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Abstract 1 

Systems consolidation of new experiences into lasting episodic memories involves 2 

interactions between hippocampus and the neocortex. Evidence of this process is 3 

seen already during early awake post-encoding rest periods. Functional MRI (fMRI) 4 

studies have demonstrated increased hippocampal coupling with task-relevant 5 

perceptual regions and reactivation of stimulus-specific encoding patterns following 6 

intensive encoding tasks. Here we investigate the spatial and temporal 7 

characteristics of these hippocampally anchored post-encoding neocortical 8 

modulations. Eighty-nine adults participated in an experiment consisting of 9 

interleaved memory task- and resting-state periods. As expected, we observed 10 

increased post-encoding functional connectivity between hippocampus and 11 

individually localized neocortical regions responsive to stimulus categories 12 

encountered during memory encoding. Post-encoding modulations were however 13 

not restricted to stimulus-selective cortex, but manifested as a nearly system-wide 14 

upregulation in hippocampal coupling with all major functional networks. The spatial 15 

configuration of these extensive modulations resembled hippocampal-neocortical 16 

interaction patterns estimated from active encoding operations, suggesting 17 

hippocampal post-encoding involvement by far exceeds reactivation of perceptual 18 

aspects. This reinstatement of encoding patterns during immediate post-encoding 19 

rest was not observed in resting-state scans collected 12 hours later, nor in control 20 

analyses estimating post-encoding neocortical modulations in functional connectivity 21 

using other candidate seed regions. The broad similarity in hippocampal functional 22 

coupling between online memory encoding and offline post-encoding rest suggests 23 

reactivation in humans may involve a spectrum of cognitive processes engaged 24 

during experience of an event.  25 
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Significance statement 1 

Stabilization of newly acquired information into lasting memories occurs through 2 

systems consolidation – a process which gradually spreads the locus of memory 3 

traces from hippocampus to more distributed neocortical representations. One of the 4 

earliest signs of consolidation is the upregulation of hippocampal-neocortical 5 

interactions during periods of awake rest following an active encoding task. We here 6 

show that these modulations involve much larger parts of the brain than previously 7 

reported in humans. Comparing changes in hippocampal coupling during post-8 

encoding rest with those observed under active encoding, we find evidence for 9 

encoding-like hippocampal reinstatement throughout cortex during task-free periods. 10 

This suggests early systems consolidation of an experience involves reactivating not 11 

only core sensory details but multiple additional aspects of the encoding event.  12 
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Introduction 1 

Memory systems consolidation refers to the transformation of experiences into 2 

longer-lasting episodic memories via hippocampal-neocortical interactions (1, 2). 3 

Animal research has shown that such stabilization of memory traces results from 4 

spontaneous reactivations of hippocampal-neocortical connectivity patterns, which 5 

can occur both during deep sleep (3) and awake periods of rest (4). Due to its 6 

spontaneous nature, it is difficult to achieve adequate experimental control of 7 

systems consolidation resulting from hippocampal replay. In recent years, however, 8 

task-free functional magnetic resonance imaging (fMRI) and 9 

magnetoencephalography (MEG) have been used successfully to investigate 10 

reactivation-related processes in awake humans non-invasively and with high spatial 11 

precision (5–7). Several fMRI studies have found experience-dependent alterations 12 

in resting-state functional connectivity (rsFC) between hippocampus and category-13 

sensitive cortices after an encoding task compared to a pre-encoding baseline 14 

measure (8–11). While most rsFC studies have focused on hippocampal interactions 15 

with pre-defined, task-relevant perceptual regions, investigations in non-human 16 

primates (12), and recently in humans using MEG (13), have shown that 17 

hippocampal states associated with reactivation and memory consolidation coincide 18 

with activity modulations in large parts of the neocortex, also beyond sensorimotor 19 

and perceptual cortices. Currently, however, we do not know whether these 20 

extensive neocortical modulations are part of a system-wide upregulation of 21 

hippocampal functional connectivity during post-encoding consolidation. 22 

Alternatively, hippocampal functional modulations could be limited to category-23 

selective cortex while engagement of non-sensory networks could occur via 24 

alternative pathways, e.g., mediated by the thalamus (14). Critically, hippocampal 25 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 7, 2022. ; https://doi.org/10.1101/2022.01.07.475348doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.07.475348
http://creativecommons.org/licenses/by-nc-nd/4.0/


functional connectivity modulations during memory-relevant task-states involve large 1 

portions of the neocortex (15–21). If these broader hippocampal networks are 2 

coordinated similarly also during post-encoding rest, this would suggest state 3 

continuation into periods without systematic exposure to external stimuli – akin to 4 

system-wide maintenance or reactivation of memory-relevant interactions between 5 

brain regions. 6 

 7 

In the present fMRI study, we characterized the systems-level changes in 8 

hippocampal interactions occurring in humans following an intense learning session. 9 

Younger and older adults (N = 89; Table 1) completed an intentional associative 10 

memory encoding task involving stimulus categories for which there exist established 11 

functional localizers. Reactivation-related changes in hippocampal-neocortical rsFC 12 

were estimated from resting-state periods taking place immediately before and after 13 

the encoding task as well as after a delay of 12 hours (Figure 1). We ran additional 14 

localizer-sequences to individually map object-, face-, and place-sensitive regions. 15 

Our first aim was to replicate previous reports of increased post-encoding rsFC 16 

between hippocampus and these category-sensitive perceptual regions. Importantly, 17 

we also tested for reactivation effects outside stimulus-selective cortex; both 18 

exploratory at the whole-brain parcel-level and at the level of established “canonical” 19 

resting-state networks. Post-encoding modulations in hippocampal rsFC were 20 

compared with functional connectivity patterns estimated from encoding and retrieval 21 

task-periods. Strong resemblance with encoding patterns would support an 22 

interpretation of ongoing reactivation (7). Higher similarity with retrieval patterns, on 23 

the other hand, could indicate rehearsal-like operations and would potentially 24 

invalidate an interpretation of post-encoding rsFC modulations as reflective of 25 
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spontaneous consolidation processes in the awake state. Finally, the current sample 1 

consisted of younger and older adults. With few exceptions (22), the effect of age on 2 

awake systems consolidation processes remains unexplored. Age is among the 3 

strongest individual predictors of episodic memory function, and the memory decline 4 

observed in normal aging is related to changes in hippocampal structure and 5 

function (23). Therefore, throughout the analyses, we systematically tested whether 6 

awake hippocampal reactivation-like patterns were affected by participant age.  7 

 8 

Table 1. Sample characteristics 9 

 Young adults  Older adults 

 n Mean (SD) Range  n Mean (SD) Range 

Age 47 26.5 (4.20) 20-38  42 67.1(5.81) 60-81 

Education 45 15.2(2.02) 13-18  39 16.3(2.06) 10-21 

MMSE 46 29 (1.07) 27-30  42 29.1 (1.07) 27-30 

IQ 46 110 (8.97) 90-125  41 121 (9.84) 90-146 

  10 
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 1 

Figure 1. Experiment structure. Participants completed a multimodal associative encoding task, 2 

visualizing interactions between items and face/place associates. Memory for the encoded 3 

associations was tested via offline forced-choice retrieval after 15 minutes, 12 hours and 5 days, and 4 

during an in-scanner cued retrieval session taking place ~12hours post-encoding. Here, a mix of 5 

previously encoded and novel items were presented and the participants indicated memory of the 6 

associate via F(ace) or P(place) responses, or alternatively item recognition without source 7 

information (“?”) or no memory of seeing the item (N(ovel)). Resting-state fMRI series were acquired 8 

three times during the experiment: before encoding (baseline/pre-encoding), immediately following 9 

encoding (“post-encoding”) and immediately preceding in-scanner retrieval (“delayed post-encoding”). 10 

Functional localizer sessions were run at the end of the experiment. When possible, participants 11 

completed the entire experimental protocol twice. The two visits differed only in time of encoding 12 

session (morning/evening) and consequently time of in-scanner retrieval which occurred 12h post-13 

encoding. 83 participants completed two full visits. 14 

 15 

  16 
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Results 1 

 2 

Increase in rsFC between hippocampus and targeted stimulus-sensitive ROIs after 3 

encoding 4 

To replicate previous reports of increased rsFC between hippocampus and task-5 

related regions following extensive encoding tasks, we correlated BOLD time series 6 

extracted from hippocampus with those from stimulus-sensitive regions, individually 7 

defined from the functional localizer protocol (Figure 2A). We then subtracted pre-8 

encoding baseline correlations from post-encoding correlations. The resulting rsFC 9 

change measures, one per ROI-pair per participant, were assessed with a linear 10 

mixed model fitted as a function of ROI-pair and age group. From the model 11 

conducted for hippocampus and the task-related target ROIs; fusiform face area 12 

(FFA; sensitive to face stimuli), lateral occipital complex (LOC; objects) and 13 

parahippocampal place area (PPA; places/scenes), we observed a post-encoding 14 

increase in rsFC compared to baseline for all ROI-pairs (false discovery rate 15 

corrected pFDR < 0.002) with estimates (change in z-transformed r) ranging from 0.08 16 

to 0.12 (Supplementary Table 1, Figure 2B). Excluding 9 observations from 7 17 

participants with LOC <5 vertices did not change the results.  18 

 19 

 20 
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 1 

Figure 2. A) Example of category-sensitive regions, defined from the functional localizer protocol 2 

(inferior view of the right inflated hemisphere). Right part shows % of participants with a ROI at a 3 

given surface vertex. B) Estimated post-pre change in hippocampal rsFC with the three ROIs, 4 

separated over age groups (YA/OA = Younger/Older adults). Error bars represent standard errors. 5 

FFA: fusiform face area; PPA: parahippocampal place are; LOC: lateral occipital complex. 6 

Widespread increase in hippocampal-neocortical rsFC after encoding 7 

Next, to assess the extent of post-encoding changes in hippocampal-neocortical 8 

rsFC beyond stimulus-category sensitive cortex, we first ran a whole-brain analysis 9 

testing for post-pre modulation between the hippocampus and each of 400 nodes in 10 

a pre-established neocortical parcellation (24). Following FDR-correction, 305/400 11 

nodes showed significant (pFDR < 0.05) post-encoding increases in their rsFC with 12 

hippocampus (Figure 3A), indicating that the observed increased coupling with 13 

stimulus-sensitive regions occurs as part of an extensive post-encoding modulation 14 

of hippocampal functional connectivity, affecting large portions of the cerebral cortex. 15 

To test whether the magnitude of this nearly global increase in post-encoding rsFC 16 

was unique to the hippocampus, we repeated the analysis after subtracting post-pre 17 

rsFC changes between alternative subcortical seed ROIs and the same 400 18 

neocortical nodes (Figure 3B). Most of the observed changes remained significant 19 

(pFDR < 0.05) after controlling for post-pre rsFC modulations using the following control 20 

seed regions: amygdala (201/400 nodes still significant), caudate nucleus (213/400 21 

nodes), putamen (276/400 nodes), and thalamus (237/400 nodes). The uniqueness 22 
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of hippocampus’ post-encoding behavior was further confirmed by calculating 1 

change in the graph-theoretical centrality measure “strength” – the sum of a node’s 2 

edges in a weighted graph – for all neocortical and subcortical nodes: here 3 

hippocampus showed a numerically larger increase than any other node (Figure 3C). 4 

Direct comparisons confirmed that hippocampus’ change in strength was 5 

significantly larger than that observed for 391 out of the 404 remaining nodes 6 

(including 4 subcortical) in the graph (pFDR < 0.05). That is, using rsFC strength as a 7 

proxy for centrality in the full brain network, hippocampus showed higher post-pre 8 

centrality increase than practically any other node in the brain.  9 

 10 

 11 

Figure 3. A) 305 nodes showing significant FDR-corrected post-encoding change in rsFC with 12 

hippocampus (values represent difference in Fisher-transformed r). B) Nodes for which hippocampal 13 

rsFC change was significantly (FDR-corrected) different when controlling for change observed using 14 

alternative subcortical seed ROIs (Amygdala and Thalamus as examples; see Supplementary Figure 15 

1 for other control seeds). 3) Post-pre rsFC centrality (strength) change per node. Each dot 16 

represents a node, neocortical nodes have been arranged into constituent resting-state networks. 17 

Boxplot whiskers represent min/max observed nodal value within a network while box limits reflect 18 

quartiles; black vertical line represents median strength. SalVentAttn = Saliency/Ventral attention 19 

network; DorsAttn = Dorsal attention network; Vis = Visual network; FrontPar = Frontoparietal 20 

network; SomMot = Somatomotor network; Default = Default Mode Network. 21 
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The nearly global changes in hippocampal rsFC strength following our encoding task 1 

were also observed at the network level. A linear mixed model assessing change in 2 

rsFC between hippocampus and 7 cortical networks (25) showed rsFC increases 3 

with all networks (all pFDR < 0.01; Supplementary Table 2, Figure 4A). Highest 4 

estimates of rsFC change were seen for the ventral and dorsal attention network 5 

while the lowest estimate was associated with the default mode network. Among the 6 

subcortical control regions only amygdala showed significant post-encoding rsFC 7 

changes at the network level, with dorsal and ventral attention networks and the 8 

somatomotor network (pFDR < 0.02; Figure 4B).  9 

 10 

 11 
Figure 4. A) Estimated hippocampal rsFC change with 7 neocortical networks, separated over age 12 

groups. Errorbars represent standard errors. B) Subcortial seed ROIs change in rsFC with 400 13 

neocortical nodes (gray dots) and networks (colored circles). Box plot whiskers represent ±1.5 14 

interquartile range while box limits reflect quartiles; gray horizontal lines show median changes in z. 15 

Post-encoding change in hippocampal rsFC not present after 12 hours 16 

We next tested the duration of the observed changes in post-encoding hippocampal-17 

neocortical rsFC. We calculated a second rsFC change measure, this time 18 

subtracting pre-encoding baseline correlations from hippocampal-neocortical 19 

correlations established using resting-state data collected ~12 hours post-encoding. 20 

As participants were scanned over two visits, with baseline resting-state scans once 21 
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in the morning and once in the evening (and similar for the 12h delayed resting-state 1 

scans; see Figure 1), we avoided potential time-of-day effects by averaging change 2 

measures from the two visits. Following the same approach as for the original rsFC 3 

change analysis reported above, we observed no significant change effects in 4 

hippocampal rsFC; not at the single parcel level, nor at the network or stimulus-5 

sensitive ROI level. Moreover, the observed hippocampal rsFC change from 6 

baseline to immediate post-encoding rest was significantly greater than the (non-7 

significant) change observed over 12 hours (paired t-test of values extracted from 8 

the “global” hippocampal rsFC change mask: T(168,5) = 2.48, p = 0.014; 192/400 9 

edges with pFDR < 0.05 when tested independently). The extensive post-encoding 10 

hippocampal rsFC modulations thus appear to be transient in nature, increasing 11 

immediately following an intensive learning experience but returning to baseline 12 

levels within a 12h timeframe. 13 

 14 

Increases in hippocampal-neocortical rsFC not explained by global signal  15 

To ensure that the nearly global upregulation of hippocampal functional connectivity 16 

post-encoding was not driven by residual noise in our data, we compared all 17 

subcortical seeds’ baseline correlation against the global gray matter signal. The 18 

globally averaged signal (GS) is often considered a measure of spatially diffuse 19 

hemodynamic fluctuations of partly non-neuronal origin, understood as noise in the 20 

current context (26). If hippocampal dynamics mimic these non-neuronal contributors 21 

disproportionally, and the noise-contribution to the global signal increases following 22 

encoding, this could theoretically result in apparent increased coupling between HC 23 

and gray matter globally. Several of the other subcortical seeds, however, showed 24 

significantly stronger baseline correlations with the GS than hippocampus, including 25 
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both the thalamus (paired t-test; T(88) = 7.32; p < .001) and caudate nucleus (T(88) 1 

= 7.00 ; p < .001). As none of these nodes showed similar post-encoding rsFC 2 

changes as the hippocampus, associations with the global signal cannot explain the 3 

current results. 4 

 5 

Post-encoding modulation of hippocampal rsFC mimics encoding patterns 6 

To further characterize the hippocampal-neocortical rsFC change patterns, we 7 

compared the spatial profile of modulation observed during post-encoding rest with 8 

profiles estimated from encoding and retrieval task periods. Using generalized 9 

psychophysiological interaction (gPPI) analysis (27, 28) we established spatial maps 10 

of average hippocampal modulation during the two task states (Figure 5A). The 11 

specific contrasts used reflected changes in hippocampal functional connectivity 12 

during successful source memory operations, controlling for intrinsic connectivity 13 

between nodes, and correlated stimulus-induced activation effects. Spatial 14 

Spearman correlations between the post-encoding resting-state pattern and gPPI 15 

effects observed during active encoding revealed significant similarities in 16 

hippocampal-neocortical modulations across the states (rho = .427; p < .001; Figure 17 

5B). A positive relationship was also found with the retrieval-state gPPI pattern (rho = 18 

.207; p < .001), albeit significantly weaker than the spatial correlation observed with 19 

encoding data (z = 3.47; p = .0005). Additional analyses comparing the observed 20 

relationships with permuted null-distributions preserving the spatial autocorrelation 21 

structure of the empirical brain maps confirmed significant similarities between 22 

encoding-state and post-encoding rsFC modulations (left hemisphere rho = .36, p = 23 

.014; right hemisphere rho = .54, p < .001; Figure 5C). The retrieval-state gPPI 24 

pattern did however not share significant similarities with the post-encoding rsFC 25 
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change map when controlling for spatial autocorrelations in the data (left hemisphere 1 

rho = .15, p = .31; right hemisphere rho = .23, p = .10). Thus, global post-encoding 2 

changes in hippocampus’ functional connectivity profile preferentially resemble the 3 

effect of active encoding. 4 

 5 

 6 

Figure 5. A) Z-standardized maps of average hippocampal functional connectivity changes during 7 

resting- and task states. B) Scatterplots showing relationships between task-state encoding (top) and 8 

retrieval (bottom) modulations and post-pre rsFC change in hippocampal (HC) functional connectivity 9 

with 400 neocortical nodes. Network membership of a node is indicated by its color. C) Permuted null-10 

distributions of spearman correlations between brain maps either ignoring (SA-independent) or 11 

incorporating (SA-preserving) spatial autocorrelation (SA) structures in the data. Dashed vertical lines 12 

shows empirical correlation between the patterns. Results shown are from right-hemispheric data, 13 

similar results were observed in the left hemisphere. 14 

Post-encoding change in hippocampal rsFC is independent of relevant individual 15 

factors 16 

Having established that post-encoding change in HC rsFC involves edges 17 

throughout the entire neocortex – in a pattern resembling memory encoding behavior 18 

– we tested whether this nearly global modulation was influenced by relevant 19 
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individual factors. Our main factor of interest, participant age, did however not 1 

explain significant variance in the observed reactivation-like connectivity profiles at 2 

any resolution or analysis level (category-selective ROI-level: see Supplementary 3 

Table 1; network-level: see Supplementary Table 2; neocortical parcel-level: all pFDR 4 

> .05). Similarly, we estimated average rsFC change within a mask consisting of the 5 

305 nodes showing increased post-encoding rsFC with the hippocampus, i.e. one 6 

value per participant. Comparing this “global” hippocampal rsFC change measure 7 

between younger and older adults also did not reflect any age differences (Welch 8 

separate variances t-test; T(86.99) = 0.76, p = .45). Unsurprisingly, given their strong 9 

correlations with participant age, individual differences in episodic memory 10 

performance were also not significantly associated with our measures of 11 

hippocampal post-encoding modulation. This was true over a range of tests 12 

spanning retention intervals of hours to several days and involving both cued 13 

retrieval and forced-choice tasks (Supplementary Table 3). 14 

 15 

Post-encoding Default Mode Network modulations via thalamic interactions 16 

The focus of the current study concerned reactivation-like modulations in 17 

hippocampal rsFC. However, considering recent reports of temporal cooccurrence of 18 

neurophysiological measures of hippocampal replay and activity increases in the 19 

default mode network (DMN) (13, 29), an observation from our control analyses 20 

warranted a post-hoc investigation. In our data, hippocampus showed reliable 21 

coupling to the DMN both during pre- and post-encoding resting-state periods, i.e., 22 

when the periods were investigated in isolation (Supplementary Figure 2). Yet, 23 

hippocampal post-pre rsFC change towards the DMN was the weakest observed at 24 

the network level (Figure 4A). This was also reflected at the whole-brain parcel level. 25 
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Here, hippocampus showed increased post-encoding coupling nearly globally across 1 

edges, with the conspicuous exception of a set of central DMN regions (medial 2 

prefrontal cortex, precuneus, angular gyrus; see Figure 3A). Thalamus, one of the 3 

subcortical control seeds, did however show a clear post-encoding modulation of its 4 

rsFC with core DMN regions (Figure 6). Moreover, for several DMN nodes this 5 

change was significantly stronger than that observed for the hippocampus (see 6 

Figure 3B). In line with recent accounts pointing to thalamus as a likely link between 7 

hippocampus and the DMN during early consolidation processes (14, 30), this final 8 

observation in our data also suggests that parts of the neocortex interact with 9 

subcortex – and potentially the hippocampus – via thalamic pathways at post-10 

encoding awake rest. 11 

 12 

  13 

Figure 6. Nodes showing significant FDR-corrected post-encoding change in rsFC with the thalamus 14 

(values represent differences in Fisher-transformed r). DMN, derived from Yeo’s 7-network 15 

parcellation (25), outlined in blue.  16 

  17 

Post-encoding change in thalamic rsFC
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Discussion 1 

We here demonstrate continuation of a memory encoding state into task-free post-2 

encoding rest. Following a period of intensive encoding, hippocampus increased its 3 

functional connectivity with large parts of the neocortex – over 75% following 4 

corrections for multiple comparisons at the current parcellation resolution. Although 5 

these modulations in hippocampal functional connectivity were measured during 6 

awake passive rest, their spatial profile across the neocortex resembled 7 

hippocampal connectivity patterns observed during active encoding of multimodal 8 

stimuli. Importantly, the observed modulations involved regions outside of 9 

sensory/perceptual and stimulus-category sensitive cortex; in fact, all the brain’s 10 

major functional networks showed some degree of change in their post-encoding 11 

hippocampal interactions when contrasted with a pre-encoding baseline.  12 

 13 

Such imaging-derived encoding-state continuation into task-free periods has been 14 

interpreted as evidence for “reactivation” (7) – potentially reflective of hippocampal-15 

neocortical co-activation patterns seen during neural “replay” in awake resting 16 

animals (12, 29), and recently in humans (13). In line with the long tradition 17 

connecting hippocampal replay during sharp-wave ripples with memory consolidation 18 

processes (31, 32), post-encoding reactivation observed in human fMRI data has 19 

reliably been linked with non-declarative (9, 33, 34), and declarative memory 20 

processes; the latter through associations with episodic memory performance or 21 

detections of stimulus-specific activation patterns (8, 10, 11, 35–39). With few 22 

exceptions, however (40), previous approaches investigating reactivation in human 23 

participants have been limited to interactions within the medial temporal lobe (MTL) 24 

or between hippocampus / MTL-structures and a few selected regions-of-interest. 25 
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We here replicate observations of increased post-encoding hippocampal connectivity 1 

with face-, place- and object-sensitive regions (e.g., (8)), but also show that these 2 

modulations must be understood as part of a nearly global pattern of hippocampal 3 

coupling change.  4 

 5 

Given the structural similarities between this extensive hippocampal post-encoding 6 

coupling change pattern and the global hippocampal-neocortical pattern extracted 7 

from the encoding state, we suggest that reactivation may not be limited to 8 

reinstatement of relevant sensory characteristics of the encoding task, but also 9 

incorporate encoding-relevant processes typically associated with higher-order 10 

functional networks, such as attentional allocation, schema integration, and cognitive 11 

control (17, 41). In line with this view, previous ROI-focused fMRI-studies in humans 12 

have reported post-encoding modulations consistent with integration of novel 13 

information in resting-state interactions between hippocampus and ventromedial 14 

prefrontal cortical regions (40, 42, 43). Moreover, studies in rhesus monkeys 15 

combining electrophysiological recordings and fMRI have found activity increases 16 

coinciding with hippocampal ripple events throughout higher-order cerebral cortex 17 

(12, 29). Similarly, a recent MEG-study in humans found activity increases source-18 

localized to the parietal lobe (“parietal alpha network”) and DMN regions during 19 

hippocampal ripple-events detected during awake rest (13). It should be noted, 20 

however, that such ripple-synchronized activity does not indicate causal or direct 21 

relationships/connectivity between the hippocampus and neocortical regions. For 22 

example, theoretical accounts (30) and fMRI investigations (14) of post-encoding 23 

recruitment of the DMN report evidence for thalamic mediation of consolidation-24 

related activity patterns. Our results provide further support for these accounts by the 25 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 7, 2022. ; https://doi.org/10.1101/2022.01.07.475348doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.07.475348
http://creativecommons.org/licenses/by-nc-nd/4.0/


observation of robust functional post-encoding DMN-modulation through thalamic 1 

interactions but less so with the hippocampus as seed region.  2 

 3 

While investigations of hippocampal interactions with other subcortical structures – 4 

e.g. the thalamus – appear promising in understanding the complex dynamics 5 

behind brain states supportive of ripple generation and memory reactivation (e.g., 6 

(44)), we found it noteworthy that the hippocampus showed the largest post-7 

encoding change in its functional connectivity towards all other nodes in our 8 

parcellation, i.e., larger than any other subcortical or neocortical node. The fact that 9 

this selective upregulation of hippocampal coupling was absent when estimated from 10 

a second resting-state dataset collected ~12 hours post-encoding supports the 11 

current view of hippocampus’ unique role in the initial stabilization of memory traces 12 

(e.g., (3)), and resonates with animal studies showing high prevalence of 13 

hippocampal replay immediately after an experience, followed by a gradual decay in 14 

replay occurrences (4). Our reported measure of hippocampal functional connectivity 15 

change is however not a direct reflection of replay or replay-related processes as 16 

described in the neurophysiological literature. Although neuronal reactivation in 17 

principle can be detected at the BOLD response level (see (7) for a thorough 18 

discussion), without simultaneous neurophysiological measurements we cannot 19 

know what drives the observed increases in hippocampal coupling. We thus believe 20 

the transient centrality boost seen for hippocampus in the post-encoding functional 21 

brain network must be interpreted within the context of human imaging-based 22 

approaches to reactivation and consolidation processes. Here, post-encoding 23 

modulations of pairwise regional BOLD synchronicity have repeatedly been used to 24 

predict memory-relevant behavior and through this established a plausible mapping 25 
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between the methodological approach and the underlying phenomenon of interest, 1 

memory consolidation (reviewed in (7)). As we did not observe any associations with 2 

memory performance, we cannot draw a similar link between post-encoding 3 

functional connectivity and memory-relevant offline processing in our sample. In 4 

contrast to previous approaches, however, we here deliberately avoided a limited 5 

regions-of-interest analysis approach and consequently had to run strict corrections 6 

on all tests of phenotype associations. Moreover, we can still point to several 7 

indicators supporting an interpretation of our post-encoding findings in line with early 8 

systems consolidation. Most prominent is the similarity with hippocampus-centered 9 

encoding patterns, considered the “hallmark” of reactivation (3, 7, 45). Also, the 10 

disproportionate increase in hippocampal centrality, relative to all other investigated 11 

subcortical and neocortical nodes, indicates strong post-encoding relevance of this 12 

core structure for episodic memory formation. To some extent this hippocampal 13 

selectivity also points against a pure Hebbian mechanism – sustained novelty-14 

induced neuronal reverberations (46) – behind the current findings as it is unclear 15 

why this process should prioritize hippocampal edges. Finally, our observation of 16 

increased post-encoding functional connectivity between thalamus and core DMN 17 

nodes fits well with recent models of thalamic enabling of low-interference states 18 

during hippocampally orchestrated memory reactivation (13, 14, 44). 19 

 20 

Similarly, we did not observe any age effects on hippocampal post-encoding 21 

modulations. Although this was contrary to our expectations, it suggests that the 22 

upregulation of hippocampal-neocortical connectivity after intensive memory 23 

encoding represents a universal phenomenon seen across the adult lifespan. 24 

Nevertheless, we believe that future studies should continue pursuing this link; one 25 
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of the most characteristic changes occurring in human cognition with higher age is 1 

the decline of episodic memory function (23), but descriptions of awake systems 2 

consolidation in samples other than young adults are almost completely absent in 3 

the literature (see (22) for a notable exception).  4 

 5 

Conclusion 6 

Is sum, we show that hippocampus’ coupling with the neocortex is upregulated 7 

nearly globally during post-encoding awake rest. The spatial configuration of these 8 

modulations resembles hippocampal connectivity seen during active encoding, 9 

indicating continuation of the hippocampal encoding state into stimulus-free periods. 10 

Such systems-wide encoding reinstatement at rest suggests reactivation of memory 11 

traces involves aspects beyond perceptual characteristics of encoded events.  12 
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Materials and Methods 1 

 2 

Participants 3 

See Table 1 and Supplementary Methods (section Participants) for inclusion criteria 4 

and sample characteristics 5 

 6 

Experimental design 7 

Experimental structure is described in Figure 1. One session of the encoding task 8 

consisted of 128 trials of an alternating item-face/item-place associative task. Unique 9 

items were presented with one of four faces or one of four places (16 trials per 10 

unique face/place in a session). Participants were instructed to visualize an 11 

interaction between the item and associate and were informed about all subsequent 12 

memory tests. All 128 encoded items were presented during the post-encoding 13 

memory tests. In-scanner retrieval additionally involved presentation of 64 novel 14 

items. Localizer tasks involved 12s stimulus blocks of four categories: faces, places, 15 

novel items, or scrambled stimuli. Two stimulus blocks were followed by 12s fixation. 16 

During resting-state scans, participants were instructed to focus on a fixation cross. 17 

See also Supplementary Methods (sections Experimental design + Experimental 18 

task and stimuli). 19 

 20 

MRI acquisition and preprocessing 21 

MRI data were collected on a 3T Siemens Prisma system equipped with a 32-22 

channel head coil. All fMRI data were collected with parameters: TR=1000ms; 23 

TE=30ms; flip angle=63°; voxel size=2.5mm isotropic; matrix=90x90; slices=56 (no 24 

gap); multiband=4; phase encoding=AP; ascending interleaved acquisition). 25 
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Rest/encoding/retrieval runs produced 730 volumes; localizer runs produced 366 1 

volumes. High resolution T1- and T2-weighted volumes were collected for structural 2 

descriptions together with field maps for distortion corrections. Data were 3 

preprocessed using FMRIPREP (v1.5.3 (47)), as previously described in (48), and 4 

denoised following the ICA-AROMA approach (49). See also Supplementary 5 

Methods (sections MRI acquisition + Preprocessing). 6 

 7 

ROI definition and estimation of functional connectivity 8 

Category-selective ROIs were defined from localizer data at the individual level using 9 

the GLM-contrasts faces>places (FFA), places>faces (PPA), intact>scrambled items 10 

(LOC). Bilateral subcortical ROIs were derived from Freesurfer’s automatic 11 

segmentation. Neocortical and network parcellations were based on (24) and (25), 12 

respectively. All ROIs/parcels/networks were established in participant space. RsFC 13 

change measures were calculated by subtracting post-encoding pairwise Fisher-14 

transformed Pearson’s correlations between denoised BOLD timeseries of all 15 

ROI/parcel pairs from their pre-encoding correlations. For a given seed, network-16 

level rsFC measures were constructed by averaging over edges involving the seed 17 

and parcels assigned to a given network. Task-specific hippocampal FC during 18 

encoding and retrieval was estimated using gPPI (28) and consisted of 400 non-19 

directional/symmetrized (27) PPI measures per task state, representing 20 

hippocampal-neocortical modulations during successful source memory operations. 21 

See also Supplementary Methods (sections ROI definitions + Preparations for 22 

statistical analyses). 23 

 24 

 25 
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Statistical analyses 1 

Linear mixed models (Figure 2B, Figure 4A) were run with Participant ID as random 2 

intercepts to account for multiple sessions and included time of day and mean 3 

framewise displacement (FD) as covariates. Whole-brain parcel-wise analyses 4 

(Figure 3A+B, Figure 4B, Figure 6) were run using linear regressions with seed-5 

parcel rsFC change as dependent variable and FD as covariate. Here, average rsFC 6 

change over two visits was used as dependent measure for 69 participants; morning 7 

and evening scans were equally distributed in the remaining 20 participants with one 8 

valid visit. Nodal strength centrality differences (Figure 3C) were calculated from the 9 

individual subjects’ weighted 405x405 neocortical+subcortical rsFC change graphs. 10 

Rank-based correlations between rsFC change and task-derived gPPI-patterns 11 

(Figure 5) were compared to permuted null-distributions adjusted for spatial 12 

autocorrelations (50). All P-values were FDR-corrected for multiple comparisons. 13 

See also Supplementary Methods (section Statistical analyses). 14 

 15 

Data availability 16 

Anonymized data and code required to reproduce results and figures presented in 17 

the current report will be made available at 18 

https://github.com/linefolv/HC_Cortex_PostEncoding_Coupling when the manuscript 19 

is accepted for publication. 20 
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Supplementary material 
 
 
Supplementary Methods 
 
Participants 

 

92 participants were enrolled in the present study: 49 younger (20-38 years; 25 
females) and 43 older adults (60-80 years; 25 females). All participants were fluent in 
Norwegian, right-handed, with normal or corrected vision and no history of severe 
psychiatric or neurological disorder, traumatic or enhanced brain injury, and no 
current use of medications known to affect the nervous system. Included participants 
were required to score ≥ 26 on the Mini Mental State Examination (MMSE; (1)), have 
normal IQ or above (IQ ≥ 85) measured with the Wechsler Abbreviated Scale of 
Intelligence (WASI; (2)), and no major depression indicated by the Beck Depression 
Inventory (BDI; (3)) or the Geriatric Depression Scale (GDS; (4)). See characteristics 
of the final sample in Table 1. All participants signed an informed consent approved 
by the Regional Ethical Committee of South Norway. The main recruiting strategies 
included targeted Social Media advertisement, flyers, and posters at selected places 
(e.g., senior centers). Participants were compensated for the participation. 
 
Experimental design 
 
This study is part of a larger project investigating memory consolidation processes at 
different time scales and their possible relation to memory decline in aging 
(https://cordis.europa.eu/project/id/725025). Relevant sessions for this report include 
a fMRI-paradigm consisting of 12 minutes (min) baseline/pre-encoding resting state 
fMRI (rsfMRI) before two runs of an associative encoding task (12 min each), 
immediately followed by 12 min post-encoding rsfMRI. Then, approximately 20 
minutes after the end of the last encoding run, a forced-choice memory test was 
administered outside the scanner. Following a 12-hour interval, participants returned 
for another post-encoding rsfMRI scan before performing three runs in-scanner 
retrieval (12 min each). Additionally, four functional localizer runs (6 min each), 
enabling localization of regions sensitive to stimulus categories presented during the 
encoding task, and several structural scans were performed. After ended scanning, a 
second and third forced-choice memory test were administered ~12 hours and ~5 
days post-encoding, respectively. The participants also underwent a session of 
neuropsychological testing (appr. 3 hours) and several questionnaires. The 
described structure is depicted in Figure 1. 
 
83 of the 92 participants completed the fMRI-paradigm two times, resulting in 175 
sessions. The two visits were separated at least six days apart, with unique sets of 
task stimuli at each visit. Fifteen sessions had to be excluded for the following 
reasons: one session from 11 participants were excluded as they reported 
rehearsing the encoded associations during the post-encoding rest, one of these (a 
young male) had only one visit and was excluded entirely. Additionally, one session 
from two participants were excluded due to interruption between encoding and post-
encoding rest. One older male was excluded based on motion (mean framewise 
displacement > 0.2).  One young male participant was excluded due to the suspicion 
that he fell asleep during post-encoding rest scans. Final sample for further analysis 
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was 89 unique participants and 158 sessions. The visits were characterized by either 
having the encoding task administered in the morning (8 - 10 AM) (n = 79) or in the 
evening (8- 10 PM) (n = 79). For the morning encoding session participants were 
instructed to stay awake, i.e., avoid naps, before in-scanner retrieval 12h later. For 
the evening encoding session, the 12h delay involved sleep at a hospital hotel 
associated with the scanner facilities. Order of visits was counterbalanced over 
participants.  
 
Participants were thoroughly trained on the different task components before the 
experiment began and were informed that their memory for the encoded 
associations would be tested. All employees administrating the tasks were carefully 
trained to give identical task instructions across participants. 
 
Experimental tasks and stimuli 

Stimulus material (from both visits combined) consisted of a total of 384 real-life 
images of inanimate everyday items, eight images of faces (four males, four 
females) and eight images of places (four indoor, four outdoor), as well as 384 
auditory stimuli in the form of a prerecorded (female voice) name for each item. All 
item/auditory stimuli were two-syllable Norwegian words. Place- and face stimuli 
were luminance-matched. A total of 256 items were presented at encoding; of which 
a predetermined half constituted the task material for participants’ first visit (item 
images and corresponding auditory item-names 1–128, face images 1–4, and place 
images 1–4), and the other half of the stimuli constituted the task material for 
participants’ second visit (i.e., item images and corresponding auditory item-names 
129–256, face images 5–8, and place images 5–8). The remaining 128 item stimuli 
were introduced as novel items during in-scanner retrieval. Apart from the specific 
images used, the tasks were identical across visits. Training task stimuli consisted of 
16 cartoon images and item-names from the same stimuli categories (i.e., items, 
faces, and places). Item images were obtained mainly from the Bank of 
Standardized Stimuli (5), some from StickPNG.com and from Google Advanced 
Image Search under the license “labelled for reuse with modification.” Face images 
were obtained from Oslo Face Database (described in (6)). Tasks were designed 
and run using MATLAB 9.7.0 and Psychtoolbox-3 3.0.16. 

One session of the rapid event-related encoding task consisted of 128 trials of an 
alternating item-face/item-place associative task, 64 of each condition. 128 unique 
items were presented one at a time on the screen for 5 seconds (s) together with 
either one of four real-life faces, or one of four real-life places (16 trials per unique 
face/place). Concurrently with the visually presented stimuli, a female voice named 
the item three times (e.g., “scarf”, “scarf”, “scarf”). Participants were instructed to 
visualize an interaction between the item and the face- or place-associate before 
rating the vividness of the imagined interaction on a scale from one to four during a 
2s interval following stimulus offset. Finally, a fixation cross appeared and remained 
on the screen until the beginning of the next trial. Order of conditions and intertrial 
interval (ITI; 2-7s) was optimized with optseq2 
(http://surfer.nmr.mgh.harvard.edu/optseq/). Item-associate combinations were 
randomized over participants. 
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The offline memory test was an 8 alternative forced choice (AFC) test where all the 
items from the preceding encoding task were presented, one at a time, and the 
participants had to indicate which of the eight possible associates (four faces + four 
places) they thought the item was paired with at encoding, all in a self-paced 
manner. This test was performed immediately after post-encoding rest, and after ~12 
hours and ~5 days. 

At in-scanner retrieval, a trial started with the presentation of a visual item and its 
spoken name (e.g., “scarf”, “scarf”, “scarf”). After a 5s stimulus presentation period, a 
2s interval followed in which participants were asked to indicate their recollection of 
source information associated with the specific item. The four alternatives were: 1) 
the item was presented together with a face stimulus at encoding; 2) together with a 
place stimulus at encoding; 3) they remembered seeing the item at encoding but 
could not recall the associate; 4) the item was not presented at encoding. One 
session of the retrieval task consisted of 192 trials of which 64 involved an encoding 
item presented with a face associate, 64 involved an encoding item presented with a 
place associate, and 64 involved a novel item (i.e., not presented at encoding). 
Fixation ITI varied between 2-7s and was optimized with optseq2. Item presentation 
order was randomized over participants with the criterion that an equal number of 
face-encoded, place-encoded, and novel items were presented within a scanner run 
(3 runs in total per session). 

The localizer task followed an ABN block design (7) in which two 12s stimulus blocks 
were followed by a 12s fixation block. A stimulus block consisted of continuous 
presentation of one out of four stimulus categories: faces from the encoding task; 
places from the encoding task; novel items; scrambled versions of the novel items. 
During the face and place blocks, one specific face/place stimulus was held static on 
the screen and participants responded to miniature random changes to the image. 
During the item/scrambled items block category stimuli were replaced every 1s. 
Presentation order of stimulus blocks was optimized via custom routines that 
ensured 1) the same stimulus category was never presented two blocks in a row; 2) 
over the full session, a specific face/place stimulus were preceded by all place/face 
stimuli 3) temporal distance between stimulus categories were held as short as 
possible. Each specific face/place stimuli, as well as the item/scrambled item 
categories, were presented 8 times over the four runs constituting a localizer 
session. 

 
During resting-state recordings, participants were instructed to remain awake, keep 
eyes open and focus on a fixation cross. Afterwards, participants completed a 
questionnaire of what they were thinking about during scanning. 

  
MRI acquisition 

 
Imaging data was collected with a 3T Siemens Prisma MRI unit equipped with a 32-
channel Siemens head coil (Siemens Medical Solutions Germany) at Rikshospitalet, 
Oslo University Hospital, Norway. 
 
Scanning parameters were equal across all fMRI experiments. 56 transversely 
oriented slices were measured with a BOLD-sensitive T2*-weighted Echo Planar 
Imaging (EPI) sequence (TR = 1000 ms; TE = 30 ms; flip angle = 63°; matrix = 90 x 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 7, 2022. ; https://doi.org/10.1101/2022.01.07.475348doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.07.475348
http://creativecommons.org/licenses/by-nc-nd/4.0/


90; voxel size = 2.5 × 2.5 × 2.5 mm3; FOV = 225 × 225 mm2 ; ascending interleaved 
acquisition; multiband factor = 4, phase encoding direction = AP). Each encoding, 
retrieval, and resting state run produced 730 volumes while a localizer run produced 
366 volumes. To allow for signal stabilization and avoid T1 saturation effects, the six 
first volumes of each fMRI run were discarded from the analyses, in addition to the 
volumes automatically discarded by the Siemens system. Sufficient T1 attenuation 
was confirmed following preprocessing. 
 
Additional scans included spin-echo field map sequences with opposing phase-
encoding directions acquired for distortion correction of the fMRI data; a T1-weighted 
MPRAGE sequence consisting of 208 sagittally oriented slices  (TR = 2400 ms; TE = 
2.22 ms; TI = 1000 ms;  flip angle =  8°; matrix = 300 × 320 x 208; voxel size = 0.8 × 
0.8 × 0.8 mm3; FOV = 240 × 256 mm); a T2-weighted SPACE sequence consisting of 
320 sagittally oriented slices (TR = 3200 ms; TE = 5.63 ms; matrix = 320 × 300 x 
208; voxel size = 0.8 × 0.8 × 0.8 mm3 ; FOV = 256 mm × 240 mm). Additionally, a 
clinical T2w Fluid-Attenuated Inversion Recovery (FLAIR) sequence was run and 
inspected by a clinical radiologist.  
 
For the fMRI-sequences, a NordicNeuroLab (NNL; NordicNeuroLab, Norway) 32-
inch LCD monitor was positioned behind the scanner and viewed via a mirror 
attached to the head coil. Participants produced manual responses using a double, 
two-button NNL ResponseGrip system. Auditory stimuli were presented to the 
participants with the OptoActive noise cancelling (ANC) II ™ headphones 
(Optoacoustics, Israel). 
 
Preprocessing 

 

We here followed lab-routines that have been described in full in (8). Briefly, we used 
the Nipype-based (9) FMRIPREP pipeline (version 1.5.3; (10)), with a custom 
implementation (https://github.com/markushs/sdcflows/tree/topup_mod) of TOPUP 
distortion correction (11). Quality control of raw+preprocessed data was performed 
via inspection of visual reports generated by FMRIPREP and MRIQC (12). fMRI data 
were denoised prior to statistical analysis. Following, non-aggressive removal of ICA 
AROMA-classified noise components (13), average white matter- and cerebrospinal 
fluid (CSF) signal timeseries (eroded masks) were extracted from the AROMA-
denoised data. Next, using Nilearn routines (14) data were detrended before 
temporal filtering and regression of WM and CSF timeseries from the AROMA-
denoised data, ensuring orthogonality between filters and confound timeseries (15). 
Finally, the mean signal was added back to the denoised data. Localizer fMRI data 
were high-pass filtered at 0.005Hz, encoding and retrieval fMRI data were high-pass 
filtered at 0.008Hz, and resting-state data were bandpass-filtered between 0.008 and 
0.09hz 
Spatial smoothing (4 mm FWHM) was performed using Freesurfer routines for 
analyses performed at the surface level (localizer data). No smoothing was applied 
to data used for ROI/parcel-level analyses. 
 
ROI definitions 

 
Functional task-related ROIs were defined individually for each participant based on 
all available localizer runs from all visits to enable localization of brain areas thought 
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to be especially relevant to the task stimuli in our task, namely face-sensitive FFA, 
place-sensitive PPA and item-sensitive LOC. A general linear model (GLM) was set 
up for each participant: the four stimulus categories (faces, places, items, scrambled 
items) were modeled as blocks of 12s duration according to their presentation 
schedule while task responses were modeled as stick events. The five task event 
descriptors were convolved with a canonical (two-gamma) hemodynamic response 
function (HRF) and added as regressors to the GLM together with their time and 
dispersion derivatives. Freesurfer FSFAST routines 
(https://surfer.nmr.mgh.harvard.edu/fswiki/FsFast) were used to estimate parameter 
estimates and their contrasts from surface level data in fsaverage5 space (10242 
vertices per hemisphere) 
 
FFA was defined by surface vertices responding stronger to faces than places within 
the right posterior and mid fusiform gyrus (16), PPA defined as vertices responding 
stronger to places than faces within the right parahippocampal gyrus (17) and LOC 
as vertices responding stronger to items than scrambled items within the right lateral 
lateral occipital cortex (18), all with an uncorrected threshold of p < 0.0001. If the 
number of remaining vertices was less than five, the threshold was lowered until five 
or more contiguous significant vertices were observed. Seven participants had fewer 
than five LOC vertices at the initial p-threshold. Analyses containing LOC were run 
with and without these. 
 
The hippocampus and subcortical control ROIs were derived from the Freesurfer 
automatic subcortical segmentation (19). The selected control regions included 
thalamus (excluding lateral and medial geniculate bodies), caudate nucleus, 
putamen and amygdala. All ROIs were bilateral. Caudate and putamen were 
selected based on observations of modulated functional connectivity in aging and 
during episodic memory operations involving these structures (8, 20). Amygdala was 
included as the structure lies adjacent to hippocampus and shares similar MRI 
signal-to-noise properties (21). Thalamus was included due to suggestions of it 
having a complementary role to hippocampus during consolidation states (22, 23). 
All whole-brain parcel-level analyses were based on the Schaefer-Yeo 400 node 
cortical parcellation (24). Cortical network analyses were based on the Yeo 7-
network resting-state parcellation (25). All neocortical parcels/networks were 
established in participant space through intersections with the Freesurfer-derived 
cortical ribbon. 
 
Preparations for statistical analyses 

 
For preparation of data, statistical analyses, and visualization we used Python 3.7.4, 
including the use of the packages Scikit-learn (version 0.23.2; (26)), Nilearn (version 
0.7.1; (14)), and Pingouin (version 0.3.12; (27)). Linear mixed models were run in R 
4.0.0 (R Core Team, 2020) via packages Lme4 (28) and Lmer4Test (29). 
 
The following approach was used to extract rsfMRI BOLD timeseries and estimate 
functional connectivity measures for a given participant: 1) For the functionally 
defined ROIs (FFA, PPA, LOC), we ran principal component analysis (PCA) on 
vertex timeseries from a given ROI to account for the differences in ROI sizes across 
participants. The timeseries derived from the first PCA component was used as a 
representative measure of ongoing resting-state fluctuations within the ROI. 2) For 
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the anatomically defined subcortical ROIs, mean timeseries over functional voxels 
overlapping >50% with the high-resolution structural definition were extracted and 
averaged over hemispheres. 3) For the whole-brain neocortical 400-node 
parcellation, functional voxels overlapping >50% with a given neocortical parcel, 
defined in native high-resolution structural space, and constrained by the cortical 
ribbon, were considered functional representatives for that parcel and the associated 
timeseries were averaged. 4) measures of functional connectivity between 
timeseries were estimated by pairwise Pearson’s correlation for each rest scan 
separately. The correlation coefficients were Fisher transformed to z-values and 
post-encoding modulation values were established by subtracting pre-encoding from 
post-encoding values. 5) Network level measures of functional connectivity change 
were established by averaging modulation values over all hippocampal edges (or 
other subcortical seed ROI in the control analyses) with neocortical parcels assigned 
to a given network (parcel-network correspondence obtained from 
https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellati
on/Schaefer2018_LocalGlobal). 
 
Task-specific functional connectivity during in-scanner encoding and retrieval was 
established using generalized psychophysiological interactions (30). For the 
encoding data, three “psychological” timeseries were set up as boxcar functions, 
reflecting encoding events (5s duration) characterized by “successful source memory 
encoding” or “unsuccessful source memory encoding”, as well as response events 
(2s duration). Memory status was derived from the offline 8AFC test occurring 
immediately following the post-encoding resting-state scan. For the retrieval data, 
four psychological timeseries were set up in a similar fashion reflecting “successful 
source memory retrieval”, “misses” (old items not recognized with correct source 
information), novel items and response events. Here, memory status was based on 
the in-scanner responses. Next, denoised task-state BOLD timeseries from 
hippocampus and 400 neocortical parcels were deconvolved into neuronal estimates 
(31), and point-by-point multiplied with the demeaned psychological event timeseries 
(32). The resulting “psychophysiological” timeseries, one per event type, were 
returned to the BOLD level through convolution with a canonical two-gamma HRF 
and included in GLMs together with HRF-convolved versions of the psychological 
functions and the original seed timeseries. As the current investigation focused on 
hippocampal-neocortical interactions, a total of 800 PPI GLMs was set up for each 
participant and task-state. 400 of these used a neocortical node as source of the 
physiological signal in the design matrix and the hippocampal BOLD timeseries as 
dependent variable. The other 400 used hippocampus as physiological source in the 
design while the dependent variable spanned all neocortical nodes. Each neocortical 
node was thus represented on the dependent side in one model and the 
independent side in another. For our measure of non-directional memory-relevant 
functional connectivity between hippocampus and a given neocortical node we used 
the average of the parameter estimates associated with the PPI-regressor 
representing successful memory trials in the two models including that node. 400 
such symmetrized PPI measures (33) representing the full hippocampal-neocortical 
modulation during source memory operations, were established for both encoding 
and retrieval state data. 
 
As the experimental paradigm consisted of separate independent memory tests of 
the encoded content – performed at different delay intervals – we established 
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measures of task-relevant memory performance over four operationalizations: 1) 
immediate memory: proportion correct item-source assignments on the 8AFC test 
following immediately after the encoding scan; 2) intermediate memory: proportion 
correct on the second AFC test ~12h post-encoding, not including items with wrong 
source assignment at the immediate test: 3) durable memory: proportion correct on 
the third AFC test ~5 days post-encoding, not including items with wrong source 
assignments in any of the earlier tests; 4) category-level memory; proportion correct 
face/place assignments out of total exposures to encoded items during in-scanner 
retrieval, corrected for wrong assignments (e.g., “face” response to item shown with 
place-associate).  
 
Statistical analyses 

 
Linear mixed models were used to test for post-encoding changes in rsFC between 
hippocampus and the localizer-derived category-sensitive ROIs (Figure 2B), and 
between hippocampus and the seven cortical networks (Figure 4A). Here, post-pre 
difference in rsFC was fitted as a function of hippocampal ROI pair (alternatively 
network pair) and age group. As most participants went through the full paradigm 
twice, participant ID was added as random intercepts to account for multiple 
sessions. No global intercept was included in the model, allowing us to assess 
individual change for each ROI-pair. Estimates of participant motion (mean 
framewise displacement (FD) over resting-state runs) and time of day (morning or 
evening scan) were added as covariates. FD, time of day and age group were 
demeaned. P-values were adjusted for multiple comparisons using False Discovery 
Rate (FDR)-correction. The same modeling approach was used in control analyses 
with alternative subcortical ROIs (e.g. Figure 4B). 
 
For the whole-brain parcel-wise analyses (Figure 3A) we ran 400 linear regressions 
with hippocampal-parcel rsFC change as dependent variable and demeaned FD as 
covariate. Average functional connectivity change over two visits was used as 
dependent measure for participants who had been through both morning and 
evening scans (N=69). In the remaining participants, i.e., those who had only one 
valid visit (see section Experimental Design), morning and evening scans were 
equally distributed (N=20; 10 morning scans, 10 evening scans). P-values derived 
from T-values of the intercepts were FDR-corrected for multiple comparisons and 
used to assess significance of rsFC change over hippocampal edges. The same 
approach was used in control analyses with alternative subcortical seed regions, and 
in the parcel-wise analyses contrasting change in hippocampal-neocortical rsFC with 
similar measures derived from other subcortical ROIs (Figure 3B). Observing no 
significant effects of individual motion on the rsFC change measures, seed-parcel 
rsFC change differences between age groups were tested using independent 
samples Welch separate variances T-test. 
 
Nodal strength centrality differences were calculated from the individual subjects’ 
weighted 405x405 neocortical+subcortical rsFC change graphs. A given node’s 
strength was calculated as the sum of the weights of all edges connected to that 
node (34). For visualization (Figure 3C) the strength values were averaged across 
participants and sorted into constituent canonical resting-state networks. Paired T-
tests were used to assess differences between hippocampal post-pre strength 
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change and strength changes observed in all other nodes (404 tests in total). 
Significance was established after FDR-adjustment of p-values. 
 
The comparisons of hippocampal-neocortical post-encoding rsFC change patterns 
with task-derived gPPI patterns of hippocampal functional connectivity during source 
memory encoding and retrieval operations (Figure 5) were performed using rank-
based (spearman) spatial correlations. Empirical correlations were compared to null-
distributions of 1000 spearman correlations where the rsFC change patterns had 
been randomly permuted. Here, BrainSMASH (35) was used to retain similar spatial 
autocorrelation structure in the permuted data as in the original, empirical data. 
Spatial autocorrelation structure was estimated at the surface level, for each 
hemisphere separately, after calculating geodesic distance between the 200 parcels 
in a hemisphere using the Python package surfdist (36).  
 
Global signal timeseries, to be used in control analyses, were extracted from all 
participants’ baseline rsfMRI scans using a Freesurfer-derived gray matter mask and 
AROMA-denoised data. For each participant, Spearman correlations between the 
global signal and BOLD-timeseries from subcortical ROIs during the same baseline 
scan were estimated and Fisher-transformed before being averaged across visits. 
Group-level differences between subcortical structures’ baseline correlation with the 
global signal were tested using paired-samples t-tests. 
 
Associations between individual differences in memory performance and post-
encoding hippocampal rsFC modulations were tested over four operationalization of 
retention success, using linear mixed models at the category-selective ROI level and 
network level, and partial Spearman correlations at the whole-brain parcel level. A 
linear mixed models was run for each hippocampal ROI pair (alternatively network 
pair) separately; here, memory performance was fitted as a function of rsFC change 
and age group, participant ID included as random intercepts to account for multiple 
visits, and time of day added as covariate. The partial correlations were run 
iteratively over hippocampal rsFC change with the 400 neocortical parcels, including 
participant age as covariate. We also estimated rsFC change within a mask 
consisting of the 305 nodes showing increased post-encoding rsFC with the 
hippocampus (i.e., one value per participant), and compared this “global” 
hippocampal-neocortical change measure with our memory performance measures 
using a similar partial correlation approach. All P-values were FDR-corrected for 
multiple comparisons. As a few participants missed data on some of the memory 
tests, the number of observations entered in the analysis varied slightly between 
operationalizations. Sample sizes for the different tests are reported in 
Supplementary Table 3.  
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Supplementary Figure 1.  
Nodes for which hippocampal post-pre rsFC change was significantly (FDR-
corrected) different when compared to change observed using alternative subcortical 
seeds. 
 

 
 
 
 
 
Supplementary Figure 2.  
Mean hippocampal rsFC over neocortical networks, estimated separately for pre-
encoding and the post-encoding scans. DAN = Dorsal Attention Network; FP = 
Frontoparietal Network; VAN = Ventral Attention Network; SM = Somatomotoric 
Network; VIS = Visual Perceptual Network. Boxplot whiskers represent the 1.5 
interquartile range. 
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Supplementary Table 1. 
Linear mixed model results from tests of hippocampal (HC) post-encoding rsFC 
change with category-sensitive ROIs 
 
  Difference in rsFC post-encoding vs pre-encoding 

Predictors Estimates 95% CI t-value pFDR 

HC-FFA 0.12 0.07 – 0.17 4.57 <0.001 
HC-LOC 0.10 0.05 – 0.15 3.78 0.001 
HC-PPA 0.08 0.03 – 0.13 3.29 0.002 
Age group (demeaned) 0.03 -0.06 – 0.12 0.71 0.478 

 
 
 
 
 
Supplementary Table 2.  
Linear mixed model results from tests of hippocampal (HC) post-encoding rsFC 
changes with canonical resting-state networks 
 

 
 
 
 
 
 
 
 
 
 

 
 
  

  Difference in HC rsFC  pre-encoding vs post-encoding 

Predictors Estimates 95% CI t-value pFDR  
Default  0.04 0.01 – 0.08 2.31 0.023 
Dorsal Attention 0.10 0.06 – 0.14 5.19 <0.001 
Frontoparietal 0.08 0.04 – 0.12 4.21 0.001 
Limbic 0.06 0.02 – 0.09 2.96 0.004 
Somatomotor  0.08 0.04 – 0.12 4.21 0.001 
Ventral Attention 0.12 0.09 – 0.16 6.42 <0.001 
Visual 0.08 0.05 – 0.12 4.35 <0.001 
Age group (demeaned) 0.01 -0.05 – 0.07 0.27 0.790 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 7, 2022. ; https://doi.org/10.1101/2022.01.07.475348doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.07.475348
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Table 3.  
Results of tests of associations between individual differences in memory performance and post-encoding rsFC modulations. 
Performance-columns (YA/OA = Younger/Older adults) show mean correct source memory with standard deviations in parenthesis. 
Partial correlation results column (whole-brain + global mask analysis) show results without (outside parenthesis) and with 
participant age (inside parenthesis) included as covariate. 

 
 
 

  HC rsFC vs performance 

Memory performance 
operationalization 

YA 
performance 

OA 
performance 

Whole-brain (400 edges), 
Partial spearman  

Yeo 7 networks, 
Linear mixed model  

Localizer ROIs 
Linear mixed model 

Global mask 
Partial spearman 

Immediate memory  
(~1h, 8AFC)  

N=46  
74.0% (16.8) 

N=42 
54.6% (18.7) 

top rho = .35 (.32) 
all pFDR > .05 

top estimate = 14.31 
all pFDR > .05 

top estimate = 2.82 
all pFDR > .05 

rho = -.02 (-.12) 
p = .85 (.28) 

Intermediate memory  
(12h, 8AFC) 

N=46 
64.1% (21.0) 

N=42 
39.5% (19.4) 

top rho = .29 (.26) 
all pFDR > .05 

top estimate = 10.89 
all pFDR > .05 

top estimate = 1.19 
all pFDR > .05 

rho = -.03 (-.11) 
p = .82 (.31) 

Durable memory  
(5d, 8AFC) 

N=45 
52.8% (22.3) 

N=42 
28.8% (16.0) 

top rho = -.32 (-.30) 
all pFDR > .05 

top estimate = 2.42 
all pFDR > .05 

top estimate = -2.40 
all pFDR > .05 

rho = -.06 (-.17) 
p = .58 (.12) 

Category-level memory  
(12h, in-scanner) 

N=47 
70.1% (19.7) 

N=42 
48.8% (23.5) 

top rho = -.30 (-.29) 
all pFDR > .05 

top estimate = 15.59 
all pFDR > .05 

top estimate = 5.79 
all pFDR > .05 

rho = -.03 (-.12) 
p = .74 (.25) 
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