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Abstract: Machine learning prediction algorithms such as AlphaFold can create remarkably 
accurate protein models, but these models usually have some regions that are predicted with low 
confidence or poor accuracy. We hypothesized that by implicitly including experimental 25 
information, a greater portion of a model could be predicted accurately, and that this might 
synergistically improve parts of the model that were not fully addressed by either machine 
learning or experiment alone. An iterative procedure was developed in which AlphaFold models 
are automatically rebuilt based on experimental density maps and the rebuilt models are used as 
templates in new AlphaFold predictions. We find that including experimental information 30 
improves prediction beyond the improvement obtained with simple rebuilding guided by the 
experimental data. This procedure for AlphaFold modeling with density has been incorporated 
into an automated procedure for crystallographic and electron cryo-microscopy map 
interpretation. 
One-Sentence Summary: AlphaFold modeling can be improved synergistically by including 35 
information from experimental density maps. 
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Main Text:  
Advanced machine learning-based structure prediction algorithms are transforming the way that 
three-dimensional structures of proteins and their complexes are obtained (1-4).  The AlphaFold 
(5) and RoseTTAFold (6) algorithms, for example, can often create accurate models for 
substantial regions of a protein structure based on the amino acid sequence of that protein and on 5 
residue covariation information (7) present in a multiple sequence alignment (5). Prediction can 
be augmented by including experimentally determined structures of proteins with similar 
sequences as templates (5). In many cases the resulting predicted models are accurate enough to 
allow straightforward structure determination using molecular replacement in macromolecular 
crystallography or by docking a structure in a density map in single-particle cryo-electron 10 
microscopy (cryo-EM), without requiring that a similar structure has been previously determined 
(3, 4, 8). 

There are limitations in using predicted models for structure determination (1, 2, 9).  In 
particular, machine-learning methods typically do not yield accurate predictions for all of the 
residues in a protein (10). This is partly due to the presence of disordered segments in many 15 
proteins (5, 11), but is also due to the limited size and accuracy of multiple sequence alignments 
for part or all of some protein sequences, resulting in a limited amount of available information 
about residue covariation (5). A related limitation is that parts of proteins that can adopt 
alternative conformations may be systematically predicted in only one of them (5, 12); this 
limitation may be reduced by alternative sampling of multiple sequence alignments (12). 20 
Additionally, individual domains of proteins are often predicted accurately, but in the absence of 
extensive conserved interaction surfaces the spatial relationship between domains cannot be 
unambiguously predicted with current methods (2). A final limitation is that as these machine 
learning methods are trained on structures in the PDB (5), predictions are likely to be biased 
towards these known structures even if they are not included explicitly as templates in 25 
prediction. 

A strength of recent machine-learning algorithms for protein structure prediction is that they can 
assess the accuracies of their own predictions.  AlphaFold, for example, estimates the value of a 
commonly-used measure of model accuracy (lDDT-Ca (13)) for each residue in a protein and 
reports these estimates as a confidence measure, plDDT (5). Validation with known structures 30 
demonstrated that these AlphaFold plDDT values are reasonably good indicators of actual 
accuracy (Pearson’s r value relating plDDT and lDDT-Ca is 0.73 (10)). 
It is well known that the accuracy of structure prediction can be improved by including external 
structural information, for example distances between specified pairs of residues in a protein 
(14). In AlphaFold and RoseTTAFold, for example, residue pair distance information is 35 
implicitly derived from sequence covariation (5, 6). It is reasonable to expect that experimental 
structural information from density maps such as those used in cryo-EM or crystallographic 
structure determination could be included as well, though a mechanism for incorporation of this 
information in a form that is compatible with modeling would be required.  

The hypothesis underlying the present work is that experimental information might improve 40 
structure prediction synergistically, where correcting one part of a protein chain might improve 
structure prediction in another part of the chain. In AlphaFold, a core algorithm focuses attention 
on features that may contribute the most to structure prediction (5). An internal recycling 
procedure uses the path of the protein chain in one cycle to focus attention on interactions that 
should be considered in the next cycle. If experimental information were to result in adjustments 45 
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in conformation, the attention mechanism might recognize important relationships that otherwise 
would have been missed. This means that experimental information might be amplified by the 
prediction algorithm.  At the same time, improvement in the accuracy of a predicted model might 
make it easier to identify modifications to that model needed to obtain a better match to the 
density map.  These possibilities suggest that an iterative procedure for incorporation of 5 
information from a density map into structure prediction might further improve the accuracy of 
modeling.  This would be similar to the situation in macromolecular crystallography, where 
improvement of one part of a model leads to improved estimates of crystallographic phases, in 
turn improving the density map everywhere and allowing still more of the model to be built (15). 
A second hypothesis in this work is that information from a density map can be partially 10 
captured in the form of a rebuilt version of a predicted model that has been adjusted to match the 
map.  The structure of such a model could only represent a small part of the total information in a 
map, but it seemed possible that much of the key information could be captured, including 
overall relationships between domains in a protein as well as the detailed conformation of the 
protein.  As AlphaFold can use models of known proteins as templates (5), such a rebuilt model 15 
could readily be incorporated into subsequent cycles of structure prediction. 

We tested these ideas by developing an automated procedure in which a predicted AlphaFold 
model is trimmed, superimposed (docked) on a cryo-EM density map, and rebuilt to better match 
the map. The rebuilt model is then supplied along with the sequence to AlphaFold in a new cycle 
of prediction. The output of this procedure is a new AlphaFold model that has incorporated 20 
experimental information through the use of the rebuilt template in the prediction. We applied 
four cycles of the iterative algorithm to the sequence of one protein chain and the full density 
map for each of 25 cryo-EM structures, all deposited after the training database for the version of 
AlphaFold we used was created (July 2020). In these tests, multiple sequence alignments were 
included in each stage of AlphaFold modeling.  To emulate the situation where no similar 25 
structure is present in the PDB, templates from the PDB were not used. For each protein we then 
examined the four AlphaFold models obtained (one for each cycle of modeling), comparing them 
to the corresponding deposited model (used as our best estimate of the true structure) and to the 
corresponding deposited density map.  
Fig. 1 illustrates iterative structure prediction for one of these structures, that of a focused 30 
reconstruction of SARS-CoV-2 spike protein receptor binding domain (RBD) in a complex with 
neutralizing antibodies ((16); 3.7 Å; EMDB entry 23914, PDB entry 7mlz; only the spike protein 
is analyzed here). Figure 1 (A) shows that the five-stranded b-sheet (lower left corner) in the 
AlphaFold model (in blue) created based on the sequence of the spike protein can be 
superimposed closely on the deposited model (in brown), but the loops near V445 and P479 in 35 
the right part of (A) then do not match well. The differences consist partly of an overall rotation 
of these loops but also of a substantial conformational difference in the loop containing residue 
V445 (G). The same AlphaFold model is shown along with the density map in (D), where it can 
be appreciated that the density map does not clearly show the path of the protein chain. The 
agreement between the AlphaFold model and the map is considerably worse than between the 40 
deposited model and map (map correlation with map calculated from deposited model is 0.70; 
from AlphaFold model is 0.41).   Figure 1 (B) shows a version of this AlphaFold model (in 
purple) obtained after automatic rebuilding using the density map. It is different from the blue 
predicted model in (A) and agrees better with the density map (E), where the map correlation 
increased from 0.41 to 0.58. The rebuilt model has become more similar to the deposited model 45 
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in the region of V445 (H), but 
overall it is still quite different 
from that model (B). This 
rebuilt model was used as a 
template in AlphaFold 5 
modeling, with the goal of 
providing the inference 
procedure with some 
additional information about 
which parts of the structure are 10 
close together, and the 
rebuilding and modeling were 
repeated for a total of four 
iterations.  The AlphaFold 
model obtained after iterative 15 
prediction and rebuilding is 
shown in green in Fig. 1 (C) 
and (I). It matches the 
deposited model (in brown) 
much more closely than the 20 
original AlphaFold model 
obtained with sequence alone, 
particularly in the loop region 
near V445 and P479. The 
overall map correlation for 25 
AlphaFold model obtained 
after iterative prediction and 

rebuilding is 0.58 (the same as for the rebuilt model). Note that unlike the rebuilt model, the 
AlphaFold predicted model shown in (C), (F) and (I) has not been adjusted by coordinate 
refinement or rebuilding; it is simply superimposed as a rigid unit on the density map. The 30 
similarity obtained to the map and to the deposited model therefore reflects an improvement in 
the AlphaFold prediction itself. 
Fig. 1. Iterative AlphaFold prediction and model rebuilding using density maps. A. Comparison of AlphaFold 
model of SARS-CoV-2 spike protein receptor binding domain (blue) with deposited model ((16), PDB entry 7mlz, 
brown).  The positions of V445 and P479 are indicated. B. Comparison of model in A rebuilt using density map (in 35 
purple) with deposited model (brown).  C. AlphaFold model obtained using density map and four cycles of iteration 
including rebuilt models as templates (green), compared with deposited model (brown). D, E, F. Models as in A, B 
and C, superimposed on the map used for rebuilding (EMDB entry 23914 (17), automatically sharpened as 
described in Materials and Methods). G, H, I. Models and coloring as in A, B and C (deposited model is brown), 
showing detail of loop near residue V445. J. Accuracy of models obtained with AlphaFold alone (abscissa) and 40 
obtained with iterative AlphaFold prediction and rebuilding with density (ordinate) for one chain from each of 25 
structures from the PDB and EMDB. Accuracy is assessed as the percentage of of Ca atoms in the deposited model 
matched within 3 Å by a Ca atom in the superimposed AlphaFold model. K. Accuracy of models shown in J, 
assessed based on rmsd of matching Ca atoms and shown on a log scale. Abscissa is rmsd for models obtained with 
AlphaFold alone and ordinate is for models obtained with iterative AlphaFold prediction and rebuilding with 45 
density.  L. Accuracy of models assessed as in J by the percentage of of Ca atoms in the deposited model matched 
within 3 Å by a Ca atom in the superimposed model, obtained with direct model-building using the corresponding 
density maps using the Phenix tool map_to_model (abscissa) compared with those obtained with iterative AlphaFold 
prediction (ordinate). 
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Overall, Fig. 1 shows that the AlphaFold model obtained with our iterative procedure and shown 
in green in (C) and (I) is much more similar to the deposited model (brown) than is either the 
predicted AlphaFold model created with sequence alone, shown in blue in (A) and (G), or the 
rebuilt version of this predicted model, shown in purple in (B) and (H).  The improvement over 
the original AlphaFold model supports the idea that a template created by rebuilding an 5 
AlphaFold model using a density map contains information from that density map that can be 
used to improve AlphaFold structure prediction. The observations that the AlphaFold model 
obtained using a density map also improves upon the rebuilt model and that iteration improves 
the AlphaFold model support the idea that model rebuilding is synergistic with AlphaFold 
prediction, yielding a new model that is better than either alone. 10 

Figure 1 (J) compares the accuracy of AlphaFold models obtained without and with density 
information for all of the 25 recently-deposited structures considered. The abscissa of each point 
in (J) is the percentage of Ca atoms in the corresponding deposited model matched within 3 Å by 
a Ca atom in a superimposed AlphaFold model created based on sequence.  The ordinate is the 
corresponding percentage for predictions including density information with templates and 15 
iterating as in (I).  The inclusion of density information increased the number of these 25 
structures with at least 90% of Ca atoms superposing within 3 Å from 12 to 20. This set of 
models is assessed based on rmsd of matching Ca atoms in Fig. 1 (K), demonstrating that in 
most cases the iterative AlphaFold models have much lower rmsd from corresponding deposited 
models than predictions using sequence alone. 20 

Figure 1 (L) extends this analysis further by comparing the 25 models obtained using iterative 
AlphaFold modeling and model rebuilding (abscissa) with models created directly from density 
maps using an automatic model-building algorithm (18) that is based on many of the same tools 
used here in model rebuilding, but without including AlphaFold at all (ordinate). All but one of 
the iterative AlphaFold models are more accurate than the corresponding models created by 25 
automatic model-building alone. 

In the cases described above, it was possible that information about the specific sequences that 
are being modeled could be present in the AlphaFold parameter database because similar 
structures may have been present in the PDB when AlphaFold was trained.  In this work we are 
comparing AlphaFold predictions that are identical except that they are carried out with and 30 
without templates, so this does not directly affect our conclusion that AlphaFold modeling and 
rebuilding using a density map are synergistic. There was a possibility, however, that including 
the density information in these examples allowed AlphaFold prediction to use some pre-existing 
information about similar structures, rather than truly incorporating new information from the 
density maps.  To address such a possibility, we carried out an analysis of a structure for which 35 
no similar structure was present in the PDB when AlphaFold training was carried out. The 
structure we used was that of a domain of a bacterial flagellar basal body ((19); PDB entry 7bgl, 
chain a, residues 250-365, EMDB entry 12183, resolution of 2.2 Å) included in the CASP-14 
structure prediction competition ((20); target identification of T1047s2-D3). The PDB entry with 
the most similar sequence (PDB entry 2hm2) present at the time of AlphaFold training has a 40 
sequence identity of just 9% and has a very 
different structure (20).  Parts of the structure 
of this domain from the basal body are 
accurately predicted by AlphaFold (20), 
however there was a substantial difference in 45 
the arrangement of two antiparallel strands 
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relative to the cryo-EM structure, as well as a small difference in the position of a helix (cf. Fig. 
2 (A) and compare the four-stranded sheet in the AlphaFold model in blue with the two-stranded 
sheet in the deposited model in brown at the left side of the figure, and compare positions of the 
blue and brown helices in the center).   
Fig. 2. Iterative AlphaFold prediction and model rebuilding of domain from flagellar basal body. A. 5 
Comparison of AlphaFold model flagellar basal body chain a residues 250-365 (blue; (19)) with deposited model 
(PDB entry 7bgl, brown).  The positions of G316 and V284, bracketing a segment that is not present in the deposited 
model, are indicated. B. Comparison of model in A obtained with three cycles of iterative AlphaFold modeling and 
rebuilding using density map (in green) with deposited model (brown).  

We used the flagellar basal body (7bgl) structure to test whether iterative AlphaFold prediction 10 
and model rebuilding would be effective in a case where AlphaFold was trained without any 
similar structures. In this test, fragments from a model automatically built from the density map 
were included in model rebuilding, and multiple sequence alignments were only used in the first 
cycle of AlphaFold modeling.  These options were chosen to improve model rebuilding and to 
allow the conformations of the rebuilt models to guide the AlphaFold prediction. Figure 2 (A) 15 
showed that a standard AlphaFold prediction leads to a model that has some correct and some 
substantially incorrect parts. Note that the deposited model in brown is missing residues 285-315 
which are not visible in the density map. These residues are modeled by AlphaFold but are not 
included in our comparisons. Iteration of AlphaFold modeling with model rebuilding yields a 
model that agrees more closely with the deposited (7bgl) model (B). This iterative AlphaFold 20 
model is much more accurate than the original AlphaFold prediction (A) based on rmsd between 
matching Ca atoms (1.7 Å vs 4.7 Å) and by percentile-based spread, which de-emphasizes large 
discrepancies ((21), 0.3 Å vs 2.0 Å).  It is similar to but somewhat more accurate than the initial 
rebuilt model (rmsd of 1.8 Å, percentile-based spread of 0.4 Å).  To check that the improvement 
in prediction with iteration was not simply due to leaving out the multiple sequence alignment in 25 
predictions after the first, we carried out AlphaFold modeling without a multiple sequence 
alignment and without information from the map. This resulted in a prediction that was quite 
different from that of the deposited model (rmsd of 11.5 Å, percentile-based spread of 11.2 Å). 
These observations show that the synergy in iterative AlphaFold modeling and model rebuilding 
using a density map can be obtained even if AlphaFold is trained in the absence of any similar 30 
structures. 
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Fig. 3. Current automatic map interpretation tools work poorly with an unclear map but can be improved 
upon by iterative AlphaFold prediction and model rebuilding. A. Machine-learning method for automatic map 
interpretation (DeepTracer (22)) applied to the SARS Cov-2 structure shown in Fig. 1 (A).  Deposited model is in 
brown and DeepTracer model is in blue.  B.  Comparison of DeepTracer model with density map. C and D, as in A 5 
and B except model-building carried out with the Phenix tool map_to_model and map_to_model structure is in 
magenta (18).  The unoccupied density in B and D that does not correspond to the brown deposited model in A and 
C corresponds to an antibody heavy chain that is part of this structure. E. Progress of automated model-building for 
structures shown in Fig. 1 using AlphaFold prediction iterated with model rebuilding based on a density map. The 
resolution of the map and the PDB identifier for each structure is listed.  The vertical bars show the percentage of Ca 10 
atoms in the deposited structure that are within 3 Å of any Ca atom in the corresponding model. The purple bars 
represents initial AlphaFold models, superimposed on the deposited structure. The salmon, grey, yellow and red bars 
respectively, represent the rebuilt model in cycles 1, 2, 3, and 4 of iterative AlphaFold modeling and rebuilding. 

An immediate application of iterative prediction and model rebuilding is automatic analyses of 
cryo-EM or crystallographic density maps. Though tools exist for this purpose, automatic map 15 
interpretation is challenging, particularly when high-resolution maps are not available.  For 
example, Fig 3 (A)- (D) show that automatically-generated models created by each of two 
automated tools (18, 22) using the experimental density map for the SARS-CoV-2 spike protein 
structure illustrated in Fig. 1 fail to create a model resembling the deposited structure. The 
automated map interpretation methods in (A) and (C) are able to match just 60% and 24%, 20 
respectively, of Ca atoms in the corresponding deposited model within 3 Å.   

The output of the iterative AlphaFold modeling and map-based rebuilding process described 
above is a predicted AlphaFold model that is already positioned to match the density in a map.  
The predicted model may still require some adjustment indicated by the density map, and such 
adjustment can be carried out by automatic refinement (23) or rebuilding as described above.  25 
The resulting refined or rebuilt model is an automatically-generated interpretation of the 
corresponding part of the density map.  Our procedure can therefore also be viewed as a method 
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to automatically interpret a density map, incorporating information from a density map into 
AlphaFold modeling in the process. 

Figure 3 (E) presents results from the same analysis of cryo-EM maps as that shown in Fig. 1, 
this time from the perspective of automated map interpretation.  As in a real case where the 
structure is not known, each full density map is supplied without any trimming or masking.  The 5 
sequence of one chain to be interpreted in this map was used to create a standard AlphaFold 
prediction.  That predicted model is automatically oriented to match the map, rebuilt to match the 
density in the map, and included in the next AlphaFold prediction. After iteration, the last 
version of the model that was rebuilt to match the map is the output of the procedure.  This 
differs from Fig. 1 in that the final model is now no longer an AlphaFold model, but instead is an 10 
AlphaFold model that has been adjusted to match the map. The progress of map interpretation 
for each of the 25 recent cryo-EM density maps considered in Fig. 1 (J) is shown in (E).  Some 
of the structures in (E) contain multiple copies of the same chain. In these cases, matching any 
copy was allowed in this evaluation. Others contained multiple chains with similar sequences 
(e.g., proteasome structures 7lsx and 7ls5, the antibody heavy and light chains in 7mjs, and the 15 
abgd histones in 7lv9). In these cases, a match was allowed to whichever chain matched the 
location the automatic docking had chosen (the correct location was actually picked in all cases 
except for 7lv9, a structure at a resolution of 4.5 Å).   For each structure and density map, (E) 
shows this percentage of matching Ca atoms for the initial AlphaFold model (superimposed on 
the deposited chain with secondary-structure matching) and the four automatically-docked and 20 
iteratively rebuilt models.  The structures are arranged based on the resolutions of the 
corresponding maps, with finer (higher) resolution on the left and coarser (lower) resolution on 
the right.  The SARS Cov-2 spike protein structure (16) shown in Fig. 1 is labeled as 7mlz in (E); 
it can be seen that the automated interpretation of this density map starts with 71% of Ca atoms 
in the deposited model matched by the rebuilt model and improves with each cycle of rebuilding 25 
until the next-to-last cycle, where 92% are matched, and no additional improvement is obtained 
on the final cycle. Others that improve substantially include 7m7b (improving from 59% to 77% 
matched), 7lx5 (75% to 91%), and 7lci (73% to 95%). In 18 of 25 cases a model matching at 
least 95% of Ca atoms in the deposited structure within 3 Å was obtained; this level of accuracy 
was present in only 11 of the starting AlphaFold models.  Two of the cases (7lv9 and 7msw) 30 
yielded very poor models (E). In each of these cases, the initial AlphaFold model was predicted 
with very low confidence. In the case of 7lv9, the plDDT for only 5 of 97 residues was above the 
threshold for a “good” prediction of 0.7, for 7msw this portion was 86 of 635 residues. Overall, 
the accuracy of the 25 chains examined improved from an average of 82% of Ca atoms in the 
deposited model matched of to an average of 91% after iterative modeling and rebuilding. 35 

As the procedures described here are not specific to AlphaFold, to cryo-EM maps or to the 
Phenix (24) model rebuilding software used in this work, we expect that the synergy of model 
prediction and model rebuilding using a density map observed here will be general and that 
similar results could be obtained using other model prediction and model rebuilding approaches 
and using other types of density maps such as those obtained in cryo-tomography or 40 
crystallography. 
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Materials and Methods 

Choice of maps and models  15 

The 25 maps and corresponding models shown in Fig. 1 and 3 were chosen in Aug. 2021 in a 
way that was intended to yield relatively representative recent structures in the PDB. We selected 
the first protein chain in the 25 most recently-deposited unique cryo-EM structures at the time 
with resolution of 4.5 Å or better and containing between 100 and 1000 residues.  For this 
purpose, we considered two structures to be duplicates if the first protein chains matched in 20 
sequence at a level of 99% identity or greater. We included one pair of similar structures in the 
25 structures chosen (7mlz and 7lx5). These differ in residues at the ends of the chain and differ 
also in that the SARS Cov-2 spike protein (the chain analyzed) is bound to different antibodies in 
the two structures.  The PDB and EMDB accession numbers for these 25 structures are listed in 
Supplementary Table I. 25 

 

PDB ENTRY EMDB ENTRY RESOLUTION (Å) CHAIN 

7mby 23750 2.44 B 

7me0 23786 2.48 A 

7ev9 31325 2.6 A 

7ls5 23502 2.74 A 

7eda 31062 2.78 A 

7lci 23274 2.9 R 
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7lvr 23541 2.9 A 

7c2k 30275 2.93 A 

7m7b 23709 2.95 A 

7n8i 24237 3 L 

7mjs 23883 3.03 H 

7l1k 23110 3.16 A 

7l6u 23208 3.3 A 

7ku7 23035 3.4 A 

7kzz 23093 3.42 B 

7lx5 23566 3.44 B 

7brm 30160 3.6 A 

7lsx 23508 3.61 A 

7lc6 23269 3.7 A 

7mlz 23914 3.71 A 

7msw 23970 3.76 A 

7rb9 24400 3.76 B 

7bxt 30237 4.2 A 

7m9c 23723 4.2 A 

7lv9 23530 4.5 B 

  

Supplementary Table I.  List of structures and maps used in Figs. 1 and 3. 
 

The choice of structure and map to test model creation using AlphaFold trained without similar 
sequences in the PDB was made by selecting the (one) structure in CASP-14 that was 5 
determined by cryo-EM, classified as a “hard” target in CASP-14 (25), and for which 
experimental data is available in the EMDB and PDB. This structure was PDB entry 7bgl (19), 
EMDB entry 12183.  We chose domain 3 of chain a in this structure as AlphaFold performed 
poorly on this target in CASP-14 (rank of 78) compared to most other targets (rank of 1 for all 
other 7bgl targets). 10 

 
Map and model display 
Figures were prepared with ChimeraX (26). 

 
Map preparation 15 
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For the analyses shown in Fig. 1 and 3, the full maps corresponding to each structure were used.  
The overall resolution-dependent sharpening or blurring of maps were automatically adjusted 
using the deposited model with the Phenix tool local_aniso_sharpen (without the local 
sharpening feature but applying the anisotropic correction).  For the 7bgl structure in Fig. 2, the 
map was boxed so as to include the density corresponding to the domain that was analyzed, but 5 
was not masked (density corresponding to other chains was therefore present as well). 

 
Overall procedure for iterative AlphaFold model generation and model rebuilding using a density 
map 
The first cycle of our iterative procedure consists of creating an AlphaFold model using a Google 10 
Colab (https://colab.research.google.com/) AlphaFold2 notebook, followed by downloading the 
resulting model and automatically trimming, docking, and rebuilding the model with the density 
map and the Phenix tool dock_and_rebuild.  Subsequent cycles consisted of converting the 
rebuilt model to mmCIF format (27), uploading the model to the Colab notebook, generating a 
new AlphaFold model using the rebuilt model as a template, and rebuilding as in the first cycle.  15 
A total of four cycles were carried out.  We considered the last AlphaFold model obtained in this 
procedure to be the AlphaFold model created with information from a density map, and the last 
rebuilt model to be the overall final model produced by the procedure.  
 
AlphaFold model generation 20 

We used a slightly modified version of the ColabFold notebook (28) to create models with 
AlphaFold.  The principal difference from ColabFold is that this notebook can create models for 
a group of sequences, each with optional uploaded templates. This allowed us to analyze all the 
structures in Fig. 1 as a group. Another difference is that this notebook allows any combination 
of use of templates supplied by the user and chosen from the PDB and the optional use of 25 
multiple sequence alignments. The notebook is available at 
https://colab.research.google.com/github/phenix-
project/Colabs/blob/main/alphafold2/AlphaFold2.ipynb .  In the first cycle of AlphaFold model 
generation, no templates were used and multiple sequence alignments were included.  In 
subsequent cycles, the rebuilt model from the previous cycle was used as a template.  For the 30 
examples in Fig. 1, multiple sequence alignments were included in all cycles; for the 7bgl 
example in Fig. 2, they were included only in the first cycle. 
 

Automatic model trimming, docking and rebuilding  
We used the Phenix (24) tool dock_and_rebuild to orient AlphaFold models in a density map 35 
and rebuild them based on the map. This is accomplished in five overall steps: trimming and 
splitting into domains, docking of individual domains, morphing the full AlphaFold model to 
match the docked domains, creating rebuilt versions of the model, and assembly of the best parts 
of the rebuilt versions of the model. All these steps are carried out automatically with the 
dock_and_rebuild  tool that in turn uses other Phenix tools to carry out individual steps. Key 40 
parameters are noted in the text below; except as noted, default values were used throughout this 
work. 

Model trimming and splitting into compact domains 
AlphaFold models are automatically trimmed and split into domains based on the coordinates of 
the AlphaFold model and on estimates of confidence (plDDT values, (5)) supplied by AlphaFold 45 
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for each residue in the structure.  The Phenix tool process_predicted_model is used for this 
purpose.  Residues with plDDT value less than 70 (the threshold for a “good” prediction (5)) are 
removed and the remaining residues are grouped into “domains” (up to three by default, 
controlled by the parameter maximum_domains) consisting of one or more parts of the chain that 
contain a sufficient number of residues (10 residues, controlled by the parameter 5 
minimum_domain_length) and form a compact unit. This grouping can be carried out based on 
spatial proximity (default), or based on the predicted uncertainties in Ca - Ca distances. We note 
that in cycles after the first, a template is supplied that derives in part from the previous 
AlphaFold model, resulting in systematically higher plDDT values. In this work we have not 
quantified this effect or adjusted the threshold to account for it. 10 

Domain docking into density 
The compact groups of residues (“domains”) obtained by trimming the AlphaFold model are 
aligned, one at a time, to the density map.  Two approaches are used. The first approach uses 
secondary structure matching (SSM) to dock the domain onto the map using the Phenix tool 
superpose_and_morph with the setting ssm_match_to_map=True (see below for details of this 15 
tool). The second approach consists of a direct correlation search between model-based density 
and the map using the Phenix tool dock_in_map (24). Normally these procedures are carried out 
sequentially, and if the first yields a match with a map-model correlation (CC_mask value using 
the Phenix tool map_model_cc) sufficiently large (typically 0.3, controlled by the parameter 
ssm_search_min_cc) the other is skipped. Based on the hypothesis that the transformations for 20 
different domains may often be similar, the transformations for successfully-docked domains are 
considered as possible transformations for each additional domain. These methods typically yield 
a set of possible placements of each domain in the map. If symmetry is automatically detected in 
the map (24), these placements also include all the possibilities obtained by applying this 
symmetry to placements found directly.   25 

The final inclusion and placement of each domain is then chosen by maximizing an empirical 
scoring function. The function includes the fraction of domains that are placed and the map 
correlation for each placement. It also includes a penalty for placing two domains further apart 
than can be spanned by the number of residues between those domains, and a penalty function 
for the number of Ca atoms in one domain overlapping with those in another domain within 3 Å 30 
(controlled by the parameter overlap_ca_ca_distance). The score starts out at zero. If the map 
correlation for each domain is at least 0.15 (minimum_docking_cc) the score is given large 
positive increases (200 units) for each of the following that occur: (1) lowest map correlation of 
all docked domains is greater than 0.5 (set with acceptable_docking_cc), (2) if #1 occurs and 
also all placements have similar transformations (i.e., the docking was essentially a rigid-body 35 
docking), where two transformations are similar if applying them to a domain gives an rms 
difference in coordinates equal to the resolution of the map or less, (3) all domains are docked, 
(4) the fraction of residues that overlap between domains is less than 0.1 
(allowed_fraction_overlapping), (5) no domains are further apart than can be spanned by the 
number of residues between those domains.  If any domains are further apart than can be 40 
spanned by the number of residues between those domains plus twice the resolution plus 15 Å 
(maximum_connectivity_deviation), 200 units are subtracted from the score.  The resulting score 
is then adjusted with the following additions and subtractions: (1) the lowest map correlation of 
all domains is added, (2) the average map correlation is added, (3) the fraction of transformations 
that are different from the first is subtracted, (4) the fraction of Ca atoms that overlap between 45 
domains is subtracted, and (5) the sum of all deviations in distances between domains, 
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normalized to the sum of all allowed distances between domains, is subtracted. This scoring 
function was not optimized and does not contain weights except as described above. 

Morphing and refining the full AlphaFold model to match the map based on docked domains 
Once a set of domains is placed to match a map, the entire AlphaFold model is morphed to 
superimpose on these domains as much as possible, while smoothly distorting along the chain 5 
between domains.  We use a shift-field approach to morphing (29), creating a vector function 
that varies smoothly in space.  The shift (distortion) applied to a particular atom in a model is the 
value of the shift field at the coordinates of that atom.    

The shift field is calculated from a set of (shift coordinate, shift vector) pairs.  There is one such 
pair for each Ca atom in a docked domain. The value of the shift coordinate is the position of the 10 
corresponding Ca atom in the full AlphaFold model. The value of the shift vector is the 
difference between the coordinate of the Ca atom in the docked model and the corresponding Ca 
atom in the full AlphaFold model.  The shift field at any point in space is then the weighted 
average of all the shift vectors, where the weights are the inverse exponential of the normalized 
squared distance between that point in space and the corresponding shift coordinate, and where 15 
the normalization is the square of the shift field distance, which has a typical value of 10 Å (set 
with the parameter shift_field_distance and chosen to be a compromise between maintaining the 
model geometry with a long shift field distance and matching the docked domains closely with a 
a short one).  The coordinates of a morphed AlphaFold model are then calculated from the initial 
coordinates and this shift field.  This morphing has the property that local distortions occur on a 20 
scale of about 10 Å, the shift field distance. The docked, morphed AlphaFold model is adjusted 
to match the map using the refinement tool real_space_refine (23). 
Creating rebuilt models by replacing uncertain parts of the docked, morphed, refined AlphaFold 
model 
The parts of the docked, morphed, refined AlphaFold model that have either (1) low confidence 25 
predictions from AlphaFold (typically residues with plDDT < 0.7 as above), or (2) low 
correlation with the map, are then identified and used to specify segments of the model that 
require rebuilding.  The threshold defining low map correlation is obtained with the following 
procedure. Density values in the map at positions of all Ca atoms are noted, the values in the 
lower half are removed, and the mean and standard deviation of remaining (“good”) density 30 
values are noted.  Low map correlation is defined as more than 3 standard deviations below the 
mean (where the ratio of 3 is defined by the parameter cc_sd_ratio). Before applying these 
thresholds, the plDDT values and density values for each residue are smoothed by averaging 
with a window of 10 residues along the chain (defined by minimum_domain_length). 

Then a series of attempts to improve the fit of each poorly-fitting segment to the map are carried 35 
out.  These attempts to improve the fit include: (1) iterative resolution refinement, in which the 
model is iteratively refined, initially at low resolution (6 Å, controlled by the parameter 
iterative_refine_start_resolution), then progressing in 1 Å decrements until the resolution of the 
map is reached, (2) rebuilding of loops, using the Phenix tool fit_loops,  (3) retracing loops by 
finding a path through the density map that connects the ends of the loop with a chain that 40 
follows the path with the highest minimum value (18), (4) a combination of retracing part of the 
loop with superimposing and splicing that part of the existing refined model that matches the 
remainder of the loop, (5) iterative morphing, and (6) use of an external model.  The combination 
method addresses the situation where clear density is present in the map for the beginning and 
end of a loop and the remainder is unclear.  In this case, the refined model for the residues that 45 
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cannot be modeled from density are simply grafted on to the residues that can be modeled, using 
a shift-field procedure as described above to morph the refined model while superimposing 3 
residues on each end. The iterative morphing procedure was similar to one previously used to 
distort a model to better match the density (30), but in the current procedure morphing is carried 
out on 6 residues from each end at a time (specified by n_window), then the remainder of the 5 
model is superimposed on the 12 morphed residues, the window is shifted by one residue from 
either end, and the process is repeated until the loop is morphed. In cases where an externally-
created model has been supplied to the rebuilding procedure, another attempt to rebuild each 
loop consisted of selecting a matching segment from the external model, if such a segment with 
the expected number of residues was present and could be connected to the existing model with 10 
deviations at the ends of 3.8 Å or less (defined by the parameter ca_distance).  Each attempt to 
rebuild a part of the refined model yields a new candidate segment of the model.  All the 
candidate segments obtained with a particular rebuilding method (e.g., rebuilding loops) are used 
to replace the corresponding segments in the refined model and the resulting full model is refined 
based on the density map.  This overall process then yields several new full-length versions of 15 
the model. 

Assembling the best parts of rebuilt models into a single final model 
The rebuilt and refined models are then used as hypotheses for the structure to be built. In the 
preceding step, boundaries of regions needing or not needing rebuilding were identified.  In this 
step, each model is broken up into the corresponding segments.  Then the best version of each 20 
segment, chosen based on their map correlation, is used to create a new full model. This model is 
refined using the density map to produce a single full-length final model. 

Values of parameters  
Default values were used for the parameters controlling model rebuilding, with two exceptions.  
One exception was that for the 7bgl structure (19) in Fig. 2, model-building was aided by 25 
supplying a model created by the Phenix tool map_to_model (18) as a source of possible 
fragments to use in rebuilding the structure. The reason this was necessary was that without these 
fragments, model rebuilding with the methods described below was incomplete for this structure 
despite the very good resolution of 2.2 Å, possibly because the AlphaFold model was quite 
different from the actual structure in some places. The other exception was that in cases where 30 
multiple chains with similar sequences (and therefore presumably similar structures) were 
present in a structure, the secondary-structure-based docking procedure was skipped and only a 
direct density correlation search was used (with the Phenix tool dock_in_map).  The rationale for 
this was that, as might be expected, docking with a correlation search was more effective than a 
secondary structure search at distinguishing the correct placement from one superimposing on 35 
related but different chain. 

In the first cycle of rebuilding for each model, the corresponding AlphaFold model was supplied 
along with the full corresponding density map and the resolution of the structure reported in the 
PDB.  In subsequent cycles, a new AlphaFold model was supplied as well as the rebuilt model 
from the previous cycle. 40 

Model superposition and comparisons 
Models were superimposed using the Phenix tools superpose_pdbs, superpose_and_morph and 
the Coot secondary structure matching tool (31).  
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The superpose_pdbs tool carries out least-squares superposition of matching Ca atoms identified 
by alignment of the sequences of two models.  Note that in cases where the sequences of two 
models are similar and the models differ largely by rigid-body movement of one domain relative 
to another, this procedure can lead to a superposition where neither domain superimposes 
closely.  5 

The superpose_and_morph tool carries out secondary structure matching (SSM) to superimpose 
part or all of one model on another using reduced representations of secondary structure elements 
and indexing of these elements to speed up comparisons and allowing matches that are non-
sequential in a procedure similar to that used in (32).  If the option ssm_match_to_map is used, 
the inputs are a model and a map.  In this case the tool find_helices_strands is used to find 10 
secondary structure elements (SSE’s) in the map and to create a secondary-structure model 
containing these SSE’s.  Then the model to be docked is superimposed on the a secondary-
structure model with a modified form of SSM. In this SSM procedure, two secondary structure 
elements from the map (e.g., a helix and a strand) are paired with two matching elements from 
the domain to be docked (e.g., a matching helix and strand), thereby defining a transformation 15 
between the domain to be docked and the map.  As the precise alignment of secondary structure 
elements from the map and those from the domain to be docked is not known, all possible 
alignments of the shorter of each pair of elements with the longer element are tested (e.g., 
residues 1-10 of one helix might be paired with residues 1-10, 2-11, 3-12 and so on from the 
other). All the Ca atoms in each element from the map are then associated with Ca atoms in the 20 
corresponding element from the domain, and a least-squares superposition is carried out. If these 
Ca atoms match (by default within 5 Å, controlled by the parameter match_distance_high), the 
resulting transformation is applied to all Ca atoms in the domain and the map-model correlation 
of the resulting docked domain is calculated with the Phenix tool map_model_cc. If the resulting 
correlation is above a minimum level (controlled by the parameter ok_brute_force_cc with a 25 
default value of 0.25), the docked model is adjusted by rigid-body refinement to maximize this 
correlation. 
The Phenix chain_comparison tool was used to compare models that were already 
superimposed. This tool counts the number of Ca atoms in a target model that are matched within 
3 Å by any Ca atom in the matching model. Allowing any Ca atom in the matching model to 30 
superimpose effectively ignores the connectivity of the chains, but it is useful for evaluating 
whether a Ca atom is placed in a position where some Ca atom belongs. The distance of 3 Å is 
the default value and is useful for ranking pairs of models that have more than about 30% of Ca 
atoms matching. It is less useful for ranking pairs with lower similarity because two overlapping 
structures that are completely unrelated will often have 20-30% of Ca atoms matching within 3 35 
Å. 

 
Map correlations 

We used the Phenix tool map_model_cc to calculate correlations between experimental density 
maps and model-based density maps for PDB entry 7mlz and resulting AlphaFold and rebuilt 40 
models. The overall orientation and positions of AlphaFold models are arbitrary and the values 
in the atomic displacement parameter field (B-values) are plDDT values.  We superimposed 
these models on the corresponding deposited structure before calculation of map correlations, 
keeping all coordinates fixed at the values obtained by direct superposition. To make a fair 
comparison with rebuilt and deposited models, we refined the atomic displacement parameters 45 
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for all the models to match the map before calculation of map correlations.  For the 7mlz 
example shown in Fig. 1, the refinement of B-values increased all the map correlation values.  
Map correlation values for the deposited model, initial superposed AlphaFold model (with B-
values representing plDDT), initial rebuilt model, and final AlphaFold model were 0.64, 0.26, 
0.51, and 0.45.  After B-value refinement these were 0.70, 0.41, 0.58, and 0.58. 5 

 

Supplementary Text  
 
Prediction of 7bgl flagellar basal body structure as a homo-multimer 
The flagellar basal body structure is a symmetric 26-mer (C26), while the AlphaFold prediction 10 
in CASP-14 used a monomer, and we also used the sequence of a monomer in our analysis.  It 
seemed likely that some of the sequence covariation present in the multiple sequence alignment 
would be due to inter-subunit contacts, and that if we supplied a sequence corresponding to a 
homo-oligomer, AlphaFold might be able to use this inter-subunit contact information to create a 
more accurate model of each individual chain. We carried out predictions with a trimer and a 15 
dodecamer of the 7bgl sequence and compared one chain from each with the deposited model. 
The conformation of each chain in predictions from the trimer were similar to that of the 
predicted monomer in Fig. 2 (A), and had an rmsd from the deposited model of 3.8 Å. Three of 
five dodecamer predictions had a conformation for each single chain that was more like the 
deposited model, with an rmsd of superposed Ca atoms for the top-scoring model of 3.0 Å. For 20 
comparison, the iterative AlphaFold model in Fig. 2B has an rmsd of 0.8 Å. 
 
Iterative model improvement requires both iterative rebuilding and iterative modeling  

 

We carried out tests to check whether the improvement obtained between Fig. 1 (A) and (C) 25 
actually requires both the iteration of prediction and the iteration of model rebuilding. To test 
whether model rebuilding is necessary, we carried out iterative cycles of AlphaFold prediction 
for the SARS Cov-2 spike protein (16) example in Fig. 1 (A) using the AlphaFold model from 
each cycle directly as a template in the next.  The resulting prediction after four cycles was very 
similar to the original AlphaFold model, with an rmsd of matching Ca atoms in the model of just 30 
0.5 Å after superposition, and differed very substantially from the model obtained with iterative 
prediction and rebuilding (corresponding rmsd of 3.2 Å), indicating that without model 
rebuilding, iteration of the procedure has little effect.   

To test whether iteration of prediction is necessary, we carried out iterative cycles of rebuilding 
of the same structure, starting with the rebuilt model in purple in Fig. 1 (B).  This starting model 35 
had an rmsd of matching Ca atoms in the deposited model of 5.7 Å, while the model in Fig. 1 (C) 
had a corresponding rmsd of 2.4 Å.  Carrying out iterative cycles of rebuilding without further 
prediction yielded a model with a much greater rmsd to the deposited model of 4.4 Å, showing 
that without iteration of the prediction part of the process, the procedure is not effective. 

 40 
Situations where non-default choices of parameters may be useful in modeling  
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The principal options that are available in our procedure for iterative AlphaFold prediction and 
rebuilding are (1) including an external model as a source of hypotheses during model 
rebuilding, and (2) omitting multiple sequence alignments in cycles of AlphaFold after the first.   
The use of an external model may be useful in cases where the density map is clear but the 
automatically docked and trimmed AlphaFold predicted model matches the map poorly enough 5 
that the automatic rebuilding process fails.  This can happen for example if the AlphaFold model 
is placed incorrectly in the map or if the residues remaining at the ends of trimmed fragments 
agree so poorly with the density map that the rebuilding process is not able to identify 
connections between them.  An indication for using this approach is that the density map appears 
to show clear density for a protein but neither the rebuilt model nor the final AlphaFold model 10 
matches that density.  An external model from an automatic map interpretation procedure such as 
Phenix map_to_model (18) or DeepTracer (22) could be used as well as a manually built model.  

Omitting multiple sequence alignments after the first AlphaFold cycle may be useful in cases 
where the sequence alignment causes AlphaFold to create a model that is inconsistent with the 
density map.  The residue covariation deduced from multiple sequence alignments are presumed 15 
to be a principal source of information about residue-residue distances for AlphaFold (5) but at 
the same time multiple sequence alignments may have significant uncertainties (33).  If a 
multiple sequence alignment is inconsistent with the actual structure of the protein being 
modeled, inclusion of this alignment could make modeling work poorly.  In AlphaFold modeling 
the contribution from a multiple sequence alignment is often very substantial (5), but in cycles 20 
after the first our procedure supplies a template and use of the multiple sequence alignment is 
less critical and can be omitted.  An indication that this option might be useful would be that the 
rebuilt model produced by the dock_and_rebuild procedure matches the map but the resulting 
AlphaFold model does not. 

 25 
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