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     Abstract 29 

Plant cell walls are interwoven structures recalcitrant to degradation. Both native and adapted 30 

microbiomes are particularly effective at plant cell wall deconstruction.  Studying these  31 

deconstructive microbiomes provides an opportunity to assess microbiome performance and relate 32 

it to specific microbial populations and enzymes. To establish a system assessing comparative 33 

microbiome performance, parallel microbiomes were cultivated on sorghum (Sorghum bicolor L. 34 

Moench) from compost inocula. Biomass loss and biochemical assays indicated that these 35 

microbiomes diverged in their ability to deconstruct biomass. Network reconstructions from time-36 

dependent gene expression identified key deconstructive groups within the adapted sorghum-37 

degrading communities, including Actinotalea, Filomicrobium, and Gemmanimonadetes 38 

populations. Functional analysis of gene expression demonstrated that the microbiomes proceeded 39 

through successional stages that are linked to enzymes that deconstruct plant cell wall polymers. 40 

This combination of network and functional analysis highlighted the importance of cellulose-41 

active Actinobacteria in differentiating the performance of these microbiomes.  42 

  43 
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Introduction 44 

Plant cell walls are complex structures that primarily contain the polysaccharide polymers 45 

cellulose, hemicellulose, and pectin as well as the aromatic polymer lignin1. The primary cell wall 46 

of grasses, such as sorghum (Sorghum bicolor L. Moench), is a thin layer consisting of cellulose 47 

and the hemicellulose xylan, and a small amount of pectin. The thicker secondary cell wall, 48 

deposited after plant cell growth ceases, contains cellulose, lignin, and hemicellulose. Chemical 49 

and biological deconstruction of plant cell walls to release the sugars and aromatics in the biomass 50 

is of great current interest for their subsequent conversion to biofuels and bio-based chemicals2–4. 51 

For biological deconstruction, microorganisms, including filamentous fungi, bacteria, and protists 52 

employ an armamentarium of enzymes that systematically deconstruct the plant cell wall5–7. These 53 

include hydrolytic and oxidative enzymes that deconstruct the polysaccharides and radical-based 54 

oxidative enzymes that deconstruct lignin8–10. 55 

Though most understanding of biological cell wall deconstruction has been obtained from 56 

isolates, microbiomes that break down cell walls have emerged as new sources of microbes and 57 

enzymes11–15. These microbiomes feature successional structures that are linked to the mechanism 58 

of depolymerization in the cell wall16. Microbiomes that digest plant cell walls are readily 59 

cultivated from inocula rich in deconstructive microbes, like compost and rumen17,18. These 60 

cultivations have yielded microbiomes with reproducible structures and community dynamics, 61 

linking plant polymer deconstruction to individual microbes and enzymes. Development of 62 

parallel consortia from heterogeneous inocula leads to variations in microbiome structure, often 63 

referred to as founder effects, that may influence microbiome performance19. Therefore, the 64 

cultivation of parallel consortia is a promising strategy to link the structure and dynamics of 65 
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biomass-deconstructing microbiomes. These comparisons may identify key contributors to the 66 

deconstruction of cell wall components that differentiate the microbiomes. 67 

 Here, parallel microbiomes with different community structures were cultivated with 68 

sorghum biomass as the sole carbon source.  The performance of these distinct microbiomes was 69 

compared in growth on forage sorghum varieties and this performance linked to specific 70 

populations by network and functional analyses of time-resolved metatranscriptomics.   71 

72 
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Materials and Methods 73 

Sample Collection and Biomass Preparation 74 

Green waste compost was collected from the City of Berkeley 75 

(https://www.cityofberkeley.info/freecompost/) and transported to the lab at room temperature. 76 

Compost was sieved and stored at 4°C prior to use. Untreated ground Sorghum bicolor L. (25 mm 77 

particle size) was obtained from Idaho National Laboratory and washed, autoclaved, and dried in 78 

a 50C oven. The wild type and brown midrib-6x12 (bmr-6x12) forage sorghum were grown and 79 

harvested as previously described20. The forage sorghum samples were also washed, autoclaved, 80 

and dried as described above. Moisture content was measured using a moisture analyzer (Mettler 81 

Toledo Moisture Balance HB43-S). 82 

 83 

Enrichment/Priming (Tier 1) 84 

Green waste compost (0.1 g), 50 mL of M9TE21  (pH 6.5), and 0.5 g of sorghum were inoculated 85 

in 250 mL baffled Erlenmeyer flasks. Three parallel incubations, along with a negative control 86 

without inoculant, were incubated at 50 °C at 200 rpm and adjusted for evaporation using filter-87 

sterilized deionized water every 2-3 days. Passages were conducted every 2 weeks (Day 14, 28, 88 

42, and 56) by transferring 2 mL of culture to a new set of flasks. At the end of each passage, pH 89 

was measured and 500-l aliquots were collected and centrifuged to separate pellet and supernatant 90 

fractions. DNA was extracted from the pellet fraction and sent for 16S rRNA gene and 91 

metagenomic sequencing. Additionally, for the final passage (Day 56), 3,5-dinitrosalicylic acid 92 

(DNS) assays22 and nanostructure-initiator mass spectrometry (NIMS)23 assays were performed 93 

on the supernatant fraction and the remaining material was filtered using Miracloth (Millipore 94 

Sigma, Burlington, MA, USA) and dried at 50 °C to determine the biomass dry weight. 95 
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Dynamics (Tier 2) 96 

At Day 56, each of the three communities from Tier 1 (comm1, comm2, comm3) were used to 97 

inoculate a second series of flasks (Tier 2). Two milliliters of each sorghum-deconstructing 98 

microbiome (SDM) from Passage 4 (Day 56) was used to inoculate triplicate flasks containing 50 99 

ml M9TE (pH 6.5), and 0.5 g of either the parent forage sorghum or bmr6 x bmr12 stacked 100 

mutant24. Triplicate flasks along with a control were incubated at 50 °C, 200 rpm for 2 weeks. At 101 

each timepoint (Day 2, 5, 7, 9, 12, and 14), flasks were adjusted for evaporation, measured for pH, 102 

and sampled for nucleic acid extraction. Five hundred-microliter samples were centrifuged for 5 103 

min at 14,000 x g and pellets used for DNA/RNA co-extraction. After 14 days, 500 l of media 104 

were centrifuged, and supernatant used for DNS assays and NIMS analysis. NIMS analysis was 105 

performed as described in detail elsewhere25. Briefly, a 2 µL aliquot of supernatant was transferred 106 

into a vial containing 6 µL of 100 mM glycine acetate, pH 1.2, 0.5 µL of a 5.0 mM aqueous 107 

solution of [U]-13C glucose, 2 µL of CH3CN, 1 µL of MeOH, 1 µL of solution probe (100 mM in 108 

1:1 (v/v) H2O:MeOH), and 0.1 µL of aniline. The mixture was incubated at room temperature for 109 

16 hours. NIMS analysis was performed using a Bruker UltrafleXtreme MALDI TOF/TOF mass 110 

spectrometer. In each case, 0.2 µL of the quenched reaction sample was spotted onto the NIMS 111 

surface and removed after 30 seconds. Signal intensities were identified for the ions of the tagging 112 

products and ~4000 laser shots were collected. Residual biomass was filtered through Miracloth 113 

and a subsample of 100 mg used for lignin quantification using the Acetyl Bromide Soluble Lignin 114 

(ABSL)26 assay and the rest dried to determine dry weight. DNA from Day 14 was used for 115 

metagenome sequencing, while RNA from each sampling point submitted for metatranscriptome 116 

sequencing as described below. 117 

 118 
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 8 

DNA/RNA Extraction for Metagenomics and Metatranscriptomics 119 

DNA and RNA were co-extracted from 500uL of SDM pellets as previously described27 using a 120 

modified CTAB extraction buffer consisting of equal volumes of 0.5 M phosphate buffer (pH 8) 121 

in 1 M NaCl and 10% hexadecyltrimethylammonium bromide (CTAB) in 1 M NaCl. Briefly, tubes 122 

containing 500 l of SDM pellet, 0.5 mL of modified CTAB extraction buffer, 50 l of 0.1 M 123 

ammonium aluminum sulfate and 0.5 mL of phenol:chloroform:isoamyl alcohol (25:24:1) were 124 

bead-beaten at 5.5 m/s for 45 s in a FastPrep instrument (MP Biomedicals, Solon, OH, United 125 

States). Following bead-beating, tubes were centrifuged at 16,000 × g for 5 min at 4 °C. The 126 

supernatant was transferred to a new tube containing an equal volume of chloroform:isoamyl 127 

alcohol (24:1), vortexed, and centrifuged again. The supernatant was transferred into a new tube 128 

containing 1 ml of polyethylene glycol 6000 solution and 1 l of linear acrylamide and incubated 129 

at room temperature for 2 h. Each sample was extracted a second time by adding 0.5 ml of modified 130 

CTAB extraction buffer to the original Lysing Matrix E tubes and repeating the steps from bead-131 

beating onwards. The first and second extractions were centrifuged at 16,000 × g for 10 min at 4 132 

°C. The pellets (two per sample) were washed with 0.5 ml of cold 70% ethanol, dried, and 133 

combined in 50 l of RNase-Free water. Purification was carried out using the AllPrep DNA/RNA 134 

Mini Kit (Qiagen, Valencia, CA, United States) according to manufacturer’s instructions. DNA 135 

and RNA were eluted in 60 l and 30 l of RNase-Free water, respectively. Concentrations were 136 

measured by Qubit fluorimeter (Invitrogen, Carlsbad, CA, United States) and quality was assessed 137 

by BioAnalyzer (Agilent). 138 

 139 

 140 

 141 
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 9 

Characterization of bacterial communities with amplicon sequencing 142 

Triplicated amplicon libraries were prepared using 3 ng of DNA per reaction and the primers 515F 143 

and 806R modified with Illumina sequencing adapters and barcodes. Libraries were pooled in 144 

equimolar concentrations and sequenced on the MiSeq platform using the Miseq Reagent kit v3. 145 

Sequences were demultiplexed based on their unique barcodes and trimmed to the same length. 146 

Sequences were dereplicated and sorted by decreasing abundance using USEARCH v1128. The 147 

dereplicated sequences were denoised, de-novo chimera filtered, and zero-radius OTUs (ZOTU) 148 

generated using unoise3 from USEARCH v11. Resulting ZOTUs, which are a form of amplicon 149 

sequence variants (ASVs), were taxonomically characterized against the Greengenes database 150 

gg_16s_13.5 using Sintax (USEARCH v11) with a cutoff of 0.8, and genus as the maximum 151 

taxonomic level. Total sequences were mapped against the ZOTUs at a 97% identity and an 152 

abundance table was generated that was subsequently transformed into a biom table. ZOTUs were 153 

aligned using Clustalw, and the alignment was used to generate a phylogenetic tree with IQ-TREE 154 

229 using the model TIM3+F+I+G4 (identified using model finder) and ultrafast bootstrap 155 

approximation (UFBoot) with 1000 replicates. The abundance table, mapping file, and 156 

phylogenetic tree were imported to the R software using the Phyloseq package30 (version 1.12.2).  157 

For community composition analyses (beta-diversity), data was VST-normalized using the 158 

DESeq2 package31 (version 1.34.0) using a mean fit that was used to calculate a weighted Unifrac 159 

distance matrix. The obtained distance matrix was ordinated using multidimensional scaling in 160 

Phyloseq. The samples were categorized based on passage and its effect on data variation tested 161 

with Adonis (nonparametric permutation multivariate analysis of variance), performed with 1,000 162 

permutations. 163 

 164 
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 10 

Metagenomic Sequencing and Analysis 165 

Twenty-one DNA samples, 3 from Tier 1 Day 56, and 18 from Tier 2 Day 14, were submitted to 166 

the Joint Genome Institute (JGI) for sequencing using Illumina Novaseq platform (150 bp x 2). 167 

Individual reads were filtered using JGI’s standard metagenomic analysis pipeline (version 3.4.7 168 

from BBtools version 38.24), corrected using bbcms (version 38.34), and co-assembled using 169 

metaSPAdes32 (version 3.13.0). Open Reading Frames were predicted from the assembled contigs 170 

using MetaGeneMark33. Protein domain annotations were predicted using the pfamA-30 and 171 

dbCAN-V8 Hidden Markov Model protein domain databases using an e-value of 1 x 10-5. Protein 172 

categories of interest were screened against the National Center for Biotechnology Information 173 

database using BLASTp and dbCAN2’s CAZy database for DIAMOND34 (version 0.9.21.122) 174 

with an e-value 1 x 10-5. The metagenome co-assembly was binned using MaxBin (version 2.2.5) 175 

with default parameters, yielding 103 Metagenome Assembled Genomes (MAGs). The most likely 176 

taxonomy was predicted using a custom script (getTaxon.pl), which searched the predicted 177 

proteins of the individual bins against the NCBI non-redundant (NR) database using DIAMOND 178 

(version 0.9.21.122) and processed the hits using the least common ancestor (LCA) algorithm 179 

proposed by MEGAN Community edition (version 6.11.0)35. Completeness and contamination 180 

rates for all MAGs were assessed using CheckM (version 1.0.12). MAGs (and associated genes) 181 

with at least 30% completeness and less than 10% contamination were retained for the rest of the 182 

analyses. Coverage information for the scaffolds of each MAG was extracted from the calculated 183 

coverage data TPM normalized data for each scaffold in the metagenome, and MAG abundances 184 

in each replicated sample were calculated as the average TPM coverage value over all the scaffolds 185 

in a MAG. The compositional variation of each enriched community was analyzed by quantifying 186 

their Local Contribution to Beta Diversity (LCBD) using the R package adespatial with the 187 
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 11 

Hellinger dissimilarity coefficient and p-value correction using the Holm method. A phylogenetic 188 

tree for the MAGs was reconstructed in KBase36 based on universal genes defined by Cluster of 189 

Orthologous Groups using maximum likelihood. Average Nucleotide Identity between 190 

taxonomically related MAGs (genus level) was quantified also in KBase. Annotations for each of 191 

the MAGs are provided in Supplementary Data. 192 

 193 

Metatranscriptomic Sequencing and Analysis 194 

Fifty-four RNA samples, from each of the treatments and time points of Tier 2 experiment were 195 

also submitted to JGI for metatranscriptomic sequencing using the Illumina Novaseq platform 196 

(150bp x 2). Sequenced samples represented triplicated RNA samples from adapted communities 197 

incubated with stacked mutant and WT sorghum. The filtered reads were assessed using FastQC 198 

(version 0.11.8) and mapped to the metagenome co-assembly using Bowtie2 (version 2.3.4.3). 199 

Gene counts were generated using Feature Counts (version 1.6.3) and normalized for both gene 200 

length and library size by transcripts per million (TPM), using a custom R script. For 201 

metatranscriptome ordination analyses a Bray-Curtis dissimilarity matrix was calculated using R’s 202 

Vegan on the raw feature counts table that was first filtered to retain only those genes appearing 203 

in at least 5 samples (out of the total 54 samples) and mean count of 10. The resulting table was 204 

VST-normalized with DESeq2. The samples were categorized based on time (day), type of 205 

biomass (WT and SM), and categorical effects on data variation tested with Adonis (nonparametric 206 

permutation multivariate analysis of variance), performed with 1,000 permutations. Average 207 

transcriptome abundances per selected MAG were calculated on the TPM-normalized data and are 208 

available in Supplementary Data. For differential expression analyses, the feature count data was 209 

filtered using the parameters used for the transcriptome ordination analysis, retaining genes 210 
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appearing in at least 5 samples with a mean count of 10. Differential expression analyses were 211 

carried using DESeq2 using a parametric fit. The results filtered for a corrected p-value < 0.01 and 212 

an absolute log2fold change > 1. Heatmaps showing normalized expression levels per relevant 213 

genes were calculated on the DESeq-2 VST-normalized data using R’s pheatmap package, and 214 

rows arranged based on a Bray-Curtis dissimilarity matrix.  215 

 216 

Network reconstruction  217 

A network was constructed for the transcriptome data based on centred logratio transformed 218 

feature counts data37. Prior to normalization, the data was subsetted to include genes detected in at 219 

least 50% of the total number of samples. Network reconstruction was conducted with the 220 

Molecular Ecological Network Analyses pipeline (MENAP, http://ieg4.rccc.ou.edu/mena/) with 221 

the following settings: for missing data fill blanks with 0.01 if data have paired values; do not take 222 

logarithm as the data was already CLR normalized; use Spearman Correlation similarity matrix; 223 

calculate by decreasing cutoff from the top. Random Matrix Theory (RMT) was used to 224 

automatically identify the appropriate similarity threshold for network reconstruction38,39. The 225 

network was visualized in Cytoscape40 (version 3.9.0) using Force-Directed graph drawing and 226 

colored based on the taxonomic identity of the included MAGs. 227 

228 
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Results: 229 

Microbial community adaptation to grow on sorghum 230 

Green waste compost was used to inoculate three parallel microbiomes which were adapted to 231 

grow on sorghum biomass as the sole carbon source for 56 days. Measurement of residual sorghum 232 

biomass by Day 56 showed that comm1 and comm2 had a 40% reduction in biomass content and 233 

comm3 had a 57% biomass reduction (Supplementary Fig. 1). Amplicon sequencing demonstrated 234 

that these microbiomes differentiated into individual communities (comm1, comm2 and comm3). 235 

Analysis of community composition showed that the individual microbiomes did not group over 236 

time (PERMANOVA: df = 3, F = 1.59, p = 0.21) but rather varied by community  (PERMANOVA: 237 

df = 2, F = 4.93, p = 0.003, r2 = 52.3%) with each following a different trajectory (Fig. 1A).  The 238 

microbiomes comm1 and comm3 were more closely related to each other than comm2, which was 239 

Fig 1. A) Ordination plot for bacterial communities growing on sorghum and analyzed using amplicon sequencing. B) 

Dry weight; C) NIMS results. Both correspond to end-point analyses after a 14-day incubation. D-E) DNS analysis 

for CMCase and xylanase activity of adapted communities inoculated to SM and WT sorghum. F) Lignin content from 

small-scale biomass analysis. The icons within the barplots indicate the Tier1 community used for inoculation of the 

Tier 2 experiment. Circle – comm1, triangle – comm2, square – comm3. Error bars indicate standard deviation (n = 

3). Bars labeled with the same letter are not significantly different (ANOVA and Tukey test; p > 0.05).  

 

 
1 
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separated at a considerable distance from the other microbiomes in the ordination plot. The 240 

trajectories of these microbiomes suggest that they possess distinct metabolic capabilities and that 241 

by Day 56 the community composition had stabilized. 242 

 243 

Comparative deconstruction of sorghum 244 

The emergence of three distinct microbiomes from the initial green-waste compost inoculum 245 

provided an opportunity to compare the performance of parallel microbiomes with different 246 

community compositions.  We compared the deconstructive abilities of these communities on 247 

sorghum varieties with different lignin content and monomeric compositions, to examine the effect 248 

of lignin on microbiome performance. Multiple mutants from the lignin biosynthetic pathway have 249 

been developed in sorghum, and the bmr-6x12 double mutant was chosen for the parallel 250 

experiments24. This stacked mutant, in which mutations that affect both the lignin biosynthetic 251 

genes cinnamyl alcohol dehydrogenase (bmr-6) and caffeic acid O-methyltransferase (bmr-12), 252 

has lower lignin content and is more easily deconstructed compared to the native sorghum line41. 253 

Therefore, we compared the corresponding non-mutant sorghum hybrid, referred to as wild type 254 

(WT), and the bmr-6x12 line, referred to as stacked mutant (SM). Microbiomes cultivated for 56 255 

days on forage sorghum were individually inoculated into triplicate cultures containing SM 256 

sorghum (SDM1-3) or the WT sorghum (SDM4-6) and cultivated for 14 days.  Endpoint 257 

measurements of residual dry-weight biomass demonstrated that the communities cultivated on 258 

the SM sorghum exhibited the greatest biomass loss. Among the SM communities, SDM3 had a 259 

significantly higher average biomass reduction (75% vs control), while SDM6, inoculated using 260 

WT-sorghum, exhibited 54% biomass loss compared to the control. SDM3 (SM-treatment) and 261 

SDM6 (WT-treatment) are derived from the same comm3, and the levels of biomass consumption 262 
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showed that SDM3 was significantly higher than SDM6 (ANOVA and Tukey test, p < 0.01). An 263 

analysis of cellotetraose hydrolysis showed that regardless of the type of biomass used as substrate 264 

(WT or SM), treatments inoculated with comm3-derived microbiome released the highest levels 265 

of glucose with SDM3 (SM sorghum) compared to SDM6 (WT sorghum) (SDM3: 2.25 mM, 𝜎 = 266 

0.04; SDM6: 2.15 mM, 𝜎 = 0.6) (Fig. 1C). Cellulase and xylanase activity were further 267 

investigated using DNS assays and showed the highest enzymatic activity in the comm1 and 268 

comm3-derived treatments (SDM1/SDM4 and SDM3/SDM6, respectively). The results also 269 

indicated a higher cellulase and xylanase activity in the SM-sorghum treatments compared to WT-270 

sorghum treatment (Fig. 1 D-E).  271 

The changes in biomass composition were further analyzed by measuring relative lignin 272 

content compared to uninoculated controls. The residual biomass from the SM communities had a 273 

significantly lower lignin content than its WT-counterpart, consistent with the lower levels of 274 

lignin in the SM plants versus the WT plants (Fig. 1F). Calculations showed that although not 275 

statistically significant (ANOVA and Tukey test, p > 0.05) all inoculated treatments had a lower 276 

lignin content than their controls, with the exception of the SDM3 treatment, which had an 277 

increased amount of lignin in the residual biomass that was statistically significant (Fig. 1F). 278 

 279 

Metagenomic analyses reveal metabolic potential for biomass transformation 280 

A total of 103 metagenome assembled genomes (MAGs) were reconstructed but only 66 281 

that had a completeness above 30% and contamination lower than 10% were considered for 282 

downstream analysis. These selected MAGs and their phylogenetic relationships based on 283 

universal genes are shown in Supplementary Figure 2. Figure 2A shows the shared and unique 284 

reconstructed MAGs in each of the Tier 2 samples and their community sources (comm1, comm2, 285 
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and comm3). Inspection of the clustering patterns showed that the composition of Tier 2 samples 286 

clustered according to their community sources, as also observed in amplicon-based analysis (Fig 287 

1A). The MAGs separated into five clusters (C1 – C5, Fig 2A). Cluster 1 (C1) represented the 288 

communities mostly unique to comm2 derived samples (SDM2/SDM5) and included 289 

Actinopolymorpha bin102, Bacillus bin91, Brevibacillus bin76, 82, and 62 (Average Nucleotide 290 

Identity (ANI) = 76%), Conexibacter bin85 and 94 (ANI = 78%), Geobacillus bin98, 291 

Illumatobacter bin100, Microbacterium bin103, Mycobacterium bin99, Paenibacillus bin81, 292 

Streptosporangium bin58, Thermobacillus bin92 and 96 (ANI = 77%), and Ureibacillus bin93. 293 

Cluster 2 (C2) contained bacterial populations shared between comm2 and comm3-derived samples 294 

(SDM2/SDM5 and SDM3/SDM6). Cluster 2 included Actinopolymorpha bin90, Bacillus bin63, 295 

Brevibacillus bin97, Paenibacillus bin101, Salinispora bin39 and 64 (ANI = 77%), 296 

Solirubrobacterales bin89, and Thermocrispum bin46. Cluster 3 (C3) represented the populations 297 

exclusively shared between comm3 and comm1-derived samples (SDM6/SDM3, and 298 

SDM1/SDM4). Cluster 3 populations included Conexibacter bin16 and 24 (ANI = 79%), 299 

Inquilinus bin14, Mycobacterium bin18, Pseudoncardia bin23, Salinispora bin30 and 37 (ANI = 300 

77%).  Cluster 4 (C4) represented the core populations among all samples and included 301 

Actinopolymorpha bin55, Actinotalea bin1 and 5 (ANI = 86%), Aneuribacillus bin28, Bacillus 302 

bin60, Caldibacillus bin56, Conhella bin15, Dongia bin26, Filomicrobium bin12 and 24 (ANI < 303 

70%), Gemmanimonadetes bin10, Geobacillus bin47, Ornithimicrobium bin31, Paenibacillus 304 

bin34, 35, 45, 67, and 69 (ANI = 76% –  78%), Thermobacillus bin17, 41, 43, 48, 51, and 53 (ANI 305 

= 77% – 89%), Thermocrispum bin11, and Tuberibacillus bin22. Finally, cluster 5 (C5) included 306 

some populations such as the Rhodospirillales bin9 and Salinispora bin32 which were unique to 307 

SDM1/SDM4, and Thermobacillus bin96 that was unique to SDM1/SDM6. Other populations in 308 
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this cluster included Conhella bin32, Thermobacillus bin49, Filomicrobium bin36, 309 

Caldakalibacillus bin70, and Paenibacillus bin42 and 35 (ANI < 70%), all of which were shared 310 

between SDM2/SDM5 and SDM1/ SDM4. 311 

According to the analysis of coverage distribution of the binned genomes (Fig. 2B), Tier 2 312 

communities were dominated by the Actinotalea genome populations (Actinotalea bin1 and bin5). 313 

Actinotalea bin1 contigs accounted for more than 70% of the total contig coverage in 314 

SDM1/SDM3 and SMD4/SDM6, while Actinotalea bin5 accounted for 41% of the total contig 315 

coverage in SDM2 and 24% in SDM5. Highly prevalent MAGs, also identified as part of the 316 

cluster 4 (core populations), included populations of Filomicrobium bin12, Gemmanimonadetes 317 

Fig 2. A) Community composition for Tier 2 adapted communities and their source Tier 1 source inoculum. 

Dendrograms were calculated based on a Jaccard distance matrix. B) Relative proportion of dominant communities 

calculated from TPM-normalized coverage data.  Only populations with a relative proportion above 0.08 are shown 

in the figure. LCBD = is local contribution to community dispersion calculated with the R package adespatial; C) 

Ordination plot depicting metagenome composition or the Tier 2 adapted communities and their corresponding Tier 

1 source inoculum. The ellipses were calculated around barycenters with a confidence level of 0.99 using the 

stat_conf_ellipse  function in ggpubr v.0.2.4. D) Gene proportion per MAG for selected GHs. 
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bin10, Paenibacillus bin34, Ornithiumicrobium bin31, Thermobacillus bin17, 43 and 48, 318 

Thermocrispum bin46 and 11, and Cohnella bin15. Other highly prevalent MAGs were 319 

Brevibacillus bin97 (C2), Conexibacter bin16, 24 (C3), 85 (C1), Illumiatobacter bin100 (C1), 320 

Microbacterium bin103 (C1), Rhodospirillales bin9 (C5), Salinispora bin37 (C3), 39 (C2), 64 321 

(C2), Solirubrobacterales bin89 (C2), and Thermocrispum bin46 (C2). Analysis of local 322 

contribution to beta diversity (LCBD) showed no significant variation (Holm corrected p-values > 323 

0.05) in the composition of the enriched communities when comparing the composition of the 324 

Tier2 enrichments and their Tier1 source inoculum (Fig. 2B). 325 

 An ordination analysis on the normalized coverage for the contigs of the selected bins (Fig  326 

2C) showed that the different samples clustered together based on their inoculum regardless of 327 

biomass type (SM or WT). Furthermore, a permutational analysis of variance showed that the type 328 

of inoculum (PERMANOVA: df = 2, F = 54.9, p = 9.9×10-5) and type of biomass (PERMANOVA: 329 

df = 1, F = 5.8, p = 9.9×10-5) had significant effects on metagenomic clustering and explained 330 

84.2% and 4.4% of the observed patterns (Fig. 2C).  331 

Prediction and annotation of genes identified within each MAG showed that the abundant 332 

Actinotalea bins contained some genes coding for putative glycoside hydrolases relevant for the 333 

degradation of polysaccharides. Actinotalea bin1 contained GH6 and GH10 genes; while 334 

Actinotalea_bin5 had GH5, 6, 10, 43, and 51 genes. On the other hand, other abundant MAGs such 335 

as Actinopolymorpha bin90, Conhella bin15, Paenibacillus bin34, Thermobacillus bin17 and 336 

bin48 contained more of the GHs possibly involved with pectin, hemicellulose, and cellulose 337 

degradation (Fig. 2D). Supplementary Figure 3 shows the distribution of relevant GHs among the 338 

selected MAGs. 339 

 340 
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Sequential degradation of sorghum biomass follows two distinct trajectories 341 

The SDM1 and SDM3 treatments had the same most abundant population (Actinotalea 342 

bin1) and the highest activities among the Tier 2 microbiomes. Therefore, we performed an in-343 

depth comparison of time-dependent gene expression patterns in these microbiomes to identify 344 

similarities and differences in expression patterns, focusing on genes for deconstruction of plant 345 

polymers.  We also performed a comparison between SDM3 and SDM6 to see if the sorghum 346 

substrate had any effect on gene expression patterns. 347 

An ordination analysis of the metatranscriptome showed that the three selected enrichments 348 

(SDM1, SDM3, and SDM6) followed two distinct trajectories (Fig. 3A). Similar to the 349 

metagenome analysis, the metatranscriptomes clustered based on their initial inoculum and shifted 350 

gradually over the course of 14 days.  SDM3 and SDM6 followed a similar 2-week trajectory, 351 

despite having different types of sorghum biomass. SDM1 followed a different trajectory from 352 

SDM3 and SDM6, but also exhibited gradual shifts in overall activity, indicative of sequential 353 

Fig. 3. A) Ordination biplot depicting the trajectory of metatranscriptomes for the adapted communities growing 

on SM and WT sorghum. The ellipses were calculated around barycenters with a confidence level of 0.99 using 

the stat_conf_ellipse  function in ggpubr v.0.2.4 B) Average TPM-normalized transcriptome abundance per 

MAG over the 14-day incubation. 
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changes in community structure. A permutational analysis of variance further indicated that type 354 

of inoculum (Df = 2, F=40.33, p = 9.9×10-5) and time (Df = 5, F= 21.59, p = 9.9×10-5) each had a 355 

significant effect on metatranscriptome trajectory, explaining 40.3% and 21.5% of the observed 356 

variation, respectively (Fig. 3A). The analysis of variance also indicated that the type of biomass 357 

(WT and SM) did not have a significant effect on metatranscriptome trajectory. Based on these 358 

results, we chose to focus our analyses on the characterization of SDM1 and SDM3. 359 

An analysis of the normalized abundance of transcriptomes for each reconstructed MAG 360 

indicated that the Actinotalea-bin1 was the most active organism in the enrichments across 361 

sampling times (Fig. 3B). Other highly active bins included Thermobacillus bin17, Filomicrobium 362 

bin12, Thermocrispum bin46, Gemmatimonadetes bin10, Thermobacillus bin53 and 51, 363 

Tuberibacillus bin22, Geobacillus bin47. Genome bins that were more active in SDM1 included 364 

Actinotalea bin5, Rhodospirillales bin9, and Inquilinus bin14, while Actinopolymorpha bin90, 365 

Paenibacillus bin42, and Thermobacillus bin49 were more active in SDM3 (Fig. 3B).   366 

Random Matrix Theory (RMT)-based network analysis was performed to define putative 367 

interactions among the networked populations and to further explore transcriptome dynamics38,39.  368 

Figure 4A depicts the reconstructed network based on metatranscriptome expression profiles. Each 369 

MAG in the network is colored showing that bacterial populations identified as highly abundant 370 

in the metagenome and with high expression levels in the metatranscriptome formed highly 371 

connected clusters within the network. The reconstructed network (Fig. 4A) consisted of 22,887 372 

nodes (networked genes) and 5,018,619 links with correlation values between 0.9 – 1.0, and 164 373 

large modules (>10 connected nodes).  Cluster isolation by reconstructed MAG with linked 374 

neighbors representing co-expression patterns defined potential pairs of interacting bacterial 375 

populations. These patterns showed that populations represented by Actinotalea bin1, Actinotalea 376 
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bin5, Filomicrobium bin12, and Gemmatimonadetes bin10 were highly interconnected and likely 377 

interacted directly with each other in the metatranscriptomes (Fig. 4B). Because of their 378 

conservation in all the microbiomes, high level of abundance and activity (Fig. 2B and 3B), and 379 

the direct interconnections between these four MAGs (Fig. 4B) we defined these bins as key 380 

populations within the adapted communities. Mapping of differential expression (log2fold change 381 

for genes with p < 0.01) onto the network showed that Actinotalea bin5 was significantly more 382 

active in SDM1 during the 14-day incubation (Fig. 4B). We also observed that Actinotalea bin1, 383 

Filomicrobium bin12 and Gemmatimonadetes bin10 were more active in SDM3 than in SDM1 384 

from Day 5 to Day 9. The significantly higher activity of these three central bins remained through 385 

the 14–day incubation for Actinotalea bin1 and declined first for Gemmatimonadetes bin10 by 386 

Day 12 and then for Filomicrobium bin12 by Day 14 (Fig. 4C). 387 

One-to-one putative interactions between these four central MAGs with other members of 388 

the adapted community were also predicted from the network (Fig. 4A and B).  Actinotalea bin5 389 

and Filomicrobium bin12 had direct connections with a larger number of MAGs than Actinotalea 390 

bin1 and Gemmanimodetes bin10. Populations directly linked with Actinotalea bin5 included 391 

Thermocrispum bin11, Conhella bin29, Salinispora bin37, Streptosporangium bin38, 392 

Thermobacillus bin50, Thermobacillus bin53, Caldibacillus bin56. Filomicrobium bin12 on the 393 

other hand, had direct links with Thermobacillus bin17, Ornithimicrobium bin31, Paenibacillus 394 

bin45, Thermobacillus bin51, Paenibacillus bin61, Filomicrobium bin74, Paenibacillus bin83, 395 

and Filomicrobium bin88. Aside from their connections with the other central MAGs, Actinotalea 396 

bin1 was found as linked with Conexibacter populations bin16 and 24, while Gemmatimonadetes 397 

bin10 was linked to Thermobacillus bin53 (also connected with Actinotalea bin5) and with 398 

Caldalkalibacillus bin73. 399 
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We also explored the network associations of MAGs that represented likely key 400 

contributors to the process of lignocellulose degradation given their genetic makeup 401 

(Supplementary Fig. 1) and high expression levels (Fig. 3B). Paenibacillus bin67 was another 402 

MAG of interest as it encodes for GHs potentially contributing to the degradation of pectin (GH2, 403 

Fig. 4. A) RMT-based network reconstructed based on the 14-day metatranscriptome profiles of SDM1 and 

SDM3 samples. Only significant links with a correlation above 0.9 were retained in the network. B) Illustration 

of putative population interactions derived from the RMT-network. MAGs connected to the central four MAGs 

were retained only if connecting by 50 or more links (arbitrary value). C) Differential expression patterns for 

genes with a log2-fold change higher than 1 and lower than –1 with a p-value < 0.01.  
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GH43) and hemicellulose (GH10, GH51). Paenibacillus bin67 was highly connected with 404 

Thermobacillus bin53, which contained genes encoding for a wide array of putative GHs including 405 

those from families 2, 5, 10, 16, 28, 43, 51, 53, the carbohydrate esterase CE8, and PL1 and PL9 406 

(Supplementary Fig. 2). Thermobacillus bin53 was also linked to with Actinotalea bin1 and bin5, 407 

likely acting as a connection between the dominant Actinotalea populations and the rest of the 408 

communities. 409 

Another likely prominent group in the process of polysaccharide degradation was the 410 

Salinispora populations. Three of these MAGs (bin37, 39, and 64) were detected forming a 411 

discrete cluster showing high levels of transcriptomic activity in SDM3 from Day 7 to Day 14 412 

(Fig. 4A and 4B). Among these three MAGs, Salinispora bin39 and 64 contained a wide arsenal 413 

of glycoside hydrolases including GH2, GH5, GH6, GH9, GH10, GH11, GH16, GH43, GH48, 414 

GH51, GH53, and PL9 (only bin39); and GH62 and GH93 (only in bin64) (Supplementary Fig. 415 

2). 416 

Detailed exploration of the normalized transcriptome expression profiles indicated that 417 

degradation of the primary cell wall was likely initiated by the activity of microorganisms 418 

producing enzymes for pectin degradation in a process that was significantly higher in SDM1 than 419 

in SDM3 (Wilcox pairwise comparison, p < 0.01) and that continued steadily over the 14 days of 420 

incubation (Fig 5A). Pectin-degrading expression profiles were separated into four main clusters 421 

(Fig. 5D). Cluster 1 (C1) included pectin-degrading genes that were significantly highly expressed 422 

in SDM1 and SDM3 (p < 0.01, log2fold > 1); C2 and C4 composed by genes highly expressed in 423 

SDM3; and C3 genes significantly highly expressed in SDM1. Based on the observed patterns of 424 

expression in these clusters, pectin degradation in both treatments was driven by the high levels of 425 

expression of GH43 and GH78 from Actinotalea bin1 and Filomicrobium bin12, respectively. Two 426 
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main populations of Firmicutes controlled pectin degradation at the start of the incubation in 427 

SDM1 including Thermobacillus bin53 and Paenibacillus bin67 through the expression of most 428 

of the genes shown in C1 and C3 at significantly higher levels than in SDM3 (p < 0.01, log2fold 429 

> 1). Other contributors to the process of pectin degradation in SDM3 were Thermobacillus bin51 430 

and Rhodospirillaes bin9, that expressed GH2 and GH43 (in bin51 only) through the whole 431 

incubation. Initial drivers of pectin degradation in SDM3 included Thermobacillus bin51 and 432 

Filomicrobium bin12 (C2) and Salinispora bin39 (C4) expressing GH78, and Paenibacillus bin67 433 

(C2) expressing GH43. Actinopolymorpha bin90 (C4) was also among the main contributors to 434 

pectin degradation in SDM3 through the expression (p < 0.01, log2fold > 1) of GH2, GH43, GH78, 435 

and GH93 together with Thermocrispum bin46 expressing PL9 and GH2. 436 

 Hemicellulose deconstruction gene expression dynamics resembled the pectin dynamics as 437 

indicated by the higher levels of hemicellulose-deconstructing gene expression in SDM1 than in 438 

SDM3 (Fig. 5B). It is likely that Actinotalea bin1, the most abundant bacterial population, initiated 439 

and maintained the process of hemicellulose deconstruction in both treatments given the high 440 

expression levels of the GHs from the families 10, 51 and 16 from this MAG (C1, Fig. 5E) together 441 

with the GH10 from Paenibacillus bin67. Other pioneering populations in the hemicellulose 442 

deconstruction process were Thermobacillus bin17 (C3), 51, 53 (C1 and C3), and Paenibacillus 443 

bin67 (Fig. 5E, cluster 1) through the expression of GHs from the families 10, 11, 16, 26, and 51 444 

whose expression was significantly higher in SDM1 than in SDM3 (p < 0.01, log2fold > 1). The 445 

expression of these GHs was higher during Day 2 and then declined but continued through the 446 

incubation period. GHs that contributed to the high hemicellulose degrading activity in SDM1 447 

were the GHs 10 and 16 from Actinotalea bin5 and Rhosdospirillales bin9, whose activity was 448 

detected since the beginning of the incubation and increased over time up to Day 14 (C1, Fig. 5E).  449 
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Significantly highly expressed GHs in SDM3 are shown in Fig. 3E cluster 2, and included GH10, 450 

11, 16, 51, 53, and 67 from Actinopolymorpha bin90, Mycobacterium bin18, Thermocrispum 451 

bin46, and Paenibacillus bin42. The expression of these GHs increased over time with those from 452 

Actinopolymorpha bin90, Mycobacterium bin18, and Thermocrispum bin46 reaching higher levels 453 

from Day 9 to Day 14 likely indicating the critical roles of these populations for the progression 454 

of biomass decomposition in SDM3.  455 

  456 

Fig. 5. Top panel shows the average trajectories of expression for each of the categories, A) pectin, B) hemicellulose, 457 

C) cellulose. Bottom panels depict the different groups of lignocellulose degrading bacterial populations and 458 

corresponding gene expression patterns, D) pectin, E) hemicellulose, F) cellulose. Stars indicate the time points at 459 

which gene expression was significantly higher than in the opposite treatment (p < 0.01, log2fold > 1). GH43 were 460 

classified as pectin/degrading enzymes, though this family also cleaves arabinoxylan bonds in hemicellulose42. 461 
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 462 
In contrast to pectin and hemicellulose, the expression of genes related to cellulose 463 

deconstruction was overall higher in SDM3 than in SDM1 (Fig. 5C). Expression patterns showed 464 

that the cellulose deconstruction commenced in both treatments (SDM1/SDM3) by the activity of 465 

Actinotalea bin1, Gemmatimonadetes bin10, Paenibacillus bin67, Thermobacillus bin53, and 466 

Thermobacillus bin51 expressing GH5 and GH9 (C1, Fig. 5F). In SDM3, the cellulose degradation 467 

process was complemented by the significantly higher activity (p < 0.01, log2fold > 1) of 468 

Actinopolymorpha bin90 expressing a GH5 and a GH9, Thermocrispum bin46 and Salinispora 469 

bin39 expressing an AA10, together with Salinispora bin64 expressing GH6, 9 and 48, all of which 470 

increased over time (C3, Fig. 5F). In SDM1, Salinispora bin32 was a key contributor to cellulose 471 

degradation through the expression of a GH5, 6 and 48 that reached its highest from Day 9 to Day 472 

12. Other bacterial populations likely contributing to cellulosic activity were Paenibacillus bin34, 473 

Dongia bin26 (C5) and Thermobacillus bin17 (C2) through the expression of GH5 and GH9. 474 

In comparison to bacterial polysaccharide deconstruction, bacterial lignin deconstruction 475 

is less understood43.  Inspection of the metagenome and metatranscriptome identified a protein 476 

annotated as a multi-copper oxidase in the Gemmatimonadetes bin10. A homolog of this protein 477 

in a closely related thermophilic Gemmatimonadetes population was identified by proteomics as 478 

one of the most abundant proteins in the supernatant of bacterial consortium growing on 479 

switchgrass at 60 °C44. In addition, a homologous Cu-containing protein was identified in cultures 480 

of Thermobifida fusca growing on sugarcane bagasse45. This Cu-protein improved the 481 

polysaccharide hydrolysis of T. fusca glycoside hydrolases and improved the deconstruction 482 

efficiency of an engineered cellulosome on wheat straw when it was incorporated as a heterologous 483 

protein46. In the sorghum cultures, the Gemmatimonadetes bin10 multi-copper oxidase expression 484 

was found to be significantly higher in SDM3 than in SDM1 from Day 5 to Day 7, reaching similar 485 
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levels at Day 9 (Figure 6). In addition, expression of a complete pathway for aromatic catabolism 486 

from 4-hydroxybenzoate transformation to protocatechuate and its conversion to succinyl-CoA 487 

and acetyl-CoA via the beta-ketopadipate pathway was observed in the Filomicrobium bin12. This 488 

pathway was detected at significantly higher levels in SDM3 compared to SDM1 from Day 2 to 489 

Day 7 (Fig. 6). 490 

 491 

 492 

 493 

 494 

 495 

 496 

 497 

 498 

 499 

 500 

 501 

 502 

 503 

 504 

 505 

  506 

Fig. 6. Schematic representation of the expression patterns for aromatic-degrading genes. The heatmaps 

are colored based on normalized counts for the targeted genes. Stars indicate the time points at which 

gene expression was significantly higher than in the opposite treatment (p < 0.01, log2fold > 1). 
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Discussion 507 

The two-tier cultivation of compost-derived microbiomes on sorghum led to the establishment of 508 

microbiomes for which community structure and performance could be assessed.  Initial 509 

inoculation and growth on biomass sorghum provided distinct microbiomes (comm 1-3) that 510 

traversed independent trajectories during two months of adaptation (Fig. 1A).  The development 511 

of distinctive microbiomes echoes parallel cultivation of microbiomes from Sarracenia purpurea 512 

pitcher plants grown on ground crickets47. The community structures of these parallel microbiomes 513 

also diverged during adaptation and the pitcher plant-derived consortia had variable activities in 514 

chitin deconstruction. The second-tier growth using the comm 1-3 microbiomes as inoculum for 515 

growth on wild-type (SDM4-SDM6) and lignin-reduced sorghum varieties (SDM1-SDM3) 516 

demonstrated that the structure and deconstructive activities of these microbiomes are 517 

reproducible. This observation suggests that after adaptation the community structures are 518 

maintained, allowing detailed comparisons between microbiomes that are statistically robust. 519 

Furthermore, analysis of variance between our compost-enriched microbiomes grown on wild-520 

type sorghum (SDM6) compared to the bmr-6x12 mutant (SDM3) provides persuasive evidence 521 

that community structure, rather than plant cell wall structure, defines the trajectory of 522 

deconstruction. The increased digestibility of the bmr-6x12 mutant is consistent with its reduced 523 

lignin content and resulting lower recalcitrance24,41.  524 

 Genome-resolved metagenomics demonstrated the most abundant populations in the 525 

microbiomes were two closely related Actinotalea populations.  The most abundant Actinotalea 526 

population in the comm1 and comm3-derived microbiomes (Actinotalea bin1) possessed fewer 527 

deconstructive enzymes than the most abundant Actinotalea population (Actinotalea bin5) in 528 

comm2; however, the performance of the comm2-derived microbiomes, as measured by biomass 529 
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loss, cellulase/xylanase activity and lignin remaining in the residual biomass was generally lower 530 

compared to the comm1 and comm3-derived microbiomes. The presence of Gemmatimonadetes 531 

bin10 and Filomicrobium bin12 in comm1-3 and their daughter communities suggested their 532 

prominent role in biomass deconstruction. This hypothesis was confirmed by both network 533 

analysis of gene expression, which demonstrated that gene expression in these populations were 534 

correlated, and functional analysis, which demonstrated that the Gemmatimonadetes and 535 

Filomicrobioum populations were involved in lignin deconstruction, an essential function in the 536 

deconstruction of the secondary plant cell wall. In addition, Paenibacillus bin67 and 537 

Thermobacillus bin17, bin51 and bin53 are broadly distributed and demonstrated high, correlated 538 

expression of pectinases and hemicellulases, especially early in the two-week cultivation, that is 539 

consistent with deconstruction of the primary cell wall. The contribution of these lower abundance 540 

populations to cell wall deconstruction is a phenomenon which has been observed in native 541 

microbiomes that deconstruct complex polysaccharide substrates like the human gut48.  542 

 The microbiomes derived from comm1 and comm3 growing on the bmr-6x12 sorghum 543 

mutant that were dominated by Actinotalea bin1 provided an opportunity to link the community 544 

performance, as measured by biomass loss and enzymatic activity, to detailed gene expression 545 

dynamics. Focusing on the genes for biomass deconstruction, the comm1-derived microbiome 546 

(SDM1), had higher levels of expression of pectin and hemicellulose deconstructing enzymes, with 547 

the peak of gene expression activity occurring during the initial time (Day 2) and the majority of 548 

genes being expressed by the Firmicutes. We interpret this pattern as initial deconstruction of the 549 

primary cell wall, which continues throughout the two-week cultivation. At Day 5, there was 550 

increased expression of the multi-copper oxidase from the Gemmatimonadetes bin10 population, 551 

consistent with the commencement of deconstruction of the secondary cell wall, and the relative 552 
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expression level was higher in SDM3, the more active set of cultures. This increased expression 553 

was also mirrored in the aromatic catabolic genes expressed by Filomicrobium bin10, the majority 554 

of which were expressed from Day 2 to Day 7 at higher levels in SDM3. The cellulase genes, 555 

especially GH6, GH9, GH48 and AA10, are expressed by Actinobacteria (Salinospora, 556 

Actinopolymopha, Thermocripsum) later in the cultivation (Day 9 to Day 14) and at higher levels 557 

in SDM3. SDM1 and SDM3 form two separate clusters of cellulase expression, indicating that 558 

these activities are distinct between the two communities. This distinction is also seen in the 559 

network analysis, where Salinospora bin32 (SDM1) and Salinopsora bin64 (SDM3) are peripheral 560 

and divergent members of the network, suggesting the response to cellulose has less overlap 561 

between the two communities compared to the other plant polymers. The increases in gene 562 

expression are consistent with biochemical measurements which show SDM3 has higher cellulase 563 

activity. The observation of higher cellulase activity, which arises from the actinobacterial 564 

populations, may explain the increased biomass deconstruction by SDM3 communities. The 565 

overall pattern of community dynamics, with Firmicutes being active at early timepoints and 566 

Actinobacteria active and later timepoints, mirrors the dynamics observed during composting49. 567 

 The work described here highlights the importance of founder effects in defining the 568 

composition and trajectory of microbiomes, and reinforces the observation that subtle differences 569 

in community composition and the genomic content of strains may lead to significant differences 570 

in community performance50. These considerations should be accounted for in using microbiomes 571 

for biotechnology and building synthetic microbiomes51. 572 

  573 

 574 

 575 
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Data availability 576 

Metagenomic and metatranscriptomic sequencing data can be accessed at the Joint Genome 577 

Institute Genome Portal (http://genome.jgi.doe.gov/) under Proposal ID: 503813 (Alteration of 578 

lignin biosynthetic pathways in sorghum enhances its deconstruction by adapted microbial 579 

consortia).  580 
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