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Abstract

Raman spectroscopy is a vibrational method
that gives molecular information rapidly and
non-invasively. Despite its advantages, the
weak intensity of Raman spectroscopy leads
to low-quality signals, particularly with tis-
sue samples. The requirement of high expo-
sure times makes Raman a time-consuming pro-
cess and diminishes its non-invasive property
while studying living tissues. Novel denois-
ing techniques using convolutional neural net-
works (CNN) have achieved remarkable results
in image processing. Here, we propose a sim-
ilar approach for noise reduction for the Ra-
man spectra acquired with 10x lower exposure
times. In this work, we developed fully convo-
lutional encoder-decoder architecture (FCED)
and trained them with noisy Raman signals.
The results demonstrate that our model is supe-
rior (p-value < 0.0001) to the conventional de-
noising techniques such as the Savitzky-Golay
filter and wavelet denoising. Improvement in
the signal-to-noise ratio values ranges from 20%
to 80%, depending on the initial signal-to-noise
ratio. Thus, we proved that tissue analysis
could be done in a shorter time without any
need for instrumental enhancement.

Introduction

Raman spectroscopy is a vibrational spectro-
scopic method invented by CV Raman in 1928.1

The method is commonly applied for molecular
structure analysis in many fields and is very ef-
fective while working with biological materials
since it is not affected by water absorption.2 On
the other hand, Raman spectra are very weak
in intensity compared to other spectral tech-
niques. When the optical scattering losses are
added to the weak intensity factor, the signal-
to-noise (SNR) values obtained in the biolog-
ical sample analyses become very poor unless
high exposure time acquisition or complex data
processing algorithms are used.3–5 As a partic-
ular case, Raman spectral mapping from tis-
sue samples becomes highly difficult and time-
consuming, since spontaneous Raman scatter-
ing cannot provide a meaningful signal. Res-
onance methods such as surface-enhanced Ra-
man scattering (SERS) are helpful to enhance
the spectra. However, in the case of SERS,
a gold substrate, which interferes with Raman
signals, is needed to enhance the signal.2 There-
fore, computational methods are highly favored
in situations where a good quality signal is hard
to obtain.
The common computational methods for Ra-

man spectra denoising are the Savitzky-Golay
(S-G) filtering6 and wavelet denoising.7 The S-
G filter fits a polynomial function to sliding
windows on the signal. The parameters of the
S-G filter, i.e. polynomial order and the win-
dow size, must be optimized, and each signal
may require a different choice of parameters.
On the other hand, wavelet denoising benefits
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wavelet transforms to decompose the noisy sig-
nal. This method requires choosing optimal
wavelets, thresholding techniques, and leveling.
Deep learning (DL) stands as a novel and

promising approach in signal denoising.8,9 The
recent studies illustrate that artificial neural
network (ANN) architectures outperform the
state-of-the-art techniques for Raman signal de-
noising, such as the S-G filter10,11 and wavelet
denoising,10,12 in terms of noise reduction while
preserving the peaks in the Raman signals. In
these studies, Gaussian noise is added to the ac-
tual Raman signals with high exposure times10

or computer-generated signals,11 then fed to
neural networks for noise reduction. Based on
our research, no study worked with real noisy
Raman signals.
We propose a fully convolutional encoder-

decoder network (FCED) for denoising the Ra-
man spectra. Similar to deep image denoising
algorithms, our method benefits from convolu-
tional layers to extract the features of the in-
put signal. The FCED architecture takes the
noisy Raman signal acquired in a short period
as the input. It learns to map the noisy signal
to the output signal acquired in a longer pe-
riod. Therefore, we aim to reduce the time re-
quired to scan the materials with Raman spec-
troscopy. Our ultimate goal is to analyze tissue
samples using Raman spectroscopy in a feasible
time range.

Experimental Section

Raman Experimental Setup

We built a custom setup for spontaneous Ra-
man spectroscopy. The excitation source was
a diode laser with a wavelength of 785 nm and
output power of 300 mW. We focused this beam
into the quartz cuvette using a lens whose fo-
cal length is 50 mm. For the powder mea-
surments, we used the micro-Raman scheme,
where the excitation beam is focused using a
10x (0.25 NA) microscope objective. We col-
lected the Raman beam into the entrance slit of
the portable spectrometer (Ocean QEPro Ra-
man) using a multimode fiber.

Data Acquisition and Preparation

Figure 1: a)Combines spectra of all chemicals
b) SNR distributions of each chemical c)Mean
and standard deviation of SNR values

We acquired the Raman spectra of the chem-
icals listed above in two different schemes:
Micro-Raman (for powder and tissue samples)
and normal spontaneous Raman (for liquid
samples). The liquid samples were measured
in a quartz cuvette (Hellma) which minimizes
the fluorescence background from the sample.
For the chemicals with high Raman activity like
toluene, acetone, methanol, isopropanol, we ad-
justed the exposure time between 50-100 ms
and the laser output power to about 50 mW
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for noisy measurements. We only increased
the exposure time (between 500-1000 ms) for
high-exposure measurements with these chem-
icals. On the other hand, we used full laser
power (300 mW output) and 100 ms expo-
sure time for the remaining samples while ac-
quiring the low-exposure dataset. We set the
exposure between one and three seconds for
the high-exposure measurements with the re-
maining chemicals and tissues. We collected
1000 spectra for both low and high exposure
measurements from each sample. The spectra
had an autofluorescence profile that could af-
fect the model performance. We removed this
background by subtracting a polynomial curve
from each spectrum. Figure 1a demonstrates
the combined spectra of all chemicals in our
dataset.
To train and test our architecture, we de-

signed two experiments. For the proof of con-
cept, we used Raman signals that are collected
with high exposure times (between 500 to 3000
ms). Then, we artificially added previously
measured white noise to these low noise signals.
After adding the noise profiles to each chemi-
cal, we performed normalization using the L2

norms of high-exposure signals. Then, we sub-
tracted the minimum value of the noisy signal
from both high and noisy signal. With this pro-
cedure, we created a database of Raman signals
with SNR values ranging from 10 to 25 dB. The
SNR distribution of chemicals is shown in Fig-
ure 1b-c.
For the application part, we used Raman

spectra of chemicals with both low and high
exposure times. Each signal was divided by its
acquisition time (in ms) for normalization. We
developed a different approach than the previ-
ous part, where we applied L2 normalization
to the data. Otherwise, we did not observe an
overlap between high and low exposure signals.
We fed the low exposure signals into the

FCED network as the input, whereas we passed
the high exposure ones as the final output.

Fully Convolutional Encoder De-
coder Network Architecture

Deep learning is a general term, referring to the
machine learning (ML) process using the multi-
layer (deep) ANNs. Convolutional neural net-
works (CNNs),14 which use convolution opera-
tions, are special types of ANNs. Convolutional
layers are popular tools in many application ar-
eas, like computer vision and natural language
processing. They use relatively fewer parame-
ters than fully connected layers. They are good
at capturing spatial features while being shift-
invariant. These properties make CNNs power-
ful for signal processing.
On the other hand, the encoder-decoder is

a well-studied architecture in ANNs. As the
name suggests, the first half of the network
encodes the input and reduces its dimensions.
The middle layer that captures the encoded in-
put is called the bottleneck. As the last step,
the decoder part of the network tries to recon-
struct the input signal from the encoded in-
formation. Encoder-decoder architecture can
be built using fully connected layers or convo-
lutional layers. Dimensionality reduction en-
ables the network to capture the core infor-
mation of the given input and eliminate the
noisy parts. Since the noisy aspects of the in-
put signal are removed in the bottleneck layer,
encoder-decoder architecture stands as a strong
candidate for denoising purposes.
In this study, we selected one dimensional

fully convolutional encoder-decoder (FCED) ar-
chitecture for denoising the Raman signals. We
composed encoder blocks using two stacked
convolutional layers with stride one and recti-
fied linear unit (ReLU) activation and a max-
pooling layer. We selected the initial filter size
as 16 and doubled it at each consecutive en-
coder block. We formed the decoder blocks us-
ing two transpose convolution layers with stride
one and ReLU activation, followed by an up-
sampling layer for signal reconstruction. Our
network had three encoder layers and three
symmetric decoder layers, and a final convolu-
tional layer.
The schema for the encoder and decoder

blocks and the entire architecture is shown in

3

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 9, 2022. ; https://doi.org/10.1101/2022.01.07.475347doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.07.475347
http://creativecommons.org/licenses/by-nc-nd/4.0/


1616 I

Conv1D

32 32 I/
2

Conv1D

64 64 I/
4

Conv1D

64

ConvT1D

64
32

ConvT1D

32

16

ConvT1D

16

I

LeakyRelU

Figure 2: The architecture of FCED Network. Yellow and orange blocks represents the 1D con-
volutional layers (Conv1D) with ReLU activation followed by max pooling layer. Green and blue
blocks are 1D transpose convolutional layers (ConvT1D) with ReLU activation followed by an up-
sampling layer. Violet layer at the end represent the final 1D convolutional layer with activation
LeakyReLU.13

Figure 2. For each convolutional and transpose
convolutional layer, kernel size was selected as
three. The network was optimized using Adam
optimizer15 of Tensorflow Keras backend.16 1

The Custom Loss Function

We take the idea of the non-standard loss func-
tion from Barton et al.,11 which is designed for
preserving the peak fidelity, and we created our
loss function. In both versions, the custom loss
function combines the regular mean square er-
ror (MSE) loss with local MSE loss. Though,
the definition and the parameters for local MSE
loss differ. The equation 1 is the regular MSE
loss, while local MSE loss is given in the equa-
tion 2 and 3. Sref denotes the reference noise-
free signal, whereas Snoisy is the noisy/denoised
signal.

MSE =
1

N

N∑
i=1

(Sref − Snoisy)
2 (1)

We selected the parameter t as the percentage
threshold for the peaks in the signal. We dis-
carded the points that are below the t percent of
the maximum value. We only take into account

1Models and the custom loss function is available at
DOI:10.5281/zenodo.5831099

the peak points, i.e. the points that passed the
threshold, for the local MSE loss function.

w(i) =

{
1 S

(i)
ref > max(Sref ) ∗ t

0 otherwise
(2)

MSElocal =
1

M

M∑
i=1

(Sref − Snoisy)
2 ∗ w (3)

We did a series of experiments to determine
the optimum percentage threshold t. Initially,
we trained five different models with parame-
ter t = 5%, 10%, 15%, 25%, 50%, respectively.
Then, we tested their SNR improvement with
four different chemicals. The results are pre-
sented in the Figure 3a.
We observed that the increased threshold, to

a certain level, had a positive effect on all chem-
icals. As seen in the Figure 3a, three out of
four chemicals had the peak around 25% thresh-
old value for their SNR improvement results.
Therefore, we selected 25% as our final thresh-
old value.
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Figure 3: a)SNR improvements of different
thresholds for the custom loss function b) SNR
improvements of the S-G filter with various win-
dow sizes.

Evaluation Metrics

Three evaluation metrics and their improve-
ment after denoising are used to test the perfor-
mance of our model. The first two are SNR and
mean absolute percentage error (MAPE). For
the third one, differences between the reference
signal and noisy/denoised signal are weighted
according to their intensity values and summed
up. We named the metric as weighted absolute
differences (WAD), and it is a measure of how
well the peaks are conserved. The equations are
provided below.

SNR = 10 ∗ log
1
N

∑N
i=1 S

2
noisy

1
N

∑N
i=1(Sref − Snoisy)2

(4)

MAPE =
100%

N

N∑
i=1

|Sref − Snoisy|
Sref

(5)

WAD =
1

N

N∑
i=1

∣∣∣S(i)
ref − S

(i)
noisy

∣∣∣ ∗ S(i)
ref (6)

We tested the improvements by calculating
the relevant metric value for both input (noisy)
and output (denoised) signal, then calculating
their ratio.
To compare our model with the classical de-

noising techniques, we need to determine the
parameters of the S-G filters and the wavelet
denoising. Based on our experience and obser-
vations, we selected polynomial order of the S-
G filter as three. Then, we tried possible can-
didates for the value of the window size, and
compared their (both global and local) SNR
improvement scores. We decided that the op-
timum window size was 17, as demonstrated in
the Figure 3. For the wavelet denoising, we used
Daubechies 8 (db8) wavelet with level 3.

Results and Discussion

The Proof of Concept

The first part of our research was to study
the noise reduction performance of our FCED
model with the Raman signals that we artifi-
cially added noise. This part was the proof of
concept of our work.
We trained our FCED model with both regu-

lar MSE loss and modified version of it, which
we explained in the Methods section in detail.
We compared the results of our model with the
S-G filter and wavelet denoising techniques.
Figure 4 illustrates the results of our models

and the other methods, on the Raman spec-
tra of ethanol. Ethanol is selected as test com-
pound and not included in our training set. Fig-
ure 4c-e are the box plots of SNR, MAPE and
WAD distributions, respectively. Each box plot
includes the noisy signal and denoised signals
using the S-G filter, wavelet, FCED with MSE
loss, and FCED with the custom loss. Figure 4a
demonstrates an example denoising result with
FCED with MSE loss, whereas Figure 4b is for
the custom loss.
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Figure 4: Denoising results of artificially noise added ethanol(500 ms) spectrum a)FCED model
trained with MSE loss, b)FCED model trained with the custom loss, c)change in the signal-to-noise
ratios, d)change in the mean absolute error (MAPE), d)change in the weighted absolute differences
(WAD). Y-axes represent SNR (dB), MAPE and WAD values, respectively.

The performance of the FCED architecture
trained with the custom loss exceeds other
methods at peak fidelity (preserving the peaks).
Nevertheless, we observed tiny distortions at
the tails of the most prominent peaks, which
we did not observe at the MSE loss (Figure 4a
and b).
The Figure 5 demonstrates the mean and the

standard error of the improvements of selected
denoising techniques. We were inspired by Bar-
ton et al. and plotted our improvement graphs
concerning the changing SNR values. We cal-
culated the effect of the initial SNR value to
the performance of our models. We found that
increasing SNR lowers the performances of all

methods. Regardless of the loss function, the
FCED models are superior to the S-G filters
and wavelet denoising for SNR values smaller
than 20 dB. In addition, the custom loss is su-
perior to MSE loss when initial SNR value is
below 15 dB.
This part of our study proved that FCED ar-

chitecture, regardless of the loss function, out-
performs the classical methods for Raman sig-
nal denoising at both peak fidelity and noise
reduction.
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Figure 5: Mean improvements of different
chemicals, which are represented in the x-axis
by their initial SNR values. Figure demon-
strates the results of the S-G filtering, wavelet,
FCED model with global MSE loss and FCED
model with the custom loss (with threshold
25%). a)SNR, b)MAPE and c) WAD improve-
ments

Practical Application

For the practical application of our approach,
we trained our model using both low and high
exposure Raman signals. Then, we tested our
model with several compounds that are un-
seen by our model during training. Our test
set included methanol, agarose, gelatin and
atrium tissue sample. The mean (± standard
error) of initial SNR values were 12.88(±1.35),
14.79(±0.95), 14.24(±1.03), 8.04(±1.13) for
methanol, agarose, gelatin and atrium tissue,
respectively. 2

The spectra of test set and denoising perfor-

2Dataset is available at doi:10.5281/zenodo.5831095

mances of the S-G filter and FCED model was
shown in the Figure 6. We did not include
wavelet denoising results to the Figure 6 regard-
ing its poor performance.
The mean SNR improvement score of the

FCED model for the 997 atrium tissue signals
is 1.342(±0.044), whereas the improvement of
the S-G filter is 1.154(±0.001) and wavelet is
1.087(±0.001). When we conduct Student’s t
test on the denoising performances of the S-
G filter and FCED, we found that the p-value
< 0.0001.
Our results indicate that using FCED archi-

tecture, we can recover a significant amount of
the peaks in the high-resolution Raman spec-
tra. The analysis shows that we could not re-
cover some of the peaks with too low or too
high SNR. However, one can overcome this is-
sue utilizing a richer training set. On the other
hand, since many times we only use the infor-
mation from the significant peaks while doing
peak analysis, this tool is still a candidate to
be used in tissue analysis. Since we denoised
the spectra that we acquired 10x faster, this
denoising algorithm can speed up the Raman
tissue analysis without a need for instrumental
improvements.

Conclusion

In this study, we developed a deep learning
approach for Raman signal enhancement. We
constructed the FCED model and trained it
with different loss functions. We achieved peak
preservation more accurately using the combi-
nation of global and local MSE loss as the cus-
tom loss. We were able to enhance the Raman
signal that was acquired in a short time, bet-
ter than the S-G filter and wavelet denoising
techniques. In addition, we demonstrated that
the FCED model could be used in any Raman
signal whose SNR value is below 20 dB.
This study reduces Raman acquisition times

by up to ten times, which in turn reduces tissue
scanning time by the same amount. This im-
provement is an important step towards over-
coming one of the biggest obstacles in point
mappings, the inability to obtain a practical
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Figure 6: Ground truth(high), noisy(low), S-G filtered and FCED denoised spectra of a)methanol
b)agarose c) gelatin and d) atrium tissue.

measurement time for medical applications.
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