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ABSTRACT 

Aims: Alcohol use disorder (AUD), has been shown to have harmful cognitive and 

physiological effects, including altered brain chemistry. Further, although men and 

women may differ in vulnerability to the neurobiological effects of AUD, results of 

existing studies have been conflicting. Brain metabolite levels and cognitive functions 

were examined in a cross section of men with AUD (AUDm) and women with AUD 

(AUDw) to determine degree of abnormalities after extended periods of abstinence  

(mean, six years), and to evaluate gender differences in cognitive and metabolite 

measures. 

Methods: Participants were 40 abstinent individuals with AUD (22 AUDw, 18 AUDm) 

and 50 age-equivalent non-AUD comparison participants (26 NCw, 24 NCm). Proton 

magnetic resonance spectroscopy (MRS) was employed at 3 Tesla to acquire 

metabolite spectra from the dorsal anterior cingulate cortex (dACC). Brain metabolites 

N-acetylaspartate (NAA), choline (Cho), myo-Inositol (mI), and glutamate & glutamine 

(Glx) were examined relative to measures of memory and inhibitory control.  

Results: Metabolite levels in the AUD group showed no significant differences from the 

NC group. Memory and inhibitory-control impairments were observed in the AUD group. 

There also were significant group-specific associations between metabolite ratios and 

measures of inhibitory control. There were no Group-by-Gender interactions for the four 

metabolite ratios. 

Conclusions: These findings demonstrate that brain metabolite levels in men and 

women with AUD, following long-term abstinence, do not differ from individuals without  

AUD. The data also provide evidence of associations between metabolite levels and 

measures of inhibitory control, a functional domain important for curtailing harmful 

drinking.   
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INTRODUCTION 

According to the 2019 National Survey on Drug Use and Health (NSDUH, 2020), 14.5 

million people in the United States met criteria for alcohol use disorder (AUD) in the 

prior year. AUD is characterized by an impaired ability to control drinking despite 

adverse personal, societal, or occupational consequences and has been shown to have 

long-lasting harmful physiological and neuropsychological effects, including 

associations with brain abnormalities. Cognitive abilities such as general intelligence 

and over-learned knowledge are preserved with AUD (Stavro et al., 2013), while 

impairments in other functions continue despite abstinence (Jia et al., 2021, Oscar-

Berman et al., 2014). Among the most common and persistent cognitive domains of 

impairment are memory and inhibitory control (Mullins-Sweatt et al., 2019, Stephan et 

al., 2017). Structural and functional magnetic resonance imaging (MRI) studies have 

sought to offer biological explanations linking heavy alcohol consumption and AUD with 

brain abnormalities as measured with magnetic resonance neuroimaging (MRI) scans 

(Oscar-Berman and Marinkovic, 2007, Sullivan and Pfefferbaum, 2005, Zahr et al., 

2016). Likewise, AUD-related alterations in brain chemistry, measured using proton (1H) 

magnetic resonance spectroscopy (MRS) have been used to detect and quantify 

stability of metabolites that have important physiological functions for maintaining brain 

health and function (Meyerhoff et al., 2013). 

  

The metabolite alterations widely reported in current alcohol drinkers and recently 

detoxified chronic heavy drinkers (Fritz et al., 2019, Meyerhoff et al., 2013) have 

focused on prominent, readily detectable, and reliably quantifiable brain metabolites: N-
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acetyl aspartate (NAA), a marker of neuronal integrity; choline (Cho), white matter 

integrity, membrane turnover, and inflammation; creatine (Cr), energy metabolism; myo-

Inositol (mI), phospholipid metabolism and osmotic equilibrium; glutamine and 

glutamate (combined as Glx), neuronal activation and glucose metabolism (Govindaraju 

et al., 2000, Moffett et al., 2007).  

 

Despite promising evidence of neuropsychological improvements (Oscar-Berman et al., 

2014) and the associated recovery of metabolite levels after short-term abstinence 

(Bendszus et al., 2001), it remains unclear whether these associations are maintained 

after longer lengths of abstinence. Therefore, a primary objective of the current study 

was to employ MRS to examine NAA, mI, Cho, and Glx metabolites relative to 

measures of inhibitory control and memory in individuals with AUD who reported longer 

lengths of abstinence (average, ~6 years) than had previously been examined. It also is 

critical to consider possible differences in metabolite levels between men with AUD 

(AUDm) and women with AUD (AUDw). Although mounting evidence demonstrates an 

important role of gender in differentiating the impact of AUD on the brain (Nixon et al., 

2014, Oscar-Berman et al., 2021, Sawyer et al., 2018), investigations of brain 

metabolite levels have largely been limited to men or have included insufficient numbers 

of women to detect group differences (Verplaetse et al., 2021). Thus, gender 

differences were directly examined by comparing AUDm and AUDw on metabolite 

levels and on their associations with length of abstinence and neuropsychological 

measures of memory and inhibitory control. 
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METHODS 

Participant recruitment and inclusion 

The study included 40 abstinent individuals with AUD (22 AUDw, 18 AUDm) and 50 

non-AUD age-matched comparison subjects (26 NCw, 24 NCm). Participants were 

recruited from the Boston area via newspaper and web-based advertisements and 

flyers. The study was approved by the participating Institutional Review Boards: Boston 

University School of Medicine (#H24686), VA Boston Healthcare System (#1017 and 

#1018), and Massachusetts General Hospital (#2000P001891). Participants provided 

written informed consent and were reimbursed $15 per hour for assessments, $25 per 

hour for scans, and $5 for travel expenses. 

 

Participants were interviewed to ensure they met inclusion criteria. Participants were 

given the Computerized Diagnostic Interview Schedule (Robins et al., 2000), which 

provides psychiatric diagnoses according to criteria established by the American 

Psychiatric Association (DSM-IV; (APA, 1994)). Participants were excluded if English 

was not one of their first languages, if they were predominantly left-handed, or if they 

had any of the following: Korsakoff’s syndrome; HIV; cirrhosis; major head injury with 

loss of consciousness greater than 15 minutes unrelated to AUD; stroke; epilepsy or 

seizures unrelated to AUD; history of electroconvulsive or electro-shock therapy; major 

neurotoxicant exposure; psychotic disorders; bipolar II; Hamilton Rating Scale for 

Depression (HRSD (Hamilton, 1960)) score over 18; or history of drug use once per 

week or more within the past five years, except for two cases: one AUD woman who 

had used marijuana regularly (but not within the past three months), and one NC man 
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who had used marijuana regularly (but not within the past two years). The AUD 

participants were excluded if they did not have positive criteria for alcohol abuse or 

dependence, if their duration of heavy drinking was less than five years, or if they had 

consumed alcohol within four weeks prior to testing. Non-AUD control participants were 

excluded if they reported duration of heavy drinking greater than one year. One 

participant was excluded for claustrophobia; another was excluded after a brain lesion 

was identified; and 23 were excluded for unusable LCModel fits of spectroscopy data. 

 

Participant assessment procedures 

Neuropsychological measures of the domains of memory and inhibitory control were 

examined. Memory was assessed using the Working Memory subtest of the Wechsler 

Adult Intelligence Scale - Fourth Edition (WAIS-IV) and the Immediate Memory and 

Delayed Memory subtests of the Wechsler Memory Scale - Fourth Edition (WMS-IV) 

(Holdnack and Drozdick, 2010). Inhibitory control was assessed using Dickman’s 

Impulsivity Inventory (Dickman, 1990) and the Barratt Impulsiveness Scale (BIS-11, 

(Patton et al., 1995)). Three Delis-Kaplan Executive Function System measures (D-

KEFS; (Delis et al., 2001)) were acquired: Trails Number Sequencing-2 (analogous to 

Trails A), Trails Number-Letter Switching-4 (analogous to Trails B) and Verbal Letter 

Fluency-1 (analogous to Controlled Oral Word Association Test (COWAT)) (Lezak et 

al., 2004). For the D-KEFS, scaled scores were used, and higher scores indicate better 

performance.  
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Participants were administered the Alcohol Use Questionnaire (Cahalan et al., 1969), 

which yields length of sobriety (LOS; in years), duration of heavy drinking (DHD; in 

years), and a quantity frequency index (ounces of alcohol per day, roughly equivalent to 

daily drinks [DD]). The LOS refers to the period between the MRI scan date and the last 

reported drink. The DHD represents the total number of years participants drank at least 

21 drinks per week (average three drinkers per day). The DD measure reflects the last 

six months (NC group), or during the six months preceding cessation of drinking (AUD 

group). Five AUD participants drank fewer than three drinks/day during the six months 

prior to cessation; thus, DD was obtained for the last six months of heavy drinking. All 

participants also completed the Alcohol Use Disorders Identification Test (AUDIT) 

(Babor et al., 1992). The questionnaire was modified to be past tense for the AUD 

group, to assess time during which they were drinking heavily. 

 

MRI acquisition 

MRI scans were obtained at Massachusetts General Hospital on a 3 Tesla Siemens 

MAGNETOM Trio Tim scanner with a 32-channel head coil (123.18MHz).  Once 

positioned, head placement was confirmed using three-plane scout images. Two T1 

weighted multi-echo MP-RAGE series for volumetric analysis (one AUD man had only 

one series) were obtained with these parameters: TR=2530ms, TE=1.79ms, 3.71ms, 

5.63ms, 7.55ms (RMS average used), flip angle=7°, field of view=256mm, 

matrix=256x256, slice thickness=1mm, 176 interleaved sagittal slices, with GRAPPA 

acceleration factor of 2. 
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Magnetic Resonance Spectroscopy 

A 20mm x 20mm x 20mm oblique voxel was prescribed in the anterior cingulate cortex 

(ACC) along the midline, with the inferior plane of the voxel parallel to the descending 

surface of the corpus callosum (Figure 1). Voxel shimming, flip-angle, water-

suppression and frequency were automatically adjusted using Siemens software. 

Proton spectroscopy data were acquired using a Point-Resolved Echo Spectroscopy 

Sequence (PRESS) to acquire water-suppressed TE=30ms ACC spectra. Additional 

acquisition parameters included TR=2s, spectral bandwidth=1.2kHz, readout 

duration=512ms, NEX=128, total scan duration=4.3min. Spectroscopic data processing 

was performed using in-house reconstruction code and LCModel (Provencher, 1993). 

The 30ms LCModel basis set utilized a GAMMA-simulated model based on the PRESS 

sequence. Five metabolite levels were assessed: Cho-containing compounds, Glx, mI, 

NAA, and total Cr (tCr, Cr + phosphocreatine). Calculating metabolite ratios relative to 

tCr as an internal standard, a method that has inherent limitations, is accepted in the 

field as a validated and reliable method for examining metabolites (Jansen et al., 2006). 

Thus, ratios of metabolites to tCr were calculated: Cho/tCr, Glx/tCr, mI/tCr, and 

NAA/tCr.  

 

Image segmentation analysis 

The high-resolution image sets (T1-weighted) were segmented into gray matter (GM), 

white matter (WM), and cerebrospinal fluid (CSF) binary-tissue maps (FSL, Oxford, UK). 

Partial tissue percentages were extracted for the oblique ACC voxel for use in analyses. 
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Statistical analyses 

Statistical analyses were performed using R version 3.4.0 (R Core Team, 2020). (Team, 

2020)). To examine Group-by-Gender interactions, separate general linear models were 

constructed using the lm function in R, predicting each measure of interest: the 

participant characteristics (Table 1), and the tissue contributions and four metabolite 

ratios (Table 2 and Figure S1). Regression assumptions were visually confirmed 

(normality of outcome measures, homogeneity of variance), and thresholds were set for 

multicollinearity (Pearson correlations < 0.5) and influence (Cook’s D < 1.0). For each 

model, findings are reported from the ANCOVA (using the car:Anova function with Type 

III sums of squares), followed by the results from the post hoc analyses (using the 

emmeans package; (Lenth, 2016)). The interaction of Group-by-Gender was examined 

to assess how the impact of AUD differed for men and women. 

 

Five categories of regression analyses were conducted, as detailed below. For Group 

and Gender differences (1) participant characteristics, (2) GM, WM, and CSF tissue 

contributions, and (3) metabolite ratio levels were examined. Relationships between 

metabolite levels, (4) drinking history, and (5) neuropsychological measures also were 

examined. 

(1) Group and Gender differences for participant characteristics were assessed 

with a model that included the interaction of Group and Gender (for example, specified 

as “age ~ group*gender”).  
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(2) Group and Gender differences for tissue contributions were assessed with a 

model that included the interaction of Group and Gender.  

(3) Group and Gender differences for metabolite ratios were assessed with a 

model that included the interaction of Group and Gender, with GM and education as 

covariates (for example, specified as “choline_ratio ~ group*gender + GM + education”). 

Age was highly correlated with GM (r = 0.5), so it was not included as a covariate. 

(4) Relationships of metabolite levels to the three measures of drinking history 

(DHD, DD, and LOS) were assessed in the AUD group. For each of the four 

metabolites, a model was constructed to assess effects of drinking history measures 

and interactions with Gender (for example, specified as “choline_ratio ~ DHD*gender + 

DD*gender + LOS*gender + GM + education”). 

(5) Relationships between metabolites and neuropsychological measures were 

assessed. For each of the four metabolites, separate models were constructed for each 

of the 10 measures: WAIS-IV Full Scale IQ, WAIS-IV Working Memory, WMS-IV 

Immediate Memory, WMS-IV Delayed Memory, D-KEFS Trails Number Sequencing-2, 

D-KEFS Trails Number-Letter Switching-4, D-KEFS Verbal Letter Fluency-1, Dickman 

Functional Impulsivity, Dickman Dysfunctional Impulsivity, and BIS-11. Each model was 

specified to examine interactions of the neuropsychological measure with Group and 

Gender while accounting for gray matter tissue contribution (for example, “choline_ratio 

~ bis*alcoholism*gender + GM”), for a total of 40 models. Age and education were not 

included as covariates because normative scaled scores were used. For all analyses, 

significant predictors and interactions indicated by ANCOVAs were followed by post-hoc 

comparisons using the emmeans::emtrends function. This function allows slopes within 
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the model to be compared (for example, how relationships of NAA/tCr with BIS differ for 

the AUD vs. NC groups).  

 

In addition to regressions, correlational analyses were conducted to examine how 

drinking history related to memory and inhibitory control measures in the AUD group, 

using the ppcor::pcor.test function to calculate partial correlation values for relationships 

between metabolite ratios and neuropsychological measures for each group separately, 

accounting for GM tissue contribution. 

 

RESULTS 

Participant characteristics 

Participant characteristics are summarized in Table 1 . The AUD group had a mean 

LOS of 6.0 years (range 0.1 to 32.8), mean DD of 10.7 drinks (range 2.3 to 34.8), and 

mean DHD of 13.8 drinks (5.0 to 32.0). Analyses of Group (AUD vs. NC) and Gender 

revealed no significant main effects or interactions with age (NC mean=49.1 years, 

range=26.6 to 77.0 years; AUD mean=50.2 years, range=28.2 to 73.3 years). There 

was a significant main effect of Group for education (F1,86=4.40, p=0.04), with education 

of the NC group (mean=15.3 years) being higher than the AUD group (mean=14.3 

years), but there was no significant main effect of Gender or Group-by-Gender 

interaction. HRSD scores were significantly higher, 0.4 to 3.0 points (95% CI) in the 

AUD group (mean=3.3) compared to the NC group (mean=1.6) (F1,86=7.56, p=0.007). 
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Analyses of Gender effects for drinking history variables in the AUD group revealed no 

significant main effects of Gender. 

 

Analyses of memory measures demonstrated that women had lower scores on the 

WAIS Working Memory Scale than men (F1,86=7.36, p=0.008) and that the AUD group 

had lower scores on the WMS Delayed Memory than the NC group (F1,86=4.21, p=0.04) 

(Table 1). Analyses of inhibitory control measures showed a Group-by-Gender 

interaction for D-KEFS Number Sequencing-2 (F1,86=4.75, p=0.03), with NCw exhibiting 

higher scores than AUDw, while NCm scored significantly lower than AUDm. The AUD 

group had lower D-KEFS Verbal Letter Fluency-1 scores than the NC group 

(F1,86=10.06, p=0.002). There was a significant Group-by-Gender interaction for 

Functional Impulsivity (F1,86=4.56, p=0.04); the AUDm had a higher score than NCm, 

but AUDw had significantly lower scores than NCw. The AUD group also demonstrated 

significantly higher scores than the NC group on the Dickman Dysfunctional Impulsivity 

Scale (F1,86=8.59, p=0.004) and on the BIS-11 (F1,86=9.33, p=0.003). 

 

Partial correlational analyses of memory and inhibitory control measures relative to 

drinking history in the AUD group demonstrated a significant positive correlation 

between DHD and Dickman Dysfunctional Impulsivity scores (r40=0.40, p=0.01). 

Additionally, LOS in the AUD group was positively related to Age (r40=0.50, p=0.001) 

and Education (r40=0.33, p=0.04), and negatively related to DD (r40=-0.31, p=0.05). LOS 

also was positively associated with WAIS Working Memory (r40=0.33, p=0.04) and 

Immediate Memory (r40=0.39, p=0.01). 
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Metabolite ratios and tissue contributions 

Analyses of Group and Gender effects for tissue contributions revealed no significant 

main effects nor interactions for GM or WM. However, CSF levels were higher in the 

AUD group relative to the NC group (Table 2). 

 

Metabolites for the AUD and NC groups were not statistically different. The main effect 

of Gender for the Cho/tCr ratio was significant (F1,84=5.04, p=0.03), with higher Cho/tCr 

in men than in women. No other significant main effects of Group or Gender, or Group-

by-Gender interactions were observed (Table 2). 

 

Associations between metabolite ratios and neuropsychological measures  

Regression models were constructed to identify how relationships between metabolite 

ratios and neuropsychological scores differed by Group. There were four associations 

with slopes that were significant within a group and significantly different from the 

corresponding (non-significant) relationship in the other group (Table 3 and Figure 2). 

The AUD group had stronger relationships (steeper slopes) than the NC group for three 

measures, as follows. (1) For Dickman Functional Impulsivity, the AUD group had a 

significantly more positive slope in relation to Cho/tCr (t81=2.2, p=0.03). (2) For Dickman 

Dysfunctional Impulsivity, the AUD group had a significantly more negative slope in 

relation to mI/tCr (t81=-2.4, p=0.02). (3) For the BIS-11, the AUD group had a 

significantly more positive slope in relation to NAA/tCr than the NC group (t81=2.9, 

p=0.005). The NC group demonstrated stronger relationships than the AUD group for D-
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KEFS Trails Number Sequencing, with Glx/tCr (t81=-2.0, p=0.05). Additionally, 

compared to women, men had a stronger association between scores on the Dickman 

Functional Impulsivity and mI/tCr ratios (t81=2.3, p=0.03). 

 

DISCUSSION 

The main results of this project are threefold. First, by demonstrating that proton 

metabolites measured in the ACC of long-term abstinent men and women with AUD are 

similar to those of individuals without AUD, the current results extend findings from prior 

studies that demonstrated recovery of metabolite levels after shorter term periods of 

detoxification and abstinence. Second, significant associations between metabolite 

levels and measures of inhibitory control in individuals with AUD were observed, 

suggesting continued functional relevance of these metabolites in AUD even after 

sustained abstinence. And third, possible differences in metabolite levels between 

AUDm and AUDw were examined, though none were observed. 

 

The equivalence in metabolite levels observed between AUD and NC groups (within 

10%) is an encouraging sign for current or recently detoxified heavy drinkers, 

suggesting that alterations in metabolite levels, which are thought to be markers of 

acute brain injury (Meyerhoff et al., 2013), are reversible and may recover completely 

and permanently, even when some volumetric or functional brain differences persist. 

This finding is consistent with previous MRS studies documenting normalization of brain 

metabolites after shorter periods of abstinence. The AUD cohort examined in this study 
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had been abstinent for a long duration (mean 6 years), thus these results contribute to 

the characterization of the timeline of metabolite recovery by demonstrating that 

improvements in metabolite levels seen in recently detoxified heavy drinkers persist with 

long-term sobriety.  

 

Indeed, the AUD group had impairments in measures of both memory (WMS Delayed 

Memory) and inhibitory control (Dickman Dysfunctional Impulsivity, and BIS-11), despite 

there being no substantial group differences from the NC group in metabolite levels. 

This finding supports the idea that differences seen in long-term abstinent AUD 

individuals are more likely to stem from persistent structural brain abnormalities (Monnig 

et al., 2013) or from pre-existing personality factors (Mullins-Sweatt et al., 2019, Ruiz et 

al., 2013) than they are to stem from the acute disruption of brain chemistry associated 

with active alcohol consumption or withdrawal. For example, both impulsivity (Stephan 

et al., 2017) and poor memory may be risks for heavy drinking (Verdejo-Garcia and 

Bechara, 2009). 

 

Several significant correlations were observed between measures of drinking history 

and the neuropsychological measures in the AUD group. There was a significant 

positive correlation between DHD and Dickman Dysfunctional Impulsivity scores, 

indicating that people with longer heavy drinking histories have more dysfunctional 

behavior patterns. Additionally, LOS was positively related to Age and Education, and 

negatively related to DD, indicating that individuals in the current sample who had 

maintained their sobriety longest were older (perhaps a direct function of the years 
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required to have a longer LOS), better educated, and drank less when they were 

actively drinking. LOS also was positively associated with WAIS Working Memory, and 

with WMS Immediate Memory, suggesting recovery of neuropsychological functions 

with abstinence, or perhaps a protective effect of memory skills in maintaining sobriety. 

 

These data provide preliminary evidence of associations between metabolite ratios and 

scores of the three impulsivity measures that are significantly more pronounced in the 

AUD group than in the NC group. NAA was related to higher impulsivity on the BIS-11 in 

the AUD group, perhaps implicating a relationship between ACC neuronal integrity and 

more impulsive actions for people who have a history of heavy drinking. Higher 

functional impulsivity in the AUD group was associated with higher Cho/tCr ratios, 

suggesting a relationship between spontaneous behavior patterns and ACC membrane 

turnover in this same population. Dysfunctional Impulsivity was associated with lower 

mI/tCr in the AUD group, which might suggest less ACC membrane turnover or 

inflammation despite more behavioral impairment in this population. While these 

metabolite levels do not have established relationships with neurobehavioral markers 

such as impulsivity, these relationships point to subtle influences of each metabolite. 

 

For Trails Number Sequencing, the relationship to Glx/tCr was stronger in the NC group 

than in the AUD group. This metabolite ratio has been associated with tissue health, so 

it follows that lower scores on a measure of control would be associated with lower 

levels of tissue health in the ACC in the NC group. The poorer scores in some 
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participants of the AUD group despite the higher ratio of Glx/tCr might point to other 

(unmeasured) forms of dysfunction in the region.  

 

Finally, there have been few prior studies that have included sufficient sample sizes of 

AUDw to permit examination of gender differences in metabolites measured by proton 

spectroscopy. The identification of gender differences is a crucial component of 

precision medicine and will contribute to the understanding of how addiction differs 

between people, depending on individual factors like age and gender. Armed with that 

knowledge, clinicians can better tailor treatment and prevention strategies. In this study, 

the proportion of women (48 women of 90 participants) was substantially larger than in 

prior MRS studies examining metabolite levels in the context of AUD. While the results 

indicated similar levels of NAA/tCr, mI/tCr, and Gx/tCr in men and women, Cho/tCr was 

significantly higher in men (by ~6% or 0.4 SD). Cho/tCr is known to be associated with 

white matter integrity, no relationship was observed with LOS nor with behavioral 

measures, suggesting this gender difference may reflect differences in  

brain composition. 

 

Two significant Group-by-Gender interactions were identified for measures of inhibitory 

control: Dickman functional impulsivity and Trails number sequencing. For both 

measures, the impact of AUD was opposite for the two genders: The NCw scored 

higher than AUDw, but NCm scored lower than AUDm. These findings indicate that 

AUDm were more impulsive but also had faster processing speed than AUDw, 

consistent with previous reports (Fama et al., 2019, Stoltenberg et al., 2008). 
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Finally, a significant gender interaction was evident for functional impulsivity predicting 

mI/tCr, wherein the relationship was more pronounced in men than women. Preliminary 

speculation might suggest that higher levels of mI/tCr in the ACC interact with elements 

of the brain or hormones in men to produce higher impulsivity, whereas the higher 

levels in women do not have that effect. Hormone levels are modulated by stress, an 

important factor during the progression of AUD in men and women (Peltier et al., 2019). 

 

An important limitation of the present research is that, due to the cross-sectional nature 

of the study, longitudinal changes over the course of long-term abstinence was not to be 

determined. Nonetheless, these data are useful when interpreted in conjunction with 

existing longitudinal datasets of metabolite levels and drinking behaviors in shorter-term 

abstinence (Fritz et al., 2019, Meyerhoff et al., 2013), and provide important insight into 

what sustained abstinence means for ACC neurochemistry and neuropsychological 

outcomes. Moreover, further longitudinal studies can help to establish causal links 

between long-term duration of abstinence and metabolite ratios, and to elucidate 

relationships among metabolite levels and neuropsychological measures across groups. 

Another limitation is that the potential impact of tobacco use on the metabolite ratios in 

the current sample was not examined. Smoking can contribute to alterations seen in 

metabolite ratios (Durazzo et al., 2004), and can have meaningful implications for 

neuroimaging results (Luhar et al., 2013). Also, the use of tCr as a normalizing 

denominator, while a common practice, can limit the interpretability of results that use 

this approach (Tunc-Skarka et al., 2015, Zahr et al., 2016). Alternative normalization 
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procedures, such as external referencing or water signal normalization, also have 

drawbacks that can confound results.  

 

In conclusion, these findings demonstrate that brain metabolite levels in men and 

women with AUD, following long-term abstinence, do not differ from individuals without 

AUD. The data also provide evidence of associations between metabolite levels and 

measures of inhibitory control in the population of men and women with AUD in long-

term abstinence. There also were no substantial differences in metabolite levels 

between men and women with AUD, suggesting that if metabolites are normalized to 

non-AUD levels, the current data do not support the notion that women have longer 

term impacts related to AUD on neurochemistry.
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Table 1. Participant characteristics 

 AUDm n=18 AUDw n=22 NCm n=24 NCw  n=26 

 Mean SD Mean SD Mean SD Mean SD 

Age (years) 48.9 (9.3) 51.3 (11.4) 47.6 (10.7) 50.5 (15.7) 

Education (years) 14.3 (1.7) 14.3 (1.5) 15.4 (2.6) 15.2 (2.3) 

Depression Score (HRSD) 2.8 (3.7) 3.8 (3.2) 1.3 (2.4) 2.0 (2.2) 

DD (ounces ethanol/day) 11.8 (7.1) 9.8 (8.2) 0.2 (0.2) 0.3 (0.3) 

DHD (years) 14.0 (7.6) 13.6 (5.9) 0.0 (0.0) 0.0 (0.0) 

LOS (years) 4.4 (6.0) 7.3 (9.5) N/A N/A N/A N/A 

WAIS          

Full Scale IQ 107.2 (16.6) 100.9 (15.7) 111.5 (15.3) 108.6 (13.8) 

Working Memory 108.8 (16.1) 102.0 (14.5) 114.5 (14.3) 104.4 (14.3) 

WMS         

Immediate Memory 102.8 (17.6) 105.5 (19.3) 109.4 (16.2) 112.5 (15.7) 

Delayed Memory 105.6 (16.4) 108.3 (18.9) 113.8 (17.6) 114.2 (11.8) 

D-KEFS         

Trails Number Sequencing 11.0 (1.6) 10.3 (2.8) 10.3 (3.5) 12.0 (2.2) 

Trails Number-Letter Switching 10.6 (2.4) 10.4 (3.3) 10.9 (2.6) 11.0 (3.0) 

Verbal Letter Fluency 11.6 (4.2) 10.8 (3.0) 13.1 (3.4) 14.0 (3.4) 

Dickman         

Functional Impulsivity 5.9 (2.3) 4.7 (1.8) 4.6 (1.9) 5.1 (1.4) 

Dysfunctional Impulsivity 4.9 (2.2) 5.1 (2.1) 3.8 (1.7) 4.0 (0.9) 

BIS-11  31.5 (7.9) 31.4 (7.6) 26.2 (5.5) 27.7 (6.8) 
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NC - 
AUD  

Women - 
 Men  

NCm - 
AUDm  

NCw - 
AUDw  

AUDw - 
AUDm  

NCw - 
NCm 

Age (years) [-6.1, 3.9]  [-2.3, 7.7]  [-7.5, 5.0]  [-8.7, 7.1]  [-4.2, 9.0]  [-4.7, 10.5] 

Education (years) [0.1, 1.8]  [-1.1, 0.7]  [-0.3, 2.4]  [-0.3, 2.0]  [-1.1, 1.0]  [-1.6, 1.2] 

Depression Score (HRSD) [-3.0, -0.4]  [-0.4, 2.1]  [-3.6, 0.5]  [-3.5, -0.2]  [-1.3, 3.3]  [-0.6, 2.0] 

DD (oz ethanol/day) [-13.0, -8.0]  [-3.6, 2.6]  [-15.2, -8.1]  [-13.2, -5.9]  [-6.9, 2.9]  [-0.1, 0.2] 

DHD (years) [-15.9, -11.7]  [-3.2, 3.7]  [-17.8, -10.2]  [-16.2, -11.0]  [-4.9, 4.1]  N/A 

LOS (years) N/A  [-0.7, 5.4]  N/A  N/A  [-2.1, 7.9]  N/A 

WAIS             

Full Scale IQ [-0.3, 12.8]  [-11.1, 1.9]  [-5.8, 14.5]  [-1.0, 16.4]  [-16.7, 4.1]  [-11.2, 5.4] 

Working Memory [-2.2, 10.6]  [-15.0, -2.6]  [-4.1, 15.4]  [-6.0, 10.8]  [-16.8, 3.1]  [-18.3, -2.0] 

WMS            

Immediate Memory [-0.6, 14.0]  [-4.5, 9.9]  [-4.2, 17.4]  [-3.5, 17.3]  [-9.1, 14.5]  [-6.1, 12.1] 

Delayed Memory [0.0, 13.9]  [-5.7, 8.2]  [-2.5, 18.9]  [-3.5, 15.4]  [-8.6, 14.0]  [-8.3, 9.1] 

D-KEFS            

Trails Number Sequencing [-0.6, 1.7]  [-0.5, 1.8]  [-2.4, 0.9]  [0.2, 3.2]  [-2.1, 0.7]  [0.1, 3.5] 

Trails Number-Letter Switching [-0.7, 1.7]  [-1.2, 1.1]  [-1.2, 1.9]  [-1.2, 2.4]  [-1.9, 1.7]  [-1.5, 1.7] 

Verbal Letter Fluency [0.9, 3.9]  [-1.5, 1.6]  [-1.0, 4.0]  [1.3, 5.1]  [-3.3, 1.6]  [-1.1, 2.8] 

Dickman            

Functional Impulsivity [-1.2, 0.4]  [-1.0, 0.6]  [-2.6, 0.1]  [-0.5, 1.3]  [-2.5, 0.2]  [-0.5, 1.4] 

Dysfunctional Impulsivity [-1.9, -0.3]  [-0.6, 1.0]  [-2.4, 0.2]  [-2.1, -0.1]  [-1.3, 1.5]  [-0.6, 1.0] 

BIS-11  [-7.4, -1.5]  [-2.1, 3.9]  [-9.7, -0.9]  [-8.0, 0.5]  [-5.1, 4.9]  [-2.0, 5.0] 

The minus signs in the header row indicate subtraction. Abbreviations: HRSD = Hamilton Rating Scale for Depression; DD 
= Daily Drinks (ounces ethanol/day); DHD = Duration of Heavy Drinking (years); LOS = Length of Sobriety (years); WAIS 
= Wechsler Adult Intelligence Scale; WMS = Wechsler Memory Scale; D-KEFS = Delis-Kaplan Executive Function 
System; BIS-11 = Barratt Impulsivity Scale  

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted January 10, 2022. ; https://doi.org/10.1101/2022.01.07.475448doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.07.475448


ACC Metabolites and AUD  22 

 
Table 2. Metabolite ratios (normalized to creatine levels), and tissue contributions 

 
AUDm 
n=18  

AUDw 
n=22  

NCm 
n=24  

NCw 
n=26  

 Mean SD Mean SD Mean SD Mean SD 

Cho/tCr 0.25 0.03 0.23 0.03 0.25 0.03 0.24 0.03 

Glx/tCr 0.98 0.14 1.05 0.12 1.02 0.15 1.04 0.14 

mI/tCr 0.80 0.12 0.76 0.11 0.78 0.10 0.77 0.10 

NAA/tCr 1.07 0.17 1.08 0.14 1.09 0.18 1.09 0.16 

GM 57.77 6.29 59.27 6.84 59.19 7.55 59.49 8.49 

WM 26.65 4.92 26.24 5.61 26.56 5.87 27.34 7.11 

CSF 15.81 4.62 15.24 5.59 13.01 5.16 12.60 4.18 
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NC - AUD 

95% CI 
Women - Men 

95% CI 
NCm - AUDm 

95% CI 
NCw - AUDw 

95% CI 
AUDw  - AUDm 

95% CI 
NCw - NCm 

95% CI 

Cho/tCr [-0.01,  0.01] [-0.02,  0.00] [-0.02,  0.02] [-0.02,  0.02] [-0.03,  0.00] [-0.03,  0.00] 

Glx/tCr [-0.05,  0.06] [-0.02,  0.10] [-0.06,  0.13] [-0.09,  0.06] [-0.02,  0.15] [-0.06,  0.10] 

mI/tCr [-0.05,  0.04] [-0.07,  0.02] [-0.09,  0.05] [-0.05,  0.07] [-0.11,  0.03] [-0.07,  0.05] 

NAA/tCr [-0.05,  0.08] [-0.06,  0.07] [-0.10,  0.12] [-0.07,  0.10] [-0.10,  0.10] [-0.09,  0.10] 

GM [-2.29,  3.80] [-2.27,  3.88] [-2.91,  5.74] [-4.23,  4.68] [-2.72,  5.70] [-4.26,  4.86] 

WM [-1.92,  3.00] [-2.25,  2.72] [-3.46,  3.28] [-2.59,  4.80] [-3.79,  2.96] [-2.92,  4.48] 

CSF [-4.77, -0.63] [-2.52,  1.72] [-5.86,  0.27] [-5.57,  0.28] [-3.83,  2.70] [-3.11,  2.28] 

The minus signs in the header row indicate subtraction. The upper set of numbers provides means and standard 
deviations, and the lower numbers represent 95% confidence intervals (CI). Abbreviations: NAA = N-acetylaspartate; Cho 
= choline-containing compounds; mI = myo-Inositol; Glx = glutamate + glutamine; tCr= total creatine; GM = gray matter; 
WM = white matter; CSF = cerebrospinal fluid. Bolded numbers indicate significance at p < 0.05. 
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Table 3. Metabolite ratios: Interactions of group with neuropsychological measures  

Metabolite 
Ratio Measures of Inhibitory Control 

Group 
Interaction 
F(1, 81) 

AUD 
95% CI r 

NC 
95% CI r      

Glx/tCr D-KEFS Trails Number Sequencing-2 6.9 [-0.03, 0.01] -0.3 [0.00, 0.03] 0.3      

Cho/tCr Dickman Functional Impulsivity 4.2 [0.00, 0.01] 0.4 [-0.01, 0.00] -0.1      

mI/tCr Dickman Dysfunctional Impulsivity 6.5 [-0.03, 0.00] -0.3 [-0.01, 0.04] 0.2      

NAA/tCr BIS-11  7.0 [0.00, 0.01] 0.4 [-0.01, 0.00] -0.2      

            

Metabolite 
Ratio Measures of Inhibitory Control 

Gender 
Interaction 
F(1,81) 

Men 
95% CI r 

Women 
95% CI r      

mI/tCr Dickman Functional Impulsivity 5.1 [0.01, 0.04] 0.4 [-0.03, 0.01] -0.1      

The r values represent partial correlations that account for gray matter tissue contribution, using the ppcor::pcor.test 
function. Abbreviations: NAA = N-acetyl aspartate; Cho = choline-containing compounds; mI = myo-Inositol; Glx = 
glutamate + glutamine; tCr = total creatine; GM = gray matter; WM = white matter; CSF = cerebrospinal fluid. Bolded 
numbers indicate significance at p < 0.05. Figure 2 illustrates these relationships. 
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Figures 

 

Figure 1.  MRS Voxel Placement and Sample Proton Spectrum 

Sagittal image illustrating the placement of 20mm x 20mm x 20 mm single voxel in the 

ACC and a sample spectrum (black) and LCModel fit (red) from a study participant. 

Abbreviations: ACC, anterior cingulate cortex; tCr, creatine; Cho, choline; Glu, 

glutamate; Glx, glutamate and glutamine; NAA, N-acetyl-aspartate; mI, myo-Inositol; 

ppm, parts per million. 
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Figure 2. Relationships between metabolite ratios and neuropsychological 

measures 

Abbreviations: AUD = Alcohol Use Disorder; NC = Non-AUD Control; NAA = N-acetyl-

aspartate; Cho = choline-containing compounds; mI = myo-Inositol; Glx = glutamate + 

glutamine; tCr = total creatine 

  

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

0.9

1.1

1.3

4 8 12

D−KEFS Trails Number Seqencing−2

G
lx

/t
C

r

●
●

●

●
●●

●●
● ●● ●

●

● ● ●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

● ●

0.20

0.25

0.30

0.0 2.5 5.0 7.5 10.0

Dickman Functional Impulsivity

C
h

o
/t

C
r

●

●

●

●●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●●

● ●

●● ●●

●

●

●

●

●

0.6

0.8

1.0

0.0 2.5 5.0 7.5 10.0

Dickman Dysfunctional Impulsivity

m
I/

tC
r

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

0.7

0.9

1.1

1.3

20 30 40

Barratt Impulsivity (BIS−11)

N
A

A
/t

C
r

●

●

●

● ●

●

●

●

●

●

●
●

●

● ●

●

●

●●

●

●

●

●

●●

●
●

●●

● ●
● ●

●

●●

●
●●

●

●

●
0.6

0.8

1.0

0.0 2.5 5.0 7.5 10.0

Dickman Dysfunctional Impulsivity

m
I/

tC
r

●

●

AUD

NC

●

●

Men

Women

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted January 10, 2022. ; https://doi.org/10.1101/2022.01.07.475448doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.07.475448


ACC Metabolites and AUD  28 

 

Figure S1. Metabolite levels 

Abbreviations: AUD = Alcohol Use Disorder; NC = Non-AUD Control; NAA = N-acetyl 

aspartate; Cho = choline-containing compounds; mI = myo-Inositol; Glx = glutamate; tCr 

= total creatine. 
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