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Abstract 

When viewing the actions of others, we not only see patterns of body movements, but we also 

"see" the intentions and social relations of people, enabling us to understand the surrounding 

social environment. Previous research has shown that experienced forensic examiners—Closed 

Circuit Television (CCTV) operators—convey superior performance in identifying and 

predicting hostile intentions from surveillance footages than novices. However, it remains 

largely unknown what visual content CCTV operators actively attend to when viewing 

surveillance footage, and whether CCTV operators develop different strategies for active 

information seeking from what novices do. In this study, we conducted computational analysis 

for the gaze-centered stimuli captured by experienced CCTV operators and novices' eye 

movements when they viewed the same surveillance footage. These analyses examined how low-

level visual features and object-level semantic features contribute to attentive gaze patterns 

associated with the two groups of participants. Low-level image features were extracted by a 

visual saliency model, whereas object-level semantic features were extracted by a deep 

convolutional neural network (DCNN), AlexNet, from gaze-centered regions. We found that 

visual regions attended by CCTV operators versus by novices can be reliably classified by 

patterns of saliency features and DCNN features. Additionally, CCTV operators showed greater 

inter-subject correlation in attending to saliency features and DCNN features than did novices. 

These results suggest that the looking behavior of CCTV operators differs from novices by 

actively attending to different patterns of saliency and semantic features in both low-level and 

high-level visual processing. Expertise in selectively attending to informative features at 

different levels of visual hierarchy may play an important role in facilitating the efficient 

detection of social relationships between agents and the prediction of harmful intentions. 
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Author Summary 

Imagine seeing a person walking toward another person menacingly on the street, we may 

instantly feel that some physical confrontation will happen in the next second. However, it 

remains unclear how we efficiently infer social intentions and outcomes from the observed 

dynamic visual input. To answer this question, CCTV experts, who have years of experience on 

observing social scenes and making online predictions of the action outcomes, provide a unique 

perspective. Here, we collected experts’ and novices’ eye movements when observing different 

action sequences and compared the attended visual information between groups. A saliency 

model was used to compare low-level visual features such as luminance and color, and a deep 

convolutional neural network was used to extract object-level semantic visual features. Our 

findings showed that experts obtained different patterns of low-level and semantic-level features 

in visual processing compared to novices. Thus, the expertise in selectively attending to 

informative features at different levels of visual hierarchy may play an important role in 

facilitating the efficient detection of social relationships between agents and the prediction of 

harmful intentions.  
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1. Introduction 

Viewing the actions of others can reveal the intentions and social relations among people, 

enabling us to understand the social landscape around us. People are adept at perceiving goal-

directed actions and inferring intentions from human actions. In their pioneering work, Heider 

and Simmel (1994) presented video clips showing three simple geometrical shapes moving 

around and asked human observers to describe what they saw. Almost all observers described the 

object movements in an anthropomorphic way, reporting a reliable impression of animacy and 

meaningful social interaction among the geometric shapes displayed in the decontextualized 

animation. However, such laboratory stimuli are limited to capture the wide range of complexity 

in human activities. In the everyday social environment, human behavior often involves 

interactions with multiple people and/or objects and is guided by sophisticated inferences about 

intentionality and social motivation. Although laboratory research using controlled stimuli (e.g., 

Heider-Simmel-type animations) has shed light on the visual processing involved in analyzing 

goal-oriented activities, most work has focused on how low-level visual cues, such as orientation 

and speed, affect social perception (e.g., Gao, McCarthy, & Scholl, 2010; Gao, Newman, & 

Scholl, 2009; McAleer & Pollick, 2008; Shu, Peng, Fan, Lu, & Zhu, 2018). It remains unclear 

how visual features at the perceptual level and semantic features at the conceptual level jointly 

influence how well people infer intentions in complex, real-world interactions. 

We address these questions using real-life interactions recorded in videos of Closed 

Circuit Television (CCTV). The use of CCTV to monitor human activity in natural urban 

environments has become ubiquitous in societies worldwide. These systems typically employ a 

set of cameras deployed around complex urban geography. The videos recorded by the cameras 

are routinely monitored by CCTV human operators in real-time to identify the presence of 
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hostile intentions so as to allow a preemptive response that minimizes the consequences of these 

intentions (Wallace, & Diffley, 1998), as well as to obtain evidence when events do occur. 

Surveillance CCTV videos usually contain a large amount of visual information coupled with the 

high complexity of human activities. Hence, CCTV operators, who have acquired extensive 

experience in the visual analysis of human actions in real-world scenes, likely adopt efficient 

strategies in information processing. Previous studies have compared CCTV operators to novices 

when performing the task of judging harmful intent from CCTV videos. Most studies have found 

group differences between CCTV operators and novices in brain activity and in the ability to 

recognize and predict harmful intention (Gillard et al., 2019; Grant & Williams, 2011; Howard et 

al., 2009; Petrini, McAleer, Neary, Gillard, & Pollick, 2014; but also see Troscianko, Holmes, 

Stillman, Mirmehdi, Wright, & Wilson, 2004). Hence, studying the differences in information 

processing between experienced CCTV operators and novices provides a unique window to 

unveil efficient strategies acquired by human experts through extensive learning. 

What learning-induced processes lead to the differences in neural mechanisms and 

enhanced behavioural performance of CCTV operators for video analysis and intention 

identification? In the perceptual learning literature, there is ample evidence to support learning 

with intensive visual experiences modulating the connection weights between basic visual 

channels and decisions (e.g., Dosher & Lu, 1998), which enable efficient feature selection for a 

trained task. For CCTV operators with years of visual experience in action perception, we 

hypothesize that this extensive experience in viewing surveillance footage likely promotes 

selective processes for visual information by actively attending to different contents in visual 

inputs.  

Humans do not examine the visual environment in a passive manner as does a camera 
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taking pictures; rather, we actively sample the visual input through brief fixations interspersed 

with gaze shifts. During a period of stable fixation, the information at the central gaze is 

analyzed in fine detail using foveal vision. At the same time, peripheral analysis is carried out to 

select the next fixation location for a gaze shift. Recent studies have shown significant 

differences between central and peripheral vision in the analysis of human body movements 

(Thurman & Lu, 2013, 2014), showing that configural cues based on the spatial arrangement of 

joint trajectories dominate visual processing in central vision, whereas local motion and 

orientation cues interact with spatial cues to influence action perception in the periphery. In 

addition, studies investigating surveillance videos have provided evidence that experienced 

CCTV operators, relative to novices, produce different goal-directed eye movement patterns 

when viewing surveillance video, and show greater consistency in eye-movement tracking 

patterns (Howard, Troscianko, Gilchrist, Behera, & Hogg, 2013; Roffo, Cristani, Pollick, Segalin, 

& Vittorrio, 2013). Although these studies have analyzed eye-movement characteristics 

associated with expertise and behavior, it remains unknown what stimulus content in 

surveillance videos drives the active selection of gaze shifts when viewing people's activities 

with the goal of identifying intentions and whether CCTV operators develop different 

information-seeking strategies than novices. 

To understand the difference in visual content attended by CCTV operators versus 

novices, we conducted two computational analyses. These analyses focused on investigating how 

both low-level visual features and object-level semantic features contribute to attentive gaze 

patterns associated with the two groups of participants. The first analysis adopted a saliency 

model (Itti, Koch, & Niebur, 1998) to characterize low-level visual features attended by gaze. 

The saliency model decomposes visual inputs into a set of topographic feature maps, such as 
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motion, luminance, color, texture, and orientation (Treisman & Gelade, 1980). All feature maps 

feed, in a purely bottom-up manner, into a master "saliency map," which topographically codes 

for local conspicuity over the entire visual scene. Different spatial locations then compete for 

saliency within each map, such that only locations which locally stand out from their surround 

can persist. Specifically, the saliency model can compute scores reflecting the degree of gaze-

centered regions capturing bottom-up visual attention in the video frames. 

The second computational analysis applies a deep convolutional neural network (DCNN), 

AlexNet (Krizhevsky, Sutskever, & Hinton, 2012), to extract object-level semantic features from 

gaze-centered regions of visual inputs (Kriegeskorte, 2015). In recent years, DCNNs have 

provided groundbreaking results in a range of visual tasks in which the networks have shown 

comparable performance to human observers (Krizhevsky, Sutskever, & Hinton, 2012). DCNNs 

usually build on a multi-layer architecture. For example, AlexNet contains eight layers (Güçlü & 

van Gerven, 2015; Zeiler & Fergus 2013). This network architecture is consistent with the 

hierarchical structure of the visual system in human brains. The architecture enables DCNNs to 

cope with nonlinearity and complex visual tasks. In addition to having a similar architecture, the 

inner representations of DCNNs have also been found to capture neural similarities in brain 

activities for different visual inputs (Kriegeskorte, Mur, & Ruff, 2008; Cichy, Khosla, Pantazis, 

Torralba, & Oliva, 2016). For example, the later layers of DCNNs have been found to reflect 

neural activities in high-level visual cortex for object recognition (Yamins, Hong, Cadieu, & 

DiCarlo, 2013; Yamins et al., 2014). Hence, activities in later layers (e.g., fully-connected layer) 

of DCNNs appear to capture abstract features crucial to visual knowledge and scene semantics.  

Together, the Saliency model and the DCNN model provide complementary analyses for 

assessing how CCTV operators and novices use various features extracted from different levels 
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of visual hierarchy. If low-level visual saliency cues have a greater impact on capturing attention 

and driving the inference of intentions, we would expect to find a difference in visual saliency 

from the gaze-centered stimulus regions between CCTV operators and novices. On the other 

hand, if CCTV operators differ from novices primarily in the use of semantic features extracted 

by high-level visual processing, the DCNN may be able to capture the group differences. Or 

CCTV operators show differences from novices in the analysis of features at both processing 

levels. In addition, we examine the inter-subject correlation of visual features attended by CCTV 

operators and novices. If the expertise of CCTV operators leads to shared strategies that emerged 

from rich experience in analyzing surveillance footage, we would expect to find greater inter-

subject correlation of visual features attended among CCTV operators than for novices. Finally, 

we examine how different action categories interact with information-processing differences 

between CCTV operators and novices. We hypothesize CCTV operators may be able to extract 

visual information signalling antisocial intentions more efficiently (e.g., actions ending with 

fights or confrontation) while showing less or even no differences from novices for actions 

involving benign intentions. 

 

2. Methods 

2.1 Participants 

 Eleven CCTV operators (3 female, aged 21-53 years, M = 36.3, SD = 10.1) and ten 

novices (2 female, 8 male, aged 28-43 years, M = 33.8, SD = 6.0) were recruited to participate in 

the eye-tracking experiment. The 'operator' participants were all employed to monitor CCTV 

when the experiment was conducted and had an average of 4.5 years of working experience as a 

CCTV operator (SD = 3.0, range 0.4-12 years), and viewed CCTV an average of 10 hours (range 
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8-12 hours) per day. The 'novice' participants were defined as individuals with no CCTV 

surveillance or security experience. The age of the operators and novices were matched 

(independent t-test, t(19) = 0.875, p = 0.392). CCTV operators were recruited from CCTV 

control rooms and user groups. Novices were recruited from the community through 

advertisements.  

 Each participant read and signed a Consent Form that described their participation in the 

experiment and the use of the data collected. All participants were free to leave the study at any 

time. Ethical approval for all phases of the study was obtained from the UK Ministry of Defense 

Research Ethics Committee. Participants were paid for their time and travel expenses to attend 

the experiment at BAE Systems, Advanced Technology Centre, Bristol. 

 

2.2 Stimuli and procedure 

 Videos of street scenes with human actions recorded by CCTV were selected from 

originally over 800 h of CCTV footage obtained of urban scenes in the UK. Four paid research 

assistants with no prior CCTV experience screened the corpus of video material and identified 

CCTV clips that resulted in physical aggression (and therefore included hostile intent), which 

were labeled as the 'Fight' clips. Control scenes were chosen for the 'Confrontation', 'Playful', and 

'Neutral' categories and were matched to the Fight clips in several respects: location, time of day, 

and the number of people in each display. A total of 36 videos were generated for the four action 

categories, with nine videos in each category (for more details, see Petrini, McAleer, Neary, 

Gillard, & Pollick, 2014). Each video lasted 16s with a frame rate of 25 fps, yielding a total of 

400 frames, with the image size of 576 × 480 pixels in a visual angle of 22.5°×19°. The fight 

videos showed 16 sec of aggressive behavior prior to a violent incident. Eye movements were 
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recorded when participants viewed these 36 videos. Eye movement data were collected using an 

ASL Eye-Trace6 system with a sample rate of 50Hz and accuracy approximately 1 degree across 

the visual field. For each participant, we extracted square image patches from each video frame 

with a window size of 75 × 75 pixels centered on a gaze-fixation location in each frame. The size 

gaze-contingent window (approximately 3°× 3°) is larger than the standard estimate of the 

foveola, which is roughly 0.5-1.0° in diameter (Boff & Lincoln, 1988).  We also examined 

different window sizes of 38 × 38 (1.5°× 1.5°)  and 150 × 150 (6°× 6°)  and got similar results. 

Certain video frames had missing eye-tracking data, with an average of 1.1% (i.e., 4.6 frames 

among 400 frames).  

2.3 Computational analyses 

 Two computational models were used to extract visual features from the raw videos of 

surveillance footage: a saliency model and a deep convolutional neural network model. An 

illustration of the procedure is shown in Figure 1. The saliency model was adopted to capture 

low-level image features that attract attentive gaze, and the DCNN model was adopted to capture 

object-level features that capture semantic information in attended visual scenes. For frames with 

missing eye tracking data, blank image patches were extracted and zeros were used for 

computational models.  

[Fig 1] 

Figure 1: Procedures for feature extraction and comparison. A square image patch centered on 
coordinates of fixations was extracted from each image frame and these were fed into models as 
input. The saliency model extracted saliency features, which were used to derive a saliency index 
to compare across groups. The extracted saliency features were also entered into an elastic net 
regression model for decoding CCTV operators from novices. The AlexNet extracted fully-
connected layer features as inputs for entry to an elastic net regression model for the decoding 
purpose. Inter-subject correlation (ISC) indices based on saliency features and DCNN features 
were compared between groups. Note, the blurred image frame was selected for demonstration 
and was not from the real experimental materials. 
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2.3.1 Saliency model and saliency index 

 We adopted the saliency model by Itti and colleagues (Itti, Koch, & Niebur, 1998) to 

analyze the influences of low-level visual cues on gaze patterns. The saliency model processes 

visual input in a bottom-up manner and does not capture high-level visual features associated 

with objects or people. As shown in Figure 2, image features were extracted from each image 

frame through six processing channels: luminance, color (red-green and yellow-blue), orientation, 

texture, and motion. Luminance and color maps were calculated based on the Derrington-

Krauskopf-Lennie (DKL) color space (Derrington, Krauskopf, & Lennie, 1984) using long, 

medium, and short cone response filters. Luminance maps were computed as the sum of long and 

medium cone responses. Colors were defined as the difference between long and medium for the 

red-green colormap and (Long + Medium) - Short for the yellow-blue colormap. The orientation 

map was created by applying a series of Gabor filters to the grayscale image to detects line-

segment edges. The texture map was created by applying a series of Laplacian of Gaussian (LoG, 

or Mexican hat) filters of different spatial sizes proportional to the grayscale image size. The 

optical flow map was estimated using an orientation tensor (Farnebäck, 2000), which processes 

the current and the previous image frame to detect shifts in location of each pixel in temporally 

neighboring frames. Only vector magnitude was used to represent optical flow magnitudes (i.e., 

motion speed) without the consideration of motion directions.  

 

[Fig 2] 

Figure 2: Image features were extracted from each image frame through six processing 
channels in the saliency model. Note, the image frame was selected for demonstration and was 
not from the real experimental materials. 
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For each image frame, a pyramid stack was created for each feature channel that included 

the original size of the source image patch (75 × 75 pixels), half size, quarter size, and eighth 

size scales of the image. Gaussian blur was applied before each downsampling operation. 

Pyramids achieved the result of increasing the receptive field during the activation step. A 

center-surround activation step was implemented as a combination of Laplacian-Gaussian 

convolution and Gaussian blur, and was applied to each map iteratively for a total of five passes 

of the convolution kernels. All convolution kernels used to extract feature maps during activation 

were applied to the source image. A temporal buffer of the pyramid stacks was created to keep 

track of the previous two frames and the current frame. The buffer was used to record previous 

feature channel weights and final saliency maps, acting as a weighted memory for past salient 

regions. For each new frame, past saliency images were weighted by half of their current values. 

After extracting and processing the pyramid stacks, feature maps have different value 

ranges. The normalization step obtains a common scale across all feature maps so that they can 

later be combined into a single saliency map. For normalization, each feature map within a 

pyramid stack was scanned to enhance the contrast between salient and non-salient regions. The 

sum of feature values for the salient regions was used to compute normalization factors to be 

applied to the set of feature maps. The normalization factors for the current source image were 

weighted by the normalization factors stored in the temporal buffer, and the current maps were 

then scaled according to the weighted normalization factors. The weighted normalization factors 

used for subsequent analysis were exported for each image frame to assess the relative 

contribution of each feature channel. 

To calculate the final saliency map for an image frame, first, the feature maps were 

compressed into a single map by summing across pyramid levels for each channel and dividing 
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by the size of a pyramid stack, yielding an intermediate saliency map for each feature channel. 

Secondly, the intermediate saliency maps per feature channel were summed to create a single 

saliency map for the current image frame. The saliency map for the current image frame was 

then combined with the weight-decayed saliency maps from previous two frames and the current 

frame in the temporal buffer to obtain a final saliency map. Lastly, the final map was processed 

with a logistic activation function that increases the contrast between salient and non-salient 

regions, which was also exported for analysis. Using the final saliency maps from a sequence of 

image frames, a saliency index was calculated by computing the average saliency values within a 

gaze-centered region in the saliency maps.  

 

2.3.2 Saliency analysis 

To examine whether CCTV operators and novices’ gaze patterns are impacted differently 

by low-level saliency cues, we conducted repeated-measures ANOVAs for each action category 

to examine the group difference between CCTV operators and novices on the saliency index and 

the six feature dimensions. We hypothesize that if the visual contents attended by CCTV 

operators in their gaze fixations differ from the visual information captured by novices in terms 

of salient low-level features (e.g., luminance or motion features), we would expect to observe a 

group difference between the two groups of participants in the saliency index obtained from 

gaze-centered regions derived from their eye movement patterns.  

Additionally, we concatenated six saliency features to form a multidimensional saliency 

vector to train a machine learning classifier based on elastic net regularization (Tibshirani, 1996; 

Zou & Hastie, 2005). The classifier was trained to differentiate CCTV operators and novices 

based on the attended low-level saliency information. Specifically, the concatenated feature 
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vectors were entered as predictors to the generalized linear model (GLM) to classify CCTV 

operators and novices. The classifier used the elastic net regularization to favor the selection of a 

small number of important features that help predict the class labels. The elastic net 

regularization has a free parameter, α, controlling the weight between a lasso (L1) and a ridge 

(L2) regularization. We set an alpha value of 1 to favor a smaller number of features. We also 

used a parameter value of 0.9 and 0.8 that yielded similar results. The model was trained in a 

leave-one-out manner with 21 iterations. Specifically in each iteration, 20 participants were 

randomly selected for training, and the remaining one participant was used for testing to let the 

classifier determine whether this testing participant was a CCTV operator or a novice. 

Classification accuracy was averaged across all 21 iterations. 

To reflect the online processing with cumulative information over time, for each video, 

features were concatenated across a set of non-overlapping cumulative temporal windows with a 

step-size of 50 frames (i.e., concatenating features of frames 1 to 50, frames 51 to 100, …, and 

frames 351 to 400), yielding eight chunks of feature vectors. Using cumulative frames by 

concatenation takes into consideration the temporal dependency in action videos. We explored a 

set of temporal cumulation windows because critical events occurred at different time points for 

different surveillance footage. 

Since the most informative signal that differentiates CCTV operators and novices may 

emerge at different time points, the maximum classification accuracy over temporal cumulation 

windows was used for each video as the decoding accuracy of the classifier. For example, for 

confrontation video No.1, the maximum classification accuracy may arise from early frames of 

the video with cumulating frames 1-50, while confrontation video No. 2 may reveal the 

maximum classification accuracy from a different temporal window of frames 51-100. If 
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operators and novices attended to systematically different low-level features captured through 

the saliency model, we would expect that the classifier should show above chance-level accuracy 

in differentiating operators and novices. Furthermore, if attentive features were influenced by the 

nature of intention underlying the observed actions, the classifier accuracy may vary depending 

on the presence or absence of harmful intentions. Bonferroni multiple-comparison correction was 

applied to the statistical testing of decoding accuracy.  

Furthermore, to examine whether operators or novices consistently attend to information 

with high saliency, inter-subject correlations were calculated for the operator group and the 

novice group separately. For image patches centered at gaze fixations in each frame, a saliency 

vector was extracted from all six feature maps. To transform features onto a common scale and 

remove outliers, z-score normalization was applied for each feature channel across all videos and 

subjects. The similarity of gaze-centered saliency between a pair of participants was computed as 

the correlation of concatenated saliency vectors over time for each video (i.e., each video yields a 

2400-element-long vector coming from 6 features of 400 frames). Higher similarity values 

indicate that two participants attended to regions with a similar degree of visual saliency. For 

each video, the inter-subject correlation (ISC) was defined as the average similarity value across 

all pairs of participants within the operator group and within the novice group. 

 

2.3.3 Deep convolutional neural network model and analysis 

 In the DCNN analysis, due to the high similarity of objects involved in consecutive 

frames, one frame out of every ten frames was sampled as inputs into models. Thus, the original 

400 frames of surveillance footage were downsampled to 40 frames to reduce computational 

demands. To investigate the group difference on a semantic level, we adopted a pre-trained 
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DCNN, AlexNet, to extract object-level features. AlexNet contains five convolutional layers and 

three fully connected layers. For each image patch centered at the gaze fixation, we extracted the 

activations from the penultimate layer, fully connected layer 7 (FC7, containing 1*4096 units), a 

layer just before the decision layer for object categorization in AlexNet. For each video (36 

videos in total), features of image patches centered on fixations were extracted from the 

penultimate layer (i.e., FC7) of AlexNet. Each gaze-centered image patch yields a feature vector 

in a size of 1 by 4096. Similar to the analysis approach used for the saliency model, to reflect the 

online processing with cumulative information over time, for each video, features were 

concatenated across a set of cumulative frame windows with a step-size of 5 frames (i.e., 

concatenating features of frames 1 to 5, frames 6 to 10, …, and frames 36 to 40). Because the 

DCNN features were downsampled by a factor of 10, current windows with 5 frames match what 

was used for the saliency model. The classifier with elastic net regularization was applied on the 

DCNN features to differentiate visual information attended by CCTV operators and novices. 

Training and testing procedures were the same as the classifier with saliency features. If 

operators and novices attended to systematically different object-level features captured through 

the DCNN model, we would expect the classifier to show the above chance-level accuracy in 

differentiating operators and novices.  

Similar to the saliency analysis, to examine whether operators or novices consistently 

attend to object-level information extracted by DCNN, inter-subject correlations were calculated 

for the operator group and the novice group separately. First, FC7 features of all gaze-centered 

image regions were concatenated across time by video. ISC was calculated as the correlation 

coefficients of concatenated feature vectors between pairs of operators, or between pairs of 

novice participants. This procedure was repeated for each of the 36 videos, respectively. 
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3. Results 

3.1 Saliency analyses 

3.1.1 Saliency indices of CCTV operators and novices 

Figure 3 depicts the saliency index for image patches in the gaze fixation areas as a function of 

video time for the two groups of participants, CCTV operators and novices. Mixed ANOVA 

models with participant group as a between-subjects factor and time as a within-subjects factor 

were conducted on the saliency index for each of the four action categories. For all four types of 

actions, we found significant main effects of time (Fight, F(7,13) = 12.30, p < .001, ηp
2 = .869; 

Confrontation, F(7,13) = 69.33, p < .001, ηp
2 = .974; Playful, F(7,13) = 33.18, p < .001, 

ηp
2 = .947; Neutral, F(7,13) = 8.50, p = .001, ηp

2 = .821). This result suggests that visual saliency 

changes dynamically across video frames, which is consistent with the complex nature of visual 

contents in the surveillance footages. However, no action type showed a main effect of 

participant group, revealing that image patches attended by CCTV operators and novices do not 

show significant differences in terms of visual saliency (Fight, F(1,19) = 2.07, p = .166, 

ηp
2 = .098; Confrontation, F(1,19) = .949, p = .342, ηp

2 = .048; Playful, F(1,19) = 2.77, p = .113, 

ηp
2 = .127; Neutral, F(1,19) = 0.087, p = .771, ηp

2 = .005). The lack of group difference in the 

saliency index of gaze-centered regions suggests that low-level visual saliency is not a strong cue 

to differentiate the information used by CCTV operators from that used by novices. The two-way 

interaction effect between time and participant groups was not significant for any of the action 

types (Fight, F(7,13) = 1.60, p = .221, ηp
2 = .462; Confrontation, F(7,13) = .615, p = .735, 

ηp
2 = .249; Playful, F(7,13) = .433, p = .865, ηp

2 = .189; Neutral, F(7,13) = .925, p = .518, 

ηp
2 = .333). 
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 To examine the robustness of the results and to make sure the effects were not driven by 

a difference in the proportion of missing frames between operators and novices, we reran the 

analysis after removing missing frames. Similar results were found for all four action categories. 

For all four types of actions, we found significant main effects of time (ps < .001), but neither the 

main effect of participant group or the two-way interaction effect between time and participant 

groups were significant (p > 0.05). 

 

[Fig 3] 

Figure 3: Saliency indices of the operator and novice groups over time for four types of actions. 
Each data point corresponds to the averaged saliency index every 2 seconds. Shaded areas 
indicate standard error. 
 

 
3.1.2 Saliency feature decoding of CCTV operators and novices 

We next conducted a multivariate classification analysis to investigate whether CCTV 

operators and novices could be decoded based on patterns of saliency features. Saliency feature 

vectors were concatenated across frames and were used to train classifiers to recognize visual 

information attended by operators or by novices. As shown in Figure 4a, all four actions reached 

decoding accuracy that was significantly greater than the chance level 0.5. Four one-sample t-

tests were carried out and each tested against a Bonferroni-adjusted alpha level of 0.00625 

(0.05/8 for eight time chunks). Fight videos reached the highest averaged classification accuracy 

(M = 0.70, SD = 0.09) (t(8) = 6.92, p < 0.001), but was not significantly different from other 

action categories (Confrontation, M = 0.67, SD = 0.05, t(8) = 9.39, p < 0.001; Playful, M = 

0.68, SD = 0.10, t(8) = 5.28, p < 0.001; Neutral, M = 0.70, SD = 0.10, t(8) = 5.59, p < 0.001). 

We also reran the analysis after removing videos with more than 10% of missing eye-tracking 
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data. Similar decoding results were found for all four action categories (Fight, M = 0.67, SD = 

0.14,  p = 0.007; Confrontation, M = 0.68, SD = 0.09, p < 0.001; Playful, M = 0.70, SD = 0.14, 

p = 0.002; Neutral, M = 0.63, SD = 0.08, p = 0.001). 

To examine the contribution of six saliency features in the decoding algorithm, we 

calculated the proportion of features being selected by the elastic net regression model. As 

shown in Figure 4b, optical-flow motion information was the most frequently selected feature to 

differentiate operators from novices (M = 0.25, SD= 0.005), followed by texture (M = 0.18, SD= 

0.003), orientation (M = 0.16, SD= 0.004), luminance (M = 0.16, SD= 0.003), and yellow-blue 

color (M = 0.15, SD = 0.003).  

 

[Fig 4] 

Figure 4: (a) Decoding accuracy based on saliency features of discriminating CCTV operators 
from novices. Error bars indicate SDs of accuracy from leave-one-out iterations. Asterisks 
indicate significantly greater than the chance level tested against a Bonferroni corrected alpha 
level. (b) Proportions of saliency features selected in the elastic net regression decoding analysis. 
From left to right, the six feature dimensions represent luminance, red-green color, yellow-blue 
color, orientation, texture, and optical-flow motion information. Error bars indicate SEs of 
CCTV operators and novices. Asterisks indicate significant differences between feature 
dimensions. 
 
 
3.1.3 Inter-subject correlation (ISC) of saliency index 

To examine whether operators or novices consistently attend to information with high saliency, 

inter-subject correlations were calculated for the operator group and the novice group separately. 

Saliency ISC of each action category within the groups are shown in Fig 5a. A repeated-measure 

ANOVA was conducted with groups and action categories as within- and between-subject 

factors. The ANOVA showed a significant main effect of the participant group, F(1,32) = 9.38, p 

= 0.004, ηp
2 = .227, resulting from greater inter-subject correlation among experienced operators 
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than among the novice group. The main effect of action categories was not significant, F(1,3) = 

1.86, p = 0.157, ηp
2 = .148. The two-way interaction between groups and action categories was 

not significant, F(3,32) = 0.31, p = 0.822, ηp
2 = .028. To further understand the main effect of 

group, the ISC of each action category was then compared between operators and novices. 

Playful actions showed a significant simple main effect of group difference, F(1,32) = 4.30, p = 

0.046 , ηp
2 = .118. None of the other three action categories reached a significant group 

difference on the ISC of saliency index (Fight, F(1,32) = 1.15, p = .292, ηp
2 = .035; 

Confrontation, F(1,32) = 3.77, p = .061, ηp
2 = .105; Neutral, F(1,32) = 1.08, p = .307, ηp

2 = .033). 

To examine the robustness of the results, we reran the analysis with missing data removed. 

Videos clips with more than 10% of the data points missing were removed from analysis. Similar 

results were found as above after removing missing data. The main effect of the participant 

group was significant (p = 0.011), showing greater saliency ISC among experts than novices. 

The main effect of action categories (p = 0.810) and two-way interaction between groups and 

action categories was not significant (p = 0.328). 

 

Additionally, to examine how the group difference on the consistency in attending 

saliency features emerges over time, we examined the dynamic change of ISC for every two 

seconds in time, yielding eight frame time chunks. Saliency ISC of CCTV operators were 

compared to novices at each time point. As shown in Fig. 5b, none of the group differences 

survived Bonferroni correction (Bonferroni-adjusted alpha level = 0.00625), except that a 

marginally significant effect (p = 0.009) was found in the window between 10 to 12s.  
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[Fig 5] 

Figure 5: Saliency inter-subject correlation (ISC) results. (a) Saliency ISC of each action 
category within the CCTV operator group and within the novice group, calculated by averaging 
pairwise correlations of saliency features concatenated over time for each video. Error bars 
indicate SEs across videos in each action category. (b) Saliency ISC integrated within every 2s 
time windows for CCTV operators and novices. Shaded areas indicate SEs. 

 

3.2 DCNN feature analysis 

3.2.1 DCNN decoding of CCTV operators and novices 

Features extracted from DCNN were used to train a classifier to recognize visual 

information attended by operators or by novices. One sample t-tests were carried out for each 

action category and tested against a Bonferroni-adjusted alpha level of 0.00625 (0.05/8 for eight 

time chunks and 4 action categories included in the analysis). As shown in Fig. 6, all except 

neutral actions reached a classification accuracy that was significantly above the chance level 

(i.e. 50%) (Fight: M = 0.71, SD = 0.10, t(8) = 6.49, p < 0.001; Confrontation: M = 0.74, SD = 

0.09, t(8) = 7.90, p < 0.001; Playful: M = 0.71, SD = 0.15, t(8) = 4.25, p = 0.003; Neutral: M = 

0.67, SD = 0.14, t(8) = 3.589, p = 0.007). We also examined the robustness of the decoding 

results by removing two subjects whose gaze sequences yielded excessive missing data. The 

decoding results with 19 subjects showed similar results as before. However, only fighting 

actions reached a significant classification accuracy (M = 0.70, SD = 0.10, p < 0.001), surviving 

a Bonferroni-adjusted alpha level, where as other action categories did not survive the multiple 

comparison correction (Confrontation: M = 0.67, SD = 0.15, p = 0.009; Playful: M = 0.60, SD = 

0.10, p = 0.024; Neutral: M = 0.65, SD = 0.14, p = 0.013). 

These results suggest that the DCNN features for gaze-centered regions were able to 

classify CCTV operators from novices for actions governed by potentially harmful intentions, 

especially for fighting actions where physical violence ensued after completion of the clip. In 
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contrast, for actions with less clear intentions in the neutral condition, the decoding based on 

DCNN features was weak as the accuracy did not survive multiple-comparison correction. 

 

[Fig 6] 

Figure 6: Decoding accuracy based on fully-connected layer CNN features on discriminating 
CCTV operators from novices. Fight, confrontation, and playful action categories yielded above-
chance decoding accuracy after Bonferroni correction. Error bars indicate SEs of accuracy from 
leave-one-out iterations. Asterisks indicate significantly greater than chance level tested against 
a Bonferroni corrected alpha level. 
 

3.2.2 Inter-subject correlation of DCNN features 

 
 To examine whether operators show more consistency in attending to similar DCNN 

features than novices, we conducted inter-subject correlation analysis. As shown in Fig. 7a, using 

DCNN features, ISCs averaged across nine videos in each action category were compared 

between CCTV operators and novices. A repeated-measure ANOVA showed a significant main 

effect of the participant group, F(1,32) = 26.26, p < 0.001,ηp
2 = 1.0, resulting from higher inter-

subject correlation among experienced operators than among the novice group. The main effect 

of action categories was not significant, F(1,3) = 2.31, p = 0.095, ηp
2 = .53. The two-way 

interaction between groups and action categories was not significant, F(3,32) = 1.56, p = 0.219, 

ηp
2 = .37. To test the robustness of the inter-subject correlation of DCNN features, we removed 

gaze sequence data with more than 10% of missing data and got similar results as before. 

To examine how the group difference on the consistency in attending DCNN features 

emerges over time, we further examined the dynamic change of ISC for every two seconds in 

time, yielding eight time chunks. As shown in Fig. 7b, CCTV operators and novices showed 

significant group differences both at the very beginning of videos (i.e., 0-2s after video onsets, p 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 11, 2022. ; https://doi.org/10.1101/2022.01.09.475588doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.09.475588


 23

< .001, tested against a Bonferroni-adjusted alpha level = 0.00625) and during the latter half of 

video displays (i.e., from 8 s to 10 s, p = .002, and from 10 s to 12 s, p = .004, after video onsets). 

The p values for 6 s to 8 s (p = 0.018) 10 s to 12 s (p = 0.019) were less than 0.05 but did not 

survive the Bonferroni-adjusted alpha level. This indicates that CCTV operators showed more 

consistency in attending DCNN features than novices even at the onset of videos. This result 

suggests that operators may share some potential strategies to capture certain high-level semantic 

information about surveillance footages at the beginning of videos. Additionally, this result 

indicates that experienced operators showed greater consistency when attending to information 

with semantic features captured by DCNN model for an important time period later in the videos, 

which is critical for the recognition and prediction of intentions and potentially harmful 

behaviors. 

 

[Fig 7] 

Figure 7: DCNN ISC results. (a) DCNN ISC of each action category as calculated by averaging 
pairwise correlations of DCNN FC7 features concatenated over time within the CCTV operator 
group or within the novice group. Error bars indicate SEs across videos in each action category. 
(b) Group differences in DCNN ISC over time. Shaded areas indicate SEs. Asterisks indicate 
significant group difference tested against a Bonferroni corrected alpha level. 
 

4. Discussion 

The current study adopted a saliency model and a DCNN model to examine the impact of 

low- and high-level visual information attended in gaze patterns of experienced CCTV operators 

and novices when viewing the same surveillance footage with and without harmful intentions. 

For the low-level visual cues extracted by the saliency model, we did not find group-level 

differences in saliency indices, but classifiers based on patterns of saliency features of gaze-

centered regions distinguished CCTV operators from the novices. In particular, optical-flow 
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motion information contributed the most to the classification of the two participant groups. We 

also found a group difference in the ISC of saliency, showing greater consistency of using 

saliency information among CCTV operators. The saliency findings suggest that CCTV 

operators did not simply attend to regions with greater visual saliency as the overall saliency 

indices did not show group differences between CCTV operators and novices. However, 

operators attended to salient regions with a greater inter-subject correlation over time in 

comparison to novices, and also employed shared strategies to focus on certain patterns of visual 

salient cues (e.g., certain motion patterns) that likely facilitated intention inference and 

prediction. For the object-level features extracted by the DCNN model, we were also able to 

distinguish the gaze patterns of the CCTV operators from the novices using DCNN features, 

which contain high-level object-relevant information that reflects semantic representations of 

entities in visual scenes. Interestingly, the decoding performance of all action categories except 

neutral actions was significantly greater than chance level. This may suggest that DCNN features 

best distinguish CCTV operators from novices for actions with specific intentions, including 

fighting, confrontation, and playful events, but less well for actions with unclear intentions in the 

neutral condition. Additionally, CCTV operators showed higher inter-subject correlation in using 

similar DCNN features than novices, suggesting more similar information-seeking behavior by 

consistent eye movement patterns among operators when predicting potentially harmful 

interaction outcomes. 

Here, we reliably decoded groups based on both patterns of low-level saliency features and 

patterns of object-relevant semantic features extracted by DCNN. These results may suggest that 

extensive experience of monitoring surveillance footages induces strategies in attending to 

different patterns of saliency and semantic features toward goal-directed actions. For example, 
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Howard et al. (2010) found that individuals with more experience watching football matches 

made eye movements to goal-relevant areas of the scene earlier than non-experts. In a meta-

analysis by Gegenfurtner et al. (2011), effects of expertise were robustly associated with an 

increased frequency of fixations on goal-relevant information and reduced latencies for first 

fixations on these areas. From the decoding of saliency features, we found that the most 

frequently used feature that distinguishes CCTV operators and novices was motion cues, which 

may result from efficient processing of human actions in experts. The enhanced attention to goal-

relevant information (and consequently, reduced attention to irrelevant information) may underly 

the effect of expertise in a variety of visual tasks (Haider and Frensch, 1996). The impact of 

expertise on attentive features is not limited to monitoring surveillance footages, but was also 

revealed in art expertise (Koide, Kubo, Nishida, Shibata, & Ikeda, 2015), where the authors 

found that artists may extract visual information from paintings based on features such as 

textures and composition of colors, driven by artists’ deep aesthetic appreciation of paintings. 

The higher inter-subject correlation among operators in attending to saliency features and 

DCNN features is consistent with previous findings about expertise in processing surveillance 

footages. For example, Howard et al. (2013) found that when monitoring a single scene to detect 

potentially suspicious events, trained CCTV operators showed greater consistency in fixation 

location by "knowing what to look for" compared to novices. Using the same dataset as the 

current study, Roffo et al. (2013) found that expert operators are more likely to focus on a small 

number of interesting regions, sampling them with high frequency. A neuroimaging study, using  

CCTV video stimuli that have some overlap with the current stimuli, also provided converging 

evidence by demonstrating that a different sample of CCTV operators show increased 

synchronization of neural responses in certain regions of the brain (i.e., bilateral anterior superior 
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temporal gyrus, left middle temporal gyrus, left ventral striatum, and left inferior parietal lobule) 

than do novices (Petrini et al., 2014).  

The current findings provide insight regarding what visual information is selectively attended 

by CCTV operators to detect harmful intentions. Previous magnetoencephalography (MEG) 

study showed that the recognition of human social interactions might involve different visual 

mechanisms than simple feedforward pattern recognition (Isik, Mynick, Pantazis, & Kanwisher, 

2020). The authors found that different types of human social interactions can be decoded at 

around 500 ms after the onset of videos, which is substantially later than visual processing of 

objects, faces, emotions, gestures, and actions. For example, object pattern recognition can be 

decoded within 100 ms of the image onset (e.g., Carlson et al., 2013; Isik et al., 2014). Face 

perception elicits the signature N170 response at around 170 ms after face image onset (Bentin, 

Allison, Puce, Perez, & McCarthy, 1996), while many facial properties such as age, gender, and 

identity can be decoded even earlier (Dobs, Isik, Pantazis, & Kanwisher, 2018). Communicative 

gestures (Redcay & Carlson, 2015) and single-person actions can be decoded as early as 200 ms 

(Isik, Tacchetti, & Poggio, 2018). Thus, unlike visual processes of static visual patterns or 

single-agent movements, the inference of intentions from human social interactions may involve 

the recognition of high-level semantics and relational reasoning that go beyond visual pattern 

recognition.  

A few limitations should be addressed in future studies. The fully connected layer of DCNN 

takes increasingly complex visual feature patterns extracted by a sequence of convolutional 

layers and develops invariant representations of objects that resemble the inferior temporal (IT) 

cortex (e.g., Yamins et al., 2014; Cichy, Khosla, Pantazis, Torralba, & Oliva, 2016). However, 

even though the AlexNet model was pre-trained to recognize 1000 object categories, it does not 
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contain all the entities often encountered in surveillance footages. This limitation may restrain 

the formation of efficient representations of agents and objects, which are necessary to build up 

high-level semantic representation for intention inference. Future studies with DCNNs that are 

more specialized in video understanding and scene analysis may further advance the probe of 

high-level semantic information contributing the expert’s recognition of intentions in social 

interactions. For example, the two-stream CNN (Simonyan & Zisserman, 2014) inspired by the 

two-stream processing of biological motion perception in the brain provided a qualitative 

account of some behavioral results observed in human biological motion perception (Peng, Lee, 

Shu, & Lu, 2020) and may be used in future investigations.  

Together, the current study combines eye movement data with computational analysis to 

reveal the impact of intensive training with surveillance footage on the visual processing of 

human interactions from a unique perspective. The results from the two computational analyses 

indicate that CCTV experience facilitates the detection and recognition of intention from natural 

videos via actively processing low-level visual saliency and object-level semantic information. 

Novices may be momentarily distracted by unimportant visual cues that do not necessarily 

inform the upcoming social outcomes. In contrast, CCTV operators may consistently and 

strategically direct the selective attention toward visual regions revealing goal-relevant 

semantics, such as a person walking toward a group of people who may end up joining the fight. 

Indeed, part of CCTV training includes developing awareness for a whole scene to acquire 

evidence about all relevant people and objects (Walker, Tyerman & Porter, 2021).  The current 

results not only shed light on how extensive experience shapes up visual processing of complex 

stimuli in biological systems, but also illustrate the promise of using computational models to 

analyze visual information attended by different groups of participants. Furthermore, our 
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findings imply that computer vision algorithms that incorporate both visual pattern recognition in 

images and semantic encoding of the inter-person relationship at the abstract level may advance 

the ability of AI in inferring social intentions and making predictions on harmful outcomes. 
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