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2.3.4 Inversion classification

Similar to translocations and duplications, molecules at inversion boundaries also show
a specific pattern, i.e. two subsequent segments matching in opposite orientations (Fig-
ure 6(d)). We make use of this shift in segment orientations and compare the frequency of
occurrence to that in reference molecules to pick out inversions:

A. As before, reference molecule segments overlapping the beginning of the SV location x

up to segment length s upstream are retrieved (Figure 7A, left).

B. Reference molecules are found which have at least one segment matching with any of
the retrieved reference molecule segments, and which match in the opposite direction
to the retrieved segments (Figure 7B, left). These are used to create a reference signal
(Figure 7C, left).

C. This process is repeated for the candidate molecules to obtain a candidate coverage
signal (Figure 7A-C, right).

D. The candidate signal is divided by the reference signal and the highest peak in the re-
sulting signal above an SNR of 4 is found. This peak marks the end site of the inversion
sequence (Figure 7D).

E. The above steps are repeated downstream of the end of the SV location, y, up to the
segment length s, and the resulting peak marks the start site of the detected inversion
sequence (Figure 7E).

It should be noted that if the SV site was not also classified as a duplication or translo-
cation, then the inversion is classified as an inplace inversion. Otherwise, the inversion
is classified as a translated inversion or translated duplication. As for translocations and
duplications, only inversions longer than the segment length can be detected.

2.3.5 Deletion detection

When translocation, duplication and/or inversion detection return negative results, we
are left with deletions, unclassified short SVs and insertions of any length as possibilities.
To distinguish between these choices, we look at the width of the SV seed peak (calculated
as the width obtained on extending the peak site in both directions until an SNR of 1 is
achieved). If the width is larger than the segment length, we categorize the SV seed as a
deletion. Otherwise it is either an insertion of any length or another SV which is too short
to classify. With the current approach, it is not possible to distinguish between these.

3 Results and discussion

3.1 OptiDiff detects SV sites with high specificity

Detection of SV locations with a high level of confidence is challenging, yet a prerequisite
to successful SV classification. OptiDiff accomplishes this by labeling putative detection
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Figure 7: The inversion classification workflow. After detecting an SV location between co-
ordinates x and y, these steps are followed: (A.) All segments within x and x− s (where s
is segment length) are retrieved for both reference and SV candidate data. (B.) The remain-
ing segments from the molecules which overlap with segments from the previous step are
obtained; only those matching in reverse orientation are used to form a coverage signal.
(C.) The resulting signal is divided by the reference counterpart. (D.) A peak in the signal
corresponds to the inversion end coordinate. (E.) The process from A to D is repeated on
the reverse strand of the genome map to obtain the inversion start coordinate.
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sites as SV seeds (as described in Section 2.3.2). Our simple SQLD approach makes this
initial identification robust even in low coverage situations. To measure OptiDiff’s perfor-
mance in this task, we simulated four types of SVs (deletion, inplace inversion, transloca-
tion and duplication) of 300kb length at random locations and compared OptiDiff’s results
to those obtained using the BNG Solve software. The simulations were based on a 50Mb
fragment at the start of chromosome 1 of the tomato genome. We simulated genome maps
of 20 random SVs for each SV type. Based on these genome maps, we used OMSim (Mi-
clotte et al., 2017) to simulate optical mapping molecules with realistic noise profiles at
coverages ranging from 20x to 120x. In our evaluation procedure, we mark a detected SV
as a true positive if it overlaps (by any length) with the simulated SV.

Results are shown in Figure 8, where the red and blue areas together indicate true
detections and the purple area indicates false detections. We find that OptiDiff is highly
sensitive towards detection of SVs at coverages above 60x, with a low false detection rate
in all types of SVs except duplications. Translocations and deletions are similar in terms of
the initial detection phase, as they both involve parts missing with respect to the reference.
However, duplications can only be detected by spotting the inserted site, as the duplicated
part stays intact. Even though OptiDiff’s precision is higher than that of BNG Solve, the
false detection rate does not seem to decrease with higher coverages for either of the tools.
BNG Solve shows higher numbers of false detections (nearly 2x the number of OptiDiff)
for all types of structural variation, inplace inversions being the highest. BNG Solve per-
formed worse at finding SV sites within true duplication events above 40x coverage. A
single duplication introduces a long repeat, which can cause complications in the assem-
bly process as only the molecules longer than the repeat can help obtain a complete and
correct assembly. Since, unlike OptiDiff, BNG Solve uses fully assembled contigs to detect
SVs, increased assembly errors could explain its reduced SV detection performance.
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Figure 8: SV detection and classification rates per SV type, for OptiDiff and BNG Solve,
for coverages between 20x and 120x. The four types of SVs are A. deletion, B. duplication,
C. inversion and D. translocation. Each SC type is simulated 20 times, representing the
maximum possible number of true detections and classifications. The purple area above
20 indicates the false detections made outside the simulated SVs. The cyan area shows
the false negative detections, red the true detections with false classifications, and blue the
correctly classified true detections.

14

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 11, 2022. ; https://doi.org/10.1101/2022.01.08.475501doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.08.475501
http://creativecommons.org/licenses/by/4.0/


3.2 OptiDiff outperforms BNG software in classifying duplications

In contrast to SV detection, SV classification is a more complicated task that requires nu-
merous long molecules with informative segment-match patterns. Here we test OptiDiff’s
SV classification capabilities and compare our results to those obtained using BNG Solve,
with the same simulation data as used in the previous section. The results are also shown
in Figure 8, with blue representing correctly classified SVs and red representing correctly
detected but falsely classified SVs. A major difference between the two methods lies in
the classification of duplications, where BNG Solve misclassifies all detected duplication
events as translocations. Another apparent difference is in inplace inversion classification
performance, where BNG Solve performed better overall. At low coverages (< 60x), BNG
Solve performed better at translocation classification, although the results of the two tools
are similar at higher coverages. Lastly, deletion classification performance was compara-
ble for both tools at all coverages. Overall, given the similar classificaton performance but
improved detection performance, OptiDiff is a good alternative to BNG Solve.

3.3 Trade-offs in the classification performance of duplications and deletions
by altering segment length

Throughout this study, we chose to set the segment size to 275 units (138 kb), which pro-
vides a good overall performance. Lowering the segment size allows OptiDiff to detect
smaller SVs, but simultaneously makes it progressively harder to classify detected SVs.
Here, we test OptiDiff’s limits in detection and classification of short duplications and
deletions, by simulating SVs of shorter lengths (9). As the minimum length needed for
classification is the segment length, we tried a range of smaller segment lengths (37, 87
and 138 kb). Duplication classification improved for short duplications when lowering the
segment size (from 138kb to 87kb) without losing detection performance, although this
trend does not carry on to 37kb segments. Since duplication classification requires a label
pattern to fall into the duplication site, its performance will suffer from lowering segment
length. However, this trade-off is not seen for deletions. This is due to the decreased
uniqueness of label patterns in short segments, which more easily match multiple loca-
tions on the genome. This can result in a loss of segments through unspecific matching,
and increases background noise which becomes detrimental to the SV detection and classi-
fication algorithms. Taken together, for increasing duplication classification performance,
lower segment lengths are favoured while the opposite is true for deletions. It should be
noted that our algorithm labels short SVs as unspecific SVs as these can also be insertions.
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3.4 OptiDiff can detect and classify heterozygous SVs

The results above demonstrated the use of OptiDiff for detection of homozygous SVs. For
the algorithm underlying OptiDiff, heterozygous SVs are harder to detect, largely due to
the fact that the effective coverage depth is half of that of homozygous sites. To investigate
performance on heterozygous sites, we simulated the four types of SVs as before but at a
high coverage setting (240x) that can be achieved with a single flow-cell. We then assessed
detection performance in the same way as before. The results are shown in Figure 10.
OptiDiff classification results are comparable in deletion events, outperform BNG Solve
in duplication classification, and underperform in calling inversions and translocations at
coverages below 80x. Overall, the detection and classification performance for both tools
has decreased compared to homozygous SVs.

Figure 10: Heterozygous SV detection and classification performance using BNG Solve
(left) and OptiDiff (right), at a coverage of 240x. 20 of each type of SV are simulated at
random genomic locations.

3.5 Detected deletions correspond to gaps in whole genome sequence align-
ments

In an application on real-world data, we detected structural variations in optical mapping
data obtained from two different accessions of Arabidopsis thaliana (Kawakatsu et al., 2016).
In contrast to the simulated datasets above, where the structural variant sites represented
the only points of difference, here there is additional sequence variation which can result
in lower mapping performance. We performed whole genome sequence alignments of the
near-chromosomal level Cvi genome sequence with the reference genome sequence Col-0
(TAIR 10) (Jiao & Schneeberger, 2019) using MUMMER and extracted gaps longer than
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I II III IV V
Precision 0.36 0.37 0.41 0.45 0.35

OptiDiff Recall 0.55 0.50 0.53 0.55 0.46
F1 score 0.43 0.42 0.46 0.50 0.40
Precision 0.55 0.47 0.51 0.53 0.59

BNG Solve Recall 0.16 0.21 0.14 0.13 0.18
F1 score 0.24 0.30 0.21 0.20 0.28

Table 1: Correspondence between deletion sites detected by OptiDiff and BNG to gaps
in genome alignments of Cvi to Col, in terms of F1-scores. The columns indicate the five
chromosomes of A. thaliana.

15kb in the alignment. Similarly, we used the available optical mapping data from these
two genomes to obtain deletions using BNG Solve and OptiDiff (with a segment length
of 138kb). We then looked at the correspondence, defined as the percentage of overlap
(in basepairs), between deletions found by BNG and OptiDiff and the sequence gaps. In
Table 1 we show precision and recall values along with the F1 score (the harmonic mean
of precision and recall), where the sequence gaps are used as the ground truth. Overlap-
ping deletions are counted as true positives; false positives are deletions detected outside
these overlapping regions and false negatives are sequence gaps which are not detected as
deletions. The results demonstrate generally lower precision but far high recall for OptiD-
iff, resulting in higher F1-scores. This indicates a high correspondence between OptiDiff-
detected deletions and gaps in the sequence alignments. The high level of agreement be-
tween these completely different approaches bolsters confidence in the OptiDiff results,
and the high dissimilarity between the two accessions used demonstrate OptiDiff’s supe-
rior performance even across divergent genomes.

3.6 OptiDiff is fast and accessible

Figure 11 depicts the time taken for SV detection with OptiDiff across different cover-
ages for a 50Mb genomic region on a Linux server (Ryzen 7 3700X CPU) using 16 threads.
Since OptiDiff does not include an assembly step, it is able to complete structural variation
detection in below an hour for a chromosome of 50Mb with 120x coverage. In contrast,
BNG Solve took over 10 times as long. OptiDiff is available as a command-line tool at
https://github.com/akdel/OptiDiff. The code is written in Python with the help
of the Numba library to increase performance in critical stages.

4 Conclusion

We present OptiDiff, a tool for detecting and classifying structural variation sites from
BNG optical mapping data. OptiDiff shows better detection performance than the state-
of-the-art BNG Solve method in terms of precision, while maintaining comparable classi-
fication accuracies even at low coverages. OptiDiff shows high specificity and sensitivity
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Figure 11: Time taken by OptiDiff to detect structural variations in a 50Mb genomic region
across different coverages, using 16 threads.

across different SV types both in homozygous and heterozygous SV settings, and across
highly similar and highly dissimilar genomes. On the Arabidopsis data, OptiDiff also shows
greater overlap with other sequence-based technologies than BNG Solve.

Our method takes a single molecule approach, where each molecule is individually
segmented and matched to an available reference assembly or genome map. The segment-
matching gives the required information to detect the location of any type of SV using the
change in coverage depths. Following this detection, OptiDiff uses the matching patterns
of segments as evidence to classify SVs into deletions, duplications, translocations and
inversions. A limitation of our approach is the inability to definitively classify SV types
shorter than the predetermined segment length; these are labeled as short unspecific SVs.
The approach used also makes it impossible to classify detected SV sites as insertions, since
the inserted sequence is absent from the reference genome. We showed that different types
of short SVs could be classified better with different segment lengths, indicating potential
for an improvement to the algorithm where one could choose the optimal segment length
for each SV type independently. An additional partial assembly step, where the molecules
partially mapped to detected SV regions are extended to obtain the inserted maps, could
help classify insertions. We leave these improvements for further investigation.

The future holds more advances in comparative genomics and in finding novel struc-
tural variants linked to phenotypes of interest. We expect OptiDiff and its extensions to
play a role in this, as the advantages of using optical mapping in structural variation de-
tection are becoming more evident.
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