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One Sentence Summary: Collagen XVIII is upregulated in breast cancer and promotes 

mammary carcinogenesis through EGFR/ErbB signaling and by sustaining cancer stem cells, so 

that its targeting improves the efficacy of ErbB-targeted therapies.  
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Abstract:  

The tumor extracellular matrix (ECM) is a critical regulator of cancer progression and metastasis, 

significantly affecting the treatment response. Expression of collagen XVIII (ColXVIII), a 

ubiquitous component of basement membranes, is induced in many solid tumors, but its 

involvement in tumorigenesis has remained elusive. We show here that ColXVIII is markedly 

upregulated in human breast cancer (BC) cells and is closely associated with a poor prognosis in 

high-grade BC, especially in human epidermal growth factor receptor 2 (HER2)-positive and 

basal/triple-negative cases. We identified a novel mechanism of action for ColXVIII as a 

modulator of epidermal growth factor receptor (EGFR/ErbB) signaling and show that it forms a 

complex with EGFR, HER2 and 6 integrin to promote cancer cell proliferation in a pathway 

involving its N-terminal portion and the MAPK/ERK1/2 and PI3K/Akt cascades. In vivo studies 

with Col18a1 mouse models crossed with the MMTV-PyMT mammary carcinogenesis model 

showed that the short ColXVIII isoform promotes BC growth and metastasis in a tumor cell-

autonomous manner. Moreover, the number of mammary cancer stem cells was significantly 

reduced in both mouse and human cell models upon ColXVIII inhibition. Finally, ablation of 

ColXVIII in human BC cells and the MMTV-PyMT model substantially improved the efficacy of 

certain EGFR/ERbB-targeting therapies, even abolishing resistance to EGFR/ErbB inhibitors in 

some cell lines. In summary, a new function is revealed for ColXVIII in sustaining the stemness 

properties of BC cells, and tumor progression and metastasis through EGFR/ErbB signaling, 

suggesting that targeting ColXVIII in the tumor milieu may have significant therapeutic potential.  
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Main Text: 

INTRODUCTION 

Breast cancer (BC) is the most common cancer among women, with over two million new cases 

diagnosed in 2020, and accounts for 25% of all female cancers (1). Treatment options depend on 

the type and course of the disease, and on hormone and human growth factor receptor 2 (HER2) 

status, mutations, proliferation index and differentiation score (2). Hence, BC patients are treated 

with different combinations of surgery, radiation, chemotherapy and endocrine therapy, as well as 

with targeted immuno- or small molecule therapies. Despite significant advances in BC care, over 

0.6 million women die of BC annually, it accounts for 7% of all female cancer deaths, and the 5-

year recurrence rate for all BC cases is around 10% (1, 3).   

A major challenge in cancer treatment is intrinsic or acquired drug resistance, which is 

responsible for most of the relapses that occur after an initially favorable response to treatment (4, 

5). For example, approximately 70% of advanced BCs overexpressing the human epidermal 

growth factor receptor 2 (HER2) develop resistance to trastuzumab, a monoclonal antibody (mAB) 

targeting HER2, and progress to metastatic disease. Many patients also become resistant to 

lapatinib, a small-molecule tyrosine kinase inhibitor of HER2, and to epidermal growth factor 

receptor 1 (EGFR) (6, 7). In addition, residual disease in the breast or lymph nodes after 

neoadjuvant chemotherapy may carry a high risk of recurrence in patients who present with early-

stage triple-negative BC (TNBC), and no targeted molecular therapies are available for this 

subtype (8, 9).  

While genetic alterations in cells predispose to, initiate and drive malignancy, cancer 

progression is enabled by a dysregulated tumor microenvironment (TME), comprising different 

types of stromal cells together with the extracellular matrix (ECM) (10, 11). Both tumor and 

stromal cells actively produce ECM proteins and ECM-modifying enzymes to remodel the TME, 

which then promotes the growth of cancer cells and their invasion into the surrounding tissue and 

beyond (12, 13). Moreover, biological and mechanical cues from the ECM support the acquisition 

of cancer stem cell (CSC) properties by somatic tumor cells, thus favoring continuous tumor 

growth and the development of drug resistances and eventually disease relapse (14, 15). Our recent 

analysis has shown that the expression of a variety of ECM components in cancers is precisely 

regulated by specific oncogenic drivers and downstream transcription factors and correlates with 

the patient’s prognosis (16). This study and a number of others, including our recent works (17–
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19), highlight the utility of ECM molecules as diagnostic biomarkers and in disease follow-up and 

unveil new therapeutic possibilities for inhibiting cancer progression and metastasis and 

dismantling resistance to cancer therapies by targeting the ECM (12–15).  

Collagen XVIII (ColXVIII) is a ubiquitous component of epithelial and endothelial 

basement membranes (BM) (20). It is a structurally complex and functionally versatile molecule 

with roles in the eye, nervous system and adipose tissue, for example. ColXVIII exists in three 

isoforms, short, medium and long, which differ in their N-terminal non-collagenous (NC) domain 

structure, tissue specificity and functions. All three isoforms contain an endostatin domain, a 

widely studied BM-derived anti-angiogenic molecule (20–22), in their C-terminal NC1 portion 

and a laminin-G/thrombospondin-1-like (TSP-1) domain in their N-terminal NC11 portion. The 

long ColXVIII isoform has two additional domains in the N-terminus, a mucin-like domain 

(MUCL-C18) and a Wnt-binding Frizzled-like domain (FZ-C18) which is spliced out of the 

medium ColXVIII isoform (20, 23). In several neoplasms, including lung, prostate, skin and 

gastric cancers, both ColXVIII overexpression in tumor tissues and high endostatin levels in the 

patients’ sera have been associated with disease progression and poor prognosis rather than with 

tumor repression by endostatin (22). However, the mechanism by which ColXVIII promotes tumor 

growth and progression are still unclear.  

We set out here to investigate the role of ColXVIII in BC and its mechanisms of action 

using genetic mouse tumor models and human BC cell models, and to assess the translational value 

of ColXVIII by correlating its expression with the clinicopathological features of human BC and 

by conducting drug tests in ColXVIII-deficient cell and mouse models. Our studies revealed a 

previously unidentified mechanism for ColXVIII in the regulation of EGFR/ErbB signaling 

in BC that leads to tumor promotion and demonstrated significant upregulation of ColXVIII 

expression in high-grade BC, which was associated with a poor clinical outcome. In addition, 

our preclinical assays showed that ColXVIII targeting has a promising therapeutic potential 

in the treatment of BC. 
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RESULTS 

ColXVIII expression in human breast cancers   

Immunohistochemical (IHC) analysis performed on 116 human BC specimens (Table S1) with a 

monoclonal custom-made ColXVIII antibody (DB144-N2) (Table S2) showed that the ColXVIII 

signal is prominent in the BMs of blood vessels, mammary ducts and lobules in normal breast 

tissue adjacent to tumor regions (Fig. 1A, Fig. S1). In addition, ColXVIII can be detected in the 

thin BM surrounding the adipocytes. In ductal carcinoma in situ (DCIS) the ducts filled with tumor 

cells are usually surrounded by an intact ColXVIII-positive BM/myoepithelial cell layer, albeit the 

ColXVIII signal may be discontinuous or even completely lacking at some tumor borders (Fig. 

1B-C, Fig. S1). Intriguingly, a cytoplasmic ColXVIII staining ranging from weak to moderate can 

frequently be detected in tumor cells in DCIS (Fig. 1B-C, Fig. S1). In invasive ductal carcinomas 

(IDC) of various grades ColXVIII expression is commonly seen in the cytoplasm of tumor cells, 

though the staining intensity varies considerably from weak to strong between samples and tumor 

regions, being more intense in high-grade tumors (Fig. 1D-F, Fig. S1). In IDCs, ColXVIII 

expression is either fragmented or completely lost from epithelial BM/myoepithelium around the 

tumors (Fig. 1D-F). The ColXVIII signal is prominent in the vascular BMs of all DCIS and IDC 

samples (Fig. 1A-I, Fig. S1), and occasionally also in other stromal cells, including myofibroblasts 

(Fig. S1). The authenticity of the ColXVIII staining patterns was verified here in several tumor 

samples with a polyclonal custom-made human ColXVIII antibody (QH48.18) (Fig. S1). 

Interesting differences in ColXVIII expression were observed when BC samples were 

classified according to their molecular subtypes. The cytoplasmic ColXVIII signal is usually 

strong or moderate in HER2-positive and basal/TNBC cases, and the staining intensity in the 

BM/myoepithelial cell layer around the tumors varies from negative to strong (Fig. 1G, H).  In one 

case we observed that ColXVIII was markedly upregulated in the cytoplasm of invasive tumor 

cells but absent from the BM/myoepithelium of the invasive tumor area, whereas the cytoplasmic 

ColXVIII signal at the DCIS site was weak in spite of the fact that both the BM/myoepithelium 

and the endothelium showed strong ColXVIII staining (Fig. 1G). The ColXVIII signals in the 

samples of the luminal A subtype were variable both in the cytoplasm and around the tumor nests, 

ranging from negligible to prominent staining (Fig. 1I).  

Analyses of open databases that include survival data on BC patients to estimate the 

association between ColXVIII mRNA levels and patient survival (24) showed that high ColXVIII 
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expression was significantly associated with poor prognosis in patients with high-grade BCs, 

where the hazard ratio exceeded 1.5, but not in unclassified patients or in those with low-grade 

tumors (Fig. 1J-L, Fig. S2). When the patients with high-risk grade 3 cancers were further 

categorized into major molecular subtypes, high ColXVIII was more significantly associated with 

poor survival in the HER2, basal/TNBC and luminal B subgroups than in the luminal A subgroup 

(Fig.1 M-O, Fig. S3), indicating that ColXVIII upregulation correlates with recurrence in the case 

of high-grade BCs. 

An in-house indirect ELISA assay was performed to quantify the plasma levels of N-

terminal ColXVIII fragments in a small number of healthy controls and BC patients. Most of the 

patient samples showed higher plasma ColXVIII levels than the healthy controls, and the average 

plasma ColXVIII concentration in HER2, and particularly in the basal/TNBC subtypes, but not in 

luminal A cases, was significantly higher than in the controls (Fig. S4A). When the same data were 

grouped according to metastatic status, plasma ColXVIII levels were significantly higher in lymph 

node-positive than in node-negative luminal A cases, suggesting that ColXVIII could predict 

tumor metastasis in this BC subtype (Fig. S4B). On the other hand, ColXVIII levels in the plasma 

of HER2 and basal/TNBC-type patients were high in both node-negative and node-positive cases, 

implying that ColXVIII could be used as an early diagnostic marker for these subtypes, even before 

metastasis (Fig. S4B). 

 

ColXVIII promotes tumor cell proliferation through its N-terminal TSP-1 domain 

ColXVIII signals in cultured human BC cell lines were prominent in the HER2-amplified JIMT-1 

cells, the triple-negative MDA-MB-231 and HS578T cells and the MCF7 cells representing the 

luminal A subtype (Fig. 2A-B). In the other BC cell lines tested, including T47D (luminal A), 

BT474 (luminal B) and SKBR3 (HER2), and in the non-cancerous breast epithelial cell line 

MCF10A, ColXVIII was also present but showed some variation (Fig. 2A-B). 

To investigate the role of ColXVIII in breast carcinogenesis, we inhibited its expression in 

human BC cell lines with RNA interference. A mixture of two small interfering RNAs (siRNA), 

one targeting the TSP-1 region at the N-terminus of ColXVIII and the other targeting the C-

terminal endostatin, was used to achieve an efficient knockdown (KD) of ColXVIII in selected BC 

cell lines and in MCF10A cells. Typically, a 70-90% inhibition in mRNA synthesis was achieved 

by this approach as compared with the scrambled vector transfected control cells, leading to a 
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reduced amount of ColXVIII protein (Fig. 2B-C). Except for the MDA-MB-231 cells, ColXVIII 

KD significantly reduced the proliferation of human BC cells, ranging from an approximately 20% 

reduction in the BT474 cells to an almost 70% reduction in the SKBR3 cells during a 96-hour 

follow-up period (Fig. 2D).  

To confirm that the reduction in cell proliferation was caused by ColXVIII KD, and to 

determine which portion of the ColXVIII molecule could convey this effect, recombinant 

fragments of various NC domains of ColXVIII were added to SKBR3 KD and MDA-MB-231 KD 

cells and cell proliferation was recorded for 180 hours. Both the TSP-1 fragment and the full-

length N-terminal NC11 fragment (containing TSP-1, MUCL-18 and FZ-C18) were able to reverse 

the inhibitory effect of siRNA-mediated ColXVIII depletion and restore the proliferation activity 

of the KD cells to the level of scrambled cells, especially in the HER2-positive SKBR3 cell line 

(Fig. 2E). By contrast, recombinant endostatin could not rescue the reduced proliferation of 

SKBR3 KD cells. In the MDA-MB-231 cells the effects of both ColXVIII KD and added N-

terminal TSP-1 and NC11 fragments were less impressive, but nevertheless statistically 

significant, whereas endostatin did not affect the KD cells (Fig. 2F). The non-cancerous MCF10A 

KD cells also regained their proliferation activity upon the addition of an exogenous NC11 

fragment (Fig. 2G). Hence, the results of these in vitro experiments suggest that specifically the 

N-terminal portion of ColXVIII, and even the TSP-1 domain alone, can constitute an ECM signal 

that activates BC and mammary epithelial cell proliferation. 

 

ColXVIII supports mammary carcinogenesis in the MMTV-PyMT mouse model 

Consistent with the results of human tissue analyses, ColXVIII signals in healthy mouse mammary 

tissue can be detected around adipocytes, in vascular BMs and in the mammary duct BMs, where 

it is located next to the alpha smooth muscle actin (αSMA), a marker of myoepithelial cells in 

mammary ducts and smooth muscle cells in blood vessels (Fig. 3A). As expected, the mammary 

glands (MG) and adipose tissue of healthy Col18a1‒/‒ mice are not reactive with the anti-ColXVIII 

antibody, whereas the αSMA signal can be observed in the ducts and vessels (Fig. 3A). In MMTV-

PyMT (PyMT) mouse mammary tumor tissues the ColXVIII signal is clearly increased and is 

located around tumor nests and the vascular BMs (Fig. 3B). In addition, a prominent cytoplasmic 

ColXVIII staining of tumor cells is evident in the late-stage PyMT tumors (Fig. 3B).  
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A qRT-PCR analysis showed that the short ColXVIII isoform in particular is upregulated 

approximately 7-8-fold in PyMT tumors by comparison with normal mouse mammary tissue (Fig. 

3C). To investigate more closely the expression and functions of distinct ColXVIII isoforms in 

mammary tumors, we established an 18‒/‒-PyMT mouse line lacking all the ColXVIII isoforms, a 

P1-PyMT line lacking only the short isoform and a P2-PyMT line lacking the medium/long 

ColXVIII isoforms. Immunostaining of mammary tissues from these crosses confirmed that the 

ColXVIII signals in the mammary tumors, both around the tumor nests and in the tumor 

vasculature, result from the short isoform, as the 18‒/‒-PyMT and P1-PyMT tumor tissues did not 

show any ColXVIII staining whereas the ColXVIII signals from the P2-PyMT tumors were 

comparable with those from the WT-PyMT specimens (Fig. S5A). 

The overall tumor burden was markedly reduced in the18‒/‒-PyMT mice by comparison 

with the WT-PyMT mice from week 10 onwards, the difference being statistically significant at 

weeks 12-14 (Fig. 3D-E). In line with the qRT-PCR analysis and immunostainings of PyMT tumor 

tissues that revealed the involvement of short ColXVIII in mammary carcinogenesis, the tumor 

burden was approximately 75% lower in both the P1-PyMT and 18‒/‒-PyMT females at week 13 

than that in the WT-PyMT females at the same time point (Fig. 3D-E). No further comparison 

between the WT-PyMT and 18‒/‒-PyMT groups was possible, however, since all the WT-PyMT 

mice reached the humane end point of the experiment by the age of 14 weeks, whereas the 18‒/‒-

PyMT mice could be followed until week 18. The tumor burden in the P2-PyMT mice was slightly 

lower than in the WT-PyMT group, but the difference was not statistically significant (Fig. 3E). 

In agreement with these data, the survival rates of the 18‒/‒-PyMT and P1-PyMT mice were 

significantly better than those of the WT-PyMT and P2-PyMT mice (Fig. 3F).  

The tumors in the WT-PyMT mice were found in the cervical, thoracic and abdominal 

MGs, whereas those in the 18‒/‒-PyMT mice were located mainly in the cervical MGs (Fig. 3G). 

Whole mount Carmine-Alum and the haematoxylin-eosin stainings showed substantially less 

cancerous tissue in the MGs of the 13-week-old 18‒/‒-PyMT mice than in those of the WT-PyMT 

mice, in which the MGs were filled with tumors (Fig. 3H). Moreover, whereas most mammary 

tumors in the control mice transformed to carcinomas around week 10 and all the WT-PyMT 

tumors could be classified as carcinomas at week 13, those in the 18‒/‒-PyMT transformed to 

carcinomas much later, around weeks 16-18, and presented as hyperplasia or adenomas at weeks 

8-14 (Fig. 3H, Fig. S5B-C). 
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There was a significant delay and impaired growth in pulmonary metastasis in the 18‒/‒-

PyMT and P1-PyMT mice compared with the WT-PyMT and P2-PyMT mice. Hence all the WT-

PyMT and P2-PyMT sacrificed at the age of 13-15 weeks, and 90% and 60%, respectively, of 

those sacrificed at the age of 10-12 weeks had macrometastases in the lungs. By contrast, the 18‒

/‒-PyMT and P1-PyMT mice developed lung metastases at later time points, so that only 10% of 

18‒/‒-PyMT mice and 20% of the P1-PyMT mice had lung metastases at weeks 13-15, and 70% 

and 100%, respectively, at weeks 16-18 (Fig. S6). Overall, out of the mice studied, the WT-PyMT 

mice had the highest (95%) and the 18‒/‒-PyMT mice had the lowest proportion (27%) of lung 

metastases during the follow-up period (Fig. S6C). Image analysis revealed significantly larger 

tumor areas in the lungs of the WT-PyMT and the P2-PyMT mice than in those of the 18‒/‒-PyMT 

and P1-PyMT mice (Fig. S6D). 

Finally, to study the cellular effects of Col18a1 deletion on mammary carcinogenesis, 

tumor tissue samples collected from the WT-PyMT and 18‒/‒-PyMT mice were stained for the 

Ki67 proliferation marker and pro-apoptotic cleaved caspase-3. The average number of Ki67-

positive cells was approximately 60% lower in the 18‒/‒-PyMT tumors than in WT-PyMT tumors, 

indicating that cancer cell proliferation is compromised in the absence of ColXVIII (Fig. 3I-J). 

Clusters of caspase-3-positive tumor cells were frequently detected in the 18‒/‒-PyMT tumors, 

whereas in the WT-PyMT tumors their amount was negligible and could not be quantified (Fig. 

3I). 

 

ColXVIII has an autocrine stimulatory function in mammary carcinoma cells 

Reciprocal orthotopic allograft transplantation experiments between the WT and Col18a1‒/‒ 

genotypes were performed to determine whether the tumorigenic functions of ColXVIII are tumor 

cell-autonomous or microenvironmental. Both the WT and Col18a1‒/‒ females that received WT-

PyMT tumor cells developed palpable tumors by week 7 after implantation (Fig. 4A), but these 

grew faster in the WT-FVB hosts, reaching an average volume of 550 mm3, the humane end point 

size limit, by week 10. In the Col18a1‒/‒-FVB hosts the tumors were on average half the size of 

those in the WT-FVB hosts by the same week, and although the difference was not statistically 

significant, this observation suggested that host-derived ColXVIII can also contribute to the 

regulation of tumor growth. As surmised from the previous experiments (Fig. 2 and Fig. 3), cells 

isolated from the 18‒/‒-PyMT tumors grew much more slowly and developed palpable tumors 5 
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weeks later, at week 12, in both hosts. Interestingly, the 18‒/‒-PyMT tumors also grew faster in the 

WT mice than in the Col18a1‒/‒ mice, reaching a size of around 400 mm3 in 17 weeks whereas 

those in the Col18a1‒/‒ hosts did not exceed 200 mm3 in volume within the same time frame (Fig. 

4A). This again suggests a contribution of stromal ColXVIII to tumor growth. Ki67 

immunostaining of the allografts showed that in both hosts the implanted 18‒/‒-PyMT tumor cells 

proliferated significantly less than the WT-PyMT cells (Fig. 4B-C). On the other hand, there was 

no statistical difference in the Ki67 scores for either the 18‒/‒-PyMT cells or the WT-PyMT cells 

between the hosts (Fig. 4C).  

Immunostaining of the WT-PyMT tumor allografts showed prominent ColXVIII signals at 

the borders of the tumor nests in the WT hosts but somewhat weaker signals at these sites in the 

Col18a1‒/‒ hosts (Fig. 4D). At some sites the ColXVIII signals overlapped with SMA present in 

the myoepithelial/endothelial cell layer of the tumor border. ColXVIII signals were very rare when 

18‒/‒-PyMT cells were injected into the WT host, although in some samples faint, discontinuous 

ColXVIII staining could be observed in the vicinity of SMA-positive stroma at the tumor borders 

(Fig. 4D). When 18‒/‒-PyMT cells formed tumors in the Col18a1‒/‒ hosts, ColXVIII signals were 

completely lacking, as expected, and only an SMA-positive myoepithelium and vasculature 

could be detected (Fig. 4D).  

 

ColXVIII supports breast cancer stem cells  

High ColXVIII expression has been observed in human mammary stem and progenitor cell 

populations (25) as also in various tissue-specific stem cell niches (22). Using fluorescence-

activated cell sorting (FACS), we found that the frequency of mouse mammary CSCs, defined as 

CD49fhigh (integrin 6high), CD29high (integrin 1high), hyaluronan receptor CD44+ and heat stable 

antigen CD24+ cell populations (26), was reduced almost by 90% in the 18‒/‒-PyMT tumors by 

comparison with the WT-PyMT tumors (Fig. 5A). In addition, immunostaining of tumor tissues 

showed a notable reduction in the integrin 1 signal in the 18‒/‒-PyMT tumors relative to the 

controls, so that the number of cells that were double positive for integrins 1 and 6 was very low 

in the knockout tumors (Fig. 5B). Cytokeratin-5 (CK5) is a marker of mature myoepithelial cells 

when it is co-expressed with αSMA, but discrete CK5+αSMA‒ cells are regarded as CSCs (27). 

Single positive CK5+ cells were abundant inside the WT-PyMT tumor nests, whereas they were 
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approximately 40% less frequent in the 18‒/‒-PyMT tumors (Fig. 5C-D), further confirming that 

there are less CSCs in knockout tumors. Moreover, immunostaining of allograft tumors showed 

more CK5+ and αSMA‒ CSCs in WT-PyMT tumors grown in both WT and Col18a1‒/‒ hosts, 

whereas 18‒/‒-PyMT tumors showed more CK5+ and αSMA+ double-positive cells, as is indicative 

of reduced CSC characteristics and myoepithelial differentiation in these cells (Fig. 5E).  

We then analyzed the CD44+ and CD24low/‒ CSC populations (28) in the WT and KD 

MDA-MB-231 human BC cells using FACS. A significant reduction in the frequency of this CSC 

population was observed in the siRNA-based ColXVIII KD when compared with the scrambled-

treated MDA-MB-231 cells (Fig. 5F), resulting in a remarkable decrease in the mean fluorescence 

intensity levels of CD49f (Fig. 5G). Moreover, the common stem cell-related transcription factors 

NANOG, SNAI1, SNAI2 (SLUG) and SOX2 (29) were downregulated in the MDA-MB-231 KD 

cells (Fig. S7A), as also in the MCF7 cells with ColXVIII KD (Fig. S7B). Interestingly, ColXVIII 

expression was significantly higher in the CSC-enriched (CD44+CD24low/‒) subpopulation of 

MCF7 cells than in the non-CSC subpopulation (CD44+CD24high) (Fig. S7C). When these 

subpopulations were assessed in a colony-forming assay, the CSC-enriched MCF7 population 

formed irregular, heterogenous colonies whereas the non-CSC population formed well-polarized 

round colonies of approximately equal size (Fig. S7D). Moreover, ColXVIII KD in the non-

tumorigenic MCF10A cells reduced the frequency of the CD44+CD24low/‒ population by more than 

half and led to a significant decrease in the stem cell marker mRNA levels (Fig. S7E-F). Our data 

thus show that high ColXVIII expression is associated with cellular stemness, and its ablation leads 

to a significant decrease in the number of tumor-promoting mammary CSC populations.  

 

ColXVIII is co-expressed with EGFR and HER2 in human breast cancer cells  

Our open data analyses have indicated that high ColXVIII expression is associated with poor 

survival in HER2-amplified and basal/TNBC types of human BC (Fig. 1, Fig. S2, Fig. S3), 

prompting further investigations into the role of ColXVIII in the EGFR/ErbB signaling pathway. 

Initial IHC analysis of HER2-type human BC specimens (N=21, Table S1) showed that ColXVIII, 

EGFR and HER2 are expressed in the same tumor areas that have a high number of Ki67-positive 

cells (Fig. 6A-B). We then analyzed the expression of ColXVIII and EGFR in a larger BC tissue 

microarray (TMA) (N=95, Table S1) which had previously been scored for HER2 and Ki67 

expression and the nuclear grade. This analysis confirmed that, especially in the HER2 subgroup, 
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strong or moderate cytoplasmic ColXVIII expression in tumor cells correlated with HER2 

amplification, and most of these samples also showed strong or moderate EGFR expression (Fig. 

6C). In addition, high ColXVIII expression was associated with tumor grade 3 in all the HER2 

cases. Correspondingly, a high or moderate cytoplasmic ColXVIII signal was associated with Ki67 

expression in almost 60% of the luminal B and TNBC cases and with tumor grades 2 or 3 in 35%, 

whereas ColXVIII and EGFR were abundantly co-expressed only in a few luminal B specimens 

in which the tumor cells were also HER2-positive (Fig. 6C). ColXVIII and EGFR signals were 

found juxtaposed or overlapping in normal human and mouse mammary ducts, with ColXVIII 

showing a typical BM staining and EGFR signals being localized in the myoepithelial layer (Fig. 

6D-E).  

 

ColXVIII forms a complex with EGFR and integrin 6 and regulates EGFR/ErbB signaling  

Immunofluorescence showed ColXVIII and EGFR co-expression in the basal type MDA-MB-

231 (Fig. 7A) and in the HER2-amplified JIMT-1 (Fig. S8A) human BC cells. As cooperation 

between EGFR and ECM receptor integrins is known to promote the progression and 

aggressiveness of solid tumors (15, 30), the expression of 6 and 1 integrins, the key 

integrins in the mammary epithelium, was also analyzed. These integrins are also 

determinants of breast CSCs, the incidence of which was found to be reduced upon ColXVIII 

ablation (Fig. 5, Fig. S7). Immunostainings revealed that both the 6 and 1 subunits are 

expressed with ColXVIII and EGFR in MDA-MB-231 cells (Fig. 7B; Fig. S8B). Proximity 

ligation assays demonstrated potential interactions between ColXVIII and EGFR in MDA-MB-

231 and JIMT-1 cells, as well as between ColXVIII and 6 integrin in MDA-MB-231 cells (Fig. 

7C, Fig. S8C). Consistently with this, co-immunoprecipitation assays showed that EGFR and 

integrin 6 antibodies pull down ColXVIII in MDA-MB-231 and JIMT-1 lysates (Fig. 7D, Fig. 

S8D-E), and HER2 in JIMT-1 lysates (Fig. 7E). EGFR antibodies also immunoprecipitated HER2 

in SKBR3 lysates, and the ColXVIII antibody pulled down both EGFR and HER2 in these cells 

(Fig. S8F) and EGFR in MCF10A cells (Fig. S8G). Neither EGFR nor ColXVIII antibodies pulled 

the integrin 1 subunit down in MDA-MB-231 cells (Fig. S8H). 

To study further the involvement of ColXVIII in EGFR/ErbB signaling in BC and to better 

understand its mechanism of action at the cellular level, the effects of ColXVIII KD on 
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EGFR/ErbBs and downstream signaling pathways, including the mitogen-activated protein kinase 

(Ras/Raf/MEK/ERK1/2) and phosphatidylinositol-3-kinase (PI3K/Akt) pathways, were assessed 

in several human BC cell lines. Western blot analyses showed that EGFR and HER2 

phosphorylations were decreased in the SKBR3 and MCF10A cells upon ColXVIII KD relative to 

the scrambled cells, and that EGFR phosphorylation was reduced in the HER2-deficient MDA-

MB-231 cell line, albeit somewhat less than in the other cell lines tested (Fig. 7F-G). Moreover, 

pERK and pAKT levels were decreased in SKBR3 cells (Fig. 7F-G). In the JIMT-1 cells, which 

have an activating mutation in the catalytic subunit alpha of the PI3KCA gene (31), ColXVIII 

KD did not affect the level of pAKT, but the pERK signal was lower than in the control JIMT-1 

cells. Even though pEGFR levels were reduced in the MDA-MB-231 cells, no apparent changes 

were observed in the phosphorylation of downstream effectors (Fig. 7F-G), probably due to 

activating mutations in KRAS and BRAF in this cell line (32). 

 

Therapeutic potential of ColXVIII  

In view of these results, we finally focused our interest on the potential effects of ColXVIII 

inhibition on drug responses when combined with the tyrosine kinase inhibitor lapatinib or with 

humanized mABs against HER2 (trastuzumab) and EGFR (panitumumab). Lapatinib treatment 

almost completely blocked the proliferation of the HER2-type SKBR3 cells, and thus ColXVIII 

KD, which by itself resulted in a roughly 30% reduction in cell proliferation in five days, did not 

yield any additional effect (Fig. 8A, Fig. 2E). SKBR3 cells responded well to HER2-targeting 

trastuzumab, however, and this alone led to an approximately 25% reduction in cell proliferation 

in five days of culture. Interestingly, simultaneous administration of ColXVIII-targeting siRNAs 

and trastuzumab had a synergistic effect on SKBR3 cell proliferation, leading to an over 60% 

reduction in cell numbers in the course of the experiment as compared with untreated scrambled 

cells (Fig. S9A). Moreover, EGFR-targeting panitumumab and ColXVIII siRNAs in combination 

inhibited the proliferation of SKBR3 cells more rapidly and efficiently than did either of these 

treatments alone (Fig.S9B). 

HER2-amplifed JIMT-1 cells are resistant to drugs that directly target ErbB receptors, due 

to several co-existing drug resistance mechanisms, including mutations in PI3KCA that activate 

the PI3K/AKT pathway (31). We noticed that whereas neither lapatinib nor ColXVIII KD alone 

affected the proliferation of this cell line in the early growth phase but led to growth inhibition in 
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the later stages, their combined effect was extremely rapid and efficient and almost completely 

abolished the proliferation of JIMT-1 cells (Fig. 8B). Lapatinib, panitumumab and trastuzumab 

treatments did not affect the proliferation of MDA-MB-231 cells because this cell line is HER2-

negative and has mutations in the downstream effectors KRAS and BRAF that keep the cells in a 

proliferative state (32) (Fig. 8C, Fig. S9C-D). The EGFR-targeting panitumumab, however, did 

result in a significant growth restriction in MDA-MB-231 KD cells, although the effect of 

ColXVIII inhibition was less impressive in this cell line than in the SKBR3 and JIMT-1 cells (Fig. 

S9C-D). Besides these three cell lines, the HER2-positive luminal B-type BT474 cell line that has 

a PIK3CA mutation (33) and is thus resistant to ErbB-targeting drugs was also included in our 

tests.  The proliferation of BT474 cells was not affected at all by trastuzumab, and only marginally 

by lapatinib. Depletion of ColXVIII KD alone reduced the proliferation of BT474 cells by 25-30% 

in five days and sensitized these cells to lapatinib (Fig. S9E-F).  

Besides reducing cancer cell proliferation, ColXVIII KD slowed down the migration of 

SKBR3 cells significantly but, as in the proliferation assay, it did not exhibit any additional 

inhibitory effect on wound closure when combined with lapatinib (Fig. S9G). In MDA-MB-231 

cells the inhibitory effect of ColXVIII KD was more evident in cell migration than in cell 

proliferation (Fig. S9H, Fig. 8C), whereas lapatinib produced only a marginal effect, as was 

expected due to mutations in signal mediators (Fig. S9H). The combined use of lapatinib and 

ColXVIII siRNAs, but not single treatments with these reagents, resulted in a significant reduction 

of JIMT-1 cell migration (Fig. S9I).  

A preclinical in vivo experiment with lapatinib confirmed that ColXVIII knockout adds a 

significant inhibitory effect upon mammary carcinogenesis in the MMTV-PyMT mouse model. In 

the vehicle-treated 18‒/‒-PyMT mice the total tumor burden was approximately 30% smaller than 

in the vehicle-treated WT-PyMT mice (Fig. 8D). The tumor burden was further reduced in the 18‒

/‒-PyMT mice treated with lapatinib, by approximately 35% and 54% compared with the vehicle-

treated 18‒/‒-PyMT group, depending on the dose. Immunostainings showed that while the 

mammary tumors of vehicle-treated WT-PyMT mice had high numbers of proliferative Ki67-

positive tumor cells, the numbers of dividing tumor cells were significantly lower in the vehicle-

treated 18‒/‒-PyMT mice and in the lapatinib-treated WT-PyMT mice, and particularly low in the 

lapatinib-treated 18‒/‒-PyMT mice (Fig. 8E-F). Correspondingly, the tumors in the lapatinib-

treated 18‒/‒-PyMT mice were considerably smaller, and those in some MGs of the 18‒/‒-PyMT 
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mice receiving a high dose of lapatinib had been almost completely eradicated, so that the fat pads 

contained fairly normal-looking ductal structures (Fig. 8E). The number of intratumoral CK5+ 

progenitor cells in the 18‒/‒-PyMT tumors was initially significantly smaller than in the WT-PyMT 

tumors (Fig. 8E,G; Fig. 5C) and lapatinib treatment did not affect these cell counts in either 

genotype in the current model (Fig. 8G). In summary, our preclinical experiments demonstrate the 

importance of ColXVIII for BC cells functions and show that the inhibition of its action in tumor 

cells has important therapeutic potential. 
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DISCUSSION  

This study shows that ColXVIII expression is high in human and mouse BC and supports 

tumor cell proliferation in an autocrine manner through a previously unreported mechanism 

involving EGFR/ErbB signaling. Moreover, it presents evidence that ColXVIII can have 

significant translational value as a novel biomarker and a potential therapeutic target in BC. 

More specifically, our key findings are that 1) ColXVIII expression is induced in human BC 

cells; 2) high ColXVIII expression is associated with high-grade tumors and reduced survival, 

especially in the HER2 and basal/TNBC subtypes; 3) ColXVIII is co-expressed with EGFR, 

HER2 and integrin 6, and interacts with these receptors to induce cell proliferation and 

promote tumor growth, 4) ColXVIII supports stemness properties in BC cells, most likely 

through interactions with integrin 6; 5) the short ColXVIII isoform in particular is induced 

in mammary tumors; 6) the N-terminal TSP-1 domain of ColXVIII is implicated in promoting 

cancer cell proliferation and tumor growth; 7) ablation of ColXVIII improves the efficacy of 

EGFR/ErbB-targeting therapeutics in preclinical tests; and 8) plasma levels of N-terminal 

ColXVIII fragments are higher in BC patients than in healthy controls. 

Our in vivo studies using the MMTV-PyMT mammary cancer model crossed with our 

unique total and isoform-specific Col18a1 knockout models convincingly demonstrated for the 

first time that the short ColXVIII is the key isoform upregulated in mammary tumors. Importantly, 

the short isoform was found to be responsible for the pro-tumorigenic action of ColXVIII, as the 

specific deletion of this isoform, but not the medium/long isoforms, significantly inhibited cancer 

cell proliferation, the primary tumor burden and lung metastasis (Fig. 3, Fig. S6). The short isoform 

has a TSP-1 domain at the N-terminus of the molecule, and it is shown here that recombinant 

fragments containing the TSP-1 sequence can at least partially recover the proliferation deficit 

caused by ColXVIII KD in human BC cells, whereas C-terminal endostatin proved ineffective in 

mediating this task (Fig. 2E-G). The current understanding of the specific functions of ColXVIII 

isoforms and their N-terminal NC domains is still limited and is focused on their developmental 

functions [as summarized in (20)]. Thus our finding that the short ColXVIII and its TSP-1 domain 

have pro-tumorigenic functions is a pioneering discovery. 

This is also the first study to demonstrate that ColXVIII is co-expressed and forms a 

complex with ErbB receptors and integrin 6 in BC cells, thus having the potential to enable 

downstream signaling through MAPK/ERK and PI3K/AKT pathways, leading to increased tumor 
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cell proliferation and migration. The concept of integrated signaling through growth factor and 

ECM receptors is well established, and the downstream pathways of the two signaling systems 

overlap inside the cells (34). At present, however, we have no experimental data to prove whether 

ColXVIII binds directly to the EGFR/HER2 receptor pair and/or the 6 integrin, but we speculate 

that ColXVIII might be involved in coordinating the growth factor and ECM receptor signaling 

events.  

We can compare our data on ColXVIII with findings regarding other ECM molecules 

highly expressed in cancer cells and implicated in EGFR/ErbB signaling. Tenascin-C, for example, 

resembles ColXVIII in many ways: it is commonly upregulated in cancer cells, especially at the 

invasive tumor front, it associates with a poor clinical outcome, and binds integrins and EGFR 

through EGF-like repeats to induce tumor cell proliferation and invasion and to support CSCs (35–

38). Laminin 332 is an example of a BM protein interacting with both EGFR and integrins to 

sustain tumorigenesis. ECM remodeling in cancer reveals cryptic EGF-like repeats from laminin 

332 which is thought to stimulate SCC tumorigenesis in an EGFR- and 64 integrin-dependent 

mechanism (38–40). ECM proteins lacking the EGF repeats, such as decorin, can also bind to and 

activate EGFR and other ErbBs, but unlike tenascin-C and laminin 332, decorin displays anti-

tumor activities (41, 42). Our novel data thus place ColXVIII on the list of ECM components with 

a role in modulating EGFR/ErbB signaling in cancer. 

Our analyses of public databases (Fig. 1, Fig. S2, Fig. S3) and human BC tissue and liquid 

biopsy samples (Fig. 6, Fig. S4) showed that high ColXVIII expression is associated with a bad 

prognosis, especially in the aggressive HER2 and basal/TNBC subtypes. These observations 

sustain the hypothesis that ColXVIII is implicated in BC progression and that its targeting could 

be beneficial in improving treatment outcomes in combination with drugs targeting these GFRs. 

This assumption was confirmed by experiments showing that ColXVIII deprivation in HER2-

positive BC cells can enhance the efficacy of EGFR/ErbB-targeting drugs, both in vitro and in vivo 

(Fig. 8, Fig. S9). Simultaneous ColXVIII and EGFR/ErbB targeting was furthermore shown to be 

beneficial in the lapatinib-resistant HER2-positive BT474 cell line, which has an activating 

PIK3CA mutation downstream of the EGFR/HER2 receptor complex (33) (Fig. S9F), indicating 

that ColXVIII inhibition can alleviate drug resistance.  

Biochemical and biomechanical signals from the three-dimensional ECM are implicated 

in the response and resistance of cancer drugs (30, 43, 44). Mechanisms by which the inhibition 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2022. ; https://doi.org/10.1101/2022.01.10.474416doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.10.474416
http://creativecommons.org/licenses/by/4.0/


19 

 

of ColXVIII can overcome resistance to EGFR/ErbB-targeting drugs in HER2 type BC cells (Fig. 

8, Fig. S9) can be speculated upon in the light of our observations and data concerning other ECM 

molecules. It has been reported that disruption of the interaction between laminin 332 and integrins 

64 or 31, and thereby cell adhesion to the BM, can sensitize HER2-positive BC cells to 

trastuzumab and lapatinib treatments by inhibiting the PI3K/AKT, MAPK/ERK1/2 and focal 

adhesion kinase (FAK) pathways (45). In other studies, high 1 integrin expression has been 

shown to predict a poor prognosis for trastuzumab- and lapatinib-treated HER2-positive BC and 

induce resistance to these drugs through FAK and Src signaling (46, 47). The same treatments 

have been shown to induce expression of several ECM genes through 1 integrin and Src, 

including the aforementioned decorin and tenascin-C as well as many collagens (48). Interestingly, 

ECM stiffness per se reduces drug and radiation sensitivity in many cancers, e.g. by forming a 

physical barrier against drug infiltration and by CSC promotion via various molecular 

mechanisms, including the regulation of integrin signaling (43, 49, 50).  

As a ubiquitous niche component, ColXVIII has roles in maintaining various types of tissue 

stem and progenitor cells [as summarized in (22)]. We have shown previously that the N-terminal 

sequences in the medium/long ColXVIII isoforms in adipose tissue support the differentiation of 

progenitor cells/committed precursors to form mature adipocytes (51). Studies by Gupta et al. 

revealed that ColXVIII is overexpressed in therapy-resistant breast CSCs, suggesting that it may 

have a role in the generation and propagation of these cells (25). Our work provides additional 

experimental evidence to support this finding, since the numbers of cells with CSC characteristics 

were reduced both in mouse mammary tumors with Col18a1 deletion and in human BC cells with 

reduced ColXVIII expression (Fig. 5, Fig. S7). The demonstrated interaction between ColXVIII 

and integrin 6 in BC cells (Fig. 7), a key integrin subunit in breast CSCs (26), is probably 

implicated in the maintenance of the stemness properties of BC cells. CSCs are not only 

responsible for sustaining primary tumors, but are also connected with the metastatic dissemination 

of neoplastic clones to distant organs (12–15), and we show that both the primary tumor burden 

and lung colonization are reduced in mice with full or partial depletion of Col18a1 isoforms (Fig. 

3, Fig. S6). Our previous work has shown that deletion of Col18a1 leads to BM loosening and 

reduced stiffness (52). Thus, it is possible that ColXVIII upregulation in solid cancers may affect 

both the biomechanical properties of the tumor ECM and the maintenance of CSCs, and thereby 

regulates tumor promotion and drug responses.  
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In conclusion, our findings indicate that signaling cues triggered by the N-terminal TSP-1 

domain of ColXVIII and transmitted through EGFR/ErbBs and/or integrins can potentiate BC cell 

functions and promote the development of drug resistance, especially in the advanced HER2-type 

BC. The targeting of ColXVIII in the TME could therefore provide a novel therapeutic approach 

for achieving BC regression, even in cases where the tumor does not show any response to the 

clinically tested drugs that inhibit EGFR/ErbB signaling. Our data also show that ColXVIII could 

be of substantial value as a biomarker of BC progression, either scored in tissues, or observed in 

liquid biopsies even before metastasis. 
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MATERIALS AND METHODS 

 

Study design 

The objective of this study was to examine the expression, roles, mechanisms of action and 

prognostic and therapeutic relevance of the BM component ColXVIII in BC.  

 

Human BC samples and survival analysis 

The expression and localization of ColXVIII in 116 human BC tissue samples was analyzed 

by IHC and circulating levels of ColXVIII were determined in 32 BC patients and six healthy 

volunteers by ELISA assay. All the human samples and clinical data were anonymized and 

labelled with a research code for blinded histopathological and plasma analyses. Only 

authorized personnel of the Oulu and Umeå University Hospitals had access to personal and 

clinical data. Informed consent for data use was obtained from all the patients. The Ethical 

Committee of the Northern Ostrobothnia Health Care District (Dnr 88/2000 and amendment, 

Dnr 194/2013, Dnr 100/2016) and the Ethical Committee at the Medical Faculty of Umeå 

University (Dnr 09-175M) granted ethical approval for the use of these samples. The 

association of ColXVIII expression with BC patient survival was analyzed in open databases 

using the Kaplan Meier survival analysis at the website www.kmplot.com (24).  

 

Mouse models  

To study the functions of ColXVIII in BC in vivo, a transgenic mouse mammary 

carcinogenesis model based on mammary tumor virus promoter-driven expression of the 

polyoma middle T antigen (MMTV-PyMT) was crossed with three different Col18a1 

knockout models. All the animal experiments were approved by the Finnish National Animal 

Experiment Board (permits ESAVI/6105/04.10.07/2015, ESAVI/1188/04.10.07/2016 and 

ESAVI-2936-04.10.07/2016) and conducted at the University of Oulu Laboratory Animal 

Centre. Mammary tumor growth was monitored in randomized experimental groups of 

females at specific time intervals depending on the rate of tumor growth and the humane 

endpoint criterion as explained in the Supplement. The number of animals per genotype at 
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various time points ranged from a minimum of three mice at week 6 up to 14 mice at week 

13. Lung metastasis was studied in experimental groups aged 10‒12 weeks, 13‒15 weeks and 

16‒18 weeks, ten mice in each group per genotype. To study the tumor-cell autonomous vs. 

microenvironmental role of ColXVIII, a reciprocal orthotopic allograft transplantation 

experiment between control and Col18a1-deficient mice (N=6‒12) was performed. In vivo 

animal experiments were conducted in a non-blinded manner. Mouse tumor tissues were 

studied by histological and immunohistochemical, morphometric, flow cytometric and qRT-

PCR methods. The numbers of samples and replicates for the quantitative analyses are 

indicated in the Figure legends.  

 

Cell studies 

Expression of ColXVIII in the human BC cell lines was analyzed with qRT-PCR, Western 

blotting and immunocytochemistry. In vitro loss-of-function experiments were performed by 

siRNA-based KD of ColXVIII in BC cells, and gain-of-function experiments were conducted 

with ColXVIII KD cells supplemented with recombinant ColXVIII fragments. Live cell 

imaging was used for functional analyses of cell proliferation and migration. In order to study 

ColXVIII-related signaling, the interactions of ColXVIII with EGFR/ErbB and integrin 

receptors were examined using proximity ligation and co-immunoprecipitation experiments, 

and phosphorylation of EGFR/Erbs and the downstream signaling mediators was assessed by 

Western blotting. Cell culture experiments were performed independently at least twice per 

experiment as indicated in the Figure legends.  

 

Drug tests 

To investigate the medical relevance of ColXVIII targeting in combination with current BC 

therapies, the EGFR/ErbB inhibitors lapatinib, trastuzumab and panitimumab were used in 

combination with ColXVIII KD in human BC cell lines cells and their respective controls. In 

vivo lapatinib treatment was applied to six control and six Col18a1 null PyMT mice using two 

different doses to test the efficacy of the drug.  
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Statistical Analysis  

Statistical analyses were performed using the unpaired ‘t’ test for experiments with two groups, 

and a two-way analysis of variance test (Bonferroni’s posttest) when comparing data from 

experiments with multiple groups. A repeated measures one-way analysis of variance was used to 

analyze the primary tumor growth curves (Dunnett’s multiple comparison test and Bartlett's post-

correction test). Mouse survival analysis was performed using the log rank (Mantel–Cox) test. 

Differences were considered statistically significant at a p-value less than 0.05. GraphPad Prism 

software was used for the statistical analyses. 

 

Further details of the materials and detailed experimental protocols are presented in the 

Supplementary Materials and Methods. 
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Fig. 1. High ColXVIII expression is associated with poor prognosis for human BC. (A-I) A monoclonal 

anti-ColXVIII antibody DB144-N2 was used to detect ColXVIII in the human BC specimens. 

Representative images of ColXVIII expression and localization in (A) normal breast tissue, (B-D) ductal 

carcinoma in situ (DCIS), (D-F) invasive ductal carcinoma (IDC) of grades 1-3, and the (G) HER2, (H) 

basal/TNBC and (I) luminal A type of BC. The negative staining control for the DB144-N2 is shown in 

Fig. S1. Black arrowhead, epithelial basement membrane (BM); white arrowhead, ColXVIII absent in the 

epithelial BM; arrow, vascular BM; asterisk, cytoplasmic staining in tumor cells; a, adipocyte. Scale bars 

100µm. (J-O) Kaplan-Meir plots showing the relapse-free survival (RFS) of BC patients stratified by 

ColXVIII expression levels (probe: 209082_s_at), by cancer grade (J-L) and by cancer subtype (M-O). 

High ColXVIII, red line; low ColXVIII, black line. The open access gene expression data and patients’ 

survival information from TCGA, GEO and EGA, compiled in a single database at www.kmplot.com (24) 

were used for the meta-analyses. Hazard ratios (HR) and log-rank P values were automatically computed 

using the best-performing threshold as the cutoff. The initial number of patients in each group (N) is 

indicated in the survival graphs. 
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Fig. 2. ColXVIII promotes BC cell proliferation through its N-terminal domain. (A) A representative 

immunoblot of ColXVIII expression in human BC and mammary epithelial cell lysates. The size of the 

major ColXVIII band, ~130 kDa, corresponds to the core polypeptide of the short ColXVIII isoform. The 

loading control is cyclophilin B. (B) A representative immunoblot of ColXVIII protein levels in various 

ColXVIII knockdown (KD) cell lines and corresponding scrambled controls (Scr). The loading control is 

−tubulin. (A, B) A polyclonal ColXVIII antibody, QH48.18, was used in the immunoblots. (C) RT-qPCR 

analysis of ColXVIII mRNA levels after KD in the cell lines indicated. (D) Confluency of ColXVIII KD 

cell cultures relative to Scr cultures (%) of the cell lines indicated, measured by an IncuCyte live cell 

analysis system for 96 hours. (E-G) The graphs indicate the cell confluency measured upon the addition of 

recombinant non-collagenous (NC) ColXVIII fragments (500 ng/ml) to the KD cells. TSP-1, N-terminal 

laminin-G/thrombospondin-1-like domain; NC11, full-length N-terminal NC11 fragment containing TSP-

1-like MUCL-18 and FZ-C18 domains; ES, endostatin domain. The data in C-G are presented as means ± 

s.e.m. The two-tailed Student’s ‘t’ test was used in the statistical analyses (treated vs. Scr); **P<0.01, 

***P<0.001, n.s., not significant. n=6-7 technical replicates in C and n=3 technical replicates in D-G. 
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Fig. 3. The short ColXVIII isoform promotes mammary tumor growth in mice. (A-B) A polyclonal 

antibody against the N-terminal TSP-1 domain of mouse ColXVIII (green) (Table S2) was used in 

immunostainings of mammary glands (MG) from healthy wild type (WT) and ColXVIII knockout 

(Col18a1‒/‒) females (A) and from wild type MMTV-PyMT (WT-PyMT) mammary tumors (B). Alpha 

smooth muscle actin (αSMA; red) antibody detects myoepithelial cells in mammary ducts and vascular 
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smooth muscle cells in arteries and veins. Strong cytoplasmic ColXVIII staining of tumor cells can be 

observed in the late-stage tumors in which the intact BM is sparse (B, right). Arrowhead, basement 

membrane (BM); arrow, vascular BM; asterisk, tumor nests; a, adipocyte. Scale bars 100µm in A, 200µm 

in B left, and 100µm in B right.  (C) Quantification of the three ColXVIII mRNA transcripts (short, medium 

and long) in WT-PyMT tumor tissues (n=3) normalized to Gapdh.  N-terminal NC sequences were 

amplified by qRT-PCR with isoform-specific primers and total ColXVIII mRNA with primers from the C-

terminal common endostatin sequence (Table S3). (D) Total mammary tumor burden in WT-PyMT and in 

18‒/‒-PyMT mice lacking all ColXVIII isoforms at 9-18 weeks of age. At least three WT-PyMT and 18‒/‒-

PyMT mice are included at each time point. (E) Mammary tumor burden at week 13 in WT-PyMT (N=10) 

and 18‒/‒-PyMT mice (N=9), and in P1-PyMT mice lacking specifically the short ColXVIII (N=9) and P2-

PyMT mice lacking the medium and long ColXVIII (N=14). (F) Kaplan-Meier survival plots for the WT-

PyMT (n=38), 18‒/‒-PyMT (n=31), P1-PyMT (n=28) and P2-PyMT (n=33) mice. (G) Representative 

photographs of mammary tumors in the WT-PyMT and 18‒/‒-PyMT mice at week 13. The dotted circles 

mark tumors in the cervical, thoracic and abdominal mammary fat pads. Arrows, macroscopically normal 

MGs in the 18‒/‒-PyMT mice. (H) Representative images of Carmine Alum-stained whole mount 

preparations of MGs and haematoxylin-eosin (H&E)-stained mammary tumor sections of the WT-PyMT 

and 18‒/‒-PyMT mice at week 13. Scale bar in the H&E images 200µm. (I) Ki67 (red) and cleaved caspase-

3 (green) immunostainings of mammary tumors of the 13 weeks-old WT-PyMT and 18‒/‒-PyMT mice. 

Scale bar 200µm. Arrowheads, clusters of apoptotic cells in the 18‒/‒-PyMT specimen. (J) Quantification 

of the Ki67-positive cell counts in WT-PyMT (n=9) and 18‒/‒-PyMT (n=8) tumors. Four random fields per 

tumor, imaged with 20x objective, were counted. Statistical analyses: C, D, J: two-tailed Student’s ‘t’ test; 

E: one-way ANOVA, Bartlett's post-correction test for equal variances; F: by comparison with WT-PyMT 

mice in the Mantel-Cox test; **P<0.01; ***P<0.001. Error bars indicate s.e.m.  
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Fig. 4. Orthotopic allograft transplantation experiments. (A) Growth rates of transplanted WT-PyMT 

and 18‒/‒-PyMT tumors in WT and Col18a1‒/‒ hosts. Numbers of mice (N) and allograft tumors (n): WT-

PyMT cells in a WT host and 18‒/‒-PyMT cells in a WT host (N=12, n=24), WT-PyMT cells in Col18a1‒/‒ 

hosts and 18‒/‒-PyMT cells in Col18a1‒/‒ hosts (N=6, n=12). (B) Tumor cell proliferation. Representative 

images of Ki67 immunostaining in the WT-PyMT and 18‒/‒-PyMT allografts. (C) Quantification of the 

Ki67-positive cell counts in transplanted tumors. Four random fields per tumor (N=6 per group), imaged 

with a 20x objective, were counted. The statistical significances of differences in A and C were evaluated 

using the two-tailed Student’s ‘t’ test. **P<0.01; ***P<0.01. Error bars indicate s.e.m. (D) Representative 

images of ColXVIII (green) and SMA (red) expression in the allograft tumors. Arrowhead, ColXVIII-

positive structures or cells at tumor borders; open arrowhead, SMA-positive stromal cells; yellow arrow, 

SMA and ColXVIII double-positive structures and cells; white arrow, SMA-positive blood vessels. 

Scale bars in panels B and D, 200µm. 
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Fig. 5. ColXVIII in breast cancer stem cells (CSC). (A) Quantification of CD44+, CD24+, CD29hi and 

CD49f hi mouse mammary CSCs sorted by FACS from tumors of the 13-weeks-old WT-PyMT and 18‒/‒-

PyMT mice (N=5 per genotype). (B) Representative images of CD29 (red) and CD49f (green) 

immunofluorescence staining of mammary tumors at week 13. Arrowhead, CD29 and CD49f double-

positive cells in WT-PyMT. The magnifications in the inserts show strongly double-positive cells in the 

WT-PyMT tumors but only weakly double-positive ones in the 18‒/‒-PyMT tumors. (C-D) Analysis of CK5 

and αSMA expression in WT-PyMT and 18‒/‒-PyMT tumor tissues at week 13. (C) Quantification of 

discrete CK5+ and αSMA‒ cells in the tumors. Four random fields per tumor (N=6 per group), imaged with 

a 20x objective, were counted. (D) Representative images of CK5 (green) and αSMA (red) staining. (E) 

Representative images of CK5 (green) and αSMA (red) staining in allograft tumors. White arrows in D and 

E, CK5-positive and αSMA-negative progenitor cells; yellow arrows, CK5/αSMA double-positive mature 

myoepithelial cells. (F) CSC populations in the ColXVIII siRNA-transfected KD and scrambled vector 

transfected control MDA-MB-231 cells, as estimated by FACS sorting of the CD44+ CD24low/‒ cells. (G) 
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Quantification of the mean fluorescence intensity (MFI) of the CD49f-positive cells in the ColXVIII KD 

and control MDA-MB-231 cells. Scale bar in B, D and E, 100µm. The statistical significances of the 

differences in A, C, F and G were evaluated using the two-tailed Student’s ‘t’ test. *, P<0.05; **, P<0.01; 

***, P<0.001. Error bars indicate s.e.m.  
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Fig. 6. Expression of ColXVIII and EGFR/ErbB in breast tumors and mammary glands. (A) 

Representative images of immunohistochemical staining (IHC) for ColXVIII, EGFR, HER2 and Ki67 in 

sequential sections of human HER2 type BC. Scale bar, 200µm. Asterisk, cytoplasmic ColXVIII signal in 

tumor nests; arrow, vascular BM; black arrowhead, epithelial BM; white arrowhead, EGFR or HER2 signal 

on the plasma membrane. (B) Three-fold magnification of the regions indicated in A. Scale bar 600µm. (C) 

Heat map showing IHC scores for HER2, EGFR, ColXVIII and Ki67 and tumor grades, grouped by BC 

subtypes. Numbers of samples analyzed for each molecular subtype: HER2, N=10; luminal B, N=15; 

luminal A, N=62; and TNBC, N=8. Scores: 2.5‒3 = strong; 1.5‒2 = moderate; 0.5‒1 = weak; 0 = negative. 

(D) IHC for ColXVIII and EGFR in a normal human mammary gland (MG). Panels on the right depict 
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five-fold magnification of the regions indicated in the left panels and show the juxtaposed localization of 

ColXVIII and EGFR in the MG epithelial BM and in the myoepithelial cells, respectively. Arrow, vascular 

BM; black arrowhead, epithelial BM; white arrowhead, myoepithelial cell; a, adipocyte. Scale bar, 100m. 

(E-F) Immunofluorescence staining for ColXVIII (green) and EGFR (red) in the normal mouse mammary 

duct and in a wild type MMTV-PyMT (WT-PyMT) mammary tumor. White arrowhead, epithelial BM; a, 

adipocyte; d, duct; t, tumor nest. Scale bars, 100 m. 
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Fig. 7. Interactions between ColXVIII, ErbBs and integrins, and analyses of EGFR/ErbB and the 

downstream signaling pathway. (A-B) Representative images of immunofluorescence staining of 

ColXVIII (red), EGFR (green in A) and integrin 6 (green in B) in MDA-MB-231 BC cells. Nuclei are 

counterstained with DAPI. Scale bars, 20μm. (C) In situ proximity ligation assay. Evidence of proximity 

(distance less than 40 nm) for ColXVIII (mAB DB144-N2) and EGFR (mAB 52894) (left panels), and for 

ColXVIII (mAB DB144-N2) and 6 integrin (pAB 97760) (right panels) is indicated by the presence of 

red dots. Negative controls without primary antibodies are shown. Scale bars, 20μm. (D-E) Co-

immunoprecipitation (IP) of ColXVIII (mouse mAB DB144-N2), EGFR (rabbit mAB 52894), and integrin 

6 (rabbit pAB 97760) in HER2-negative MDA-MB-231 cells and in HER2-positive JIMT-1 cells. Protein 

complexes were detected in Western blotting (WB) by means of ColXVIII (rabbit pAB QH48.14) and 

HER2 (rabbit mAB 4290) antibodies. Goat anti-rabbit (Rb) IgG and goat anti-mouse (Mo) IgG-coated 

magnetic bead controls are shown. (F) Representative immunoblots of EGFR and HER2 phosphorylation 

in scrambled and ColXVIII KD MCF10A, SKBR3 and MDA-MB-231 cell lysates. (G) Representative 

immunoblots of EGFR and phosphorylation of downstream signaling mediators in scrambled and ColXVIII 

KD JIMT-1, SKBR3 and MDA-MB-231 cell lysates.  
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Fig. 8. Translational potential of ColXVIII in breast cancer. (A-C) Ablation of ColXVIII via siRNA-

mediated KD augments the efficacy of lapatinib, the dual inhibitor of EGFR and HER2 tyrosine kinases, in 

HER2-amplified SKBR3 and JIMT-1 cell lines, whereas in triple-negative MDA-MB-231 cells neither 

ColXVIII KD nor EGFR/HER2-targeting drugs have any effect. Cell proliferation was monitored in real 

time for five days using the IncuCyte live cell imaging platform, and the data are presented as percentages 

of confluence in the area monitored. (D-E) Genetic inactivation of Col18a1 in the MMTV-PyMT mouse 

mammary carcinoma model augments the efficacy of lapatinib. (D) The total tumor burden in vehicle (0.5% 
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hydroxypropyl methylcellulose)-treated and lapatinib-treated WT-PyMT mice and 18‒/‒-PyMT mice at the 

age of 10 weeks. Two doses of lapatinib, 35 mpk (milligrams per kilogram) and 70 mpk, were tested. N=6 

mice per experimental group. (E) Representative images of proliferating Ki67-positive cells (red) and CK5-

positive mammary progenitor cells (green) in the vehicle- and lapatinib-treated WT-PyMT and 18‒/‒-PyMT 

tumors at week 10. Scale bars, 200 nm. (F) Quantification of the Ki67-positive cell counts per microscopic 

field at 20x magnification. (G) Quantification of the CK5-positive cells per microscopic field at 20x 

magnification. N=6 mice for the Ki67 and CK5 counts, and four random fields per tumor were analyzed. 

In A-D and F-G, the Student’s ‘t’ test was used for the statistical analysis. *, p<0.05. **, p<0.01; ***, 

p<0.001; and n.s., not significant. Error bars represent s.e.m. 
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