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Abstract

Maturation of eukaryotic pre-mRNAs via splicing, 3’ end cleavage and polyadenylation is

modulated across cell types and conditions by a variety of RNA-binding proteins (RBPs).

Although over 1’500 proteins are associated with RNAs in human cells, their binding motifs,

targets and functions still remain to be elucidated, especially in the complex environment of

human tissues and in the context of diseases. To overcome the lack of methods for

systematic and automated detection of sequence motif-guided changes in pre-mRNA

processing based on RNA sequencing (RNA-seq) data we have developed MAPP (Motif

Activity on Pre-mRNA Processing). We demonstrate MAPP’s functionality by applying it to

RNA-seq data from 284 RBP knock-down experiments in the ENCODE project, from which

MAPP not only infers position-dependent impact profiles of known regulators, but also

reveals RBPs that modulate both the inclusion of cassette exons and the poly(A) site choice.

Among these, the Polypyrimidine Tract Binding Protein 1 (PTBP1) has a similar activity in

glioblastoma samples. This highlights the ability of MAPP to unveil global regulators of

mRNA processing under physiological and pathological conditions.
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Introduction
Splicing and 3’ end processing of nascent RNAs are crucial steps in eukaryotic pre-mRNA

processing, also responsible for transcriptome diversification through the generation of

isoforms. Both processes are modulated by various RNA-binding proteins (RBPs), whose

expression varies across tissues. To date, a few dozen regulators have been described to

modulate splicing and/or 3’ end processing 1,2. However, the functions of the vast majority of

the more than 1’500 RBPs encoded in the human genome remain to be unraveled 3. Recent

work has started to identify RBPs that act at multiple stages of pre-RNA processing 4–6, but a

tool for the systematic discovery of such regulators is lacking. To address this issue, we have

developed MAPP (Motif Activity on Pre-mRNA Processing), a computational method that

enables the identification of RBP-specific sequence motifs that can explain global patterns of

pre-mRNA processing observed in RNA-seq data. MAPP makes use of a powerful functional

concept that we have previously exploited in our KAPAC tool 7, namely explaining relative

expression levels of transcript isoforms across samples with sequence motifs located

throughout nascent transcripts. In contrast to KAPAC, MAPP provides an end-to-end

solution to the inference of motifs, known or not to bind specific RBPs, that influence

splicing, 3’ end cleavage or both processes.

We benchmarked MAPP using data sets in which RBPs with well-characterized impact on

splicing and/or 3’ end processing have been overexpressed or depleted by siRNA-mediated

knock-down, showing that MAPP identifies not only the correct sequence motif, but also the

binding site position-dependent impact of the RBP on RNA processing, at a fine level of

detail. We confirmed a repressive function of heterogeneous ribonucleoprotein C (HNRNPC)

on both the inclusion of cassette exons and the processing of poly(A) sites, effects shared by

another pyrimidine-rich element-binding protein, Polypyrimidine Tract Binding Protein 1

(PTBP1). The latter also explains best the global dysregulation of pre-mRNA processing 8

that occurs in glioblastoma cancers, not only at the level of polyadenylation, as we reported

before 7, but also at the level of splicing. We also highlight the position-specific effect of RNA

Binding Fox-1 Homolog 1 (RBFOX1) on splicing and that its effect depends on the location

of the binding sites within the nascent transcript. After benchmarking MAPP on these three

RBPs with known impact on pre-mRNA processing, we turned to the >400 RBP knockdown

experiments publicly available from the ENCODE project, aiming to systematically determine

RBPs with position-dependent regulatory impact on pre-mRNA processing and infer their

sequence specificity. This approach identified multiple RBPs whose specific impact on
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pre-mRNA processing has not been reported to date, among which various pyrimidine

motif-binding proteins seemingly explain changes in both exon inclusion and the poly(A) site

choice. In summary, in this study we inferred the RNA processing impact map of a large

number of RBPs and identified those that regulate both splicing and 3’ end processing. Also,

we deliver a novel computational approach that enables a comprehensive characterization of

the regulatory motifs and their position-specific impact on splicing and/or 3’ end processing

within cellular systems of interest. “MAPPing” RNA-seq experiments will thus enable the

identification of regulators that can explain global changes in pre-mRNA processing

observed in health and diseases.

Results

A model for inferring the positional impact of splicing and 3’ end

processing regulators
Whereas RBPs have long been known to orchestrate pre-mRNA splicing (e.g. 6), their

impact on 3’ end processing has only recently started to become apparent 4,9–11. In particular,

the question of whether RBP regulators act on splicing and 3’ end processing in a

coordinated manner has drawn much attention in recent years 7,11. A bottleneck in

addressing this question is that compared to other types of regulators, such as transcription

or epigenetic factors, the fraction of RBPs with well-characterized binding specificities is

relatively minor. In addition, even for those RBPs for which binding specificities have recently

been characterized by high-throughput sequencing, their impact and mode of action on

pre-mRNA processing remain speculative. To address such questions, we have developed

MAPP (Fig. 1).
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Fig. 1 | Inferring splicing and 3’ end processing motif impact maps using MAPP.

a | Sketch illustrating how regulators (Reg) bind pre-mRNAs to influence the usage of splice

sites (SS) and / or poly(A) sites (PAS). b | RNA-sequencing (RNA-seq) libraries are available

or can be created for most cellular systems of interest. c | MAPP is an automated tool for

analyzing the splicing and 3’ end processing patterns inferred from RNA-seq data with the

MAEI (Motif Activity on Exon Inclusion) and KAPACv2 (K-mer Activity on PolyAdenylation

site Choice version 2) models, respectively. d | MAPP infers regulatory motifs for RBPs and

reports detailed maps of their position-dependent impact on cassette exon inclusion and

poly(A) site usage, respectively.
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MAPP includes a component designed to infer the position-dependent activity of sequence

elements on splice site (SS) choice (see Methods: MAEI), and a component that infers the

activity of motifs on poly(A) site choice, the latter building on our previously-described

KAPAC approach 7. While similarly to KAPAC, MAPP considers the entire space of

sequence motifs, modeled as k-mers, that could impact pre-mRNA processing, its

functionality is more general, as it can also work with position-dependent weight matrices

(PWMs, see Methods: KAPACv2) representing known binding specificities of RBPs. The two

components model changes in exon inclusion and poly(A) site usage across genes as

functions of the motif counts within regions located at various distances relative to these

events (see Methods). More specifically, given RNA sequencing data from a cellular system

of interest (Fig. 1a,b), MAPP first infers the level of inclusion of alternatively spliced exons

and the usage of distinct poly(A) sites (Supplementary Figures S1 and S2). Then, the MAEI

and KAPACv2 models are fitted to the corresponding event data to identify sequence motifs

that can explain global splicing and 3’ end processing patterns, respectively (Fig. 1c). By

applying the models to sequence windows (for all our analyses unless specified otherwise:

50nt in length, slided by 25nt) located at specific distances relative to pre-mRNA processing

sites, position-dependent activity z-scores are inferred for each motif. MAPP ranks the

sequence elements based on their significance (Fig. 1d) and reports the position-dependent

z-scores in the form of impact maps 7. Thus, MAPP infers the impact maps both for motifs

known to correspond to specific regulators, as well as for motifs that have not yet been

linked to a specific RBP.

MAPP recovers the position-dependent impact of known regulators
To validate MAPP, we applied it to data sets from experiments where proteins with a known

effect on splicing/polyadenylation were perturbed. We started with the known HNRNPC

regulator and found that the sequence motif most significantly associated with both the

measured changes in exon inclusion as well as poly(A) site usage is penta-U, the motif

known to be bound by HNRNPC 12–14 (Fig. 2a). The PWM representing this motif had the

largest combined z-score out of the 344 PWMs that we curated from the ATtRACT database

(see Methods). Furthermore, MAPP recovers the impact map expected for the HNRNPC

RBP. That is, in control (CTRL) samples, where the expression of HNRNPC is high, MAPP

infers a repressive effect (marked as blue squares) on 3’ splice site (3’SS), 5’ splice site

(5’SS) and polyadenylation site (PAS) processing. Conversely, these sites are processed

and thus the activity of the penta-U motif is positive in the knock-down cells, where the

expression of HNRNPC is low. These results are supported by a multitude of studies (e.g.

refs 4,14,15). Additionally to the impact maps generated based on transcriptome-wide data we
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have selected 3’SS, 5’SS and poly(A) sites of the 200 exons whose inclusion/processing

changes most (in either direction) or changes least upon HNRNPC knock-down and

constructed position-dependent densities of predicted HNRNPC binding sites within the

ranges we use to fit MAPP on. The resulting density profiles of the top 200 most changing

mRNA processing targets are consistent with the impact maps, indicating that the changes

in RNA maturation are due to interactions of HNRNPC with the RNAs.

We next turned to a well characterized splicing regulator, the RBFOX1 RBP. Analyzing data

from an experiment where the RBFOX1-dependency of exons was determined in

RBFOX2-deficient HEK293 cells in which RBFOX1 was inducibly expressed from a Flp-in

locus 16, MAPP ranked the previously described RBFOX1-binding sequence, UGCAUG, as

the most significant in explaining exon inclusion and inferred its activating activity when

located downstream of 5’SS 17. MAPP also highlights the opposite activity near the 3’SS,

where RBFOX1-binding motifs are associated with reduced exon inclusion. While this

repressive effect appears to be weaker compared to the activating effect of motifs located

downstream of 5’SS, it is interesting to infer simply from the RNA-seq data that RBFOX1,

like other RBPs 18, can have opposing impacts depending on the location of a binding site.

These results show that MAPP enables fine grained insights into the binding-specificity and

position-dependent impact of RBPs on splicing and 3’ end processing.

6

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 11, 2022. ; https://doi.org/10.1101/2022.01.09.475576doi: bioRxiv preprint 

https://paperpile.com/c/hUjlKw/B61Q
https://paperpile.com/c/hUjlKw/GDvz
https://paperpile.com/c/hUjlKw/K9rF
https://doi.org/10.1101/2022.01.09.475576


Fig. 2 | MAPP infers the known regulatory impact of the HNRNPC and the RBFOX1

RBPs on splicing and 3’ end processing from RBP expression perturbation data sets.

a | Top panel: z-scores of activity changes in the vicinity of 3’ splice sites (3’SS), 5’ splice

sites (5’SS) and poly(A) sites (PAS) inferred from a HNRNPC knock-down data set. The

PWM with the highest inferred combined z-score of all PWMs available in ATtRACT

database has the penta-U motif as consensus. By fitting the splicing and 3’ end processing

models of MAPP to overlapping windows (horizontal gray bars) located at specific distances

relative to splice and poly(A) sites, position-dependent activity z-scores are inferred.

Statistically significant z-scores are marked with an asterisk. Bottom panel: Smoothened (+/-

5 nt) densities of the inferred HNRNPC binding motif in the vicinity of the top 200 3’SS, 5’SS

and PAS, whose usage is most upregulated (red), most down-regulated (blue) or does

change least (gray) upon HNRNPC knock-down. b | Top panel: MAPP results as described

in a, but here applied to a RBFOX2-deficient HEK293 cell line with induced expression of

RBFOX1 which is known to regulate splicing at 5’SS by binding to UGCAUG sequences 17.

Bottom panel: Densities as in a, but for the RBFOX1 binding motif in the vicinity of the top

200 3’SS, 5’SS and PAS, whose usage is most upregulated (blue), most down-regulated

(red) or does change least (gray) upon RBFOX1 expression.
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The PTBP1 RBP binding motif explains splicing and 3’ end processing

changes in glioblastoma
As key factors in the post-transcriptional regulation of gene expression, RBPs have been

reported to play an important role in numerous diseases, including cancer 19. Moreover,

various groups have reported that the 3’ UTRs of transcripts become shortened upon

tumorigenesis 20–22, thus presumably escaping the RBP-mediated regulation. In a previous

study we have uncovered that PTBP1 best explains the global remodelling of 3’ UTR length

in glioblastoma 7. Thus, to further validate MAPP, we applied it to PTBP1/2 double

knock-down data. As expected, MAPP inferred that PTBP1 has a repressive activity on the

processing of 3’SS and to some extent 5’SS, as PTBP1-binding motifs located in these

regions are associated with reduced exon inclusion when the level of PTBP1 is high, i.e. in

control conditions (Fig. 3a). Furthermore, PTBP1 also has a repressive effect on

polyadenylation, as we have reported before 7. Turning to glioblastoma cancer data from The

Cancer Genome Atlas (TCGA) 23, we recovered the PTBP1-binding motif as having the

highest activity on polyadenylation (Fig. 3b). Furthermore, MAPP infers that changes in exon

inclusion are also best explained by the PTBP1-binding motif, with a position-dependent

activity that matches the profile obtained from the PTBP1/2 knock-down data. These results

strengthen the case for PTBP1 as a main regulator of pre-mRNA processing in glioblastoma,

a cancer where PTBP1 is highly overexpressed (Fig. 3b).
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Fig 3. | Splicing and 3’ end processing activities of the PTBP1 RBP in a | cells depleted

of both PTBP1 and PTBP2 by siRNA-mediated knockdown, and b | glioblastoma samples.

Panel structure is the same as in Fig. 2, and in addition, scatter plots of the activities inferred

for the top ranked motif (shown in the tables) versus mRNA expression levels of PTBP1 and

PTBP2 (log2 TPM) across samples are shown.

MAPP infers the binding specificities and detailed impact maps for

pre-mRNA processing regulators in the ENCODE data sets
Next, we used the large array of RBP knock-down datasets available from the ENCODE

project to comprehensively infer the sequence specificity, position-dependent impact and

activating or repressive mode of action of human RBPs on pre-mRNA processing. Applying

MAPP to 456 RBP knock-down experiments available in ENCODE we found that the tool is

indeed able to identify the motif known from the ATtRACT database to correspond to the

protein whose expression was altered in the experiment. Fig. 4 shows summary results for

samples (see Methods) for which the RBP corresponding ATtRACT-provided PWM was

ranked among the top 5 most significant motifs. Interestingly, RBP motifs generally have the

same type of activity on exon inclusion - activating or repressive - when located at both 5’

and 3’ splice sites, the only exception being the QKI motif, inferred to repress processing

when located around the 3’SS and promote it when located around 5’SS. Notably, the
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general splicing factor SRSF1 is inferred to promote splice site processing, as expected,

while many RBPs that act as splicing modulators (e.g. HNRNPC, PTBP1, HNRNPK) are

inferred to have a repressive role. A notable exception is the Poly(rC) Binding Protein 1

(PCBP1) RBP, also estimated to promote the splicing of target exons.

Fig. 4 | MAPP reveals the concerted impact of pre-mRNA processing regulators on

splicing and polyadenylation. For each RNA-binding protein we determined the first motif

(in the order of MAPP-provided significance) that is assigned in ATtRACT to the RBP that

was depleted in each experiment. Column 3 shows the rank of that motif given by MAPP.

The table contains RBPs where the known binding motif was among the top 5 reported by

MAPP. The activity profiles are shown similarly to those in Figs. 2 and 3, the top two rows

indicating the knock-down and the bottom two the control conditions. Windows within regions

around 3’SS, 5’SS and PAS are set to the same ranges as for our previous analyses (Figs. 2

and 3). The central window sliding through a given RNA processing site (-25nt,+25nt) was

marked as black square in the legend. Furthermore, in addition to the PWM-based MAPP

runs, we have carried out a similar analysis exploring all possible k-mers of length 3 to 5.

The top-ranked k-mer is reported for each experiment alongside the corresponding PWM

result.
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As the AtTRACT-provided PWMs corresponding to the perturbed proteins were not always

the most significant motifs in explaining the RNA processing alterations, we also ran MAPP

in the k-mer mode, to determine which sequence elements explained best the observed

changes. Interestingly, for some data sets the results of the k-mer analysis were both more

significant and more stable between replicate knock-down experiments. For instance, for the

two independent knock-down experiments of the SRSF1 splicing factor, two replicates per

condition each, MAPP inferred two distinct AtTRACT-reported SRSF1-associated PWMs,

ranked as the first and fourth most significant PWM in the two experiments, respectively. In

contrast, running MAPP in k-mer mode consistently inferred the core GGA motif to be most

significant in both experiments. The inferred impact maps further confirm that the k-mer

based MAPP results are highly consistent, whereas the PWM-based results can differ

between experiments.

MAPP also reveals further regulatory patterns (Fig. 4), namely that half of the RBPs shown

in the table impact both splicing and polyadenylation. Moreover, the RBPs that impact both

processes act consistently as either activators or repressors of both exon inclusion and

poly(A) site usage. This may hint to a concerted regulation of alternative terminal exons by

individual regulators, but it must go beyond the regulation of terminal exons, because the

motif has similar activity around the 5’SS, which does not occur in the terminal exons.

Finally, MAPP also indicates that RBPs with similar sequence specificity can exert their

regulatory roles by binding to the pre-mRNA in different positions relative to the pre-mRNA

processing sites. For instance, both the PCBP1 and the HNRNPK RBPs bind a ‘CCC’

sequence element to regulate splicing and polyadenylation. However, while the impact of

HNRNPK seems to be focused on the immediate vicinity of processing sites, PCBP1

appears to activate splicing from a broader region.

While the proteins with known PWMs shown in Fig. 4 have been implicated in splicing

before, we were especially interested in cases where MAPP identified a clear k-mer, but not

a PWM of a known regulator as being able to explain the pre-mRNA processing changes.

The most compelling example appears to be the PUF60 RBP. ENCODE provides

knock-down experiments for this protein in two cell lines: K5643 (ENCSR558XNA) and

HepG2 (ENCSR648BSC). The two experiments that exhibit the most significant MAPP

results consistently infer a highly similar U-rich sequence element (Supplementary Fig. S3),

which is also the motif inferred to be bound by PUF60 in vitro, in RNA Bind’n-seq
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experiments (encodeproject.org). MAPP also charts the impact of PUF60 on the 3’ splice

site at a fine level of detail, which is consistent with a previous report of PUF60 activating

exon inclusion by binding to U-rich regions upstream of 3’ splice sites 24. MAPP pinpoints the

activating impact of PUF60 to the intronic region of ~25-0 nts upstream of the 3’ splice site,

which is much more position-specific than other regulators mentioned above. These results

illustrate the utility of MAPP in elucidating the regulation of pre-mRNA processing by RBPs.

Discussion
By binding to sequence elements in transcripts, RNA-binding proteins regulate gene

expression at co-transcriptional and post-transcriptional levels. In particular, they can affect

both splicing and 3’ end processing, key steps in the maturation of mRNAs. Additionally, the

interaction of RBPs with mature mRNAs can regulate the transport, localization and

translation of these mRNAs 25. Understanding of the global and concerted effect of various

RBPs on the cellular transcriptome is undoubtedly key to understanding how gene

expression is dysregulated in various pathological conditions, including cancer 26,27. In this

study we presented a novel computational approach for inferring the regulatory impact of

various RBPs on splicing and 3’ end processing.

We have validated our method on data pertaining to proteins with well-established roles in

splicing and/or polyadenylation. Specifically, the MAPP-inferred activities of the HNRNPC

RBP are in line with its previously reported role in preventing exonization of cryptic Alu

elements 15,28. Many Alu elements have evolved to become cassette exons, and the

potentially deleterious inclusion of these exons needs to be tightly regulated. The impact

maps constructed by MAPP are fully consistent with this role of HNRNPC (Fig. 2a). MAPP

also recovers the previously-noted position-specific regulation of exon inclusion by RBFOX1

(Fig. 2b), whereby binding of RBFOX1 upstream of cassette exons results in their exclusion,

while binding downstream of such exons promotes their inclusion 29. While our results are

consistent with this model, they also provide higher granularity in the binding site

position-dependent effects of RBFOX1. Specifically, they indicate a higher impact of the

downstream, inclusion-promoting sites. Furthermore, MAPP indicates that binding sites that

are located further upstream in the introns also have an overall inclusion-promoting effect,

consistent with an earlier report 17. Thus MAPP provides direct and broad insight into the

activity of RBP binding sites from individual RNA-seq data sets, without a need for stratifying

the data or determining the binding sites with methods such as crosslinking and
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immunoprecipitation. MAPP’s position-dependent activity maps thus enable an efficient and

improved understanding of how RBPs exert their roles both globally and on individual

targets.

MAPP analysis of glioblastoma samples yields impact maps that strikingly resemble those

obtained from PTBP1/2 knock-down data (Fig. 3a,b). That the PTBP1-binding motif is also

the RBP-binding motif that best explains the splicing deregulation observed in these samples

strengthens our previous hypothesis that PTBP1 is a key regulator of RNA processing in this

cancer 7. Identification of RBPs that broadly impact mRNA processing in specific conditions

and in particular in individual cancers is highly relevant, as it can provide novel entry points

for the development of therapies. Targeting of mRNAs and mRNA-RBP interactions with

antisense oligonucleotides 30,31 or small molecules 32 holds much promise for medical

applications. As MAPP is a fully automated workflow, the task of identifying regulators of

pre-mRNA processing from novel RNA-seq datasets is considerably facilitated.

Our analysis of RBP knock-down data sets available from the ENCODE project revealed that

multiple regulators affect exon inclusion and/or the poly(A) site usage (Fig. 4). Once again,

thanks to the sliding window approach of MAPP we found that distinct regulators differ not

only in their role (which for most of the individual RBPs seem to be the same in the two

processes, i.e. to either enhance or repress) but also in their position specificity. For

example, MAPP not only highlighted the opposite effect of two proteins, HNRNPK and

PCBP1, which bind the same ‘CCC’ sequence, on cassette exon inclusion, but also that the

distance range of their impact differs: PCBP1 acts more broadly in the introns flanking the

cassette exon, while HNRNPK acts in a more focus manner, at the exon-intron boundaries.

Of course, a knock-down is an artificial condition, while within tissues multiple RBPs likely

vary in concentration in a concerted manner, leading to more complex patterns of regulation

of mRNA maturation 33. Nevertheless, understanding the impact of individual RBPs based on

individual knock-down experiments will facilitate the interpretation of their effect in tissue

context.

Other groups have investigated binding site location-dependent effects of RBPs, specifically

proposing the concept of “RNA maps” 34, which summarize the density of RBP binding sites

in the vicinity of various types of landmarks (exon and transcript boundaries), where RBP

exert regulatory roles. For instance, binding of the Nova RBP upstream of a cassette exon is

associated with the skipping of that exon, while the binding downstream of the cassette exon

is associated with the exon inclusion. The impact maps that MAPP constructs provide
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complementary information. They do not rely on direct information about the location of the

binding site of the RBP (usually obtained with CLIP), nor on specific thresholds for defining

regulated events such as exon inclusions. Rather, MAPP makes use of the quantitative

information in the inclusion level of each exon or PAS as well as in the number of predicted

binding sites in the vicinity of these exons. As a result, MAPP provides quantitative

information about the impact of motifs on RNA processing, circumventing issues regarding

the coverage of the binding sites by CLIP in targets with different levels of expression. Also

interesting to note is the increasing use of massively parallel assays for exploring the

dependence of RNA processing on specific motifs 35. These provide information more

analogous to MAPP’s impact maps, but are limited to a small number of conditions, a small

number of targets and regions within these targets, and have been so far used to

characterize general principles of RNA processing. In contrast, MAPP’s utility comes

primarily in exploring a broad range of conditions and identifying condition/tissue-specific

regulators. Finally, deep learning models have also started to be used to explain patterns of

RNA processing 36,37. The aim of these approaches is generally to predict the occurrence of

specific events (e.g. the level of exon inclusion) in different samples. This is different from

MAPP’s aim of inferring regulators of these processes. Thus, MAPP extends the RNA

biologist’s toolbox to enable the functional characterization of RBP-RNA interactions at an

increasing level of detail.

In conclusion we developed a powerful computational approach to identify regulators of

splicing and 3’ end processing, which are frequently coordinated. MAPP has been

developed using modern principles of software engineering, facilitating further development

by a broad community of developers.
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Methods

Datasets
We validated our method on publicly available RNA-seq data with perturbed levels of RBPs

with known impact on splicing, and, to some extent, polyadenylation. The full list of samples’

and records’ IDs is included as Supplementary Table S1. Similarly, Supplementary Table S2

lists all RNA-Seq data sets related to RBP knock-downs we have obtained from the

ENCODE project. To apply MAPP we require that samples meet minimal criteria of quality.

For example, we require a sufficiently high Transcript Integrity Number (>50, typically > 70)
38, high proportion of uniquely mapped reads (>0.95), high proportion of high-quality mapped

reads (>0.85; following RNA-SeQC’s documentation: proportion of properly paired reads with less

than 6 mismatched bases and a perfect mapping quality out of all mapped reads), low level of

rRNA contamination (<0.05) and low proportion of reads mapped to intergenic regions (<0.1), as

reported by RNA-SeQC 39. BAM files with mapped RNA-seq reads of normal and tumour

sample pairs from TCGA were obtained from the Genomic Data Commons (GDC) data

portal 40. The selection of normal-tumour pairs from glioblastoma data was done as

described previously 7.

MAPP
MAPP, standing for Motif Activity on Pre-mRNA Processing, enables the identification of

previously unknown RBP binding sites which can explain global patterns of pre-mRNA

processing in a cellular system, including healthy and diseased states. The tool is

implemented as a modular snakemake workflow 41 with distinct standalone sub-workflows

dedicated to separate functionalities. These are: RNA-Seq data preprocessing, selection of

cassette exons, selection of tandem poly(A) sites, quantification of exon inclusion,

quantification of poly(A) site usage, generation of matrices motif counts (PWMs/k-mers) in

each window around each site, MAEI model (splicing), KAPACv2 model (polyadenylation),

and summary of results. Each of these modules is described in more detail in

Supplementary Materials (see Supplementary Methods). We support two distinct software

technologies in order to ensure reproducible research: Conda environments 42 and

Singularity containers 43.
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MAEI

MAEI, which stands for Motif Activity on Exon Inclusion. MAEI is a novel model designed to

infer the positional impact of various short sequence motifs on the differential inclusion of

cassette exons. The input to the model is a quantification of transcript isoform expression

along with the transcript annotation, and the matrix of motif counts in each window around

signals of interest (5’SS, 3’SS). The motifs can either be specified as PWMs or k-mers. We

model the inclusion level of every exon e in every sample s with a logistic function:

where includes the modelΘ
𝑒,𝑠

=  𝑒 𝑧 / (1 +  𝑒 𝑧), 𝑧 = 𝑏 
𝑠
 + 𝑐

𝑒
 + 𝑁

𝑒,𝑚
 *  𝐴

𝑚,𝑠
  

parameters: - the baseline inclusion of all exons in sample s, - the baseline inclusion of𝑏
𝑠

𝑐
𝑒

exon e in all samples and - the ‘activity’ of a motif m in a sample s. denotes the𝐴
𝑚,𝑠

𝑁
𝑒,𝑚

number of binding sites of a motif m in the proximity of exon e, which is either given by the

sum of site probabilities predicted with the PWM or the raw k-mer counts). We further write

down a likelihood to observe exon inclusion fractions in the whole data set as quantified and

fit model parameters with an EM algorithm to obtain their maximum likelihood estimates.

Per-sample motifs’ activities are then transformed to activity z-scores and presented visually

on the impact maps. For motif ranking we implemented two separate strategies, suitable for

distinct types of analyses: average z-score ranking (to identify regulators that act broadly

across samples) and maximum z-score ranking (to identify regulators with strong impact but

potentially in a small number of samples). Please see Supplementary Methods for more

details on the calculations.

As a method of background correction we apply a Gaussian/Uniform mixture model to the

per-sample distribution of activity z-scores and, again, find its maximum likelihood

parameters by an EM method. We then standardize these z-scores by the inferred Gaussian

parameters and transform them into p-values from a standard normal distribution. Statistical

significance is later assessed upon Bonferroni-correction of such obtained p-values. Please

see Supplementary Methods for more details on the procedure.

KAPACv2.0

We have also implemented a generalized version of our previously published KAPAC tool 7.

KAPACv2.0, standing for k-mer activity on polyadenylation site choice version 2.0, models

genome-scale changes in 3’ end usage to infer sequence motifs that can explain differences

between samples. In contrast to its first version, KAPACv2.0 can also use both binding sites

predicted with position-dependent weight matrices (PWMs) as well as k-mer counts. Also,
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while the first version of KAPAC was designed to run on sample contrasts, such as

knockdown versus control, KAPACv2.0 does not require such contrasts but can be applied

to a number of different tissues or a time series. First, we define the relative usage of poly(A)

site p in sample s as . KAPAC models the relative usage of poly(A) sites with respect to𝑢
𝑝,𝑠

the mean of all samples as a linear function of the occurrence of PWM binding sites or k-mer

counts and the unknown ‘activity’ of these PWMs / k-mers:

where is the mean relative usage of the poly(A)𝑙𝑜𝑔
2

𝑢
𝑝,𝑠( ) = 𝑁

𝑝,𝑘
* 𝐴

𝑘,𝑠
+ 𝑐

𝑝
 + 𝑐

𝑠,𝑒
 +  ε, 𝑐

𝑠,𝑒

site from exon e in sample s, is the mean relative usage of poly(A) site p across all𝑐
𝑝

𝑙𝑜𝑔
2

samples, is the number of binding sites (predicted with the PWM or by k-mer counting)𝑁
𝑝,𝑘

around poly(A) site p and ε is the residual error. Finally, is the activity of the PWM / k-mer𝐴
𝑘,𝑠

k in sample s, which determines how much the PWM / k-mer contributes to the relative

usage of the poly(A) site. A detailed inference of the model can be found in ref. 7. KAPACv2

calculates for every PWMs or k-mer, respectively, a z-score z = , whereas are𝐴
𝑘,𝑠

 / σ
𝑘,𝑠

σ
𝑘,𝑠

the fitting errors of the activities . Background correction and ranking of PWMs / k-mers is𝐴
𝑘,𝑠

done as described for the MAEI approach described above.

Curation of PWMs of RBPs binding motifs
ATtRACT is a publicly available database of RNA-binding proteins and associated motifs 44.

On 20 August 2021 we downloaded the set of all available RBP motifs in the format of

position-dependent weight matrices (giving the probability of observing any of the four bases

at each position of the binding site) as well as their corresponding metadata. We first

selected motifs annotated to wild-type Homo sapiens proteins obtained with SELEX method.

We manually removed duplicate records as well as identical motifs associated with distinct

RBPs, as we do not consider them as reliably describing the specificity of individual RBPs.

We further trimmed non-informative positions from both ends of each PWM, leaving only the

‘core’ motif with a non-zero information content per position. We did not include PWMs

whose core was shorter than 4 and longer than 7 nucleotides. Finally, for each PWM we

calculated the total motif entropy and discarded those that were too degenerate (with an

entropy higher than 10). This procedure yielded 344 PWMs for the MAPP analyses.
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Density profiles of RBP-specific binding motifs
To gain additional confidence in MAPP’s inferences, we constructed profiles on motif

densities around 5’SS, 3’SS and poly(A) sites for exons whose inclusion or 3’ end

processing changed most in the respective experiments. We contrasted the motifs of exons

whose inclusion level increased, decreased, or was not affected upon change in expression

of the corresponding RBP. Specifically, for each plot in Figs. 2 and 3 we selected two groups

of the top 200 targets with the highest condition-wise change (in either direction) in

alternative splicing as well as alternative polyadenylation based on the average quantified

exon inclusion fraction and poly(A) site usage, respectively. Additionally we selected a group

of 200 sites with the least change and treated them as a baseline level for motif counts in

non-targets. Then, based on the inferred coordinates of binding sites for respective PWMs

reported by MotEvo 45 in the regions around 3’SS, 5’SS and PAS covered by our sliding

windows, we computed the per-position frequency of occurrence of the motif in the proximity

of sites from each of the three groups. We then displayed these profiles after mean-based

smoothening in the -5/+5nt neighbourhood of each position.

Selection of ENCODE experiments, reported motifs and k-mers
We have downloaded and analyzed RNA-seq samples linked to 472 knock-down

experiments of RBPs, publicly available as a part of the ENCODE project; 16 of these did

not pass the quality-control step as defined in the “Datasets” section. We used the remaining

456 data sets for the analysis shown in Fig. 3. Briefly, each ENCODE experiment has been

analysed with MAPP in both PWM-based and k-mer-based approaches. For each of the

knock-down experiments we selected the ATtRACT PWM associated with the perturbed

RBP for which MAPP found the highest statistically significant impact on any of the signals

(statistical significance annotated with the "abs" strategy, please see Supplementary

Methods) We then noted the ranks of that PWM (among all possible PWMs) in explaining

the usage of 3’SS, 5’SS and PAS. The lowest of these three ranks we called the “PWM rank”

and this is the key by which the results table is sorted in descending order. For only 14

ENCODE experiments we found that the PWM associated with the perturbed RBP had a

rank of maximum 5 (out of 344 curated PWMs). For these, we report the PWM ranks and

their impact maps, as inferred by MAPP. We then checked whether the appropriate motif is

also recovered in the k-mer mode. For this, we selected the k-mer with the highest

statistically significant activity z-score on any of the processing sites (labelled as “1st ranked
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k-mer”) from each experiment. Alongside with the previously described PWM-based results

we report the 1st ranked k-mer and its impact map.

Data availability
The results generated in this study are available in the supplementary data, which are

accessible from Zenodo under doi: https://doi.org/10.5281/zenodo.5789987. The accession

numbers for used datasets are available from Supplementary Tables S1 and S2.

Code availability
The MAPP code is available at https://github.com/gruber-sciencelab/MAPP under the

Apache 2.0 open-source license.
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