the following funding bodies.

US National Institutes of Health:

75N92021D00001, 75N92021D00002, 75N92021D00003, 75N92021D00004, 75N92021D00005, AA07535, AA10248, AA014041, AA13320, AA13321, AA13326, DA12854, U01 DK062418, HHSN268201800005I, HHSN268201800007I, HHSN268201800003I, HHSN268201800006I, HHSN268201800004I, R01 CA55069, R35 CA53890, R01 CA80205, R01 CA144034, HHSN268201200008I, EY022310, 1X01HG006934-01, R01DK118427, R21DK105913, HHSN268201200036C, HHSN268200800007C, HHSN268200960009C, HHSN268201800001C, N01HC85079, N01HC85080, N01HC85081, N01HC85082, N01HC85083, 75N92021D00006, U01HL080295, R01HL085251, R01HL087652, R01HL105756, R01HL103612, R01HL120393, U01HL130114, R01AG023629, UL1TR001881, DK063491, R01 HL095056, 1R01HL139731, 1R01HL092577 (P.T.E.), K24HL105780 (P.T.E.), HHSC268200782096C, R01 DK087914, R01 DK066358, R01 DK053591, 1K08HG010155 (A.V.K.), 1U01HG011719 (A.V.K.), U01 HG004436, P30 DK072488, HHSN268200782096C, U01 HG 004446, R01 NS45012, U01 NS069208-01, R01-NS114045 (J.W.C.), R01-NS100178 (J.W.C.), R01-NS105150 (J.W.C.), HL043851, CA047988, UM1CA182913, U01HG008657, U01HG008685, U01HG008672, U01HG008666, U01HG006379, U01HG008679, U01HG008680, U01HG008684, U01HG008673, U01HG008701, U01HG008676, U01HG008664, U54MD007593, UL1TR001878, R01-DK062370 (M.B.), R01-DK072193 (K.L.M.), intramural project number 1Z01-HG000024 (F.S.C.), N01-HG-65403, DA044283, DA042755, DA037904, AA009367, DA005147, DA036216, 5-P60-AR30701, 5-P60-AR49465, N01-AG-1-2100, HHSN271201200022C, National Institute on Aging Intramural Research Program, R-35-HL135824 (C.J.W.), AA-12502, AA-00145, AA-09203, AA15416, K02AA018755, UM1 CA186107, P01 CA87969, R01 CA49449, U01 CA176726, R01 CA67262, UM1CA167552, CA141298, P01CA055075, CA141298, HL54471, HL54472, HL54473, HL54495, HL54496, HL54509, HL54515, U24 MH068457-06, R01D0042157-01A1, R01 MH58799-03, MH081802, 1RC2MH089951-01, 1RC2 MH089995, R01 DK092127-04, R01DK110113 (R.J.F.L.), R01DK075787 (R.J.F.L.), R01DK107786 (R.J.F.L.), R01HL142302 (R.J.F.L.), R01HG010297 (R.J.F.L.), R01DK124097 (R.J.F.L.), R01HL151152 (R.J.F.L.), R01-HL046380, KL2-RR024990, R35-HL135818, R01-HL113338, R35HL135818 (Su.R.), HL 046389 (Su.R.), and HL113338 (Su.R.), K01 HL135405 (B.E.C.), R03 HL154284 (B.E.C.), R01HL086718, HG011052 (X.Zhu), N01-HC-25195, HHSN268201500001I, N02-HL-6-4278, R01-DK122503, U01AG023746, U01AG023712, U01AG023749, U01AG023755, U01AG023744, U19AG063893, R01-DK-089256, R01HL117078, R01 HL09135701, R01 HL091357, R01 HL104135, R37-HL045508, R01-HL053353, R01-DK075787, $\\ U01-HL054512, \ R01-HL074166, \ R01-HL086718, \ R01-HG003054, \ U01HG004423, \ U01HG004446, \ U01HG004438, \ U01HG004448, \ U01HG004438, \ U01HG004448, \ U01HG00448, \ U01HG00448,$ DK078150, TW005596, HL085144, RR020649, ES010126, DK056350, R01DK072193, R01 HD30880, R01 AG065357, R01DK104371, R01HL108427, Fogarty grant D43 TW009077, 263 MD 9164, 263 MD 821336, N.1-AG-1-1, N.1-AG-1-HHSN268201800013I, HHSN268201800014I, HHSN268201800015I, HHSN268201800011I and HHSN268201800012I, KL2TR002490 (L.M.R.), T32HL129982 (L.M.R.), R01AG056477, R01AG034454, R01 HD056465, U01 HL054457, U01 HL054464, U01 HL054481, R01 HL119443, R01 HL087660, U01AG009740, RC2 AG036495, RC4 AG039029, U01AG009740 (W.Zhao.), RC2 AG036495 (W.Zhao.), RC4 AG039029 75N92020D00001, HHSN268201500003I, N01-HC-95159, 75N92020D00005, N01-HC-95160, 75N92020D00002, N01-HC-95161, 75N92020D00003, N01-HC-95162, 75N92020D00006, N01-HC-95163, 75N92020D00004, N01-HC-95164, 75N92020D00007, N01-HC-95165, N01-HC-95166, N01-HC-95167, N01-HC-95168, N01-HC-95169, UL1-TR-000040, UL1-TR-001079, UL1-TR-001420, N02-HL-64278, UL1TR001881, DK063491, R01-HL088457, R01-HL-60030, R01-HL067974, R01-HL-55005, R01-HL 067974, R01HL111249, R01HL111249-04S1, U01HL54527, U01HL54498, EY014684, EY014684-03S1, EY014684-04S1, DK063491, S100D017985, S10RR025141, UL1TR002243, UL1TR000445, UL1RR024975, U01HG004798, R01NS032830, RC2GM092618, P50GM115305, U01HG006378, U19HL065962, R01HD074711, 5K08HL135275 (R.W.M.), R01 (B.L.), NR013520 (Y.V.S.), DK125187 (Y.V.S.), HHSN268201700001I, HHSN268201700002I, HHSN268201700003I, HHSN268201700004I, HHSN268201700005I, R01HL087641, R01HL086694, U01HG004402, HHSN268200625226C, UL1RR025005, U01HG007416, R01DK101855, 15GRNT25880008, N01-HC65233, N01-N01-HC65237, U01HG007376. N01-HC65235. N01-HC65236, HHSN268201100046C. HHSN268201100001C, HHSN268201100002C. HHSN268201100003C. HHSN268201100004C, HHSN271201100004C, N01-AG-6-2101, N01-AG-6-2103, N01-AG-6-2106, R01-AG028050, R01-NR012459, P30AG10161, P30AG72975, R01AG17917, RF1AG15819, R01AG30146, U01AG46152, U01AG61256, AG000513, R01 HD58886, R01 HD100406, N01-HD-1-3228, -3329, -3330, -3331, -3332, -3333, UL1 TR000077, R01 HD056465 (S.F.A.G.), R01 HG010067 (S.F.A.G.), R01CA64277, R01CA15847, UM1CA182910, R01CA148677, R01CA144034, UM1 CA182876, R01DK075787, R01DK075787 (J.N.H.), ZIA CP010152-20, U19 CA 148537-01, U01 CA188392, X01HG007492, HHSN268201200008I, Z01CP010119, R01-CA080122, R01-CA056678, R01-CA082664, R01-CA092579, K05-CA175147, P30-CA015704, CA063464, CA054281, CA098758, CA164973, R01CA128813, K25 HL150334 (R.E.Mu.), DP2 ES030554 (P.-R.L.), U19 CA148065, CA128978, 1U19 CA148537, 1U19 CA148065, 1U19 CA148112, U01 DK062418, U01-DK105535 (M.I.M.), R01HL24799 NIHHLB, U01 DK105556, DK093757 (K.L.M.).

Wellcome Trust:

1221

1222

1223

1224

1225

1226 1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250 1251

1252

1253

1254

1255

1256

1257

1258 1259

1260

1261

1262

1263

1264 1265

1266

1267

1268

1269

1270 1271

1272

1273 1274

1275

1276

1277

1278

1279 1280

1281

1282

1283

 $068545/\mathbb{Z}/02,\ 076113/\mathbb{B}/04/\mathbb{Z},\ Strategic\ Award\ 079895,\ 090532/\mathbb{Z}/09/\mathbb{Z},\ 203141/\mathbb{Z}/16/\mathbb{Z},\ 201543/\mathbb{B}/16/\mathbb{Z},\ 084723/\mathbb{Z}/08/\mathbb{Z},\ 090532,\ 098381,\ 217065/\mathbb{Z}/19/\mathbb{Z},\ WT088806,\ WT092830/\mathbb{Z}/10/\mathbb{Z},\ 202802/\mathbb{Z}/16/\mathbb{Z}\ (N.J.T.),\ 217065/\mathbb{Z}/19/\mathbb{Z}\ (N.J.T.),\ 216767/\mathbb{Z}/19/\mathbb{Z},\ 104036/\mathbb{Z}/14/\mathbb{Z},\ 098051,\ WT098051,\ 212946/\mathbb{Z}/18/\mathbb{Z},\ 202922/\mathbb{Z}/16/\mathbb{Z},\ 104085/\mathbb{Z}/14/\mathbb{Z},\ 088158/\mathbb{Z}/09/\mathbb{Z},\ 221854/\mathbb{Z}/20/\mathbb{Z},\ 212904/\mathbb{Z}/18/\mathbb{Z},\ WT095219MA,\ 068545/\mathbb{Z}/02,\ 076113,\ 090532(M.I.M.),\ 098381\ (M.I.M.),\ 106130\ (M.I.M.),\ 203141\ (M.I.M.),\ 212259\ (M.I.M.),\ 072960/\mathbb{Z}/03/\mathbb{Z},\ 084726/\mathbb{Z}/08/\mathbb{Z},\ 085475/\mathbb{Z}/08/\mathbb{Z},\ 085475/\mathbb{Z}/08/\mathbb{Z}.$

UK Medical Research Council:

G0000934, MR/N013166/1 (P.R.H.J.T.), MR/N013166/1 (K.A.K.), U. MC_UU_00007/10, G0601966, G0700931, MRC Integrative Epidemiology Unit MC_UU_00011/1 (N.J.T., R.E.Mi.), MC_UU_00019/1, G9521010D (the BRIGHT Study), MC_UU_12015/1, MC_PC_13046, MC_PC_13049, MC-PC-14135, MC_UU_00017/1, MC_UU_12026/2, MC_U137686851, K013351, R024227, MC_UU_00007/10, MR/M016560/1, G1001799, MC_PC_20026 (L.J.Sm.).

Cancer Research UK:

CRUK Integrative Cancer Epidemiology Programme C18281/A29019 (N.J.T.), C16077/A29186, C500/A16896, C5047/A7357, C1287/A10118, C1287/A16563, C5047/A3354, C5047/A10692, C16913/A6135, C5047/A1232, C490/A10124, C1287/A16563, C1287/A10118, C1287/A10710, C12292/A11174, C1281/A12014, C5047/A8384, C5047/A15007, C5047/A10692, C8197/A16565.

Australian Research Council:

DP0770096 (P.M.Vis.), DP1093502, FL180100072 (P.M.Vis.), DE200100425 (Lo.Y.)

Australian National Health and Medical Research Council:

241944, 389875, 389891, 389892, 389938, 442915, 442981, 496739, 496688, 552485, 613672, 613601, 1011506, APP1172917 (S.E.M.), , 572613, 403981, 1059711, 1027449, 1044840, 1021858, 974159, 211069, 457349, 512423, 302010, 571013, GNT1154518 (D.A.M.), GNT1103329 (A.W.H.), 1186500 (D.F.), 209057, 396414, 1074383, 390130, 1009458, Career Development Fellowship, 1113400 (P.M.Vis., Jian Y.).

UK National Institute for Health Research Centres:

Barts Biomedical Research Centre (Pa.D., S.K.), Comprehensive Biomedical Research Centre Imperial College Healthcare NHS Trust, Health Protection Research Unit on Health Impact of Environmental Hazards, RP-PG-0407-10371, Official Development Assistance award 16/136/68, the University of Bristol NIHR Biomedical Research Centre

BRC-1215-2001 (N.J.T.), Academic Clinical Fellowship (S.J.H.), Leicester Cardiovascular Biomedical Research Centre BRC-1215-20010 (C.P.N., P.S.B., N.J.S.), Barts Biomedical Research Centre and Queen Mary University of London, Exeter Clinical Research Facility, Clinical Research Facility and Biomedical Research Centre based at Guy's and St Thomas' NHS Foundation Trust and King's College London (M.Man., C.Par.), Biomedical Research Centre at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Biomedical Research Centre at the University of Cambridge, Oxford Biomedical Research Centre.

European Union:

 018996, LSHG-CT-2006-018947, HEALTH-F2-2013-601456, ERA-CVD program grant 01KL1802 (S.W.v.d.L.), 305739, 727565, FP/2007-2013 ERC Grant Agreement number 310644 MACULA, LSHM-CT-2007-037273, SOC 95201408 05F02, SOC 98200769 05F02, LSHM-CT-2006-037593, 279143, iHealth-T2D 643774, 223004, Marie Sklodowska-Curie grant agreement number 786833 (J.R.), 810645, FP7-HEALTH-F4-2007 grant number 201413 and 9602768, QLG1-CT-2001-01252, LSHG-CT-2006-01894 (I.R., A.F.W., V.V.), 733100, HEALTH-F2-2009-223175, LSHG-CT-2006-01947), HEALTH-F4-2007-201413, QLG2-CT-2002-01254, FP7 project number 602633, H2020 project numbers 634935 and 633784, HEALTH-F2-2009-223175, IMI-SUMMIT program, H2020 grants 755320 and 848146 (S.W.v.d.L.), BigData@Heart grant EU IMI 116074 (P.Ki.).

European Regional Development Fund:

2014-2020.4.01.15-0012, 2014-2020.4.01.16-0125 (A.Me.), 539/2010 A31592, 2014-2020.4.01.16-0030.

Netherlands Heart Foundation:

CVON 2011/B019 (S.W.v.d.L.), CVON 2017-20 (S.W.v.d.L.), NHS2010B233, NHS2010B280, CVON 2014-9 (M.R.).

British Heart Foundation:

Centre for Research Excellence (H.W.), RG/14/5/30893 (Pa.D.), FS/14/66/3129 (O.G.), SP/04/002, SP/16/4/32697 (C.P.N.), CH/1996001/9454, 32334 (M.Ki.), RG/17/1/32663, FS/13/43/30324 (P.Ki.), PG/17/30/32961 (P.Ki.), PG/20/22/35093 (P.Ki.).

US Department of Veterans Affairs:

Baltimore Geriatrics Research, Education, and Clinical Center; IK2-CX001780 (S.M.D.), I01-BX004821, MVP 001, IK2-CX001907 (Sr.R.).

American Heart Association:

18SFRN34250007 (S.A.Lu.), 18SFRN34110082 (P.T.E.), 17IBDG33700328 (J.W.C.), 15GPSPG23770000 (J.W.C.), 15POST24470131 (C.N.S.), 17POST33650016 (C.N.S.).

Leducg Fondation:

'PlagOmics' (Ather-Express, S.W.v.d.L), 14CVD01 (P.T.E.).

Netherlands Organization for Scientific Research NWO:

GB-MW 940-38-011, ZonMW Brainpower grant 100-001-004, ZonMw Risk Behavior and Dependence grant 60-60600-97-118, ZonMw Culture and Health grant 261-98-710, GB-MaGW 480-01-006, GB-MaGW 480-07-001, GB-MaGW 452-04-314, GB-MaGW 452-06-004, 175.010.2003.005, 481-08-013, 481-11-001, Vici 016.130.002, 453-16-007/2735, Gravitation 024.001.003, 480-05-003, NWO/SPI 56-464-14192, 480-15-001/674, ZonMW grant number 916.19.151 (H.H.H.A.), ZonMw grant 95103007, 175.010.2005.011, 911-03-012, ZonMw grant 6130.0031, VIDI 016-065-318 (D.P.), Vidi 016.096.309.

European Research Council:

ERC-2017-STG-757364, ERC-CoG-2015-681466, CoG-2015_681742_NASCENT (I.J.), ERC-2011-StG 280559-SEPI, ERC-STG-2015-679242, 742927, ERC-230374.

Swedish Research Council:

2017-02554, 349-2006-237, 2009-1039, Linné grant number 349-2006-237, 2016-06830 (G.H.), 2017-00641, grant for the Swedish Infrastructure for Medical Population-based Life-course Environmental Research.

Novo Nordisk Foundation:

12955 (B.F.), NNF18CC0034900, NNF15OC0015896, NNF18CC0034900, NNF15CC0018486.

Academy of Finland:

- 77299, 124243, 285547 EGEA, 100499, 205585, 118555, 141054, 264146, 308248, 312073, 265240, 263278, Center of Excellence in Complex Disease Genetics grant number 312062, 329202 (M.Ki.), 322098, 206374, 251360, 276861,
- 322098, 286284, 134309 (Eye), 126925, 121584, 124282, 129378 (Salve), 117787 (Gendi), and 41071 (Skidi),
- 1346 263401 (Le. G.), 267882 (Le. G.), 312063 (Le. G.), 336822 (Le. G.), 312072 (T.T.), 336826 (T.T.).

German Federal Ministry of Education and Research:

01ZZ9603, 01ZZ0103, 01ZZ0403, 03IS2061A, 03ZIK012, 01EA1801A (G.E.D.), 01ER0804 (K.-U.E.), BMBF 01ER1206 and BMBF 01ER1507 (I.M.H.), BMBF projects 01EG0401, 01GI0856, 01GI0860, 01GS0820_WB2-C, 01ER1001D, 01GI0205.

Additional funding:

1347 1348

1349

1350

1351

1352 1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

The University of Newcastle Strategic Initiatives Fund; the Gladys M Brawn Senior Research Fellowship scheme; Vincent Fairfax Family Foundation; The Hunter Medical Research Institute; the Nagahama City Office and the Zeroji Club; the Center of Innovation Program, the Global University Project from the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Practical Research Project for Rare/Intractable Diseases (ek0109070, ek0109283, ek0109196, ek0109348), and the Program for an Integrated Database of Clinical and Genomic Information (kk0205008), from the Japan Agency for Medical Research and Development; Takeda Medical Research Foundation; Astellas Pharma, Inc.; Daiichi Sankyo Co., Ltd.; Mitsubishi Tanabe Pharma Corporation; Otsuka Pharmaceutical Co., Ltd.; Taisho Pharmaceutical Co., Ltd.; and Takeda Pharmaceutical Co., Ltd.; Type 1 Diabetes Genetics Consortium; the French Ministry of Research; the Chief Scientist Office of the Scottish Government #CZB/4/276 and #CZB/4/710; Arthritis Research UK; Royal Society URF (J.F.W.); the Atlantic Philanthropies; the UK Economic and Social Research Council awards ES/L008459/1 and ES/L008459/1; the UKCRC Centre of Excellence for Public Health Northern Ireland; the Centre for Ageing Research and Development in Ireland; the Office of the First Minister and Deputy First Minister; the Health and Social Care Research and Development Division of the Public Health Agency; the Wellcome Trust/Wolfson Foundation; and Queen's University Belfast; the Science Foundation Ireland-Department for the Economy Award 15/IA/3152 (NICOLA); NI HSC R&D division STL/5569/19 (L.J.Sm.); the Italian Ministry of Education, University and Research (MIUR) number 5571/DSPAR/2002 (OGP study); GlaxoSmithKline; the Faculty of Biology and Medicine of Lausanne; the Swiss National Science Foundation grants 33CSCO-122661, 33CS30-139468, 33CS30-148401 and 33CS30_177535/1; the Montreal Heart Institute Biobank; the Canadian Institutes of Health Research PJT #156248; the Canada Research Chair Program, Genome Quebec and Genome Canada, and the Montreal Heart Institute Foundation (G.L.); the Strategic Priority CAS Project grant number XDB38000000, Shanghai Municipal Science and Technology Major Project grant number 2017SHZDZX01, and the National Natural Science Foundation of China grant number 81970684; the National Medical Research Council (grants 0796/2003, 1176/2008, 1149/2008, STaR/0003/2008, 1249/2010, CG/SERI/2010, CIRG/1371/2013, and CIRG/1417/2015) and the Biomedical Research Council (grants 08/1/35/19/550 and 09/1/35/19/616) of Singapore; the Ministry of Health, Singapore; the National University of Singapore and the National University Health System, Singapore; the Agency for Science, Technology and Research, Singapore; Merck Sharp & Dohme Corp., Whitehouse Station, NJ, USA; Kuwait Foundation for Advancements of Sciences (The KODGP); the Oogfonds, Macula Fonds, Landelijke Stichting voor Blinden en Slechtzienden, Stichting Blindenhulp, Stichting A.F. Deutman Oogheelkunde Researchfonds; in Mexico the Fondo Sectorial de Investigación en Salud y Seguridad Social SSA/IMSS/ISSSTECONACYT project 150352; Temas Prioritarios de Salud Instituto Mexicano del Seguro Social 2014-FIS/IMSS/PROT/PRIO/14/34; the Fundación IMSS; Compute Ontario (www.computeontario.ca) and Compute Canada (www.compute.canada.ca); CIHR Operating grants and a CIHR New Investigator Award (E.J.P.); the Westlake Education Foundation (Jian Y.); AstraZeneca; a Miguel Servet contract from the ISCIII Spanish Health Institute number CP17/00142 and co-financed by the European Social Fund (M.S.-L.); the Dutch Ministry of Justice; the European Science Foundation EuroSTRESS project FP-006; Biobanking and Biomolecular Resources Research Infrastructure BBMRI-NL award CP 32; Accare Centre for Child and Adolescent Psychiatry; and the Dutch Brain Foundation; the Federal Ministry of Science, Germany award 01 EA 9401; German Cancer Aid award 70-2488-Ha I; the participating Departments, the Division and the Board of Directors of the Leiden University Medical Centre and the Leiden University, Research Profile Area 'Vascular and Regenerative Medicine'; Research Project For Excellence IKY/SIEMENS; the Wake Forest School of Medicine grant M01 RR07122 and Venture Fund; the Greek General Secretary of Research and Technology award PENED 2003; the MRC-PHE Centre for Environment and Health; the Singapore Ministry of Health's National Medical Research Council under its Singapore Translational Research Investigator (STaR) Award NMRC/STaR/0028/2017 (J.C.C); the German Research Foundation Project-ID 431984000 - SFB 1453 (M.Wu., Anna K.); the KfH Foundation for Preventive Medicine, and Bayer Pharma AG; the German Research Foundation grant KO 3598/5-1 (Anna K.); the Leipzig Research Center for Civilization Diseases; the Medical Faculty of the University of Leipzig; the Free State of Saxony; the Medical Research Funds from Kangbuk Samsung Hospital (H.-N.K.); the Division of Adult and Community Health, Centers for Disease Control and Prevention; Astra-Zeneca (P.M.R., D.I.C.); Amgen (P.M.R., D.I.C.); a gift from the Smilow family; the Perelman School of Medicine at the University of Pennsylvania; the University of Bristol; a comprehensive list of grants funding is available on the ALSPAC website; the US Centers for Disease Control and Prevention/Association of Schools of Public Health awards S043, S1734, and S3486, and US Centers for Disease Control and Prevention awards U01 DP003206 and U01 DP006266; the Ministry of Cultural Affairs and the Social Ministry of the Federal State of Mecklenburg-West Pomerania; Hjartavernd (the Icelandic Heart Association), and the Althingi (the Icelandic Parliament); Bristol-Myers Squibb; the Netherlands Genomics Initiative's Netherlands Consortium for Healthy Aging grant 050-060-810; the Netherlands Heart Foundation grant 2001 D 032 (J.W.J.); the Chief Scientist Office of the Scottish Government Health Directorates award CZD/16/6, the Scottish Funding Council award HR03006; the Stiftelsen Kristian Gerhard Jebsen; Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology; Central Norway Regional

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

Health Authority; the Medical Research Council of Canada and the Canadian Institutes of Health Research grant FRN-CCT-83028 (The Quebec Family Study); Pfizer, New York, NY, USA; the Servier Research Group, Paris, France; Leo Laboratories, Copenhagen, Denmark; Estonian Research Council grants PUT 1371, EMBO Installation grant 3573, and The European Regional Development Fund (Kr.L.); the Estonian Research Council grants PUT PRG687, PRG1291 (EstBB, T.E.); the University of Oulu grant number 24000692, Oulu University Hospital grant number 24301140; the Austrian Science Fond grant numbers P20545-P05 and P13180, the Austrian National Bank Anniversary Fund award number P15435, the Austrian Ministry of Science under the aegis of the EU Joint Programme-Neurodegenerative Disease Research (www.jpnd.eu), the Austrian Science Fund P20545-B05, and the Medical University of Graz (ASPS); Wellcome Trust Sanger Institute; the Broad Institute; the Grant of National Center for Global Health and Medicine; the Core Research for Evolutional Science and Technology (CREST) from the Japan Science Technology Agency; the Program for Promotion of Fundamental Studies in Health Sciences, National Institute of Biomedical Innovation Organization; the Grant of National Center for Global Health and Medicine; the German Research Foundation awards HE 3690/7-1 (I.M.H.) and BR 6028/2-1 (Ca.B.); funds from THL and various domestic foundations (The FINRISK surveys); Business Finland through the Personalized Diagnostics and Care program, SalWe Ltd grant number 3986/31/2013; the Finnish Foundation for Cardiovascular Research, the Sigrid Juselius Foundation and University of Helsinki HiLIFE Fellow and Grand Challenge grants (Sa.R.); the Finnish innovation fund Sitra and Finska Läkaresällskapet (E.W.); Netherlands Twin Registry Repository and the Biobanking and Biomolecular Resources Research Infrastructure awards BBMRI-NL, 184.021.007 and 184.033.111; Amsterdam Public Health and Neuroscience Campus Amsterdam; the Avera Institute for Human Genetics, Sioux Falls, South Dakota, USA (The Netherlands Twin Register); the KNAW Academy Professor Award PAH/6635 (D.I.B.); the Netherlands Organization for Scientific Research Geestkracht program grant 10-000-1002; the Center for Medical Systems Biology, Biobanking and Biomolecular Resources Research Infrastructure; VU University's Institutes for Health and Care Research and Neuroscience Campus Amsterdam; University Medical Center Groningen; Leiden University Medical Center; the Genetic Association Information Network of the Foundation for the National Institutes of Health; the BiG Grid, the Dutch e-Science Grid; The Lundbeck Foundation; the Stanley Medical Research Institute; the Aarhus and Copenhagen universities and university hospitals; the Danish National Biobank resource supported by the Novo Nordisk Foundation; the Robert Dawson Evans Endowment of the Department of Medicine at Boston University School of Medicine and Boston Medical Center; the Economic & Social Research Council award ES/H029745/1; American Diabetes Association Innovative and Clinical Translational Award 1-19-ICTS-068 (J.M.M.); SIGMA; Consejo Naconal de Ciencia y Tecnologia CONACYT grants 2092, M9303, F677M9407, 251M 2005COI (C.G.-V.); the Danish National Research Foundation; the Danish Pharmacists' Fund; the Egmont Foundation; the March of Dimes Birth Defects Foundation; the Augustinus Foundation; the Health Fund of the Danish Health Insurance Societies; the Oak Foundation fellowship (B.F.); the Nordic Center of Excellence in Health-Related e-Sciences (Xueping.L.); Grants-in-Aid from MEXT numbers 24390169, 16H05250, 15K19242, 16H06277, 19K19434, 20K10514, 21H03206, and a grant from the Funding Program for Next-Generation World-Leading Researchers number LS056; Council of Scientific and Industrial Research, Ministry of Science and Technology, Govt. of India, New Delhi, India; the Lundbeck Foundation grant number R16-A1694; The Danish Ministry of Health grant number 903516; the Danish Council for Strategic Research grant number 0603-00280B; and The Capital Region Research Foundation; the Danish Research Council; the Danish Centre for Health Technology Assessment; Novo Nordisk Inc.; Research Foundation of Copenhagen County; Danish Ministry of Internal Affairs and Health; the Danish Heart Foundation; the Danish Pharmaceutical Association; the Ib Henriksen Foundation; the Becket Foundation; and the Danish Diabetes Association; the Velux Foundation; The Danish Medical Research Council; Danish Agency for Science, Technology and Innovation; The Aase and Ejner Danielsens Foundation; ALK-Abello A/S, Hørsholm, Denmark; and Research Centre for Prevention and Health, the Capital Region of Denmark; the Timber Merchant Vilhelm Bang's Foundation; the Danish Heart Foundation grant number 07-10-R61-A1754-B838-22392F; the Health Insurance Foundation (Helsefonden) grant number 2012B233 (Health2008); TrygFonden grant number 7-11-0213, the Lundbeck Foundation award R155-2013-14070; the Danish Research Council for Independent Research and by Region of Southern Denmark; the Heinz Nixdorf Foundation; the German Research Council DFG projects EI 969/2-3, ER 155/6-1;6-2, HO 3314/2-1;2-2;2-3;4-3, INST 58219/32-1, JO 170/8-1, KN 885/3-1, PE 2309/2-1, SI 236/8-1;9-1;10-1; the Ministry of Innovation, Science, Research and Technology, North Rhine-Westphalia; Academia Sinica; the Office of Population Studies Foundation in Cebu; the China-Japan Friendship Hospital; Ministry of Health, Chinese National Human Genome Center at Shanghai; Beijing Municipal Center for Disease Prevention and Control; the National Institute for Nutrition and Health, China Center for Disease Control and Prevention; the Canadian Institutes of Health Research grant MOP-82893; WA Health, Government of Western Australia Future Health WA grant G06302; Safe Work Australia; the University of Western Australia (UWA); Curtin University; Women and Infants Research Foundation; Telethon Kids Institute; Edith Cowan University; Murdoch University; The University of Notre Dame Australia; The Raine Medical Research Foundation; the Italian Ministry of Health award ICS110.1/RF97.71; Hong Kong Kadoorie Charitable Foundation; National Natural Science Foundation of China award 91846303; National Key Research and Development Program of China awards 2016YFC 0900500, 0900501, 0900504, 1303904; the KfH Stiftung Präventivmedizin e.V. (C.A.B.); the Else Kröner-Fresenius-Stiftung (2012 A147); the University Hospital Regensburg; the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) Project-ID 387509280 - SFB 1350 (Subproject C6); the European Union/EFPIA/ JDRF Innovative Medicines Initiative 2 Joint Undertaking grant number 115974; German Research Foundation DFG BO 3815/4-1 (C.A.B.); the Swedish Foundation for Strategic Research; the Swedish Heart-Lung Foundation; Swedish Heart Lung

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

Foundation (A.Po.); VIAgenomics number SP/19/2/344612; the Strategic Cardiovascular Program of Karolinska Institutet and Stockholm County Council; the Foundation for Strategic Research and the Stockholm County Council number 560283; the ALF/LUA research grant in Gothenburg; the Torsten Soderberg Foundation; the ESRC grants ES/S007253/1, ES/T002611/1, and ES/T014083/1 (M.Ku.); Beijing Municipal of Health Reform and Development Project #2019-4 (Beijing Eye Study); the Children's Hospital of Philadelphia; a Research Development Award from the Cotswold Foundation; the Children's Hospital of Philadelphia Endowed Chair in Genomic Research; the Daniel B. Burke Endowed Chair for Diabetes Research; the Italian Ministry of Universities grant IDF SHARID ARS01_01270; the Assessorato Ricerca Regione Campania grant POR CAMPANIA 2000/2006 MISURA 3.16; the Dutch Ministry of Health, Welfare and Sport; the Dutch Ministry of Economic Affairs; the University Medical Center Groningen (UMCG the Netherlands); University of Groningen and the Northern Provinces of the Netherlands; the UMCG Genetics Lifelines Initiative supported by a Spinoza Grant from NWO; University of Michigan discretionary funds; National Institute of Health, Republic of Korea grants 4845–301, 4851–302, 4851–307; Korea National Institute of Health intramural grant 2019-NG-053-02; the Korea Healthcare Technology R&D Project, Ministry of Health and Welfare, Republic of Korea award A102065; the National Research Foundation of Korea Grant 2020R1I1A2075302 (Y.S.C.); the National Research Foundation of Korea Grant NRF-2020R1A2C1012931; the Republic of Croatia Ministry of Science, Education and Sports research grant 108-1080315-0302; the Eye Birth Defects Foundation Inc.; the National Science Council, Taiwan grant NSC 98-2314-B-075A-002-MY3; the Taichung Veterans General Hospital, Taichung, Taiwan grant TCVGH-1003001C; AFNET; EHRA; German Centre for Cardiovascular Research (DZHK); German heart Foundation (DSF); the State of Brandenburg DZD grant 82DZD00302; Sanofi; Abbott; the Victor Chang Cardiac Research Institute; NSW Health; the Center for Translational Molecular Medicine, the University Medical Center Groningen; the Dutch Kidney Foundation grant E0.13; the Netherlands Cardiovascular Research Initiative; the Dell Loy Hansen Heart Foundation (M.J.Cu.); Biosense Webster, ImriCor, and ADAS software (S.N.); the Swedish Heart-Lung Foundation grant 2019-0526; Swedish Foundation for Strategic Research grant IRC15-0067; Skåne University Hospital; governmental funding of clinical research within the Swedish National Health Service; the Knut and Alice Wallenberg Foundation (J.G.S.); the Boettcher Foundation Webb Waring Biomedical Research Award (Sr.R.); the Translational Genomics Research Institute; the Singapore National Medical Research Council grant 1270/2010, and the National Research Foundation, Singapore project 370062002; the Genetic Laboratory of the Department of Internal Medicine, Erasmus MC; the Research Institute for Diseases in the Elderly grant 014-93-015; the Netherlands Genomics Initiative (NGI)/Netherlands Organisation for Scientific Research (NWO) Netherlands Consortium for Healthy Aging project 050-060-810; the Dutch Dairy Association NZO; Netherlands Consortium Healthy Aging, Ministry of Economic Affairs, Agriculture and Innovation project KB-15-004-003; Wageningen University; VU University Medical Center; and Erasmus MC; The Folkhalsan Research Foundation; Nordic Center of Excellence in Disease Genetics; Finnish Diabetes Research Foundation: Foundation for Life and Health in Finland: Finnish Medical Society: Helsinki University Central Hospital Research Foundation; Perklén Foundation; Ollqvist Foundation; Narpes Health Care Foundation; Municipal Heath Care Center and Hospital in Jakobstad; and Health Care Centers in Vasa, Narpes and Korsholm; the Institute of Cancer Research and The Everyman Campaign; The Prostate Cancer Research Foundation; Prostate Research Campaign UK (now PCUK); The Orchid Cancer Appeal; Rosetrees Trust; The National Cancer Research Network UK; The National Cancer Research Institute (NCRI) UK; the Movember Foundation grants D2013-36 and D2013-17; the Morris and Horowitz Families Endowed Professorship; the Swedish Cancer Foundation; Ligue Nationale Contre le Cancer, Institut National du Cancer (INCa); Fondation ARC; Fondation de France; Agence Nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail (ANSES); Ligue départementale du Val de Marne; the Baden Württemberg Ministry of Science, Research and Arts; The Ronald and Rita McAulay Foundation; Cancer Australia; AICR Netherlands A10-0227; Cancer Council Tasmania; Cancer Councils of Victoria and South Australia; Philanthropic donation to Northshore University Health System; FWO Vlaanderen grants G.0684.12N and G.0830.13N; the Belgian federal government grant KPC_29_023; a Concerted Research Action of the KU Leuven grant GOA/15/017; the Spanish Ministry Council Instituto de Salud Carlos III-FEDER grants PI08/1770, PI09/00773-Cantabria, PI11/01889-FEDER, PI12/00265, PI12/01270, PI12/00715, PI15/00069, and RD09/0076/00036; the Fundación Marqués de Valdecilla grant API 10/09; the Spanish Association Against Cancer (AECC) Scientific Foundation; the Catalan Government DURSI grant 2009SGR1489; the Xarxa de Bancs de Tumors de Catalunya sponsored by Pla Director d'Oncologia de Catalunya (XBTC); the Spanish Ministry of Science and Innovation grant CEX2018-000806-S; the Generalitat de Catalunya; the VicHealth and Cancer Council Victoria; Programa Grupos Emergentes; Cancer Genetics Unit, CHUVI Vigo Hospital; Instituto de Salud Carlos III, Spain; Cancer Australia PdCCRS and Cancer Council Queensland; the California Cancer Research Fund grant 99-00527V-10182; US Public Health Service grants U10CA37429 and 5UM1CA182883; Canadian Cancer Society Research Institute Career Development Award in Cancer Prevention grant 2013-702108; the German Cancer Aid (Deutsche Krebshilfe); The Anthony DeNovi Fund; the Donald C. McGraw Foundation; and the St. Louis Men's Group Against Cancer; UK Biobank project 12505; the Australian Research Council grant DE200100425 (Lo.Y.); the Australian Research Council grant FL180100072 (P.M.Vis.); Westlake Education Foundation (Jian Y.); a Burroughs Wellcome Fund Career Award, the Next Generation Fund at the Broad Institute of MIT and Harvard, and a Sloan Research Fellowship (P.-R.L.); the Consortium for Systems Biology (NCSB), the Netherlands Genomics Initiative (NGI)/Netherlands Organisation for Scientific Research (NWO); the Government of Canada through Genome Canada and the Canadian Institutes of Health Research grant GPH-129344; the Ministère de l'Économie et de l'Innovation du Québec through Genome Québec grant PSRSIIRI-701; the Quebec Breast Cancer Foundation; the US Department of Defence grant W81XWH-10-1-0341; the Canadian Institutes of

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559 1560 1561 Health Research (CIHR) for the CIHR Team in Familial Risks of Breast Cancer; Komen Foundation for the Cure; the Breast Cancer Research Foundation; and the Ovarian Cancer Research Fund; the Economic and Social Research Council grant number ES/M001660/1; Wellcome Investigator and NIHR Senior Investigator (M.I.M.); Council of Scientific and Industrial Research, Government of India grant number BSC0122; the Department of Science and Technology, Government of India through PURSE II CDST/SR/PURSE PHASE II/11 provided to Jawaharlal Nehru University, New Delhi, INDIA; the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) Projektnummer 209933838 - SFB 1052; B03, C01; SPP 1629 TO 718/2-1; the Competitive Research Funding of the Tampere University Hospital grants 9M048 and 9N035; the Finnish Cultural Foundation; the Finnish Foundation for Cardiovascular Research; the Emil Aaltonen Foundation, Finland; Juho Vainio Foundation; Finnish Cardiac Research Foundation; Finnish Ministry of Education and Culture; Yrjö Jahnsson Foundation; C.G. Sundell Foundation; Special Governmental Grants for Health Sciences Research, Turku University Hospital; Foundation for Pediatric Research; and Turku University Foundation; the Social Insurance Institution of Finland; Competitive State Research Financing of the Expert Responsibility area of Kuopio, Tampere and Turku University Hospitals grant X51001; Paavo Nurmi Foundation; Signe and Ane Gyllenberg Foundation; Diabetes Research Foundation of Finnish Diabetes Association; Tampere University Hospital Supporting Foundation; and Finnish Society of Clinical Chemistry; the Italian Ministry of Health—RC 01/21 (M.P.C.) and D70-RESRICGIROTTO (G.G.); 5 per mille 2015 senses CUP: C92F17003560001 (P.G.); the Helmholtz Zentrum München -German Research Center for Environmental Health, which is funded by the German Federal Ministry of Education and Research (BMBF) and by the State of Bavaria; the Department of Innovation, Research, and University of the Autonomous Province of Bolzano-South Tyrol; the Croatian National Center of Research Excellence in Personalized Healthcare grant number KK.01.1.1.01.0010 (O.Po.) and the Center of Competence in Molecular Diagnostics grant number KK.01.2.2.03.0006 (O.Po.); the Norwegian Research Council Mobility Grant 24014) and Young Research Talent grant 287086; the South-Eastern Health Authorities PhD-grant 2019122; Vestre Viken Hospital Trust PhD-grant; afib.no - the Norwegian Atrial Fibrillation Research Network; "Indremedisinsk Forskningsfond" at Bærum Hospital.

AUTHOR CONTRIBUTIONS

Steering committee:

1562

1563 1564

1567 1568

1569

1570 1571

1573 1574

1575

1576 1577

1580 1581

1582

1583 1584

1585

1586 1587

1588

1589 1590

1565 G.R.A., T.L.A., S.I.B., M.B., D.I.C., Y.S.C., T.E., T.M.F., I.M.H., J.N.H., G.L., C.M.L., A.E.L., R.J.F.L., M.I.M., K.L.M., 1566 M.C.Y.N., K.E.N., C.J.O., Y.O., F.Ri., Y.V.S., E.S.T., C.J.W., U.T., P.M.Vis., R.G.W.

Conveners of GIANT working groups:

S.I.B., Pa.D., J.N.H., A.E.J., G.L., C.M.L., R.J.F.L., E.M., K.L.M., K.E.N., Y.O., C.N.S., R.G.W., C.J.W., A.R.Wo., Lo.Y.

Writing Group (drafted, edited, and commented on manuscript):

1572 E.Ba., J.N.H., G.L., E.M., Y.O., Sr.R., Sa.S., Sa.V., P.M.Vis, A.R.Wo., Lo.Y.

Coordinated or supervised data collection or analysis specific to manuscript:

Ad.A., Pa.D., T.E., T.M.F., J.N.H., A.E.J., G.L., A.E.L., P.-R.L., Y.O., K.S., U.T., P.M.Vis., R.G.W., A.R.Wo., Jian Y., Lo.Y.

Data preparation group (checked and prepared data from contributing cohorts for meta-analyses):

1578 J.Ar., S.I.B., S.-H.C., T.F., S.E.G., M.Gr., Yi.J., A.E.J., Tu.K., A.E.L., Kr.L., D.E.M., E.M., C.M.-G., M.Ma., A.Moo., Si.R., 1579 C.N.S., Sa.V., T.W.W., X.Y., Kr.Y.

Meta-analysis working group:

J.N.H., E.M., Sa.V., Lo.Y.

Primary height analysis working group (post meta-analysis):

E.Ba., A.D.B., M.Gr., Yu.J., M.Kan., Ku.L., Je.M., E.M., R.E.Mu., Sr.R., Sa.S., Ju.S., Sa.V., A.R.Wo., Lo.Y.

All other authors were involved in the design, management, coordination, or analysis of contributing studies.

COMPETING FINANCIAL INTERESTS

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

Yu.J. is employed by and hold stock or stock options in 23andMe, Inc. T.S.A. is a shareholder in Zealand Pharma A/S and Novo Nordisk A/S. G.C-P is an employee of 23andMe Inc. M.E.K. is employed by SYNLAB Holding Deutschland GmbH. H.L.L. receives support from a consulting contract between Data Tecnica International and the National Institute on Aging (NIA), National Institutes of Health (NIH). As of January 2020, A.Mah. is an employee of Genentech, and a holder of Roche stock. I.N. is an employee and stock owner of Gilead Sciences; this work was conducted before employment by Gilead Sciences. Ii.S. is employed by and hold stock or stock options in 23andMe, Inc. Ca.S. is an employee of Regeneron, Inc. Va.S. is employed by deCODE Genetics/Amgen inc. Since completing the work contributed to this paper, D.J.T. has left the University of Cambridge and is now employed by Genomics plc. G.T. is employed by deCODE Genetics/Amgen inc. H.B. has consultant arrangements with Chiesi Pharmaceuticals and Boehringer Ingelheim, M.J.Ca. is Chief Scientist for Genomics England, a UK Government company, M.J.Cu. has served on Advisory Board or Consulted for Biosense Webster, Janssen Scientific Affairs and Johnson & Johnson. S.M.D. receives research support from RenalytixAI and personal consulting fees from Calico Labs, outside the scope of the current research. P.T.E. receives sponsored research support from Bayer AG and IBM Health, and he has served on advisory boards or consulted for Bayer AG, Quest Diagnostics, MyoKardia and Novartis. P.Ki. has received suppport from several drug and device companies active in atrial fibrillation, and has received honoraria from several such companies in the past, but not in the last three years. P.Ki. is listed as inventor on two patents held by University of Birmingham (Atrial Fibrillation Therapy WO 2015140571, Markers for Atrial Fibrillation WO 2016012783). G.D.K. has given talks, attended conferences and participated in trials sponsored by Amgen, MSD, Lilly, Vianex, Sanofi, and have also accepted travel support to conferences from Amgen, Sanofi, MSD and Elpen. S.A.Lu. receives sponsored research support from Bristol Myers Squibb / Pfizer, Bayer AG, Boehringer Ingelheim, Fitbit, and IBM, and has consulted for Bristol Myers Squibb / Pfizer, Bayer AG, and Blackstone Life Sciences. W.M. reports grants and personal fees from AMGEN, BASF, Sanofi, Siemens Diagnostics, Aegerion Pharmaceuticals, Astrazeneca, Danone Research, Numares, Pfizer, Hoffmann LaRoche: personal fees from MSD, Alexion; grants from Abbott Diagnostics, all outside the submitted work. W.M. is employed with Synlab Holding Deutschland GmbH. M.A.N. receives support from a consulting contract between Data Tecnica International and the National Institute on Aging (NIA), National Institutes of Health (NIH). S.N. is a scientific advisor to Circle software, ADAS software, CardioSolv, and ImriCor and recieves grant support from Biosense Webster, ADAS software, and ImriCor. Her.S. has received honoraria for consulting from AstraZeneca, MSD/Merck, Daiichi, Servier, Amgen and Takeda Pharma. He has further received honoraria for lectures and/or chairs from AstraZeneca, BayerVital, BRAHMS, Daiichi, Medtronic, Novartis, Sanofi and Servier. P.S. has received research awards from Pfizer Inc. 23andMe Research team are employed by and hold stock or stock options in 23andMe, Inc. The views expressed in this article are those of the author(s) and not necessarily those of the NHS, the NIHR, or the Department of Health, M.I.McC. has served on advisory panels for Pfizer, NovoNordisk and Zoe Global, has received honoraria from Merck, Pfizer, Novo Nordisk and Eli Lilly, and research funding from Abbvie, Astra Zeneca, Boehringer Ingelheim, Eli Lilly, Janssen, Merck, NovoNordisk, Pfizer, Roche, Sanofi Aventis, Servier, and Takeda. As of June 2019, MMcC is an employee of Genentech, and a holder of Roche stock. C.J.O. is a current employee of Novartis Institute of Biomedical Research. U.T. is employed by deCODE Genetics/Amgen inc. K.S. is employed by deCODE Genetics/Amgen inc. Ad.A. is employed by and hold stock or stock options in 23andMe, Inc. C.J.W.'s spouse is employed by Regeneron. A.E.L. is currently employed by and holds stock in Regeneron Pharmaceuticals, Inc. J.N.H. holds equity in Camp4 Therapeutics.

Table 1. Summary of results from within-ancestry and trans-ancestry GWAS meta-analyses. N denotes the sample size for each SNP. GWS: Genome-Wide Significant ($P < 5 \times 10^{-8}$). COJO SNPs: near independent GWS SNPs identified using an approximate conditional and Joint analysis implemented in the GCTA software. P_{GWAS} : P-value from marginal association test. GWS loci were defined as genomic regions centred around each GWS SNP and including all SNPs within 35 kb on each side of the lead GWS SNP. Overlapping GWS loci were merged so that the number and cumulative length of GWS loci are calculated on non-overlapping GWS loci. Percentage of the genome covered was calculated by dividing the cumulative of GWS loci by 3,039 Mb, i.e. the approximated length of the human genome.

Cohort Ancestry/Ethnic Group	Number of studies	Max N (Mean N)	Number of GWS COJO SNPs (P _{GWAS} <5×10 ⁻⁸)	Number of GWS loci (35 kb)	Cumulative length of non-overlapping GWS loci (% genome)
European (EUR)	173	4,080,687 (3,612,229)	9,863 (8,382)	6,386	552.5 Mb (18.4%)
East-Asian (EAS)	56	472,730 (320,570)	918 (807)	821	60.5 Mb (2.0%)
Hispanic (HIS)	11	455,180 (431,645)	1,888 (1,332)	1,599	121.4 Mb (4.0%)
African (AFR)	29	293,593 (222,981)	493 (417)	436	32.5 Mb (1.1%)
South Asian (SAS)	12	77,890 (59,420)	69 (65)	66	4.7 Mb (0.2%)
Trans-ancestry meta-analysis $(META_{FE})$	281	5,314,291* (4,611,160)	12,111 (9,920)	7,209	647.5 Mb (21.6%)

^{*}The number of individuals in the trans-ancestry meta-analysis (N=5,314,291) is smaller than the sum of ancestry group specific meta-analyses (N=5,380,080) because of variation in per-SNP sample sizes for SNPs included in the final analysis.

Table 2. Overview of 5 European ancestry GWAS re-analysed in our study to quantify the relationship between sample size and discovery. Summary statistics from the 3 published GWAS were imputed using the SSIMP software to maximise coverage of HapMap 3 SNPs (**Suppl. Methods**). GWS loci are defined as in the legend of Table 1.

Down-sampled GWAS	Max N (Mean N)	Number of GWS COJO SNPs	% of the genome covered by GWS loci (35 kb)
Lango-Allen et al. ^{15*}	130,010 (128,942)	240	0.5%
Wood et al. ¹⁶	241,724 (239,227)	633	1.4%
Yengo et al. ¹	695,648 (688,927)	2,794	5.8%
GIANT-EUR (no 23andMe)	1,632,839 (1,502,499)	4,867	9.7%
23andMe-EUR	2,502,262 (2,498,336)	7,020	13.6%

*Summary-statistics from the Lango-Allen et al. study, initially over-corrected for population stratification using a double genomic control correction, were re-inflated such that the LD score regression intercept estimated from re-inflated test statistics equals 1.

Fig. 1. Brisbane plot showing the genomic density of independent genetic associations with height. Each dot represents one of the 12,111 quasi-independent genome-wide significant (GWS; $P < 5 \times 10^{-8}$) height-associated SNPs identified using approximate conditional and joint multiple-SNP (COJO) analyses of our transancestry GWAS meta-analysis. Density was calculated for each associated SNP as the number of other independent associations within 100 kb. A density of 1 means that a GWS COJO SNP share its location with another independent GWS COJO SNP within <100 kb. The average signal density across the genome is 2 (standard error; S.E. 0.14). S.E. were calculated using a Leave-One-Chromosome-Out jackknife approach (LOCO-S.E.). Sub-significant SNPs are not represented on the figure.

Fig. 2. Variance of height explained by HapMap 3 SNP within genome-wide significant (GWS) loci. Panel a shows stratified SNP-based heritability ($h_{\rm SNP}^2$) estimates obtained after partitioning the genome into SNPs within 35 kb of a GWS SNP ("GWS loci" label) vs. SNPs >35 kb away from any GWS SNP. Analyses were performed in samples of five different ancestry/ethnic groups: European (EUR: meta-analysis of UK Biobank (UKB) + Lifelines study), African (AFR: meta-analysis of UKB + PAGE study), East-Asian (EAS: meta-analysis of UKB + China Kadoorie Biobank), South-Asian (SAS: UKB) and Hispanic group (HIS: PAGE). Panel b shows that >90% of $h_{\rm SNP}^2$ in all ancestries is explained by SNPs within GWS loci identified in this study. The cumulative length of non-overlapping GWS loci is ~647 Mb, i.e. ~21% of the genome assuming a genome length of ~3039 Mb.²² The proportion of HapMap 3 SNPs in GWS loci is ~27%.

Fig. 3. Accuracy of a polygenic predictors of height (PGS) within-family and across ancestries. Prediction accuracy (R^2) was measured as the squared correlation between PGS and actual height adjusted for age, sex and 10 genetic principal components. **Panel a** shows the accuracy of PGSs assessed in participants of 5 different ancestry groups: European (EUR; N=14,587) from the UK Biobank (UKB) and the Lifelines Biobank (LLB; N=14,058) cohorts, South-Asian (SAS; N=9,257) from UKB, East-Asian (EAS; N=2,246) from UKB, Hispanic (HIS; N=8,238) from the PAGE study and admixed African (AFR) from UKB (N=6,911) and PAGE (N=5,798). PGSs used for prediction, in **Panel a**, are based on genome-wide significant (GWS) SNPs identified in (1) cross-ancestry meta-analysis (green bar), (2) EUR meta-analysis (yellow bar) and (3) ancestry-specific meta-analyses (red bars). **Panel b** shows the squared correlation of height between first-degree relatives of EUR participants in UKB and the accuracy of a predictor combining PGS (denoted, PGS_{GWS}, as based on GWS SNPs) and familial information. PGS_{GWS} accuracy shown in **Panel b** is the average accuracy in EUR participants from UKB and LLB from **Panel a**. Sibling correlation was calculated in 17,492 independent EUR sibling pairs from the UKB and parent-offspring correlations in 981 EUR unrelated trios (i.e. two parents and 1 child) from the UKB.