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 102 

Soil life supports the functioning and biodiversity of terrestrial ecosystems1,2. 103 

Springtails (Collembola) are among the most abundant soil animals regulating soil 104 

fertility and flow of energy through above- and belowground food webs3–5. However, the 105 

global distribution of springtail diversity and density, and how these relate to energy 106 

fluxes remains unknown. Here, using a global dataset collected from 2,470 sites, we 107 

estimate total soil springtail biomass at 29 Mt carbon (threefold higher than wild 108 

terrestrial vertebrates6) and record peak densities up to 2 million individuals per m² in 109 

the Arctic. Despite a 20-fold biomass difference between tundra and the tropics, 110 

springtail energy use (community metabolism) remains similar across the latitudinal 111 

gradient, owing to the increase in temperature. Neither springtail density nor 112 

community metabolism were predicted by local species richness, which was highest in 113 

the tropics, but comparably high in some temperate forests and even tundra. Changes 114 

in springtail activity may emerge from latitudinal gradients in temperature, 115 

predation7,8, and resource limitation7,9,10 in soil communities. Contrasting temperature 116 
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 5 

responses of biomass, diversity and activity of springtail communities suggest that 117 

climate warming will alter fundamental soil biodiversity metrics in different directions, 118 

potentially restructuring terrestrial food webs and affecting major soil functions. 119 

 120 

Soil biodiversity is an essential component of every terrestrial habitat that affects nutrient 121 

cycling, soil fertility and plant-soil feedbacks, among other ecosystem functions and 122 

services1,2,11. Soil functioning is jointly driven by multiple components of soil biota that are 123 

closely interconnected, including plants, microorganisms, micro-, meso-, and macrofauna12,13. 124 

Land use, human activities, and climate changes induce widespread and rapid changes in the 125 

abundance, diversity, and activity of soil biota, altering functional connections and 126 

ecosystem-level processes in the terrestrial biosphere14. To understand, predict, and adapt to 127 

these changes, comprehensive knowledge about the global distribution of multiple soil biota 128 

components is urgently needed15,16.  129 

With a growing understanding of the biogeography of microorganisms17, micro-18 and 130 

macrofauna19, a critical knowledge gap is the global distribution of soil mesofauna. 131 

Springtails (Collembola, Hexapoda) are among the most abundant groups of mesofauna and 132 

soil animals from the equator to polar regions4,5. They are mostly microbial feeders, but also 133 

graze on litter and are often closely associated with plant roots3,20. Through these trophic 134 

relationships, springtails affect the growth and dispersal of prokaryotes, fungi, and plants, 135 

thereby supporting nutrient cycling via the transformation, degradation, and stabilisation of 136 

organic matter5,21. Furthermore, springtails are a key food resource for soil- and surface-137 

dwelling predators3,5, thus occupying a central position in soil food webs and supporting 138 

multitrophic biodiversity.  139 

To assess different functional facets of biological communities, metrics such as population 140 

density and biomass (reflecting carbon stocks), taxonomic and phylogenetic diversity 141 
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(ensuring multifunctionality and stability), and metabolic activity (quantifying energy fluxes 142 

and thus functional influence) are commonly used6,22–24. Soil biodiversity assessments have 143 

found unexpected global hotspots in temperate regions for microorganisms (fungi and 144 

prokaryotes)17 and macrofauna (earthworms)19, which are not in line with the common 145 

latitudinal biodiversity gradient found in aboveground organisms25. Functional 146 

complementarity principles23 suggest that diverse soil communities in temperate ecosystems 147 

are able to support higher organismal densities and have a more efficient resource use (i.e., 148 

higher total activity) than at other latitudes. However, there are no global assessments of soil 149 

animal metabolic activities. In contrast to expectations of complementarity principles, 150 

previous studies on plants26,27 and microbes9,17 suggest that diversity and activity (represented 151 

by respiration) do not co-vary at the global scale, probably because strong environmental 152 

constraints limit this relationship. These discrepancies emphasize the need to investigate 153 

relationships of multiple metrics of soil animal communities. Springtails are an ideal model 154 

organism for exploring such relationships at a global scale, due to their ubiquity, functional 155 

diversity and high local species richness3–5.  156 

Current knowledge suggests that springtails are especially abundant and diverse in temperate 157 

coniferous forests and tundra, but less diverse in polar regions24,28. Many springtails are 158 

adapted to high and stable humidity, and sensitive to drought and temperature changes29,30. 159 

Consequently, springtail density and diversity is likely to decrease with future climate 160 

change, detrimentally affecting soil food webs and ecosystem functioning31. At the same 161 

time, springtail densities are relatively high in urban areas and in agricultural fields32,33, so 162 

global springtail biomass may be moderately affected by land-use changes worldwide. 163 

Disentangling the roles of vegetation, climate, human disturbance, and other drivers of 164 

various springtail community metrics will be critical to understand their contribution to soil 165 

functioning under different global change scenarios15,18. 166 
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Here, we report the joint projection of density, diversity, and metabolic activity of soil 167 

springtail communities at the global scale and test whether high species richness supports 168 

increased density and total activity across springtail communities globally, or whether this 169 

relationship is constrained by environmental and biotic controls. We further aimed (1) to 170 

assess whether the global distribution of springtail diversity matches that of aboveground 171 

biota or other soil animals; (2) to test how different metrics of springtail communities are 172 

affected by climate and human activities; and (3) to quantify the global biomass of springtails 173 

as a component of the global carbon stock. Using an extensive dataset of soil springtail 174 

communities collected within the framework of the #GlobalCollembola initiative5 (2,470 175 

sites and 43,601 samples across all continents; Fig. 1a), we show contrasting patterns across 176 

soil biodiversity metrics at a global scale and demonstrate that springtails are among the most 177 

functionally important and ubiquitous animals in the terrestrial biosphere. 178 

Latitudinal gradient 179 

To calculate total biomass and metabolism of each springtail community, we used recorded 180 

population densities together with estimated individual body masses and metabolic rates. 181 

Body masses and metabolic rates were derived from taxon-specific body lengths using mean 182 

annual soil temperature and allometric regressions (for calculations and parameter 183 

uncertainties see Methods). For the assessment of local species richness, we selected 70% of 184 

the sampling sites with taxonomically-resolved communities and calculated rarefaction 185 

curves to account for unequal sampling efforts. As such, our trends refer to local diversity 186 

(hundreds of meters), but may not be representative of regional-level diversity34.  187 

Springtail density varied c. 30-fold across latitudes (Fig. 1b), with maximum densities in 188 

tundra (median = 131,422 individuals m-2) and minimum densities in tropical forests (5,831 189 

individuals m-2) and agricultural ecosystems (3,438 individuals m-2; Fig. S2; n = 2,210). 190 
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Springtail dry biomass followed the same trend, with c. 20-fold higher biomass in tundra 191 

(median = 3.09 g m-2) compared to tropical agricultural and forest ecosystems (c. 0.16 g m-2), 192 

due to a lower average community body mass in polar as opposed to temperate and tropical 193 

ecosystems (Fig. 1d,f; Fig. S2; n = 2,053). These density and biomass estimates are in line 194 

with earlier studies24 but cover wider environmental gradients. The difference in average 195 

community body mass may be explained by lower proportion of large surface-dwelling 196 

springtail genera in polar regions35.  197 

 198 

Fig. 1 | Sampling locations and latitudinal gradients in springtail community metrics. a, 199 

Distribution of the 2,470 sampling sites (43,601 soil samples). The histogram shows the 200 

number of sites in each 20-degree latitudinal belt, relative to the total land area in the belt. b-201 

g, Variation in density (n = 2,210), local species richness (n = 1,735), biomass, community 202 

metabolism, average body mass and average individual metabolism (n = 2,053) with latitude. 203 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 7, 2022. ; https://doi.org/10.1101/2022.01.07.475345doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.07.475345
http://creativecommons.org/licenses/by-nd/4.0/


 9 

Grey circles across panels show sampling sites; red points are averages for 5-degree 204 

latitudinal belts; trends are illustrated with a quadratic function based on 5-degree averages. 205 

  206 

Being dependent on temperature and body mass, average individual metabolism was 207 

approximately 20 times higher in tropical than in polar ecosystems (Fig. 1g), which resulted 208 

in similar community metabolism across the latitudinal gradient (Fig. 1e; total n = 2,053). 209 

Hence, tropical springtail communities expend a similar amount of energy per unit time and 210 

area as polar communities, despite having 20-fold lower biomass. This striking pattern 211 

resembles aboveground ecosystem respiration, which also changes little across the global 212 

temperature gradient27. High metabolic rates but low densities of springtail communities are 213 

consistent with the high soil respiration rates and low litter accumulation in the tropics 214 

compared to biomes at higher latitudes9,16. Litter removal is facilitated by soil animals, which 215 

have to consume more food per unit biomass to meet their metabolic needs under high 216 

tropical temperatures7 and thus enhance decomposition in wet and warm tropical 217 

ecosystems10. This suggests that soil animal communities in the tropics are under strong 218 

bottom-up control (by the amount and quality of litter), but also under strong top-down 219 

control by predators, which likewise have to feed more at high temperatures7,8. By contrast, 220 

polar communities have access to ample organic matter stocks16, are under weaker top-down 221 

control7,8, but their activity is constrained by the cold environment. The latitudinal gradient in 222 

environmental and biotic controls may explain why community metabolism did not increase 223 

as expected towards warm tropical ecosystems. 224 

We found only weak latitudinal trends in local species richness, which was highest in tropical 225 

forests (mean = 36.6 species site-1) and lowest in temperate agricultural (19.5 species site-1) 226 

and grassland ecosystems (22.8 species site-1; Fig. 1c; Fig. S2). Generally, the similar local 227 

diversity in different climates deviates from the latitudinal biodiversity gradients reported for 228 
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aboveground and aquatic taxa25,26 and corroborates the hypothesized mismatch between 229 

above- and belowground biodiversity distributions36. This mismatch calls for explicit 230 

assessments of soil biodiversity hotspots for monitoring and conservation of soil organisms15.  231 

Global distribution and its drivers  232 

To map the global distribution of springtail community metrics and uncover its drivers, we 233 

pre-selected climatic, vegetation, soil, topographic and anthropogenic variables with known 234 

ecological effects on springtails (Extended Data Fig. 9a). To perform a global extrapolation, 235 

we used 22 of the pre-selected variables that were globally available and applied a random 236 

forest algorithm to identify the strongest spatial associations of community parameters with 237 

environmental layers18. To reveal the key driving factors of springtail communities, we ran a 238 

path analysis with 12 non-collinear variables (Extended Data Fig. 9b). The European spatial 239 

clustering in our data distribution (Fig. 1a), was taken in consideration with a continental-240 

scale validation in both analyses (see Methods).  241 

At the global scale, species richness was not related to biomass (Pearson’s R2 = 0.02) or 242 

density (Pearson’s R2 = 0.03; Fig. 2a). Our extrapolations revealed at least five types of 243 

geographical areas with specific combinations of density and species richness patterns (Fig. 244 

2a): (1) polar regions with very high densities and medium to high species richness such as 245 

the Arctic; (2) temperate regions with medium densities and high species richness such as 246 

mountainous and forested areas in Europe, Asia and North America; (3) temperate regions 247 

with medium to high densities but moderate species richness such as arid temperate biomes 248 

(e.g., dry grasslands); (4) temperate, subtropical and tropical arid ecosystems with low 249 

densities and species richness such as semi-deserts and other arid regions; (5) tropical areas 250 

with low densities but high species richness such as tropical forests and grasslands. Hotspots 251 

of springtail community metabolism were observed across a range of different latitudes (Fig. 252 
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2b), but were not associated with biodiversity hotspots (Pearson’s R2 < 0.01), emphasizing 253 

that species richness is neither associated with higher density nor activity of springtail 254 

communities at the global scale. 255 

 256 

Fig. 2 | Global maps overlapping modelled springtail density and local species richness 257 

(a) and community metabolism (b) in soil. In (a) colours distinguish areas with different 258 

combinations of density and species richness, e.g., low density - low richness is given in 259 

yellow and high density - high richness in violet. In (b) the colour gradient indicates 260 

community metabolism, with potential hotspots shown in blue. All data were projected at the 261 

30 arcsec (approximately 1 km2) pixel scale. Pixels below the extrapolation threshold are 262 

masked. Correlations between density or metabolism and species richness (inset graphs) are 263 

based on site-level data. 264 
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 265 

Path analysis suggested that springtail density increases with latitude, NDVI (vegetation 266 

richness), aridity index and at high soil pH, but decreases with increasing mean annual 267 

temperature and elevation (Fig. 3). The positive global relationship of density with the aridity 268 

index was unexpected for physiologically moisture-dependent animals such as springtails29, 269 

but was also observed in nematodes18 and is probably due to the low amount of precipitation 270 

in circumpolar climates and very few data from desert sites. Density and biomass of 271 

springtails increased with precipitation within the tropical zone (Extended Data Fig. 8). 272 

Similar to patterns for earthworms19, soil properties had less evident linear effects on 273 

springtail density than climate at the global scale. However, the relationships of density with 274 

soil pH and organic carbon content were hump-shaped, suggesting that intermediate values of 275 

these parameters are optimal for springtails (Extended Data Fig. 8), which is also observed 276 

for nematodes18. Existing evidence points to soil properties as key drivers of microfauna 277 

(nematodes)6, climate as a key driver of macrofauna (earthworms)7 and a combination of both 278 

as drivers of mesofauna (springtails) at the global scale.  279 

 280 
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Fig. 3 | Environmental drivers of springtail communities at the global scale. Standardized 281 

effect sizes for direct (semi-transparent colour) and total (direct and indirect, solid colour) 282 

effects from path analysis are shown for density (R2 = 0.36 ± 0.01, n = 723 per iteration), 283 

local species richness (R2 = 0.20 ± 0.02, n = 352), biomass (R2 = 0.40 ± 0.02, n = 568) and 284 

community metabolism (R2 = 0.17 ± 0.02, n = 533). Mean values (squares) and data 285 

distribution (violins) are shown. Asterisks denote factors with a significant direct effect (p < 286 

0.05) on a given springtail community metric for >25%(*), >50%*, >75%** and >95%*** of 287 

iterations. 288 

 289 

Springtail density and biomass were lower in woodlands, grasslands and agricultural sites in 290 

comparison to scrub-dominated landscapes (Fig. 3). In contrast to previous global 291 

assessments of soil animal biodiversity18,19, tundra was extensively sampled in our dataset (n 292 

= 253; Fig. 1a), and densities >1 million individuals per square meter were recorded at 12 293 

independent sites. The high species richness of tundra communities (Fig. 2a), suggests a long 294 

evolutionary history of springtails in cold climates; indeed, they are currently the most 295 

taxonomically represented group of terrestrial arthropods in the Arctic35 and the Antarctic37. 296 

Tundra remains under snow cover for most of the year, flourishing during summer when high 297 

springtail densities were recorded. During winter, springtails survive under the snow using 298 

remarkable adaptations to subzero temperatures (dehydration38 and ‘supercooling’38). 299 

Importantly, tundra soils contain a major proportion of the total soil organic matter and 300 

microbial biomass stored in the terrestrial biosphere16. As climate warming alters carbon 301 

cycling in the tundra39, longer active periods of springtails could accelerate soil carbon 302 

release to the atmosphere in polar regions40. 303 

Across tropical ecosystems in the Amazon basin, equatorial Africa and Southeast Asia, low 304 

density and biomass of springtails were recorded and extrapolated (Fig. 2a, Extended Data 305 
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Figs. 4 and 6). Mesofauna in general have low abundances in tropical ecosystems, where the 306 

litter layer is shallow and larger soil-associated invertebrates, such as earthworms, termites 307 

and ants, play a more important role24. Our study supports this trend also found in recent 308 

global assessments of other soil invertebrates18,19,41. However, considering the high mass-309 

specific metabolism of springtails and high predation rates in tropical communities7,8,22, a 310 

quantitative comparison of energy flows and stocks across latitudes and groups of soil fauna 311 

is needed.  312 

Interestingly, we found no pronounced influence of agriculture and human population on 313 

springtail communities at the global scale; agriculture tended to have a positive impact on 314 

biomass but a negative impact on species richness (Fig. 3). Agricultural sites had similar 315 

springtail densities compared to woodlands and grasslands in the temperate zone (ca. 15-25k 316 

individuals m-2; Extended Data Fig. 3), which may be explained by large variation in 317 

management within each of these habitat types. Some springtail species effectively survive in 318 

agricultural fields33, where they are involved in nutrient cycling and serve as biocontrol 319 

agents by grazing on pathogenic fungi42 and supporting arthropod predators43. Springtails are 320 

also commonly found in urban areas32. However, the negative trend in species richness at 321 

human-modified sites suggests that intensive land use may reduce springtail diversity, which 322 

is indeed often recorded32,33,44. 323 

The only variable that was positively associated with both density and local species richness 324 

of springtails, was NDVI (as a proxy for vegetation richness), reinforcing the close 325 

connection between springtail communities and the vegetation20. Overall, high local species 326 

richness was predicted in warm, acidic woodlands with high soil organic carbon stocks (Fig. 327 

3) and geospatial extrapolation emphasized tropical regions and some boreal forests in North 328 

America and Eurasia as springtail diversity hotspots (Extended Data Fig. 5). In our dataset, 329 

sites with the highest extrapolated local species richness (i.e., >100 species) were located in 330 
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European woodlands (Czech Republic, Slovakia). However, this picture may be biased by the 331 

historical clustering of taxonomic expertise in Europe5. Outside Eurasia, species-rich sites 332 

(i.e. 60-80 species) were located in Vietnamese monsoon forests and some Brazilian 333 

rainforests, but 70-90% of species in tropical communities remain undescribed45,46. Thus, 334 

despite low springtail density, tropical forests contribute substantially to global springtail 335 

diversity but the full extent of this contribution is unknown.  336 

Our extrapolations suggest that there are c. 2×1018 soil springtails globally and their total 337 

biomass comprises c. 29 Mt C (c. 200 Mt fresh weight), with respiration of c. 16 Mt C month-338 

1 (which is c. 0.2% of the global soil respiration9). Our biomass estimates are very similar to 339 

the global estimated biomass of nematodes (c. 31 Mt C18), but lower than that of earthworms 340 

(c. 200 Mt C19), and exceeding by far that of all wild terrestrial vertebrates (c. 9 Mt C)6, 341 

demonstrating that springtails are among the most abundant and ubiquitous animals on Earth. 342 

Overall, our global dataset on soil springtail communities synthesized the work of soil 343 

zoologists across the globe. It presents another milestone towards understanding the 344 

functional composition of global soil biodiversity. Being highly abundant in polar regions 345 

and some human-modified landscapes, springtails are facing two main global change 346 

frontiers: warming in the polar regions, and land-use change and urbanization in temperate 347 

and tropical regions. While the global abundance and biomass of springtails may decline with 348 

climate warming in the coming decades, their global activity may remain unchanged. The 349 

global diversity of springtails will depend on the balance between anthropogenic 350 

transformations and conservation efforts of biomes worldwide.  351 

 352 
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 452 

Methods   453 

Data reporting. The data underpinning this study is a compilation of existing datasets and 454 

therefore, no statistical methods were used to predetermine sample size, the experiments were 455 

not randomized and the investigators were not blinded to allocation during experiments and 456 

outcome assessment. The measurements were taken from distinct samples, repeated 457 

measurements from the same sites were averaged. 458 
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Data acquisition. Data were primarily collected from individual archives of contributing co-459 

authors. Both published and unpublished data were collected, using raw data whenever 460 

possible entered into a common template. In addition, data available from Edaphobase47 was 461 

included. The following minimum set of variables was collected: collectors, collection 462 

method (including sampling area and depth), extraction method, identification precision and 463 

resources, collection date, latitude and longitude, vegetation type (generalized as grassland, 464 

scrub, woodland, agriculture and ‘other’ for the analysis), and abundances of springtail taxa 465 

found in each soil sample (or sampling site). Underrepresented geographical areas (Africa, 466 

South America, Australia and Southeast Asia) were specifically targeted by a literature search 467 

in the Web of Science database using the keywords ‘springtail’ or ‘Collembola’, ‘density’ or 468 

‘abundance’ or ‘diversity’, and the region of interest; data were acquired from all found 469 

papers if the minimum information listed above was provided. In total, 363 datasets 470 

comprising 2,783 sites were collected and collated into a single dataset (Extended Data Fig. 471 

1).  472 

Calculation of community parameters. Community parameters were calculated at the site 473 

level. Here, we defined a site as a locality that hosts a defined springtail community, is 474 

covered by a certain vegetation type and has a maximum spatial extent (diameter) of several 475 

hundred meters, making species co-occurrence and interactions plausible. To calculate 476 

density, numerical abundance in all samples was averaged and recalculated per square meter 477 

using the sampling area. Springtail communities were assessed predominantly during active 478 

vegetation periods (i.e., spring, summer and autumn in temperate and boreal biomes, and 479 

summer in polar biomes). Our estimations of community parameters therefore refer to the 480 

most favourable conditions (peak yearly densities). This seasonal sampling bias is likely to 481 

have little effect on our conclusions, since most springtails survive during cold periods38,48. 482 
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Finally, we used mean annual temperatures49 to estimate the seasonal mean community 483 

metabolism (described below). 484 

All data analyses were conducted in R v. 4.0.250 with RStudio interface v. 1.4.1103 (RStudio, 485 

PBC), unless otherwise mentioned. To calculate local species richness, we used data 486 

identified to species or morphospecies level. Since the sampling effort varied among studies, 487 

we extrapolated species richness using rarefaction curves based on individual samples with 488 

the Chao estimator51 in the vegan package52. For some sites, sample-level data were not 489 

available in the original publications, but an extensive sampling effort was made. In such 490 

cases, we predicted extrapolated species richness based on the completeness (ratio of 491 

observed to extrapolated richness) recorded at sites where sample-level data were available 492 

(only sites with 5 or more samples were used for the prediction). We built a binomial model 493 

to predict completeness in sites where no sample-level data were available (435 sites in 494 

Europe, 15 in Australia, 6 in South America, 4 in Asia, and 3 in Africa) using latitude and the 495 

number of samples taken at a site as predictors.  496 

To calculate biomass, we first cross-checked all taxonomic names with the collembola.org 497 

checklist53 using fuzzy matching algorithms (fuzzyjoin R package54) to align taxonomic 498 

names and correct typos. Then we merged taxonomic names with a dataset on body lengths 499 

compiled from the BETSI database55, a personal database of Matty P. Berg, and additional 500 

expert contributions. We used average body lengths for the genus level (body size data on 501 

432 genera) since data at the species level were not available for many species and 502 

morphospecies, and species within most springtail genera had similar body size ranges. Dry 503 

and fresh body masses were calculated from body length using a set of group-specific length-504 

mass regressions (Extended Data Table 1)56,57 and the results of different regressions applied 505 

to the same morphogroup were averaged. Dry mass was recalculated to fresh mass using 506 

corresponding group-specific coefficients56. We used fresh mass to calculate individual 507 
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metabolic rates58 and account for the mean annual topsoil (0-5 cm) temperature at a given 508 

site59. Group-specific metabolic coefficients for insects (including Collembola) were used for 509 

the calculation: normalization factor (i0) ln(21.972) [J h-1], allometric exponent (a) 0.759, and 510 

activation energy (E) 0.657 [eV]58. Community-weighted (specimen-based) mean individual 511 

dry masses and metabolic rates were calculated for each sample and then averaged by site 512 

after excluding 10% of maximum and minimum values as outlier samples with small 513 

sampling areas, which have a high probability of randomly including large individuals. To 514 

calculate site-level biomasses and community metabolism, we summed masses or metabolic 515 

rates of individuals, averaged them across samples, and recalculated them per unit area (m2).  516 

Parameter uncertainties. Our biomass and community metabolism approximations contain 517 

several assumptions and ignore latitudinal variation in body sizes within taxonomic groups60. 518 

Nevertheless, latitudinal differences in springtail density (30-fold), environmental 519 

temperature (from -17.0 to +27.6C), and genus-level community compositions (there are 520 

only few common genera among polar regions and the tropics)53 are higher than the 521 

uncertainties introduced by indirect parameter estimations, which allowed us to detect global 522 

trends. Although most springtails are concentrated in the litter and uppermost soil layers24, 523 

their vertical distribution depends on the particular ecosystem61. Since sampling methods are 524 

usually ecosystem-specific (i.e. sampling is done deeper in soils with developed organic 525 

layers), we treated the methods used by the original data collectors as representative of a 526 

given ecosystem. Under this assumption, we might have underestimated the number of 527 

springtails in soils with deep organic horizons, so our global estimates are conservative and 528 

we would expect true global density and biomass to be slightly higher. To minimize these 529 

effects, we excluded sites where the estimations were likely to be unreliable (see data 530 

selection below). 531 
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Data selection. Only data collection methods allowing for area-based recalculation (e.g. 532 

Tullgren or Berlese funnels) were used for analysis. Data from artificial habitats, coastal 533 

ecosystems, caves, canopies, snow surfaces, and strong experimental manipulations beyond 534 

the bounds of naturally occurring conditions were excluded (Extended Data Fig. 1). To 535 

ensure data quality, we performed a two-step quality check: technical selection and expert 536 

evaluation. Collected data varied according to collection protocols, such as sampling depth 537 

and the microhabitats (layers) considered. To technically exclude unreliable density 538 

estimations, we explored data with a number of diagnostic graphs (see Supplementary Data 539 

Cleaning Protocol) and filtered it, excluding the following: (1) All woodlands where only soil 540 

or only litter was considered; (2) All scrub ecosystems where only ground cover (litter or 541 

mosses) was considered; (3) Agricultural sites in temperate zones where only soil with 542 

sampling depth <10 cm was considered. Additionally, 10% of the lowest values were 543 

individually checked and excluded if density was unrealistically low for the given ecosystem 544 

(outliers with density over three times lower than 1% percentile within each ecosystem type). 545 

In total, 237 sites were excluded from density, and 394 sites from biomass, and community 546 

metabolism analyses based on these criteria. For the local species richness estimates, we 547 

removed all extrapolations based on sites with fewer than three samples and no 548 

(morpho)species identifications (647 sites; Extended Data Fig. 1). 549 

Data expert evaluation. We performed manual expert evaluation of every contributed 550 

dataset. Evaluation was done by an expert board of springtail specialists, each with extensive 551 

research experience in a certain geographic area. Each dataset was scored separately for 552 

density and species richness as either trustworthy, acceptable, or unreliable. Density 553 

estimation quality was assessed using information about the sampling and extraction method 554 

and the density estimation itself. Species richness estimation quality was assessed using 555 

information about the identification key, experience of the person who identified the material, 556 
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species (taxa) list, and the species richness estimation itself. Based on the expert opinions, 557 

unreliable estimates of density (together with biomass and community metabolism) and 558 

species richness were excluded (Extended Data Fig. 1). The resulting final dataset included 559 

2,470 sites and 43,601 samples62 with a median of six samples collected at each site. The 560 

dataset comprised 2,210 sites with density estimation (69 - 2,181,600 individuals m-2), 2,053 561 

sites with mean fresh body mass (1.8 - 3,110 µg), mean metabolic rate (0.028 - 2.4 mJ h-1), 562 

dry biomass (0.5 - 92,943 mg m-2), fresh biomass (1.6 - 277,028 mg m-2) and community 563 

metabolism estimations (0.03 - 999.68 J h-1), and 1,735 sites with local species richness 564 

estimation (1 - 136.7 species; Extended Data Figs. 1 and 2).  565 

Data transformation. All parameters except for extrapolated local species richness were 566 

highly skewed (e.g., density had a global median of 21,016 individuals m-2 and a mean of 567 

60,454 individuals m-2) and we applied log10-transformation prior to analysis. This greatly 568 

improved the fit of all statistical analyses.  569 

Latitudinal and ecosystem trends. To explore changes in springtail communities with 570 

latitude, we sliced the global latitudinal gradient into 5-degree bins and calculated average 571 

parameters across sites in each bin after trimming to ensure the same statistical weight for 572 

each latitudinal bin while plotting the gradient. The latitudinal gradient was plotted with 573 

ggplot263, and quadratic smoothers were used to illustrate trends. Mean parameters of 574 

springtail communities were compared across ecosystem types using a linear model and 575 

multiple comparisons with the Tukey HSD test using HSD.test in the agricolae package64. 576 

Habitats were classified according to the vegetation types. Climates were classified as polar 577 

(beyond the polar circles, i.e., more than 66.5 and less than -66.5 degrees), temperate (from 578 

the polar circles to the tropics of Capricorn/Cancer, i.e. to 23.5 and -23.5 degrees) and 579 

tropical (in between 23.5 and -23.5 degrees). Habitats and climates were combined to 580 

produce ecosystem types. For the analysis, only well-represented ecosystem types were 581 
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retained: polar scrub (n = 253), polar grassland (n = 39), polar woodland (n = 28), temperate 582 

woodland (n = 907), temperate scrub (n = 104), temperate grassland (n = 445), temperate 583 

agriculture (n = 374), tropical agriculture (n = 68) and tropical forest (n = 141; Extended Data 584 

Fig. 3). 585 

Selection of environmental predictors. To assess the drivers of global distributions of 586 

springtail community metrics, we pre-selected variables with a known ecological effect on 587 

springtail communities (based on expert opinions) and constructed a hypothetical relationship 588 

diagram (Extended Data Fig. 9a). Environmental data were very heterogeneous across the 589 

springtail studies, so we used globally available climatic and other environmental layers; 590 

these included layers bearing climatic (mean annual temperature, temperature seasonality, 591 

temperature annual range, mean annual precipitation, precipitation seasonality, precipitation 592 

of the driest quarter65, aridity index66), topographic (elevation, roughness67), vegetative and 593 

land cover (aboveground biomass68, tree cover69, Net Primary Production, Normalized 594 

Difference Vegetation Index [NDVI]70), topsoil physicochemical (0-15 cm depth C to N 595 

ratio, pH, clay, sand, coarse fragments, organic carbon, bulk density71) and human population 596 

density72. 597 

Geospatial global projections. To create global spatial predictions of springtail density, 598 

species richness, biomass, and community metabolism, we followed the approach previously 599 

used for nematodes18,73 that is based on spatial associations of community parameters with 600 

global environmental information. A Random Forest algorithm was applied to identify the 601 

spatial associations and extrapolate local observations to the global scale18,73. After retrieving 602 

the environmental variable values for each location, we trained 18 model versions, each with 603 

different hyperparameter settings, i.e., variables per split (range: 2 - 7); minimum leaf 604 

population (range: 3 - 5).  To minimize the potential bias of a single model, we used an 605 

ensemble of the top 10 best-performing models, selected based on the coefficient of 606 
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determination (R2), to create global predictions of each of the community parameters. 607 

Geographical regions with climatic conditions poorly represented by our sites and without 608 

NPP data were excluded from the extrapolation (e.g., Sahara, Arabian desert, Himalayas). We 609 

evaluated our extrapolation quality based on spatial approximations of interpolation versus 610 

extrapolation73. In this approach, we first determined the range of environmental conditions 611 

represented by the observations. Next, we classified all pixels to fall within or outside the 612 

training space, in univariate and multivariate space. For the latter, we first transformed the 613 

data into principal component space, and selected the first 11 PC axes, collectively explaining 614 

90% of the variation. Finally, we classified pixels to fall within or outside the convex hulls 615 

drawn around each possible bivariate combination of these 11 PC axes; pixels that fell 616 

outside the convex hulls in >90% of cases were masked on the map.  617 

To estimate spatial variability of our predictions while accounting for the spatial sampling 618 

bias in our data (Fig. 1a) we performed a spatially stratified bootstrapping procedure. We 619 

used the relative area of each IPBES74 region (i.e., Europe and Central Asia, Asia and the 620 

Pacific, Africa, and the Americas) to resample the original dataset, creating 100 bootstrap 621 

resamples. Each of these resamples was used to create a global map, which was then reduced 622 

to create mean, standard deviation, 95% confidence interval, and coefficient of variation 623 

maps (Extended Data Figs. 4-7).  624 

Global biomass, abundance, and community metabolism of springtails were estimated by 625 

summing predicted values for each 30 arcsec pixel18. Global community metabolism was 626 

recalculated from joule to mass carbon by assuming 1 kg fresh mass = 7 × 106 J75, an average 627 

water proportion in springtails of 70%56, and an average carbon concentration of 45% 628 

(calculated from 225 measurements across temperate forest ecosystems)76.  629 

Path analysis. To reveal the drivers of springtail communities at the global scale, we 630 

performed a path analysis. After filtering the selected environmental variables (see above) 631 
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according to their global availability and collinearity, 13 variables were used (Extended Data 632 

Fig. 9b): mean annual temperature, mean annual precipitation (CHELSA database65), aridity 633 

(CGIAR database66), soil pH, sand and clay contents combined (sand and clay contents were 634 

co-linear in our dataset), soil organic carbon content (SoilGrids database71), NDVI (MODIS 635 

database70), human population density (GPWv4 database72), latitude, elevation67, and 636 

vegetation cover (woodland, scrub, or agriculture; grasslands were represented as the 637 

combination of woodland, scrub, and agriculture absent). Before running the analysis, we 638 

performed the Rosner's generalized extreme Studentized deviate test in the EnvStats 639 

package77 to exclude extreme outliers and we z-standardized all variables (Supplementary R 640 

Code).  641 

Separate piecewise structural equation models were run to predict density, dry biomass, 642 

community metabolism, and local species richness in the lavaan package78. To account for 643 

the spatial clustering of our data in Europe, instead of running a model for the entire dataset, 644 

we divided the data by the IPBES74 geographical regions and selected a random subset of 645 

sites for Eurasia, such that only twice the number of sites were included in the model as the 646 

second most represented region. We ran the path analysis 99 times for each community 647 

parameter with different Eurasian subsets (density had n = 723 per iteration, local species 648 

richness had n = 352, dry biomass had n = 568, and community metabolism had n = 533). We 649 

decided to keep the share of the Eurasian dataset larger than other regions to increase the 650 

number of sites per iteration and validity of the models. The Eurasian dataset also had the 651 

best data quality among all regions and a substantial reduction in datasets from Eurasia would 652 

result in a low weight for high quality data. We additionally ran a set of models in which the 653 

Eurasian dataset was represented by the same number of sites as the second-most represented 654 

region, which yielded similar effect directions for all factors, but slightly higher variations 655 

and fewer consistently significant effects. In the paper, only the first version of analysis is 656 
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presented. To illustrate the results, we averaged effect sizes for the paths across all iterations 657 

and presented the distribution of these effect sizes using mirrored Kernel density estimation 658 

(violin) plots. We marked and discussed effects that were significant at p < 0.05 in more than 659 

a given number of iterations (arbitrary thresholds were set to 25%, 50%, 75% and 95% of 660 

iterations; Fig. 3). 661 

 662 

Data availability statement.  663 

The data that support the findings of this study are available under CC-BY 4.0 license from 664 

Figshare: https://doi.org/10.6084/m9.figshare.16850419; high-resolution maps can be 665 

assessed at https://doi.org/10.6084/m9.figshare.16850446. 666 

  667 

Code availability statement 668 

Programming code for the path analysis and the geospatial modelling is available under CC-669 

BY 4.0 from Figshare: https://doi.org/10.6084/m9.figshare.16850419. 670 
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Extended data 793 

 794 

Extended Data Fig. 1 | Flow diagram of data compilation and selection. Major data 795 

providers of #GlobalCollembola whose data were used in the analysis are given in the shaded 796 

table on the right side. Providers are ordered based on the number of sites, but exemplar 797 

datasets with extensive sampling efforts (number of samples) are given to illustrate the 798 

available data.  799 
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 801 

Extended Data Fig. 2 | Selected sampling sites that were used in the analysis. a, Density 802 

(n = 2210), b, Local species richness (n = 1735); c, Dry biomass (n = 2053); d, Community 803 

metabolism (n = 2053). Data scales are logarithmic except for local species richness.   804 
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Extended Data Table 1 | Regression coefficients used to estimate the dry and fresh body 805 

masses of springtail genera based on body lengths. For each genus, the average body mass 806 

(M) [µg dry weight] was calculated from the average body length (L) [mm] using the power 807 

equation: M = a*L^b, where a is the normalisation coefficient and b is the exponent. 808 

Abdomen length of Symphypleona was used in the original equations and was assumed to be 809 

0.83 of the total body length. Two sets of coefficients coming from two independent 810 

studies56,57 were used for each morphogroup (a1, b1 and a2, b2) and the two estimates of dry 811 

body mass were averaged. Fresh body mass was calculated from the resulting average by 812 

dividing it by the proportion of the dry weight. 813 

Morphogroup Normalisation 

(a1) 

Exponent  

(b1) 

Normalisation 

(a2) 

Exponent 

(b2) 

Dry weight 

proportion 

Entomobryidae 11.749 2.52 14.256 2.708 0.30 

Isotomidae 

(small) 

6.457 2.99 5.623 2.799 0.36 

Isotomidae 

(large) 

5.623 3.28 8.427 3.223 0.36 

Onychiuridae 4.266 2.75 5.598 2.769 0.30 

Poduromorpha  

(excl. 

Onychiuridae) 

9.772 2.55 5.598 2.769 0.30 

Symphypleona 190.546 3.627 39.628 3.796 0.21 

Tomoceridae 9.204 2.744 14.256 2.708 0.25 
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 815 

Extended Data Fig. 3 | Mean estimates for community parameters in different 816 

ecosystem types. Points represent sites, labels represent mean values, means sharing the 817 

same letter are not significantly different (Tukey’s HSD test for multiple comparisons64). For 818 

ecosystem classification see Methods.  819 
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  821 
Extended Data Fig. 4 | Global projection of springtail density. Distribution was predicted 822 

with the random forest algorithm (a) based on the entire dataset and (b) using mean 823 

prediction after bootstrapping data by continents (R2 = 0.57 ± 0.04). Green colour identifies 824 

hot spots, violet colour cold spots. The bottom map (c) shows the standard deviation across 825 

the bootstrapped predictions (red – high, yellow – low). All data were projected at the 30 826 

arcsec (approximately 1 km2) pixel scale.  827 
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 828 

Extended Data Fig. 5 | Global projection of springtail local species richness. Distribution 829 

was predicted with the random forest algorithm (a) based on the entire dataset and (b) using 830 

mean prediction after bootstrapping data by continents (R2 = 0.31 ± 0.06). Green colour 831 

identifies hot spots, violet colour cold spots. The bottom map (c) shows the standard 832 

deviation across the bootstrapped predictions (red – high, yellow – low). All data were 833 

projected at the 30 arcsec (approximately 1 km2) pixel scale.  834 
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 835 

Extended Data Fig. 6 | Global projection of springtail biomass. Distribution was predicted 836 

with the random forest algorithm (a) based on the entire dataset and (b) using mean 837 

prediction after bootstrapping data by continents (R2 = 0.47 ± 0.05). Green colour identifies 838 

hot spots, violet colour cold spots. The bottom map (c) shows the standard deviation across 839 

the bootstrapped predictions (red – high, yellow – low). All data were projected at the 30 840 

arcsec (approximately 1 km2) pixel scale.  841 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 7, 2022. ; https://doi.org/10.1101/2022.01.07.475345doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.07.475345
http://creativecommons.org/licenses/by-nd/4.0/


 41 

 842 

Extended Data Fig. 7 | Global projection of springtail community metabolism. 843 

Distribution was predicted with the random forest algorithm (a) based on the entire dataset 844 

and (b) using mean prediction after bootstrapping data by continents (R2 = 0.33 ± 0.09). 845 

Green colour identifies hot spots, violet colour cold spots. The bottom map (c) shows the 846 

standard deviation across the bootstrapped predictions (red – high, yellow – low). All data 847 

were projected at the 30 arcsec (approximately 1 km2) pixel scale.  848 
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 849 

Extended Data Fig. 8 | Associations of selected environmental variables with springtail 850 

density, local species richness, dry biomass and community metabolism. Quadratic 851 

function was used for approximation to illustrate global trends (red line). Blue lines show 852 

linear trends in equatorial (solid), temperate (long dash) and polar zones (short dash). 853 
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 855 

Extended Data Fig. 9 | Initial and final relationship diagram in the path analysis. Factors 856 

directly and indirectly affecting community parameters of springtails at the global scale were 857 

pre-selected based on expert opinion (a). Factors in the final model (b) were further selected 858 

according to their global availability and collinear factors were removed. The global 859 

distributions of pH and NDVI (Normalized Difference Vegetation Index) are initially 860 

modelled based on other factors, which was accounted for in the final model. 861 
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