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Abstract

Background: Bioinformatics software tools operate largely through the use of specialized genomics
file formats. Often these formats lack formal specification, and only rarely do the creators of these tools
robustly test them for correct handling of input and output. This causes problems in interoperability
between different tools that, at best, wastes time and frustrates users. At worst, interoperability issues
could lead to undetected errors in scientific results.

Methods: We sought (1) to assess the interoperability of a wide range of bioinformatics software using
a shared genomics file format and (2) to provide a simple, reproducible method for enhancing inter-
operability. As a focus, we selected the popular Browser Extensible Data (BED) file format for genomic
interval data. Based on the file format’s original documentation, we created a formal specification.We
developed a new verification system, Acidbio (https://github.com/hoffmangroup/acidbio), which tests
for correct behavior in bioinformatics software packages. We crafted tests to unify correct behavior
when tools encounter various edge cases—potentially unexpected inputs that exemplify the limits of
the format. To analyze the performance of existing software, we tested the input validation of 80 Bio-
conda packages that parsed the BED format.We also used a fuzzing approach to automatically perform
additional testing.

Results: Of 80 software packages examined, 75 achieved less than 70% correctness on our test suite.
We categorized multiple root causes for the poor performance of different types of software. Fuzzing
detected other errors that the manually designed test suite could not.We also created a badge system
that developers can use to indicate more precisely which BED variants their software accepts and to
advertise the software’s performance on the test suite.

Discussion: Acidbio makes it easy to assess interoperability of software using the BED format, and
therefore to identify areas for improvement in individual software packages. Applying our approach to
other file formats would increase the reliability of bioinformatics software and data.
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1 Introduction

1.1 File format interoperability

For your latest research project, you have constructed a pipeline from multiple published bioinformatics
tools. Each tool works well with the author’s data, but you run into errors with your data. The author’s
data and your data have slight differences in file metadata and data formatting, which lead to the errors.
As a result, you must spend time manually editing your data files and intermediate outputs to conform
to each tool’s expectations. Meanwhile, ensuring interoperability between software tools that parse the
data file format could have prevented your frustration.

Scientific software developed by academics often suffers from software engineering deficiencies1,
which can lead to the scenario described above. Among these include problems with deployment2,
maintenance3, robustness4, and documentation5. Software engineering flaws may hinder fulfilling
the Findable, Accessible, Interoperable, and Reusable (FAIR) principles for scientific data manage-
ment6—especially the guidelines on interoperability and reusability. Software engineering flaws may
also affect web services that parse bioinformatics file formats, which may have vulnerabilities to attacks
such as malicious code injections in input files7.

One key difficulty arises from interoperability of specialized file formats used for scientific data.
Often, creators specify such formats informally, or not at all, leaving users and developers to guess the
details of critical components or edge cases. Rare standardization efforts such as those of the Global
Alliance for Genomics and Health (GA4GH)8 have developed a few formal specifications. These include
the sequence alignment/map (SAM), BAM, CRAM, and variant call format (VCF) file formats9.

Interoperability issues can also arise from issues within the software. Developers can address some
interoperability problems, however, through simple solutions such as checklists. For example, Bio-
conda10 recipes require adequate tests and a stable source code uniform resource locator (URL)11.
Bioconductor12 also has guidelines for package submission regarding code style, performance and
testing13. Simple checklists can greatly improve software quality, even for programmers and researchers
that lack formal software engineering training.

Software testing recommendations and standard test suites can aid researchers and developers.
Extensive test suites for common standards, such as TeX’s trip tests14, or theWeb Standards Project Acid
test suite15 exercise independent implementations of common standards by focusing on edge cases.
In a bioinformatics context, tools that parse the VCF format16 can use simulated VCF files with known
behavior to test software correctness17.

Here, we tackled the bioinformatics software engineering problem of file format interoperability,
specifically focusing on the plain-textwhitespace-delimitedBrowser ExtensibleData (BED) format18.We
chose to use the BED file format because of its simplicity and its popularity. First, we developed a formal
specification for the BED format as a comprehensive specification did not exist. Second, we quantified
the degree to which a wide variety of bioinformatics software varied in their processing of this file
format. In particular, we tested bioinformatics software input validation, checking input data for correct
formatting. To facilitate this work, we created Acidbio (https://github.com/hoffmangroup/acidbio), a
system for automated testing and certification of bioinformatics file format interoperability.

1.2 The BED file format

The BED format describes genomic intervals in plain text. Each BED file consists of a number of lines,
each with 3 to 12 whitespace-delimited fields. The mandatory first three fields (chrom, chromStart,
and chromEnd) define an interval on a chromosome. The optional last nine fields provide additional
informationabout the interval suchas aname, score, strand, andaesthetic features usedby theUniversity
of California, Santa Cruz (UCSC) Genome Browser19. The optional fields have binding order—all fields

2

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 7, 2022. ; https://doi.org/10.1101/2022.01.07.475366doi: bioRxiv preprint 

https://github.com/hoffmangroup/acidbio
https://doi.org/10.1101/2022.01.07.475366


preceding the last field used must contain values.
BED variants distinguish BED files based on its number of fields. BED𝑛 denotes a file with only the

first 𝑛 fields. For example, a BED4 file has the chrom, chromStart, chromEnd, and name fields. BED3 to
BED9, along with BED12, represent the 8 standard BED variants.

BED𝑛+𝑚 denotes a file with the first 𝑛 fields followed by𝑚 fields of custom-defined fields supplied
by the user. The custom-defined fields can contain many types of plain-text data. BED𝑛+𝑚 files act as
custom BED files. Currently, no in-band information exists to supply information about a BED file’s
fields. A BED parser must infer the fields present in a BED file.

Thefile conversion tool bedToBigBed18, developed by theUCSCGenomeBrowser team20, has served
as the de facto file validation tool for the BED format. The BED format appears deceptively simple, and
without careful consideration of the specification, a developer may miss unexpected flexibility or rigidity
in some fields.

2 Results

2.1 A new formal specification addresses ambiguities in the BED format

Despite existing for almost two decades, the BED format until recently lacked a formal specification
similar to the SAM21 or VCF16 specification. The UCSC Genome Browser Data File Formats Frequently
Asked Questions (https://genome.ucsc.edu/FAQ/FAQformat.html) specified some details, but lacked
technical details that other formal specifications clearly define.

Through the GA4GH standards process8, we established a specification of the BED format (https://
github.com/samtools/hts-specs/blob/master/BEDv1.pdf).Thenewspecificationdefines eachBEDfield
and their possible numerical range or valid character patterns. It also provides semantics surrounding
whitespace, sorting, and default field values. The specification formalizes missing details and captures
the existing use of the BED format, taking the input from relevant stakeholders into account. During
the development of the specification, we solicited input from a number of stakeholders, including the
UCSC Genome Browser team, the File Formats subgroup within the GA4GH Large Scale Genomics work
stream (https://www.ga4gh.org/work_stream/large-scale-genomics/), and the public through GitHub
comments (https://github.com/samtools/hts-specs/pull/570).

2.2 Most existing tools perform poorly on a BED test suite

To measure the ability of BED parsers to accept good input and reject bad input, we created an Acidbio
test suitewith 92 individual test cases. Specifically, we used the new specification to develop a test suite of
expected pass and expected fail BED files.The expected pass test cases conform to our specification—for
these cases, we expect tools to return a zero exit code and not output any error or warning messages. The
expected fail test cases do not conform to our specification—for these cases, we expect tools to return a
non-zero exit code or output an error or warning message. The test suite contains 92 tests, covering the
definitions of fields and the structure of the BED file. The test suite also covers all BED variants from
BED3 to BED12. The BED3 test cases represent the core of our test suite, as all BED files must have the
first three fields.

The BED format does not contain in-band information on whether a file uses BED fields only or also
has custom fields. A parser might assume that for BED files with 4 to 12 fields, all the fields represent
standard BED fields. In this case, the parser should validate the fields according to the file format rules.

Alternatively, a parser might treat fields 4 through 12 as custom data. A tool designed to handle
arbitrary custom BED files may not validate the optional BED fields. This means the tool may not fail
on the expected fail test cases. The expected success test cases, however, should all work even for non-
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specified custom data. Also, this flexibility does not apply to mandatory fields 1 through 3, as their
definition cannot change.

We examined behavior of tools, expecting strict validation of standard BED4 through BED12 files.
This provides more informative results than permitting the whole range of behavior one might expect for
customdata. Unexpected results in the optional fields indicate the need for bettermeans for interchange
of metadata on these fields.

Figure 1: Heatmap of performance of 80 Bioconda packages on 10 BED variants. Each cell shows the
percentage of successful tests from the BED variant. Green cells: strong performance on the test suite;
blue cells: poor performance. An expected success test case that succeeds or an expected fail test case
that fails both represent a successful test. For packages with multiple tools, we display only results from
the package’s best-performing tool. Labeled, negative indented rows emphasize the 20 packages most
downloaded from Bioconda. Rows sorted by ascending performance on the mandatory BED3 fields,
then on performance of subsequent optional fields, ending with BED12 performance. The table below
the heatmap lists the number of expected success and expected fail test cases for each BED variant.
BED10 and BED11 have zero expected success test cases because the specification forbids BED10 and
BED11.

Using our test suite, we assessed 80 Bioconda packages that support the BED format as input (Fig-
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ure 1). In somepackages, we assessedmultiple tools,making 99 tools in total. For each tool, we calculated
its performance on each BED variant by taking the number of tests that behaved as expected divided by
the number of tests for the BED variant. Of the 99 tools, only 26 achieved ≥ 70% expected results for
BED3 tests. Averaged for tests across all BED variants, 51 tools achieved≥ 50% expected results.We have
deposited full results on Zenodo (https://doi.org/10.5281/zenodo.5784787). Beyond the possibility of
expecting custom BED files, we attributed unexpected results to several causes described below.

2.3 Existing tools parse BED files in different ways

All tools have distinct purposes, causing them to parse the BED format in different ways and focus on
varying aspects of BED files. Different purposes mean some test cases may never arise in the expected
usage of the tool.We have identified a few groups of tools that have similar behaviors, which cause poor
performance on the test suite.

Tools that require a specific BED variant. Some tools require a specific number of fields in the input
BED file. For example, slncky22 requires a BED12 file. This causes all BED3 to BED11 inputs to raise an
error.

Tools that only validate a subset of BED fields. Many tools use the BED format only for interchange
of genomic intervals in the first three fields. Some of these tools will accept any BED𝑛 file and perform
no validation after the first three fields. For example, many tools ignore fields that describe aesthetic
features only for genomic browser display, such as thickStart, thickEnd, and itemRgb. A tool such as
bedtools23 that mainly operates on genomic intervals would incorrectly succeed on an expected fail
BED9 test case.

File converters. Some tools convert the BED format to a different file format, without performing
any validation. Some file converters use a garbage-in-garbage-out approach, going from invalid input
in BED format to invalid output in some other format. For example, bioconvert bed2wiggle24 fails as
expected on most expected fail test cases, but still produces output retaining the input file errors. Using
a garbage-in-garbage-out approach may make debugging complex pipelines more difficult. Raising
warnings during file conversion helps debugging, as the user can narrow down the source of the error to
steps before file conversion.

Tools that use another library for BED parsing. Some tools call an external library to perform
operations on BED files. If the main tool does not perform extra error checking of its own, it can only
detect the same errors that the external library finds. For example, intervene25 uses bedtools as a
dependency, which results in their similar patterns of performance.

2.4 Ambiguous format specificationmakes uniform behavior more difficult

The previous absence of a formal specification for the BED format also influenced test performance.
Our formal specification and the behavior of the reference implementation bedToBigBed conflict with
the expectations of tool developers in many ways.

Definition of whitespace. Many BED files use tabs to delimit fields. The BED format, however, also
accepts spaces to delimit fields, if the fields themselves contain no spaces20. Of the 99 tools exam-
ined, 60 reject space-delimited BED files allowed by the specification (Table 1, “other-fully_space_de-
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Tools passing Test case

37 other-fully_space_delimited.bed
37 other-not_tab_delimited.bed
52 other-comment_start.bed
57 other-space_before_tab.bed
58 other-space_after_tab.bed
58 other-space_between_lines.bed
60 other-multiple_comments.bed
61 other-comment_end.bed
62 other-comment_middle.bed
67 03-start_eq_end.bed
71 01-known_scaffolds.bed
71 01-unknown_scaffolds.bed
78 02-leading_zeros_start.bed
79 03-duplicate_rows.bed
79 03-overlapping_intervals.bed
79 03-zero_chromStart.bed
79 03-no_gap_startend.bed
79 03-standard_chrom.bed

Table 1: Number of tools that passed each of 18 expected success BED3 test cases.We tested 99 tools.
The leading number in the test case name describes the BEDfield that the test focuses on. “Other”means
the test focuses on the structure of the file, rather than a particular field.

limited.bed”). Also, the BED format permits blank lines, though 37 tools do not accept this (Table 1,
“other-space_between_lines.bed”).

Expanded definition of fields. The BED format requires strict limits for certain fields and some
generators do not respect these limits. For example, the specification defines score as an integer value
between 0 and 1000, inclusive. Some tools use the score as a p-value, which violates the integer definition.
To allow tools to repurpose the nine optional fields, one can treat these tools as BED𝑛+𝑚 parsers, with
custom definitions for the remaining fields. Nonetheless, repurposing field names, such as score, with
different definitions can confuse parsers that will misinterpret the data and use it incorrectly.

Conflict between our formal specification and bedToBigBed. We used the de facto file validator
bedToBigBed to inform the design of our test suite.Without a formal specification, however, uncertainty
surrounding specific edge cases arose when bedToBigBed disagreed with our understanding of correct
behavior.

Our formal specificationdisagreedwithbedToBigBed in three instances. First, bedToBigBed accepted
a BED7 file with thickStart less than chromStart. Second, bedToBigBed accepted a BED12 file with the
length of the blockSizes or blockStarts list greater than blockCount. Third, bedToBigBed accepted BED11
files while our specification disallowed BED11.

2.5 Software engineering deficiencies lead to poor performance on the test suite

Beyond issues in differences in design between tools and the previous informal specification of the file
format, we can also attribute poor testing performance to problems in software engineering.
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Figure 2: Performance of 99 tools from 80 packages on 92 BED12 test cases21–106. Green: the tool
performed as expected; blue: the tool did not performas expected. Rows sorted ascending by the number
of test cases with an expected result.We grouped tools in the same package together as they tend to
have similar results. For packages with multiple tools, we sorted the package using the best-performing
tool.Within the same package, we sorted tools by ascending performance.
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Silently accepting invalid input. Tools should alert users on input errors, allowing them to check
whether they have made an error. In some cases, developers prefer to skip an invalid data point and
continue. In this case, the tool should at least provide a warning message describing the skipped line.
Otherwise, an error could slip past the user and affect their results. In our test suite, a warning message
would count as an expected failure, improving the performance statistics for a tool that generates them.

Errors in BED file generators can easily slip past users.When a downstream tool raises an error on
bad input, this reduces the time before someone discovers the problem with the upstream generator.

Insufficient testing. While some of our test cases cover formatting issues that can hinder interop-
erability, others represent “can’t happen” scenarios that, uncaught, pose logic bombs for a software
tool. For example, all tools should reject negative start positions (Figure 2), “02-negative-start.bed”, but
48/99 tools accepted a test case that has negative starts. Given the limited resources and incentives to
publish in academic software engineering, developers require a simpler way to ensure avoidance of
obvious problems than manually developing test cases.

2.6 No relationship between package performance and downloads found

Figure 3: Scatter plot of the number of downloads a package has on Bioconda against its perfor-
manceonBED3 tests.Labeledpoints indicate the top4performing tools and the top4most downloaded
tools. For packages with multiple tools, we display results from the best-performing tool.
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We observe little correlation between the number of downloads a package has compared to the
package’s performance on the test suite (Figure 3). Many packages have a similar number of downloads.
We attribute this to packages having specific purposes that make them useful for a few users. However,
very highly downloaded packages such as bedtools23 and the UCSC Genome Browser tool suite83 have
better performance than other tools.

2.7 Automated fuzzing can detect errors that a manually designed test suite does not

Differential testing107 using files generated from a grammar-based fuzzer108 can discover new errors
not found by the test suite. A grammar-based fuzzer automatically generates files based on a defined
structure of the file format.

We found one example of unexpected behavior in bedtools coverage23 where coverage raised an
error but bedToBigBed did not. Since bedtools coverage requires two input files, we generated two
files using the fuzzer (Table 2) and validated them using bedToBigBed. On the generated files, bedtools
coverage exited with exit status 1 and error message “Error: line number 1 of file 2.bed has 4 fields, but
0 were expected.” Our manually designed test suite did not catch this error—we only uncovered it due
to the use of fuzzing.

File 1 File 2

chr18 455914 533415 woG chr12 632184 753365 Vx6
#I
#_
#_

Table 2: Two files generated by a grammar-based fuzzer.

2.8 BED badge indicates conformance with the BED format

Figure 4: Example of BED badges. BED badges allow developers to indicate the tool’s support for the
BED format and its conformance to the specification.The fourth badge, “BEDparser”, displays the BED𝑛
formats the tool supports. The fifth badge, “BED3-BED6”, displays the average performance of the tool.
In this example, the badge displays the performance averaged over BED3 to BED6, inclusive.

We designed badges that developers can display in a tool’s documentation to clearly indicate the file
types used and indicate the tool’s performance on the test suite (Figure 4). The badges reassure users
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that the software underwent thorough testing. The availability of such badges encourages developers to
perform input validation.

Acidbio includes steps to produce a BED badge.We recommend developers to display a BED badge
if their software conforms to the BED formal specification.

3 Methods

3.1 The Acidbio test system

We developed the Acidbio test system, which automatically runs a number of bioinformatics tools on a
test suite (Figure 5). To determine an actual success or failure, we consider the exit status and outputs
to standard output and error. A test case passes on a successful exit status and no error or warning
messages printed.

We identified error and warning messages by manually running the tools.We had to identify these
error and warning messages manually because some tools logged errors without returning a non-zero
exit code or logged issues in the BED file through warnings instead of errors.

To provide Acidbio with details on how to run each tool, we created a YAML Ain’t Markup Language
(YAML) configuration file that stored each tool’s command-line usage file (Figure 6). The YAML file also
stored the locations of the additional files needed to run each tool and each tool’s Conda environment.

3.2 Tool discovery

To identify tools to test, we used Bioconda10, a repository that contains thousands of bioinformatics
software packages. Each package contains one or more tools. We only included Bioconda packages
with tools that have a command-line interface, as opposed to add-on modules executed within another
program, and use the BED format as input. This excluded the numerous R, Bioconductor12, and Perl
packages that have no command-line interface.

For packages that contain multiple tools, we selected a smaller set of subtools to test.We systemati-
cally identified these packages by manually examining the documentation for over 1000 packages to
determine if it matches our criteria.We had to manually examine documentation because Bioconda
has no structured metadata on each package’s input file formats. This process yielded 80 packages, with
99 tools total.

Some tools use the BED format as the primary input file, such as a mandatory argument. Examples
include bedtools23 and high-throughput sequencing toolkits such as ngs-bits98. These tools generally
perform calculations using the intervals found in the BED file.

Other tools use the BED format as a secondary input file, such as an optional argument. Tools that
use BED as a secondary input file generally use it to define genomic intervals of interest for data in
another file format, such as SAM. In the tools we tested, 60 packages used the BED format as the primary
input file, and 20 packages used the BED format as a secondary input file.

After collecting a list of all the possible packages that we could test, we then attempted to install
each package and run the tools.We excluded packages that we could not install or could not run without
error on any input files.We found no cases where a package contained both working and broken tools.

3.3 Test suite

We created a test suite that contains tests for each BED𝑛 format, covering various edge cases drawn from
our BED specification. The test suite contains both expected success test cases (Table 3) and expected
fail test cases (Table 4). Some tests include validating ranges for numeric fields, validating character sets
for alphanumeric fields, or data formatting for fields such as itemRgb or the block definitions.
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Run tool on  
test case

Test case expected  
to pass or fail?

Test case failed? Test case passed?

Log incorrect
behaviour

Actual  
pass

Actual  
fail

Actual
pass 

Actual
fail 

Expected
pass 

Continue to test
case j + 1

Test case j

Test case 1

Test case 92

...

Tool iTool 1 Tool 99... ...

Expected
fail 

...

Figure 5: Flowchart depicting how Acidbio evaluates tools on the test suite. Rounded rectangles: in-
puts; sharp rectangles: procedures; rhombuses: conditional branches. All 99 tools run on all 92 test cases.
After the 92nd test case, Acidbio moves onto the next tool and runs it on the first test case.

11

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 7, 2022. ; https://doi.org/10.1101/2022.01.07.475366doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.07.475366


settings:

file-locations:

BAM: data/toy.bam

SIZES: data/hg38.chrom.sizes

tools:

- samtools:

bedcov: samtools bedcov FILE BAM

- ucsc:

bedSort: bedSort FILE /dev/stdout

bedClip: bedClip FILE SIZES /dev/stdout

bedRemoveOverlap: bedRemoveOverlap FILE /dev/stdout

bedToBigBed: bedToBigBed FILE SIZES TMPDIR/out.bb

conda-environment:

samtools: base

ucsc: base

1

Figure 6: Excerpt from the Acidbio configuration file.The configuration file contains three sections.
The “settings” section lists the location of files or directories that Acidbio will insert into command-
line execution. The “tools” section contains the command-line invocations of the tested tools. In each
invocation, Acidbio replaces “FILE” with the location of the test BED file. The “conda-environment”
section lists each tool’s Conda environment name.

Field 1: chrom: the name of the chromosome where the feature is present.
01-known_scaffolds Scaffolds with a known chromosome such

as “chr19_GL383573v1_alt”
01-unknown_scaffolds Scaffolds with an unknown chromosome such

as “chrUn_KI270442v1”

Field 2: chromStart: start position of the feature on the chromosome.
02-leading_zeros_start chromStart left-padded with “0”

Test case name Description

Table 3: Expected success test cases.
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Field 3: chromEnd: end position of the feature on the chromosome.
03-duplicate_rows Two features have the exact same (chrom, chromStart,

chromEnd)
03-no_gap_startend No gap between chromEnd of one feature and chromStart

of the next feature
03-overlapping_intervals All features’ intervals overlap each other

03-standard_chrom A BED file without edge cases
03-start_eq_end chromStart equals chromEnd

03-zero_chromStart chromStart is “0”

Field 4: name: string that describes the feature.
04-name_dot All features have name “.”

04-repeated_name Multiple features have the same non-dot name
04-special_character_name Name contains non-alphanumeric ASCII characters

Field 5: score: integer between 0 and 1000, inclusive.
05-edge_score Score is “0” or “1000”

05-leading_zeros_score Score left-padded with “0”
05-zero_scores Score is “0”

Field 6: strand: strand that the feature appears on.
06-dot_strand Strand is “.”
06-mix_strand Strand selected from one of “+”, “-”, or “.”

Field 7: thickStart: start position at which the feature is visualized with thicker display.
07-leading_zeros_thickStart thickStart left-padded with “0”

Field 8: thickEnd: end position at which the feature is visualized with thicker display.
08-all_thick thickStart equal to chromStart; thickEnd equal to

chromEnd
08-no_thick_part thickStart equals to thickEnd equal to chromStart

Field 9: itemRgb: A triplet of integers that determines the color of this feature when visualized.
09-leading_zeros_colors Color left-padded with “0”

09-many_colors Multiple colors in the file
09-zero_rgb Color is “0”

Field 10: blockCount: number of blocks in the feature.
10-different_blockcounts Features have different numbers of blocks

10-leading_zero_blockcount blockCount left-padded with “0”
10-max_blocks Maximum number of blocks possible for its length

10-one_block All features have only one block

Test case name Description

Table 3: Expected success test cases. (Continued)
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Field 11: blockSizes: list of length blockCount containing the size of each block.
11-leading_zero_blocksize blockSizes list has a size left-padded with “0”

11-length_one_block All blocks have a size of 1
11-trailing_commas blockSizes list with a trailing comma

Field 12: blockStarts: list of length blockCount containing each block’s start position.
12-no_gap_blocks No gaps between blocks

Other: unrelated to individual BED fields.
other-comment_end Comment line at the end of the file

other-comment_middle Comment line in the middle of the file
other-comment_start Comment line at the start of the file

other-fully_space_delimited Fields all space-delimited
other-multiple_comments Many comments in various positions in the file
other-not_tab_delimited File contains both space and tab delimiters

other-space_after_tab Extra space after a tab delimiter
other-space_before_tab Extra space before a tab delimiter

other-space_between_lines Empty line between features

Test case name Description

Table 3: Expected success test cases. (Continued)

Field 1: chrom: the name of the chromosome where the feature is present.
01-missing_chrom chrom is “.”

01-no_chrom Missing chrom
01-special_char_chrom chrom has non-alphanumeric character

01-quote_chrom chrom enclosed with quotation marks

Field 2: chromStart: start position of the feature on the chromosome.
02-float_start chromStart is floating-point number

02-no_start Missing chromStart
02-start_negative chromStart is negative

02-string_start chromStart is not numeric

Field 3: chromEnd: end position of the feature on the chromosome.
03-chromEnd_too_large chromEnd exceeds maximum size of an unsigned integer

03-end_negative chromEnd is negative
03-float_end chromEnd is floating-point number

03-no_end Missing chromEnd
03-start_gt_end chromStart greater than chromEnd

03-string_end chromEnd is not numeric

Test case name Description

Table 4: Expected fail test cases.
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Field 4: name: string that describes the feature.
04-mixed_bed_types Features have a different number of fields

04-name_with_spaces Name has a space
04-no_name Missing name

Field 5: score: integer between 0 and 1000, inclusive.
05-float_score Score is floating-point number

05-no_score Missing score
05-score_gt_1000 Score greater than 1000

05-score_lt_0 Score less than 0
05-string_score Score is not numeric

Field 6: strand: strand that the feature appears on.
06-invalid_strand Strand not one of “+”, “-”, or “.”

06-no_strand Missing strand

Field 7: thickStart: start position at which the feature is visualized with thicker display.
07-float_thickStart thickStart is floating-point number

07-no_thickStart Missing thickStart
07-string_thickStart thickStart is not numeric

07-thickStart_lt_chromStart thickStart less than chromStart

Field 8: thickEnd: end position at which the feature is visualized with thicker display.
08-float_thickEnd thickEnd is floating-point number

08-string_thickEnd thickEnd is not numeric
08-thickEnd_gt_chromEnd thickEnd greater than chromEnd

08-thickStart_gt_thickEnd thickStart greater than thickEnd
08-thickStartEnd_wide Thick interval not contained within [chromStart,

chromEnd)

Field 9: itemRgb: A triplet of integers that determines the color of this feature when visualized.
09-incomplete_rgb RGB value not a triplet or “0”

09-no_rgb Missing itemRgb
09-string_rgb itemRgb contains alphabetical characters

Field 10: blockCount: number of blocks in the feature.
10-blockCount_negative blockCount is negative

10-blockCount_string blockCount is non-numeric
10-blockCount_zero blockCount is “0”

10-no_blockCount Missing blockCount

Test case name Description

Table 4: Expected fail test cases. (Continued)
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Field 11: blockSizes: list of length blockCount containing the size of each block.
11-block_outofrange Block located outside the interval chromStart to chromEnd

11-blocksizes_missing_comma blockSizes list missing comma separators
11-mismatch_count_long blockSizes list longer than blockCount

11-mismatch_count_short blockSizes list shorter than blockCount
11-size_negative Block has negative size

Field 12: blockStarts: list of length blockCount containing each block’s start position.
12-bed13 Feature has 13 fields

12-overlapping_blocks Blocks overlap each other
12-start_outofrange Block start position past chromEnd

12-unsorted_block_starts blockStarts list not sorted

Other: unrelated to individual BED fields.
other-quote_chrom Feature enclosed in quotation marks

Test case name Description

Table 4: Expected fail test cases. (Continued)

We manually generated the test cases, designing them to make sense for all the tools tested.We used
genomic intervals betweenpositions 250000and260000 sinceonemightfind them inbothchromosomes
and non-chromosome scaffolds. Each test case varies based on the criteria tested. Some criteria only
require a deviation in one field in one feature to generate a test case. For example, to test a score greater
than 1000, only a single feature had a score greater than 1000. Other criteria required deviation in
multiple features to generate a test case. For example, to test that the parser accepts strand “.”, we set all
features to strand “.”.

We built tests upon each other—we repeated a test case for all BED variants with additional fields
added. As an example, a test case in BED5 testing a negative score gets repeated in testing the BED6
through BED12 variants.

For tools that use BED as a secondary file format, we collected test files for their non-BED primary
file formats. For each of these file formats, we sourced an example file from the creators of the format
or from a repository such as a FASTA for GRCh38/hg38109 from the UCSC Genome Browser (https:
//hgdownload.cse.ucsc.edu/goldenpath/hg38/bigZips/).We edited non-BED files to ensure that their
ranges matched the BED test cases.We also validated the collected non-BED files with a file validator,
when possible.

Since the new formal BED specification prohibits BED10 and BED11, we considered all BED10 and
BED11 tests expected fail, even if the test case fell under expected success for other BED variants.

3.4 Fuzzing

We used a fuzzing approach110 to automatically generate test cases beyond our manually designed
test suite (Figure 7).We created an ANother Tool for Language Recognition 4 (ANTLR4) grammar111

to define the structure of the BED format and the possible values for each field. Then, we used a file
generator that builds a file based on our grammar.We tested the tools using grammar-based fuzzing
and grammarinator112 as the file generator.

To introduce further variation into the BED file, we created an ANTLR4 meta-grammar that defines
possible ANTLR4 BED grammars. The meta-grammar produces variation by allowing the BED grammar
to vary on the structure or definition of fields. For example, the meta-grammar may produce a BED
grammar that only allows tabs as the whitespace, or it may produce a BED grammar that allows both
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tabs and spaces. By varying the BED grammar produced, the user can test different combinations of
field definitions and BED file structure that a single BED grammar cannot achieve.

BED meta-grammar Generate random
BED grammar BED grammar Generate random

BED file BED file

Figure 7: Flowchart depicting grammar-based fuzzing. Rounded rectangles: files; sharp rectan-
gles: generators. The BED meta-grammar describes different BED grammars to introduce further varia-
tion in the generated BED file.

3.5 Availability

Acidbio and the BED test suite are available at GitHub (https://github.com/hoffmangroup/acidbio) and
deposited in Zenodo (https://doi.org/10.5281/zenodo.5784763). Results of each package on each test
case and the scripts used to generate figures are available at Zenodo (https://doi.org/10.5281/zenodo.
5784787).

4 Discussion

4.1 Use in software development

Acidbio can help researchers and programmers test their tools to improve the robustness and interoper-
ability of their code. Acidbio can serve a similar function to theWeb Standards Project Acid test suite15

designed to improve interoperability of web browsers. When the Web Standards Project created the
Acid tests, many web browsers had poor compliance with existing web standards. Over time, browsers
such as Opera113 and Internet Explorer114 began to achieve perfect performance on the Acid tests
and interoperability improved. Similarly, we intend Acidbio to make it easier for developers to create
bioinformatics software that more easily interoperates with other software.

To test new tools, developers need only create a short configuration YAML file to describe their
tool’s command line interface, and run the Acidbio test harness. From the test results, a programmer
may identify edge cases they missed and fix them before distributing their software. Once fixed, the
programmer can put a BEDbadge in a software’s documentation to indicate that it interoperateswith the
BED format. Editors or reviewers of papers describing tools can use the test suite to verify the software’s
quality. Package repository managers can also use the test suite to verify the quality of submitted
packages.

4.2 The utility of a formal specification

The interpretation of a standard can turn into a matter of opinion. While formalizing the standard
with a specification can help improve interoperability, the only way to truly ensure agreement on
expected behavior involves further formalization through a formal grammar or including test cases in
the standard. A deterministic grammar or test suite removes potential for misunderstandings about
standard conformance.

4.3 Postel’s law

Postel’s law, “be conservative in what you do, be liberal in what you accept from others”115, related
initially to how software sends and accepts messages over the internet. Adherence to Postel’s law helped
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the internet to succeed—leniency in accepting data without strict validation helped more organizations
implement internet software116.

As seenhere,many software tools have taken a liberal approach to acceptingBEDfiles.This seemingly
increases the utility of these tools. By liberally accepting input, however, tools encourage BED producers
to take a lackadaisical approach to correctness and interoperability, which leaves the format open to
misuse117. Programmers may unwittingly create software that generates incorrect BED files if they only
supply their output to downstream consumers with a liberal approach to validation. This results in
technical debt, where problems lay undiscovered until after the developers complete the project, or
years later, when it becomes much harder to fix.

The developers of the Extensible Markup Language (XML) format purposefully rejected Postel’s
law, deciding that malformed XML files would raise fatal errors118. They did this because this approach
encourages producers of the file format to strongly conform to the specification. A strict validation
approach reduces opportunities for parsers to misunderstand input and prevents common errors from
becoming accepted.

The lack of a strict validation approach for previousHyperTextMarkup Language (HTML) implemen-
tations led to a morass of incompatible and poorly described HTML file formats. This greatly increased
the complexity of potential bugs in web browsers that could actually handle the existing base of web
pages. Despite the existence of formal HTML specifications, web browsers had to create special “quirks
modes” to handle HTML files that did not satisfy these specifications119.

The history of HTML and XML should inform file validation behavior in bioinformatics software.
While one may not want to raise fatal errors for each non-conforming file, BED parsers must at least
provide warnings when encountering them. Users can easily ignore warnings, however, or miss them in
a stream of irrelevant and voluminous diagnostic information. To ensure that users notice problems
with file formats and that programmers fix upstream generators, parsers must take a strict validation
“warnings are errors” approach and refuse to parse invalid files.

4.4 Application to other bioinformatics file formats

Users and developers can apply the same methodology developed here to test other bioinformatics
file formats for conformance. Establishing a common interface to parse a file format will improve
interoperability of bioinformatics software and move closer to FAIR6 goals. For binary file formats or
software written in languages with weak memory safety, testing and interoperability become even more
important.

Computational tools described in scholarly papers oftenundergoprecious little testing.Theexistence
of test systems such as Acidbio make it easy to test that a tool interoperates with other software well.
We recommend that when such a test system exists, journal editors, reviewers, and software repository
managers ensure that the tool achieves good performance in the test suite prior to acceptance. After
acceptance, managers can indicate which file formats the package uses as input and output to make
searching for tools easier. Developers can also add badges similar to the BEDbadge to indicate software’s
conformance to the relevant specification.

4.5 BEDmetadata

Tools parse BED files in the absence of in-band information embedded within the file. The lack of
in-band information may lead to difficulties parsing BED files. For example, a tool cannot determine
whether a BED file has custom fields without in-band information.With such metadata, tools can easily
determine whether the input file has the fields it needs.

A header section at the beginning of a BED file can provide metadata to make parsing of BED files
easier.The header can define the file’s BED variant and specify information such as the genome assembly
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used. For custom BED𝑛+𝑚 files, the header can define the custom-defined fields, similar to the INFO
lines in the VCF meta-information lines. Having a header would provide a direct method of supplying
file metadata directly within the file, allowing parsers to easily read the BED file. Future versions of the
GA4GH BED specification may add such metadata.

4.6 Limitations of the testing approach

Our testing approach applies the same BED files and secondary files to all the tools, except tools that
use BAM input. Given the diversity of tools that use the BAM format, we could not find a single BAM
file with data relevant to all tools. Instead, we used two different BAM files to avoid tools raising logical
errors on our test cases.

Our testing approach only considers whether a BED parser accepts valid input and rejects invalid
input. It does not consider correctness of the output. Developers can validate output file format using a
file validation tool. For BED files, one can use bigToBigBed18 for file validation, keeping in mind the
edge cases discussed above where its behavior differs from the GA4GH BED specification. Testing for
correctness of analyses represents a much more difficult problem that one cannot trivially address.

The fuzzing approach also has some limitations. The quality of the generated test cases relies on
the file generator to cover a wide range of possible BED files. For a grammar-based fuzzing approach,
the grammar would have to describe all possible variations in a file, which becomes difficult for more
complex file formats. Another potential issue with file generation arises if the generator has too few
methods to vary its output files, generating files that do not cover enough cases. Machine learning or
other approaches that inform future file generation from past unexpected behavior can address this
issue120.

Other fuzzing approaches, such asmutation-based fuzzing,maynotwork in a bioinformatics context.
Mutation-based fuzzers randomly modify existing files by adding random or nonsense characters.
These fuzzers would not create diverse BED files and the mutations would likely create invalid and
meaningless BED files. A security-oriented fuzzer such as American Fuzzy Lop121 can detect these
vulnerabilities. Security-oriented fuzzers will produce test cases that can have nonsense data such as
non-ASCII characters, which tests the tool’s ability to handle unexpected data.
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