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Abstract 
Dysregulation of gene expression in Alzheimer’s disease (AD) remains elusive, especially at 
the cell type level. Gene regulatory network, a key molecular mechanism linking 
transcription factors (TFs) and regulatory elements to govern target gene expression, can 
change across cell types in the human brain and thus serve as a model for studying gene 
dysregulation in AD. However, it is still challenging to understand how cell type networks 
work abnormally under AD. To address this, we integrated single-cell multi-omics data and 
predicted the gene regulatory networks in AD and control for four major cell types, excitatory 
and inhibitory neurons, microglia and oligodendrocytes. Importantly, we applied network 
biology approaches to analyze the changes of network characteristics across these cell types, 
and between AD and control. For instance, many hub TFs target different genes between AD 
and control (rewiring). Also, these networks show strong hierarchical structures in which top 
TFs (master regulators) are largely common across cell types, whereas different TFs operate 
at the middle levels in some cell types (e.g., microglia). The regulatory logics of enriched 
network motifs (e.g., feed-forward loops) further uncover cell-type-specific TF-TF 
cooperativities in gene regulation. The cell type networks are highly modular. Several 
network modules with cell-type-specific expression changes in AD pathology are enriched 
with AD-risk genes and putative targets of approved and pending AD drugs, suggesting 
possible cell-type genomic medicine in AD. Finally, using the cell type gene regulatory 
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networks, we developed machine learning models to classify and prioritize additional AD 
genes. We found that top prioritized genes predict clinical phenotypes (e.g., cognitive 
impairment). Overall, this single-cell network biology analysis provides a comprehensive 
map linking genes, regulatory networks, cell types and drug targets and reveals mechanisms 
on cell-type gene dyregulation in AD.  

Introduction 
Alzheimer’s Disease (AD) is a brain disorder that progresses into memory loss, a decline in 
cognitive skills, and ultimately dementia. The mechanistic causes of AD are not yet fully 
understood, especially at the cell type level, although the abnormal accumulation of neuronal 
tangles and amyloid plaques in the AD brain have become potential hallmarks of the disease. 
The genetic factors that possibly lie upstream of various AD phenotypes have now been 
extensively studied from next generation sequencing data, such as genome-wide gene 
expression changes. A variety of computational analyses have been applied to those data for 
understanding abnormal gene expression and regulation in AD. However, most studies have 
been performed on bulk tissue data and missed cell-type-specific signals. The neurovascular 
unit as a whole could drive AD progression1, and recent studies have verified that molecular 
changes in AD are highly cell-type-specific2. Thus, it is imperative to investigate the 
contribution of individual cell types in the brain to the progression of AD along with clinical 
phenotypes. Emerging single-cell RNA-seq enables such an analysis, as it captures the 
transcriptomic landscape of individual cells, offering a rich source of data for the analysis of 
dysregulated molecular systems within individual cells.  
 
Several studies have highlighted strong links between molecular connectivity and human 
diseases, suggesting that disease risk genes often work together as a coherent biological 
network. Thus, it is critical to study broken functional relationships between genes, rather 
than individual genes, to better understand the molecular mechanisms associated with the 
disease. Network biology offers a powerful computational framework that transcends 
individual gene investigation that uses univariate methods, such as differential expression 
analysis. For example, gene regulatory networks (GRNs) provide information about 
regulatory interactions between regulators, e.g., transcription factors (TFs), and their potential 
target genes. Such GRN models can be used to derive novel biological hypotheses about 
dysregulated disease pathways. With scRNA-seq data quickly accumulating in open 
repositories, single-cell network biology is now leading a shift from the traditional bulk 
RNA-seq mediated analyses3–7. Although GRNs in AD have been previously explored using 
expression data from bulk tissues8–13, cell type level GRN in AD remains under-investigated, 
especially via network biology approaches.   
 
Network biology has been successfully applied to prioritize novel disease genes. The basic 
idea is to identify regulatory genes that have more influence over the network by virtue of 
their network position. Naturally, a more prominent position in the network is occupied by 
hubs or genes with a relatively larger number of connections and those that facilitate 
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signaling between distant genes in the network. Hubs play a central role in modulating the 
expression of many genes and thus biological processes and pathways. Network biologists 
have adopted various classical metrics from graph theory to identify hubs in GRNs. Network-
based indicators of gene importance have also been useful for the analysis of disease at the 
cell type level. For example, Iacono et al. analyzed healthy and diabetic pancreatic cell 
networks and found that genes involved in type-2 diabetes differ in their centralities scores14. 
In addition, single-cell network analyses have revealed genes that rewire with exposure to 
differentiation cues15 and cancer-causing perturbations16. In the context of brain diseases, 
single-cell gene networks have indicated a potential cell type preference of neuropsychiatric 
and neurodegenerative disorders17 and neurodevelopmental disorders (NDDs)18. The authors 
in the later study estimated coexpression between sets of known NDD-risk genes and 
demonstrated that most genesets have higher coexpression in neural progenitor cells, 
suggesting a convergent role of these cell types in NDDs18.  
 
The structure of gene regulatory networks can also help understand coordinated gene 
regulation. Recurring sub-graphs, called network motifs, are patterns that appear in real 
networks more often than random networks. Network motifs are the building blocks of 
biological networks. Therefore, comparing network motifs in, for example, control and 
disease states of the transcriptome can unravel how the disease affects the structural design of 
the GRN. For example, the feed-forward loop (FFL) is a three-node motif particularly 
interesting for analysis directed networks19,20. FFLs comprise a master regulator, which 
regulates an intermediate TF, and both TFs directly regulate the expression of a common 
target gene. This information can help gauge changes in ‘regulatory pressure’ on downstream 
TFs through coordinated activities between upstream TFs. Network motifs can also be 
helpful in applying digital computing ideas such as logic gates in synthetic biology21,22.     
 
Network medicine is an upcoming field to solve the problem of drug repurposing by finding 
new uses of existing drugs by linking them to drug targets which are also implicated in 
human diseases23–26. Network-medicine approaches have been applied to repurpose drug 
candidates for cancers 27, tuberculosis28, and, more recently, respiratory illnesses like 
COVID-1929,30. We have also previously developed network-medicine strategies for AD. For 
example, we recently proposed an endophenotype network-based drug repurposing 
framework for AD. 31. Our approach uses disease-associated modules (modules enriched with 
disease genes) and network proximity analysis for in silico drug repurposing. Using this 
approach, we discovered sildenafil as a new candidate drug for AD, tested it using insurance 
record data, and validated it using iPSCs from patients with AD31. Our study shows that 
quantifying the network distance between AD modules and drug targets in the human 
interactome can significantly improve in silico drug discovery.  
 
In this study, we developed a single-cell network biology framework to unravel the 
characteristics of GRNs in normal and AD conditions, discover hubs and modules of co-
regulated that potentially contribute to AD pathogenesis, identify disease module-associated 
targets of approved AD drugs, and generate a genome-wide ranking of genes according to 
their potential association to AD (Fig. 1). We integrated available single-cell gene expression, 
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chromatin interaction, and TF-binding site information to infer GRNs for neuronal and glial 
cell types of the human brain in control and AD conditions (Fig. 1A). These GRNs depict 
interactions between TFs and target genes based on the level of coexpression in individual 
cell types and the evidence of the TF binding to the promoter or enhancer region of the target 
genes in open chromatin regions. We used various measures of centrality and hierarchy to 
outline shared and common hubs of cell type GRNs, as well as network motifs and logic 
gates to understand coordinated TF activities (Fig. 1B). We analyzed the modular 
organization of cell type GRNs and adopted a network-proximity strategy to link modules of 
co-regulated, biological processes, and drugs approved for AD (Fig. 1C). Finally, we utilized 
known AD genes from the published literature in a machine-learning strategy to generate a 
genome-wide ranking of genes according to their potential association to AD (Fig. 1D). 

 
Figure 1: An integrative network-biology approach for analyzing cell type gene 
regulatory mechanisms in Alzheimer’s disease (AD). A) Predicting neuronal and glial 
cell type GRNs from multi-omics data in AD and control by integrating scRNA-seq with 
chromatin interaction data and TF binding site information. B) Analyses of cell type GRN 
characteristics include identification of hub genes, regulatory hierarchy, network motifs, 
regulatory logics, and modules of co-regulated genes. C) Machine learning based 
prioritization of novel AD genes using network interaction patterns and prediction of 
clinical phenotypes using machine learning. D) Discovery of repurposed drug target genes 
from cell type GRNs integrated with electronic health records. 

 

Results  
We applied our framework to single-cell gene expression data for four cell types, including 
excitatory and inhibitory neurons, microglia, and oligodendrocytes from human brains 
diagnosed with Alzheimer’s disease (AD) and healthy controls2. All detailed descriptions on 
datasets and data processing are available in Methods. The dataset consists of single-nucleus 
RNA-sequencing (snRNA-seq) samples from the prefrontal cortex of 24 individuals 
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diagnosed with AD and 24 age-matched controls with no AD pathology. In addition, we also 
obtained cell-type chromatin interactions32 and human transcription factor binding site 
information33. We integrated these datasets to infer gene regulatory networks for the four cell 
types in control and AD conditions. In addition to this, we also obtained single-cell 
transcriptomic data of healthy cells from an independent study34 to check the reproducibility 
of our results.  

Hubs of the brain cell type gene regulatory networks     
We linked transcription factors (TFs), non-coding regulatory elements, and target genes to 
infer cell type GRNs in control and AD. Because GRNs typically have a nonuniform 
distribution of links (edges)35, system biologists are often interested in identifying ‘hub’ 
nodes (genes) for practical applications36. Hubs represent highly connected genes that have a 
greater influence over the network. Such highly connected hub genes often play a crucial role 
in modulating gene expression changes, and thus disease-associated pathways. Given that 
gene expression phenotype in AD is highly cell type specific2, we asked if distinct or similar 
sets of genes act as hubs across cell type networks.  
 
We used three standard centrality metrics to quantify the influence of a given TF over each 
cell type’s control and AD network. The out-degree centrality calculates the number of 
targets for each TF, in-degree indicates how strongly a TF is under the regulatory influence of 
other TFs, and the betweenness centrality of a TF is a function of its out-degree and in-degree 
and estimates its ability to act as a communication channel between upstream regulators and 
downstream pathway genes. We observed that TFs with the highest out-degrees (top 10% of 
the sorted list) are largely common (173 TFs) across all cell types (Fig. 2A; Data S1). 
However, distinct TFs represent betweenness centralities of different cell type GRNs. 
Moreover, the overlap of such TFs is relatively higher between neuronal than glial cell types 
(Fig. 2B). We noted that TFs that have the greatest regulatory influence of other TFs (high in-
coming degrees) also vary across cell types (Fig. S1A). The overlap of such TFs is also larger 
between neuronal than glial cell types (Fig. S1A).  
 
Although the normalized gene centralities (including non-TF genes) between control and AD 
GRNs across all cell types are largely correlated, there is a clear differential in the in-degrees, 
with the most prominent scatter in microglia (Fig. 2C). For example, the DNER, RHOU, and 
SLC1A2 genes have fewer regulators in AD compared to control, whereas RUNDC3A and 
NPTX1 are regulated by more TFs in AD than in control (Fig. 2D). DNER activates the 
NOTCH1 pathway which is linked to AD37,38. SLC1A2 mediates cellular uptake of 
glutamate, and loss of function of glutamate transporters has been linked to AD39. NPTX1 is 
a member of the pentraxin family, known to modulate synaptic transmission in normal 
conditions40. Also, we noted that microglia GRNs have the largest number of distinct high 
betweenness TFs. Therefore, we were interested to investigate if the subnetworks around 
these central TFs have identical or disjoint node- and edge-sets. Visualizing the network 
neighborhoods of the 23 high betweenness microglia TFs, we observed a considerable 
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difference between the control and AD networks (Fig. 2E). This indicated presence of a 
disease-driven regulatory apparatus governed by the same TFs. 
 
Overall, genes with the largest in-degree changes are significantly enriched in (1% FDR 
based on hypergeometric tests) in gene ontology (GO) biological process (BP) terms related 
to the immune system such as ‘neutrophil-mediated immunity’ and ‘leukocyte migration’ in 
microglia, development-related processes such as ‘autonomic nervous system development’ 
and ‘anterior-posterior pattern specification’ in oligodendrocytes, and synapse related 
processes such as ‘synapse organization’, ‘regulation of synaptic transmission’, and 
‘modulation of chemical synaptic transmission’ in neuronal cell types (Fig. 2F). 
 
We also checked if our centrality analysis is reproducible in an independent dataset. To do 
this, we obtained the dataset generated by an earlier study that analyzed gene expression in 
healthy brain cell types as our secondary dataset34. We applied our GRN inference pipeline 
and centrality analysis to microglia and oligodendrocytes in the secondary dataset and found 
that the top central genes (top 20% across all centralities) show high and statistically 
significant overlaps (permutation-based P-value = 0.00001) with the main dataset (Fig. S1B-
G). Because the secondary dataset has samples only from healthy brain cells, we could only 
compare the overlap with our control networks. Nevertheless, the high overlaps indicated that 
the top central genes we identified are indeed independent of the underlying dataset and thus 
the approach is generalizable. 
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Figure 2. Centrality analysis reveal hub gene changes of cell-type gene regulatory 
networks in AD. A) An upset plot showing overlaps between the top 10% genes with the 
largest out-degree and B) betweenness centralities. The filled dots in the center matrix 
indicate the comparison between the respective sets (along the x-axis), and the bars on the 
top show size of the intersection. Blue and red rows indicate control and AD, respectively. 
C) Scatter plots showing normalized gene centralities distribution and D) the distribution of 
in-degrees in microglial AD and control networks. Genes with large changes in in-degree 
between AD and control are labelled. E) A dot plot showing enrichment of gene ontology 
biological processes (y-axis) among genes with the most extensive changes in the in-degree 
centrality across all cell types (x-axis). The dot size is set according to the FDR-corrected p 
values, as shown in the key. F) Visualization of the subnetwork of 9 TFs with high 
betweenness centrality in excitatory neurons. Grey circles around the periphery of the 
network indicate target genes. Symbols of the nine central TFs are shown and the rest 
hidden for clarity. Blue and red edges indicate interaction in the control and AD networks, 
respectively.  
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The regulatory hierarchy of brain cell type gene regulatory 
networks  
Given that GRNs are typically hierarchical in structure41–43, we asked if AD induces changes 
to the regulatory hierarchy of cell type GRNs. We wanted to identify TFs that act as master 
regulators, and other TFs that function downstream of the master regulators. Master 
regulators are defined as TFs at the top of the network hierarchy with no regulatory influence 
from other TFs44.  
 
To classify TFs at different levels of regulatory hierarchy, we used the standard hierarchy 
height (hh) metric43. According to the hh metric, TFs at the top levels of the hierarchy exhibit 
many outgoing edges but no incoming edges (master regulators not regulated by other TF), 
TFs at the middle levels exhibit both incoming and outgoing edges (regulators and regulated 
by other TFs) and TFs at the bottom levels exhibit no outgoing edges to other TFs (highly 
regulated by other TFs). We found the distribution of normalized hh to be trimodal across all 
GRNs and significantly different from random networks (estimated using the KS test of 1000 
random networks) (Fig. 3A, 3B, and S2A; Data S2), indicating that the brain cell type GRNs 
are indeed hierarchical. We also noted that the hh of TFs is not significantly different in 
control and AD networks (Fig. S2B). We found 85 (27.6%) master regulators common across 
all cell types AD GRNs, with the most unique master regulators in excitatory neurons (37 
TFs; 12%) (Fig. S2C). Some common master regulators include known AD genes, such as 
CREB1, ESR1, HSF1, PPARG, NFE2L2, SPI1, TCF3, TCF7L2, TP53, CLOCK, and GLIS3. 
However, we found very few TFs in the middle-level (5 TFs in microglia, 3 in excitatory 
neurons, 1 in inhibitory neurons, and none in oligodendrocytes; Fig. S2D; see Discussion).  
 
We were interested in knowing if the readjustment of the targets of TFs at various levels of 
the regulatory hierarchy contributes to AD. We estimated the rewiring score of TFs based on 
the overlap between their predicted targets in control and AD networks (see Methods). 
Within the four cell types we analyzed, we found that TFs are least rewired in inhibitory 
neurons and most in microglia (Fig. 3C). Furthermore, on examining the differential 
expression in AD pathology versus no pathology (healthy controls), we found that TFs at all 
levels of the regulatory hierarchy generally remain stable (Fig. 3D). One down-regulated 
outlier is the early growth response 1 (EGR1) found in the middle-level of the inhibitory 
neurons. EGR1 is a known mediator and regulator of synaptic plasticity and neuronal activity 
and implicated in various neuropsychiatric disorders45. Given that the upstream regulators of 
EGR1 are also well characterized46, it is not surprising to find EGR1 in the middle-level of 
the inhibitory neuron’s regulatory hierarchy.  
 
Next, we investigated the size of TF regulons in the full AD GRNs (including non-TF genes) 
and found that the master regulators generally target a relatively smaller number of promoters 
and enhancers (Fig. 3E and S3). Interestingly, middle-level TFs target many promoters (Fig. 
3E). To draw a biological interpretation of the regulatory hierarchy, we performed 
enrichment analysis of the most confidently predicted targets of TFs using functional 
annotations biological process category of the human gene ontology. Interestingly, we found 
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the top-level master regulators and the bottom-level TFs in the neuronal cell type GRNs 
functionally converge to regulate trans-synaptic signaling in neuronal cell types and cellular 
component morphogenesis in oligodendrocytes (Fig. 3F; Data S2). Master regulators in 
microglia seem to regulate small GTPase mediated signal transduction and secretion. We 
found that the middle-level TFs target distinct processes; synaptic signaling and neuron 
differentiation in excitatory neurons, secretion in inhibitory neurons, and regulation of cell 
motility and cellular component movement in microglia (Fig. 3F).  
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Figure 3. Hierarchy analysis of cell type gene regulatory networks in AD. A) The 
distribution of hierarchy height metric (x-axis) of TFs in AD GRNs across all four cell 
types. B) The distribution of hierarchy height metric (x-axis) of TFs in random networks 
created by preserving node-degree statistics of the corresponding AD network. C-E) Dot 
plots showing the rewiring scores of TFs (x-axis) across all three levels of hierarchies (y-
axis), average fold change of TFs in individuals diagnosed with AD versus healthy 
controls, and the average number of promoters targeted by TFs at the three hierarchy 
levels, respectively. F) A dot plot showing enrichment of gene ontology biological 
processes (y-axis) within targets of top, middle and bottom layers of the regulatory 
hierarchy across cell type networks (x-axis). 

 

Regulatory network motifs and regulatory logics   
The hierarchy of our cell-type GRNs suggests that the master regulators (top TFs) regulate 
crucial brain-related biological functions by regulating downstream TFs, which is a highly 
coordinated process. For instance, various network motifs have been found in GRNs, 
showing such a coordination pattern in which multiple TFs co-regulate target genes. To 
explore the extent of coordinated TF activities in our cell type GRNs, we computed the level 
of over or under-representation of all possible three-node network motifs (a triplet consisting 
of two TFs co-regulating a target gene, previously found to be enriched in many GRNs).  
 
As depicted in Figure 4A, our brain cell type GRNs in AD and control broadly differ in their 
motif composition, and AD affects some of this composition (Data S3). For example, triplets 
in which two TFs target the same gene is over-represented in the microglial AD network 
relative to the control counterpart. On the other hand, enrichment of the motif in which two 
TFs are co-regulated by the same TF appears to be over-represented in microglia but under-
represented in oligodendrocytes (Fig. 4A), suggesting a possible disparity of TF-TF 
coordination across cell types. We were particularly interested in the feed-forward loops 
(FFL; TF1→TF2→TF3←TF1), as they have been often found to be biologically relevant in 
gene regulatory networks19. We found that FFLs are most conspicuous in the excitatory 
neurons and oligodendrocytes, but weakly enriched in inhibitory neurons and microglia (Fig. 
4A). Interestingly, a zinc-finger transcription factor specificity protein 2 (SP2) is frequently 
found in FFLs (Fig. 4B). SP2 has been identified as a neural development gene47, but its role 
in AD has not yet been elucidated. Other TFs frequently found in FFLs across most cell type 
GRNs include FOXP1, RFX3, ZBTB18, and PPARA (Fig. 4B).  
 
In addition to network motifs, we also investigated the cooperative logics of TFs that further 
reveal the TF-TF coordination mechanistically (beyond network structures like motifs). To 
this end, we applied our previous approach, Loregic22, to represent gene expression 
relationships in FFLs using logic gate models. In particular, logic gates describe gene 
regulation as a two-input one-output logical process48,49, where the expression level of 
regulatory factors (RFs) such as TFs are inputs and expression of target gene is the output. 
The logic gate has been a useful framework for studying cooperativity among RFs in human 
cancers, yeast and E. coli19. Thus, it would be interesting to investigate the logics behind TF 
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cooperation in FFLs we discovered in our cell type GRNs. Fig. 4C shows that AND (high 
target expression only when both RF1 and RF2 are high) and OR (high target expression only 
when either RF1 and RF2 are high) represent more than 80% of all logics across all cell 
types, except in microglia. Microglia has more diverse logics than other cell types, many of 
which involve cooperative logics (i.e., RF1 and RF2 must be particular values to 
activate/repress target gene). For example, compared to other cell types, a larger fraction of 
logics in microglia involve RF1+~RF2, which means that target expression is low only when 
RF1 is low and RF2 is high is (see Table S1 in22 for explanation of these logics). An example 
of cooperative logics is the FFL consisting of PPARG-NFYA-CREBP which switches from 
uncooperative (OR) in control to cooperative (AND) in AD in the microglia network. In other 
words, PPARG and NFYA could be both required to active CREBP in AD, whereas either 
PPARG or NFYA can activate CREBP in healthy controls (Fig. 4D). PPARG is a ligand-
activated nuclear receptor that coordinates lipid, glucose and energy metabolism and is 
upregulated in AD50. A GWAS study suggests that NFYA gene associates with late-onset 
AD51, and the CREBP gene functions in synaptic plasticity and memory formation and has 
been previously implicated in AD52,53. Thus, our logic analysis can further decipher the 
disease mechanisms of gene regulatory coordination of AD genes.       
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Figure 4. Network motifs and regulatory logic across cell types in AD. A) Barplots 
showing the enrichment (x-axis; Z-score estimates from random networks) of various 
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three-node triplets (y-axis) in AD (red) and control (blue) conditions across all four cell 
types. B) Genes that frequently occur in feed-forward loops in cell type AD GRNs are 
depicted and colored uniquely for each cell type. C) Barplot showing the frequency (x-
axis) of various logic gates (y-axis) active within the feed-forward loops in AD (red) and 
control (blue) conditions across all four cell type networks. D) Logic gate diagram showing 
PPARG-NFYA-CREBP triplet’s AND logic in AD and OR logic in control networks of 
microglia.  

Coregulated modules reveal cell type-specific drug-repurposed 
targets and gene functions in AD  
Our analysis revealed features of the regulatory hierarchy and patterns of coordinated TF 
action in cell type GRNs, and changes in AD. It is important to also investigate non-TF 
genes, as they represent the larger component of the transcriptome. These genes lie at the 
bottom-most layer of the regulatory hierarchy as they have no outgoing links. We reasoned 
that interrogating this highly regulated core of target genes could illuminate dysregulated AD 
pathways and provide a handle on network modules. 
 
We transformed the directed GRNs into undirected networks by connecting target genes that 
show high levels of ‘coregulation’ (estimated by calculating the overlap between the 
predicted regulators of every pair of target genes; see Methods). Using these networks of co-
regulated target genes, we tested the extent to which AD disrupts functional links between 
genes. We calculated the density (i.e., the ratio of observed to expected links) of the 
subnetworks induced by genes within carefully selected non-redundant GO BP terms. Then, 
comparing the densities of each GO BP term in control and AD networks allowed us to 
quantify the level of gain or- loss of ‘cohesiveness’ (i.e., interactions between GO BP genes 
became stronger or weaker in AD). This analysis highlighted several BP terms that 
significantly changed (permutation-based P-value < 0.001) densities across all cell types, 
with most in microglia (Fig. 5A). For example, in microglia, interactions between genes 
annotated to protein-membrane transport, lipid phosphorylation, cell aging, and other sugar 
metabolism related terms became stronger. Whereas GO BP terms that lost cohesiveness 
include actin cytoskeleton organization, regulation of interleukin-2 production, and B cell 
proliferation, among others (Fig. S4). In oligodendrocytes, interactions between genes 
involved in protein complex assembly, cytoskeleton organization, and neuron apoptosis 
became stronger, whereas interactions between genes involved in the Notch signaling 
pathway and transport activity became weaker (Fig. S5). In inhibitory neurons, genes 
involved in segmentation, cell cycle, and acid transport lost cohesiveness (Fig. S6). Whereas 
in excitatory neurons, genes involved in the cell cycle and response to biotic stimulus gained 
cohesiveness, while genes involved in apoptosis and response to fibroblast growth factor lost 
cohesiveness (Fig. S7).        
  
To explore the organization of target genes in cell type GRNs in more detail, we extracted 
network modules. We reasoned that the identification of modules will allow the use of 
modules rather than individual genes as units in our investigation of novel AD risk genes. 
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Rather than the typical approach of directly clustering gene expression data, we leveraged 
TF-target gene relationships embedded in our cell type GRNs to find functionally 
homogenous modules. Based on stringent evaluations of two clustering parameters (Fig. S8, 
S9, and S10; see Methods), we found on average 8 modules across all cell types, and these 
modules are significantly enriched (1% FDR) GO BP terms (Fig. S11A and S11B; Data S4 
and Data S5). We also teased out AD modules as those that were significantly enriched (1% 
FDR) in disease ontology terms related to AD (Data S6). We found three AD modules each 
in excitatory and inhibitory neurons, and these modules are enriched in genes involved in 
processes related broadly to synaptic signalling, axonogenesis, and myelination (Data S5). 
The two AD modules in microglia are comprised of genes involved in the regulation of 
GTPase activity and various immune-related processes. However, we did not detect any AD 
module in oligodendrocytes. Nevertheless, our analysis shows that although many AD-risk 
genes functionally converge into common pathways with cell type specificity.      
 
We next wanted to check the response of genes within these modules in three different AD 
pathologies; no pathology versus pathology, no pathology versus early pathology, and early 
pathology versus late pathology. We focused on modules in microglia for this analysis, as it 
showed a more extensive change in the cohesiveness of functional gene sets (Fig. 5A). We 
found that genes in microglia submodules 1 (M1) and 4 (M4) are more upregulated in the late 
stage of AD pathology compared with other microglia submodules  (Fig. 5B). At the same 
time, the disease enrichment analyses (see Methods) demonstrated that M1 and M4 are 
significantly associated with AD (M1with q = 3.15E-02, M4 with q = 3.59E-02). M1 is 
enriched with genes involved in regulation of small GTPase mediated signal transduction and 
immune related processes according to the GO BP annotations. Interestingly, we found 
TREM2 as a part of M1, including other known AD-risk genes such as PLCG2, BIN1, 
IKBKB, DPYSL2, SPPL2A, and HLA-DRB5 (Fig. 5C). Triggering receptor expressed on 
myeloid cells 2 (TREM2) is a type I transmembrane protein expressed on the surface of 
microglia, binds to phospholipids54 and is hypothesized to be triggering the phagocytosis of 
Aβ plaques55. A recent study showed that TREM2 deficiency results in inhibition of FAK and 
Rac1/Cdc42-GTPase signaling critical for microglial migration56, testifying to the validity of 
M1. Neuroinflammation was proposed as one of the main mechanisms that were tightly 
associated with AD development57. KEGG pathway enrichment analysis showed that M1 was 
enriched with 12 immune pathways, including Fc gamma R-mediated phagocytosis, natural 
killer cell mediated cytotoxicity, toll-like receptor signaling pathway (Fig. S12A). Fc gamma 
R-mediated phagocytosis has been shown to play a role in b-amyloid dependent AD 
pathology58. Toll-like receptor 4 (TLR4) activation was previously found positively 
correlated with the amount of accumulated b-amyloid59. Furthermore, we found module M4 
(Fig. S13) to be enriched with genes related to immune processes, such as response to 
chemokines, regulation of T cell migration, cytokine regulation (Fig. S12B) 
 
Given the valid biological link of M1 and M4 to AD pathology, we next decided to predict 
drug candidates based on AD-related microglia submodules M1 and M4. With the well-
defined network proximity approach60, we identified 170 and 34 candidate drugs with 
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z_score < -2 and q < 0.05 from the total 2,891 U.S. FDA-approved or clinically 
investigational drugs (see Methods; Data S7). Interestingly, one of the drugs that show 
significant enrichment of its targets in M1 is Donepezil (q value 0.008), an approved AD 
drug that reversibly inhibits the acetylcholinesterase enzyme. Given that the Rho GTPase 
activity regulates the formation of Aβ peptides during disease progression61, our analysis 
raises an interesting hypothesis that the effect of Donepezil in improving the cognitive and 
behavioral signs and symptoms of AD might be executed via regulating GTPase signaling. 
Sildenafil, another top predicted drugs from M1, has recently been demonstrated as one 
promising treatment options that showed 69% reduction in developing AD after analysing 
MarketScan Medicare supplemental database which included 7.23 million individuals31. 
Everolimus, one mTOR inhibitor, was another top predicted drug from M1. Everolimus was 
discovered to bring down both human Ab and tau levels in the mouse model study62. Module 
M1 suggested that Everolimus’s target MTOR was directly connected with multiple key AD 
pathology regulators, such as inhibitor of nuclear factor kappa B kinase subunit beta 
(IKBKB), FKBP prolyl isomerase 5 (FKBP5) (Fig. 5D). One study in AD mouse model 
concluded that inhibiting IBKBK could help ameliorate activation of inflammatory and thus 
rescued cognitive dysfunction63. Level of FKBP5 was found to be positively correlated with 
AD development and FKBP5’s interaction with Hsp90 accelerated tau aggregation64. The 
same study also observed that decreased amount of tau in FKBP5-/- mice. Rifampcian, one 
antibiotic drug, was top recommended according to module M4. One study found that 
Rifampcian was favourable for halting AD based on observations from both Ab and tau 
mouse models65. According to our protein-protein interaction network (see Method), 
similarly, multiple targets of Rifampcian were the direct neighbours of multiple proteins 
involved in AD development (Fig. 5E). CCCAT enhancer binding protein beta (CEBPB) was 
reported to modulate APOE’s gene expression and regulated APOE4 which was one major 
genetic risk factor for AD in one mouse model study66. Protein kinase C delta (PRKCD) 
which was one key protein in Fc gamma receptor-mediated phagocytosis pathways was found 
to regulate b-amyloid dependent AD pathology67. 
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Figure 5. Coregulated gene modules reveal cell type-specific drug-repurposed targets 
and gene functions in AD. A) Illustration depicting the concept of gene set cohesiveness 
in a network. The bar plot below shows the number of gene ontology biological process 
terms (y-axis) that gain (blue) or lose (red) cohesiveness between control and AD networks 
across all cell types (x-axis; see Methods). B) A heatmap showing the enrichment of co-
regulated modules of the microglia AD network within differentially expressed genes in 
various AD pathologies. The average fold-change of genes within each module was 
transformed to a Z-score to derive the enrichment score. Negative and positive Z-scores 
indicate down- and up-regulation, respectively, of co-regulated modules (x-axis) in AD 
pathologies (y-axis). The grids of the heatmap are colored accordingly, with red indicating 
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down-regulation and blue indicating up-regulation of the module. C) Visualization of genes 
in module 1 of the microglia AD coregulatory network. Each circle in the plot is a gene, 
with TFs depicted as triangles, known AD-genes in octagons, and other genes as ellipses. 
Nodes are colored according to fold change values in AD pathology (early versus no 
pathology) as shown in the key. D). Proposed mechanism-of-action for treatment of AD by 
everolimus using drug-target network analysis with microglia M1. E). Proposed 
mechanism-of-action for treatment of AD by Rifampcian using drug-target network 
analysis with microglia M4. 

Network-based machine learning prioritizes cell-type AD-risk 
genes and predicts clinical phenotypes  
Our analysis shows several similarities and differences in cell type GRN structures patterns 
across cell types and between control and AD conditions. Decomposing the GRNs into 
individual components using standard network analysis metrics of centrality, hierarchy and 
modularity outlined key genes that potentially drive changes in cell type GRNs that underpin 
transcriptional phenotypes of AD. However, we were still lacking a uniform scoring to rank 
genes according to their potential association to AD using our cell type GRNs. To facilitate 
this, we leveraged known AD genes in the literature and asked if the regulatory patterns that 
characterize these could be learned. We reasoned that our GRNs are essentially high-level 
features extracted by integrating single-cell multi-omics data. Thus, regulatory patterns in 
these GRNs can be used to train machine learning (ML) algorithms. For example, this 
technique of using inferred network relationships as features for a learning algorithm has 
helped prioritize autism and hypertension genes in humans68,69 and stress-response TFs in 
plants70.           
 
We used the random forest algorithm to train models that learned to discriminate between 
known AD genes and genes unrelated to AD using their interaction patterns with TFs as 
features (see Methods). We wanted to compare the accuracies in predicting known AD-risk 
genes across cell types and between control and AD networks. The distribution of balanced 
accuracies in 10 independent five-fold cross-validation tests indicates that the microglia AD 
network most accurately predicted known AD genes compared to other networks (Fig. 6A). 
The difference in mean accuracy between the control and AD networks of microglia is also 
the largest (Fig. 6A). The average accuracies of these models range between 57% to 68%. We 
ranked genes in each cell type model based on their predicted probabilities of being 
associated with AD (Data S8). The average probability of genes that were declared as 
differentially expressed in control versus AD by the original authors of the dataset2 is also 
relatively greater in microglial GRNs compared to other cell types (Fig. S14). Genes within 
the top 20% of the rankings in microglia AD network are involved in immune-related 
processes and hemopoietic functions, cell development, and lipid metabolism (Fig. 6B).  
 
To evaluate these rankings more stringently, we asked if the expression levels of the top-
ranked genes could be used to predict clinical phenotypes of AD. We utilized RNA-seq data 
from the ROSMAP cohort71 to predict AD phenotypes, including Braak stages that measure 
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the severity of neurofibrillary tangle (NFT) pathology, CERAD scores that measure neuritic 
plaques, diagnosis of cognitive status (DCFDX), and cognitive status at the time of death 
(COGDX). Figure 6C shows the distributions of accuracy scores in predicting these 
phenotypes using top 5% genes in our rankings from the microglial AD model as features. 
Our model shows that these genes can classify AD phenotypes with more than 60% accuracy, 
larger than the model built using randomly selected genes (Fig. 6C).  
 
By analyzing TFs separately, we observed that those in the middle layer of the regulatory 
hierarchy record the highest feature importance scores (served as the best predictors in the 
model; Fig. 6D), indicating their prominent role in regulation of gene expression in AD (Data 
S9). Visualization of the subnetwork among these TFs revealed known AD genes and 
interaction patterns (Fig. 6E). For example, we found two genes from the peroxisome 
proliferator-activated receptors (PPARG and PPARA) in this subnetwork. PPARs function in 
inflammation and immunity72, coordinate glucose and energy metabolism73,74, and are known 
to positively influence AD pathology. In addition to this, PPARA regulates genes involved in 
fatty acid metabolism and activates hepatic autophagy75. Other interesting TFs in this 
subnetwork include SPI1, a well-known TFs involved in microglial development and 
activation76 and has been implicated in AD in GWAS77. Interestingly, our analysis prioritized 
several TFs with no previous direct associations to AD in databases. Some such examples 
include TAL1, RFX2, LEF1, SP2, STAT2, ZNF263, MAFG, and EBF1. Therefore, it would 
be interesting to further investigate the link between these TFs and AD.   
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Figure 6 AD Gene prioritization and clinical phenotype prediction using network-
based machine learning. A) Boxplots showing the distribution of balanced accuracies (y-
axis; obtained from 10 independent runs of five-fold cross-validation) in predicting known 
AD genes using interaction patterns in cell type GRNs as features (x-axis). B) Gene 
ontology biological process terms enriched within the top 20% predictions in the microglia 
AD machine learning (ML) model. The terms are depicted along the y-axis, and the FDR 
corrected p-values are shown along the x-axis. C) Genes were sorted according to their 
probability of being associated with AD in the microglia AD ML model, and the top 5% of 
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the sorted list was used as features to predict AD phenotypes in an independent dataset 
(ROSMAP). The boxplots show the distribution of balanced accuracies (y-axis) obtained 
from these for four AD phenotypes (see Methods) and a set of randomly selected samples 
(x-axis). D) Average feature importance scores of TFs at the three hierarchy levels in the 
microglia AD network. E) Visualization of the subnetwork connecting top 10% TFs with 
highest feature importance scores in microglia AD network. Each grey node depicts a TF 
with border color set along a red gradient according to the disease-gene association score 
given in the DisGeneNet database (based on preliminary evidence collected from 
independent studies).  

Discussion 
We developed an integrative analysis framework on single-cell network biology and applied 
it to cell type gene regulatory networks (GRNs) in AD (Fig. 1). The networks were predicted 
by single-cell multi-omics data, including scRNA-seq, cell type chromatin interactions, and 
TF binding sites on open chromatin regions. We identified the AD-specific network 
characteristics changes such as hub genes and regulators, modules, and hierarchies, 
suggesting their vital roles for cellular and molecular functions in AD pathogenesis by 
analyzing those networks. Further, we revealed that using those cell type networks also 
improved the prediction of potential novel AD genes, clinical phenotypes, and drug targets.  
 
Our analysis of gene centrality metrics suggests that different cell types employ a different 
regulatory apparatus governed by ‘master regulators’ that contributes to cell viability, and 
therefore overall brain fitness by regulating the expression of many target genes. This 
apparatus does not seem to be perturbed by the occurrence of AD, which makes sense 
considering previous studies on gene essentiality and lethality. Interestingly, distinct TFs with 
high betweenness centralities seem to modulate cell type-specific signals. Furthermore, non-
TF genes, or in-degree centralities exhibit the most prominent differences between AD and 
control brains, indicating that these genes may contribute to pathway-level changes in AD 
progression. Enrichment of critical brain-specific biological processes, such as synapse 
organization and immune-related processes, within these genes also reflects characteristics of 
AD pathology. Overall, centrality analysis can delineate ‘master regulators’ that are 
potentially involved in maintaining biological processes essential for cell type function in 
healthy and AD individuals. 
 
Our analysis shows that the brain GRNs are hierarchical in structure and uncovered the 
hierarchy height of brain TFs for the first time. Our analysis suggests that the levels on which 
TFs operate are generally robust to AD, and subtle changes in the expression of TFs at the top 
and bottom levels seem to modulate cellular signals underlying typically observed AD 
phenotypes. GO BP enrichment analysis also suggests that TFs in the bottom layer are 
involved in relevant processes like ‘synapse organization’, ‘neuron projection development’ 
and ‘axon development’ in neuronal cell types, ‘neutrophil immunity’, ‘endocytosis’, ‘cell-
cell adhesion’ and ‘actin organization’ in microglia, and ‘neuron projection development’, 
‘cell morphogenesis’ and ‘axonogenesis’ in oligodendrocytes. However, the middle-level TFs 
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seem to be most active and perhaps cooperate and coordinate with other TFs to target a 
relatively larger number of genes. We noted that hierarchy height for TFs estimated using 
ChIP-seq datasets better reflected a tri-modal distribution43. In our analysis, we found fewer 
TFs in the middle layer and many TFs at the top layer. This could perhaps be due to many 
indirect TF-TG correlations that naturally arise in expression data. Another strategy to infer 
regulatory hierarchies more accurately would be to apply a simulated annealing procedure to 
the full network (including non-TF genes) to get better estimates on the actual number of 
hierarchies in a given network78. Such an analysis requires a considerable amount of 
computational runtime beyond our timeframe, given that we analyzed a total of eight 
networks. Nevertheless, our analysis’s distribution of TF hierarchies is statistically significant 
compared to random networks. Moreover, whether the occurrence of fewer TFs in the middle 
levels is a feature of single-cell GRNs or just noise due to indirect correlations could only be 
evaluated based on new data from cell type-specific TF-DNA binding data.   
 
Our TF-centric analysis indicates extensive dysregulation in the microglia network. For 
example, microglia has a unique set of TFs with high betweenness centrality (Fig. 2A) and 
the largest rewiring between control and AD networks (Fig. 3C). Therefore, we wanted to 
investigate dysregulation at the level of non-TF genes, as these genes represent the core brain 
pathways. Indeed, using coregulation levels as a proxy for functional relatedness, we 
confirmed that biological processes are most dysregulated in microglia networks (Fig. 5A). 
This also testifies that our approach of utilizing known functional gene sets (e.g., GO terms) 
as biologically coherent components and using subnetwork density as a metric to gauge gene 
set activity is an excellent approach to highlight individual cell types. We found that the cell 
type networks are highly modular, and the organization of modules is largely distinct, as the 
overlaps between cell type modules were minimal (Sup Fig.). We chose to investigate 
microglial module 2 further as this was the only module explicitly upregulated in the early 
stages of AD and also statistically enriched with genes that support known AD biology. Lipid 
metabolism has been previously implicated in AD79, and the role of microglia in lipid 
metabolism is also previously suggested80. Thus, we anticipate that microglial module 2 
genes in our analysis could potentially have pharmacologic applications for early intervention 
and drug research to target lipid dysregulation.  
 
The cell type GRNs we inferred in this study, together with extensive prior genetic 
knowledge on AD, presented us with a unique opportunity to identify patterns of regulatory 
interactions that characterize AD. Inspired by previous network-based machine learning 
approaches, we developed an approach that leverages regulatory interactions of known AD 
genes as the ground truth to find other similar yet uncharacterized AD genes. Our approach 
correctly prioritized microglial genes related to lipid metabolism and hemopoietic function; 
these are well-known biological processes disrupted in AD. However, the average accuracy 
of our best model (~0.68) is lower than what is typically expected from such models. This 
low accuracy could have arisen because we utilized network data from a single-cell type to 
train the models, effectively neglecting the possible functional role of other cell types in 
AD81. Unfortunately, our models do not capture this complexity even when different neuronal 
and glial networks were integrated into a single prediction model (data not shown). This 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 11, 2022. ; https://doi.org/10.1101/2022.01.09.475548doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.09.475548


could be due to the fact that our cell type networks lack chromatin interaction data in AD. 
Nevertheless, we are hopeful for the future as more single-cell multi-omics data accumulate 
in the context of AD, enabling us to further refine our network models.  
 
Overall, our integrated single-cell network analysis approach identified key genes and 
cellular themes that corroborate many aspects of AD biology. This shows that gene 
regulatory networks extracted from single-cell data can reveal molecular systems often 
hidden in gene networks derived from bulk datasets. For example, our networks revealed 
extensive network rewiring disrupting key biological processes mainly in microglia. As such, 
our approach can pinpoint cell type-specific genes that could potentially play a key role in 
governing disease-induced changes of pathways (e.g., lipid metabolism). As the single-cell 
technology further advances our ability to capture multi-modal genomic data with 
unprecedented precision, we anticipate that network biology applied to such single-cell 
functional genomics data will enhance precision medicine. Single-cell sequencing assays 
offer solutions to two main requisites for statistical inference of reliable gene networks; large 
sample size and context-specificity (unifying biological theme defined by the underlying 
datasets). While bulk RNA-seq datasets could provide researchers with a large enough 
sample size, the context-specificity is often ambiguous in publicly available datasets82. 
Single-cell technology, by design, generates volumes of data from each individual in the 
study. As such, pooling cell type samples from individuals is currently recommended by not 
required for cell type network inference. Thus, patient-specific gene networks could be 
possible in the coming years, which will enable us to predict a clinical outcome better (e.g. 
drug response) based on network activity of target components (e.g. drug targets)3. 
Furthermore, since we already collect patient-specific data from other modalities (e.g. 
imaging, behavioral and clinical), fusing genetic network models with models from non-
genomic modalities could resolve overlapping disease features better. Our network biology 
approach provides a method to investigate disease genes from single-cell data and lends itself 
to be used as a template for genomic feature engineering for advanced AI-based integrative 
models.  

Methods and Materials 

Single-cell datasets and data processing 
We obtained previously published single-cell gene expression data for major cell types 
including excitatory and inhibitory neurons, microglia, and oligodendrocyte from individuals 
with Alzheimer’s disease pathology and healthy controls2. Precisely, the dataset consists of 
single-nucleus RNA-sequencing (snRNA-seq) of samples from the prefrontal cortex of 24 
individuals with varying degrees of AD pathology and 24 age-matched controls with no AD 
pathology. We removed genes that were expressed in less than 100 cells and normalized the 
data using Seurat 4.083. We then applied MAGIC84 to address dropout events by imputing the 
missing gene expression values and filtered lowly expressed genes to create cell type gene 
expression matrices. In addition, we also obtained other omics data, including cell type 
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chromatin interaction maps32, transcription factor binding sites33, and cell type open 
chromatin regions85.  

Gene regulatory network inference for brain cell types from 
multi-omics 
We sought to integrate single-cell transcriptomic, chromatin interaction, TF binding sites, and 
open-chromatin regions to predict directed edges from transcription factors (TFs) to target 
genes (TGs). We used our scGRNom (single-cell gene regulatory network prediction from 
multi-omics) pipeline to perform this integration86. First, the scGRNom function 
scGRNom_interaction was supplied with cell type chromatin interaction data to predict all 
possible interactions between enhancers and promoters. Then, reference networks for each 
cell type were obtained by locating human TF binding sites (TFBS) within the identified 
interacting regions using the function scGRNom_getTF. Subsequently, the reference 
networks along with the single-cell gene expression matrix were supplied to the 
scGRNom_getNt function to predict TF-target genes for each cell type. The scGRNom_getNt 
uses elastic net regression to infer TF-target gene relationships. To identify the most 
confident edges, we filtered the target genes with mean squared error > 0.1 and absolute 
elastic net coefficient < 0.01.    

 
Analysis of cell type GRN characteristics  

Centrality analysis  
Three measures of network centrality were used to gauge the importance of genes in each 
network. The indegree and outdegree of genes in a given network were calculated as the 
number of incoming TFs for each target gene and the number of target genes for each TF, 
respectively. The betweenness centrality was calculated by counting the number of times a 
given gene appears within the shortest paths of two other genes in a given network. The 
centrality scores for each network were scaled between 0 and 1 to make the scores 
comparable across cell types. To calculate fold change in centrality scores in AD versus 
control network of each cell type, we first replaced missing values (genes found in AD 
network but not in control or vice-versa) with the number that equals 1% of the smallest 
observed centrality score in both the networks to avoid dividing by 0. The fold change of a 
given gene was then calculated as the binary logarithm of the gene’s normalized centrality 
score in the AD network divided by the control network. Genes with absolute scores > 0.5 
were used for functional enrichment analysis (described below). All networks were treated as 
directed and the igraph R library was used to estimate gene centrality scores.  
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Hierarchy analysis  
We used the hierarchy height (h; outdegree - indegree) of TFs to probe the direction of 
information flow in each network. The following analysis was performed on only TF-TF 
networks (TG is also a TF). The normalized h metric was calculated as43 
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Where O = outdegree and I = in-degree of a TF. With this metric, TFs with h between 1 and 
0.33 were classified as the top-level regulators, TFs with h between 0.33 and -0.33 were 
classified as the middle-level regulators, and TFs with h between -0.33 and -1 were classified 
as bottom-level regulators. The significance of the distribution of h metric of TFs, which was 
trimodal across most cell types, was calculated from the distribution of h in 1000 random 
networks (KS tests). The random networks were generated by preserving the observed edge 
density in each network.  

TF rewiring analysis 
To quantify the difference between sets of predicted targets of a TF in control versus AD 
networks, we calculated the rewiring score as43  
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Thus, a high rewiring score of a TF means that its targets in the control network (Tc) and AD 
network (Ta) exhibit little overlap.  

Network motifs and regulatory logic analysis 
Motif analysis was used to identify specific interaction patterns in the networks. We focused 
on subgraphs containing three genes, which were collated into 13 isomorphic classes. The 
number of times each class occurred in each network was recorded using the mfinder tool 87. 
The Z score of the distribution was estimated from 1000 random networks. Due to a large 
number of networks, we set the sampling parameter to 100 to obtain a fast approximate motif 
analysis of the networks. To characterize TF more of action in feed-forward loops, we 
applied logic circuit models using the Loregic algorithm22. Loregic classifies TFs into 
regulatory triplets (two TFs and a target gene forming an FFL in our analysis) and identifies 
the logic gate model (e.g. AND, OR, XOR etc.) most consistent with the cross-sample 
expression of each triplet. Loregic requires a binarized form of expression data as input to 
score the logic gate models. For each cell type gene expression matrix, we selected 100 cells 
with the highest variance as inputs to Loregic. 100 cells were selected to account for the 
uneven distribution of different cell types in the full expression matrix. This also allowed us 
to reduce the overall runtime of the Loregic algorithm. Loregic outputs a gate consistency 
score for each of the 16 possible logic gate models. For each triplet, we selected the gate 
model with the highest consistency score as the gate consistent for the triplet. Gates with ties 
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in the consistency score were regarded as gate inconsistent. The statistical significance of 
consistent gates was estimated by replacing the target gene in each triplet with a random gene 
from the corresponding network and calculating the fraction of time the gate consistency 
score of the randomized triplet was greater than or equal to the empirical score. Consistent 
gates with P <=0.01 were reported. 

Calculation of gene-set cohesiveness and identification of co-
regulated gene modules 
Our network dataset contained directed networks in which TFs are one set of nodes with 
outgoing links and target genes as another set of nodes with incoming links. Because TFs can 
also have incoming links, the networks we had at hand were essentially structured as mixed 
bipartite graphs. We transformed these directed graphs into undirected graphs by connecting 
target gene pairs if they had a considerable overlap between their predicted regulators. The 
overlap between the predicted regulators of a given gene pair was estimated using the 
Jaccard’s Index (JI) and set the edge-weight. Using these weighted graphs, the gain or loss of 
cohesiveness within functional gene sets (GO BP terms) was estimated as follows. First, for a 
given gene set, a subnetwork depicting edges within the gene set was extracted. Then, the 
normalized network density of the subnetwork was calculated as the sum of edge weight 
divided by the total genes in the gene set. These operations were performed across control 
and AD networks of all cell types. Finally, change in gene set cohesiveness was calculated as 
the log ratio of density in the AD network divided by density in the control network. The 
statistical significance of Δ cohesiveness was calculated by randomly sampling the gene set 
from the background of all genes in the AD networks and calculating the picking genes from 
all gene sets with a fold-change greater than 0.5 were reported in Figure 5A.  
 
Then, the adjacency matrix holding target genes in rows and columns and JI values in the 
cells was supplied to the WGCNA algorithm to detect coregulated gene modules88. The 
detection of reliable modules will depend on two critical parameters: the edge-weight 
threshold (EWT) to maintain high scoring edges and filter noise arising due to indirect 
regulations and the minimum module size (MMS) parameter. We wanted the MMS to be 
large enough (atleast 10 genes) to objectively test the functional relevance of resulting 
modules using statistical enrichment but not too large to include bifurcated components of 
large metabolic pathways into the same modules. Therefore, we tested a range of EWT  
(between 0.1 and 0.9) and MMS values (between 10 to 100) for every cell type network to 
obtain the best possible solution. We asked what combination of EWT and MMS detects the 
largest number of functionally relevant gene modules while retaining as many original genes 
as possible to avoid information loss. The functional relevance was tested by counting the 
fraction of detected modules that could be annotated using statistical enrichment of GO BP 
terms. Based on these evaluations, we found an EWT of 0.2 (20% overlap between predicted 
regulators of a TG-pair) and an MMS of 30 yields the best network clustering solution (Fig. 
S4, S5, and S6. The blockwise module function of WGCNA was invoked with ‘agglomerative 
clustering using average linkage’ as the clustering algorithm. 
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Functional and disease gene enrichment analysis  
The human gene ontology biological process (GO BP) annotations89, propagated along ‘is_a’ 
and ‘part_of’ relationships were obtained90. Enrichment of query genes (e.g. top central 
genes, module genes etc.) within a given functional geneset (GO BP term or modules) was 
calculated using hypergeometric tests, using all genes present in the corresponding network 
as the background. The resulting p-values were corrected for multiple testing using the 
Benjamini–Hochberg method91. Note that for GO, apart from propagating parent-child 
relationships, we also removed geneset terms that annotate more than 500 and less than 10 
genes for enrichment analysis.  

Network proximity for drug prediction 
We assembled drugs from the DrugBank database relating to 2,891 compounds92. To predict 
drugs with interested modules, we adopted the closest-based network proximity measure60 as 
below 

d&+,-.-/(X, Y) =
1

‖X‖ + ‖Y‖-.min
0∈2

𝑑(𝑥, 𝑦)
3∈4

+.min
3∈4

𝑑(𝑥, 𝑦)
0∈2

5 

 
where d(x,y) is the shortest path length between gene x and y from gene sets X and Y, 
respectively. In our work, X denotes the interested modules, Y denotes the drug targets (gene 
set) for each compound. To evaluate whether such proximity was significant, the computed 
network proximity is transferred into z score form as shown below: 

𝑍5!"#$%$& =
𝑑&+,-.-/ − 𝜇5

𝜎5
 

Here, 𝜇5 and 𝜎5 are the mean and standard deviation of permutation test with 1,000 random 
experiments. In each random experiment, two random subnetworks 𝑋6 and 𝑌6 are constructed 
with the same numbers of nodes and degree distribution as the given 2 subnetworks X and Y 
separately, in the protein-protein interaction network. 

Protein-protein interactome (PPI) network 
To build the comprehensive human interactome from the most contemporary data available, 
we assembled 18 commonly used PPI databases with experimental evidence and the in-house 
systematic human PPI that we have previously utilized: (i) binary PPIs tested by high-
throughput yeast-two-hybrid (Y2H) system93; (ii) kinase-substrate interactions by literature-
derived low-throughput and high-throughput experiments from KinomeNetworkX94, Human 
Protein Resource Database (HPRD)95, PhosphoNetworks96, PhosphositePlus97, DbPTM 3.0 
and Phospho.ELM98; (iii) signaling networks by literature-derived low-throughput 
experiments from the SignaLink2.099; (iv) binary PPIs from three-dimensional protein 
structures from Instruct100; (v) protein complexes data (~56,000 candidate interactions) 
identified by a robust affinity purification-mass spectrometry collected from BioPlex V2.0101; 
and (vi) carefully literature-curated PPIs identified by affinity purification followed by mass 
spectrometry from BioGRID102, PINA103, HPRD104, MINT105, IntAct106, and InnateDB107. 
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Herein, the human interactome constructed in this way includes 351,444 PPIs connecting 
17,706 unique human proteins. 

Machine-learning model for AD-gene prioritization 
We sought to utilize network connectivity patterns in cell type regulatory networks to make 
predictions on disease-gene associations. First, we downloaded known disease-gene 
associations listed in the DisGenNet database108 and extracted all genes linked with the 
keyword ‘Alzheimer’. The DisGenNet database ranks gene-disease associations using a 
metric that quantifies the level of evidence in published literature. 16% (3481 out of 21666) 
of all genes in the database are linked with AD, with gene-disease associations scores ranging 
from 0.01 (not strong evidence) to 0.9 (strong evidence). We selected AD genes with scores 
greater than 0.1 (top 20%) as positive examples to build the binary classifiers. Then, rather 
than randomly selecting negative samples, we further analyzed the DisGenNet database to 
identify genes that are likely not associated with AD. To do this, we calculated overlaps 
between diseases and selected genes strongly associated with diseases that have minimal 
overlaps with AD (disease-disease Jaccard’s overlap < 0.1).  From this pool of ‘likely not 
AD-associated’ genes, we randomly selected negative examples equal to the number of 
positive examples to build classifiers not biased by class-size. Then, each GRN was 
transformed into a non-symmetrical adjacency matrix A, with TFs (i) in columns and TGs (j) 
in rows and the cell Aij containing the predicted edge score (absolute coefficient of elastic net 
regression from scGRNom) of the corresponding TF-TG pair. The subset of A with rows 
containing our positive and negative samples was extracted as the feature matrix, F. To 
include TFs that do not have any in-degrees (not regulated by other TFs in our networks) in 
F, we assigned an edge score equal to 1% of the minimum edge score in the corresponding 
network. This allowed us to label TFs with no upstream regulators and include them in 
prediction models. Then, using the vector of edge scores of each sample in F as the feature 
vector, we trained a random forest classifier to discriminate between positive and negative 
samples. The balanced accuracy of the model was tested using 10 independent runs of five-
fold cross-validation. The average balanced accuracy (total 50 trials) was recorded and 
plotted. The predicted probability of class output from the classifier was used to rank all 
genes.  The feature importance score was measured as the Gini impurity. The Gini impurity 
metric estimates the probability of classifying a sample incorrectly, and is calculated as  
 
    𝐺 = 	∑7898 𝑝(𝑖) ∗ (1− 𝑝(𝑖))  
 
, where C is the total number of classes (2 in our case) and p(i) is the probability of picking a 
sample in class i. The accuracy and G were recorded for each cell type GRN in both 
conditions. The most accurate cell type model was chosen as the one with the highest average 
accuracy (AD microglia network in our study) and used to predict the probability of AD 
association of the remaining unlabeled genes along with TFs with the largest feature 
importance scores.     
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Prediction of clinical phenotypes  
To predict AD phenotypes, we utilized the original RNA-seq data from the ROSMAP study 
(55,889 Ensembl gene ids for 640 post-mortem human samples) on an Alzheimer’s disease 
case-control cohort for the Dorsolateral Prefrontal Cortex (DLPFC) brain region. We 
obtained permission from ROSMAP to use this data (available on synapse.org (ID: 
syn3219045). We mapped the Ensembl genes ids to Entrez gene identifiers, averaged the 
gene expression values for Ensembl gene identifiers that mapped to the same Entrez 
identifiers, and removed unmapped Ensembl identifiers.  Ultimately, we found 26,017 genes 
(with unique Entrez IDs).  Only 638 out of 640 individual RNA-Seq samples mapped to 
population phenotypes. Our final DLPFC dataset thus contained gene expression values for 
26,017 genes for 638 samples. Then, using normalized gene expression values of top 5% 
ranked genes from the microglia AD-gene classification model (described above) as the 
feature vectors, we trained random forest classifiers to predict various AD phenotypes. The 
following coding was used: cogdx (4 and 5 versus 1), braak (0,1,2 versus 5,6), and cerad (1 
versus 3,4). The classifier accuracy was evaluated using 10 independent runs of five-fold 
cross-validations, as described above.    
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