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Abstract

While noise is an important factor in biology, biological processes often involve multiple
noise sources, whose relative importance can be unclear. Here we develop tools that
quantify the importance of noise sources in a network based on their contributions to
variability in a quantity of interest. We generalize the edge importance measures
proposed by Schmidt and Thomas [1] for first-order reaction networks whose
steady-state variance is a linear combination of variance produced by each directed edge.
We show that the same additive property extends to a general family of stochastic
processes subject to a set of linearity assumptions, whether in discrete or continuous
state or time. Our analysis applies to both expanding and contracting populations, as
well as populations obeying a martingale (“wandering”) at long times. We show that
the original Schmidt-Thomas edge importance measure is a special case of our more
general measure, and is recovered when the model satisfies a conservation constraint
(“persists”). In the growing and wandering cases we show that the choice of observables
(measurements) used to monitor the process does not influence which noise sources are
important at long times. In contrast, in the shrinking or persisting case, which noise
sources are important depends on what is measured. We also generalize our measures to
admit models with affine moment update equations, which admit additional limiting
scenarios, and arise naturally after linearization. We illustrate our results using
examples from cell biology and ecology: (i) a model for the dynamics of the inositol
trisphospate receptor, (ii) a model for an endangered population of white-tailed eagles,
and (iii) a model for wood frog dispersal.

Author summary

Biological processes are frequently subject to an ensemble of independent noise sources.
Noise sources produce fluctuations that propagate through the system, driving
fluctuations in quantities of interest such as population size or ion channel configuration.
We introduce a measure that quantifies how much variability each noise source
contributes to any given quantity of interest. Using these methods, we identify which
binding events contribute significantly to fluctuations in the state of a molecular
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signalling channel, which life history events contribute the most variability to an eagle
population before and after a successful conservation effort rescued the population from
the brink of extinction, and which dispersal events, at what times, matter most to
variability in the recolonization of a series of ponds by wood frogs after a drought.

Introduction 1

Noise source importance evaluates the relative contributions of a set of noise sources to 2

variability in a quantity of interest. By evaluating noise source importance we can 3

quantify when, where, and to which quantities, individual noise sources matter. 4

Noise source importance was originally introduced to identify unimportant noise 5

sources that could be ignored as a form of model reduction [1, 2]. In some cases, such as 6

in the Hodgkin-Huxley model for neuron firing, this approach can lead to efficient, yet 7

accurate, approximate simulation [3–5]. To illustrate this application we will ask, which 8

binding events can be ignored when simulating the inositol triphosphate channel 9

responsible for calcium induced calcium release? 10

More broadly, when fluctuations in a quantity are important, it is helpful to know 11

where those fluctuations come from. For example, variance in the reproductive success 12

of individual organisms can be decomposed into variability contributed by individual 13

traits, and variability arising from random events during the life of the individual. The 14

relative importance of these two sources determine whether an individual’s success is 15

determined primarily by their intrinsic quality (pluck), or luck during their lifetime. 16

Snyder et al. applied this decomposition to show the lifetime reproductive success of a 17

shrub and perrenial grass (Artemisia tripartita and Pseudoroegneria spicata) are more 18

determined by luck than the quality of their location [6]. 19

The same kinds of questions can be asked for other noise sources and quantities of 20

interest. In most conservation efforts, population size is the most important quantity. 21

Variability in population size drives stochastic extinction for small populations, so 22

controlling variability is important for their conservation. As an example, we will ask, 23

did variation in clutch size, juvenile survival, or adult survival play a more important 24

role in variability in a population of white-tailed eagles (Haliaeetus albicilla) while they 25

were endangered? Have the important sources of variability changed now that the eagle 26

populations have recovered? Fluctuations also play an important role in colonization 27

and invasion processes triggered by rare dispersal events. We will ask, does variability 28

due to dispersal play an important role in wood frog (Rana sylvatica) populations when 29

at equilibrium, and during a recolonization process following a drought? 30

Note that the variables observed, or choice of measurements used to monitor a 31

process, can strongly influence which noise sources are important. Indeed, noise source 32

importance measures were originally introduced to answer the question: which noise 33

sources are important to what observables [7]? This question is important in cellular 34

signalling, where it is often only possible to measure whether a channel is open or closed, 35

not its specific configuration. Similarly, in population biology it is often impossible to 36

exhaustively survey all relevant variables. Then measurement choices must be made. 37

These could be guided by identifying transitions that contribute significant variability to 38

the quantity of interest. We would then ask: which noise sources are important to what 39

quantities of interest? Thus, in addition to asking which noise sources are important, we 40

will ask: how does the choice of observable influence which noise sources are important? 41

To address these questions, we extend an existing edge importance measure, 42

introduced by Schmidt and Thomas for chemical reaction networks with a conservation 43

constraint [1]. In chemical reaction networks, each edge in the reaction network is an 44

independent noise source. Noise associated with a reaction arises from variability in the 45

timing of reaction events, and can be removed from models by replacing the number of 46
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reaction occurrences in a time interval with the expected number of occurrences. 47

Reducing the total number of noise sources in the model can allow more efficient 48

simulation without changing the expected dynamics [2]. Removing noise sources usually 49

reduces the variability in the process, so it is important to choose the set of edges 50

simulated deterministically with care. If the reaction network consists entirely of 51

first-order reactions, then the steady state variance in an affine measurable function of 52

the state variables can be expressed as a sum of variance contributed by each edge in 53

the network [1]. The affine measurable function models the observable or quantity of 54

interest. The importance of each noise source to variability in the quantity of interest 55

can be evaluated by computing the fraction of the total variability contributed by each 56

edge. Often the important edges are edges which directly change the observable, while 57

the observable is “shielded” from fluctuations on the other edges [2]. The stochastic 58

shielding approximation reduces a reaction network by dropping noise from unimportant 59

edges [1, 2, 7]. Example applications to neural dynamics are discussed in [3–5,8–10]. 60

The importance measure developed by Schmidt and Thomas is limited to stochastic 61

models with a very specific structure. First order chemical reaction networks are 62

discrete-state continuous-time Markov chains with linear propensities. Moreover, the 63

signalling models considered by Schmidt and Thomas always satisfy a conservation 64

constraint, since the state space models configurations of a fixed number of channels. 65

As a result, the models necessarily approach a steady state distribution. 66

Many important biological models do not fit a reaction network framework, evolve 67

continuously in time, use linear propensities, satisfy a conservation constraint, or 68

possess a steady state distribution. For example, population models used to inform 69

species management and conservation cannot assume a conserved population, because 70

the principal modelling objective is to predict population growth or decline. Similarly, 71

branching process models are widely used to study cell reproduction in oncology, and do 72

not necessarily possess a steady state distribution as the population of cells may be 73

expected to grow or shrink over time [11]. We will consider two representative 74

population models (see §Applications) which do not fit the reaction network framework, 75

do not occur continuously in time, and do not necessarily approach a steady state 76

distribution, yet admit an edge-importance decomposition. 77

In this paper we introduce a general family of measures that provide such an 78

edge-importance decomposition. Our generalization covers a broad class of stochastic 79

models that satisfy a set of linearity assumptions. These include discrete- and 80

continuous-state and time models, and models without a steady state distribution. The 81

essential generalizations are listed below: 82

1. Sufficient conditions. We provide a set of sufficient conditions that a stochastic 83

model must satisfy in order for the measures to be applied. By providing a set of 84

minimal requirements, rather than an explicit model construction, we can address 85

a much more general class of models, and establish results that hold independent 86

of specific model formulations. We provide examples of common model 87

formulations that satisfy these requirements, but future researchers could use the 88

minimal requirements to check whether their models are amenable to our analysis. 89

2. Generic asymptotic behavior. Previous work was limited to models with a 90

non-degenerate steady state distribution. We allow for models without a steady 91

state, and whose expected state could diverge, approach a non-zero value, or 92

converge to zero. We show that the existing measure is a special case of our 93

general measures, and is recovered when the model satisfies a conservation 94

constraint. 95

3. Importance at finite times. Many models are not globally linear, but can be 96

approximated locally with a linearized model. Long-time limits of linear 97
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approximations may not be meaningful if the process is expected to leave the 98

region where the linear approximation is valid. Then it is useful to compute noise 99

source importance at intermediate times. Moreover, in some cases we are 100

interested in the variability along a transient trajectory. For example, when 101

considering an invasion process, we are typically interested in dynamics during the 102

transient approach to equilibrium, not at equilibrium. 103

The paper is organized as follows. In §Scope we outline the sufficient conditions 104

required for a model to suite the analysis. These conditions define the scope of models 105

considered. We then present some important model classes that satisfy the sufficient 106

conditions. 107

We divide our subsequent results into theory and application. In §Theoretical 108

Results we derive the noise source importance measures for discrete- and continuous- 109

time models, at finite and long times, in each possible limiting scenario, and show that 110

Schmidt and Thomas’ measure [1] is a special case of our generalized measure. We 111

demonstrate that the measures all share a generic derivation in terms of the production 112

and propagation of variance, and the distinctions between the measures arise from 113

whether most present variability was produced recently, or in the far past. We then 114

compute the long time limit of the important measures in each limiting scenario, and 115

find that, in contrast to the existing literature, when the process grows or wanders, long 116

time noise source importance is independent of the choice of observable (c.f. Lemma ). 117

We conclude our theoretical investigation by presenting the equivalent measures in the 118

affine case. 119

In §Applications we apply our theoretical results to illustrative examples 120

corresponding to sample model types introduced in §Scope. The applications illustrate 121

how the noise importance measures can be computed for widely used classes of 122

stochastic models. We consider applications to cellular signalling to demonstrate 123

consistency with existing methods in a model system where noise source importance has 124

not been computed before. A reader interested in efficient simulation and model 125

reduction can skip to §Inositol Trisphosphate and Calcium Signalling on page 15. We 126

also consider applications to white-tailed eagles to demonstrate that our methods can 127

be applied to discrete-time matrix models without a steady state population, and to a 128

nonlinear model of wood frog dispersal to illustrate how our methods can be applied to 129

linear approximations both about equilibrium and along transients associated with 130

recolonization. A reader interested in conservation and variability in natural 131

populations can skip to §White-Tailed Eagles (Haliaeetus albicilla) on page 21 or 132

§Wood Frogs (Rana sylvatica) on page 24. 133

Scope 134

Sufficient Conditions 135

Let X(t) denote a continuous-time stochastic process and Xt a discrete-time stochastic 136

process. We require the following properties: 137

P1 Markov: The stochastic process is Markovian. 138

P2 Linearity of Conditional Expectation: If X(t) is a continuous-time model, 139

then d
dtE[X(t)], given X(t) = x, is either an affine or linear function of x. If Xt is 140

a discrete-time process, then E[Xt+∆t], given Xt = x, is an affine or linear 141

function of x. 142

P3 Linearity of Conditional Variance: If X(t) is a continuous-time process, 143

then d
dtCov[X(t)], given X(t) = x, is either an affine or linear function of x. If Xt 144
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is a discrete-time process, then Cov[Xt+∆t], given Xt = x, is an affine or linear 145

function of x. 146

P4 Noise Separability: If X(t) is a continuous-time process, then d
dtCov[X(t)] 147

can be expressed as a sum over noise sources, the derivative is well-defined 148

(symmetric and positive-definite) for any partial sum over the noise sources, and 149

the derivative is zero if no noise sources are included. If Xt is a discrete-time 150

process then Cov[Xt+∆t] can be expressed as a sum over noise sources, the 151

covariance is well defined (symmetric and positive-definite) for any partial sum 152

over noise sources, and the covariance is zero if no noise sources are included. In 153

either case the contribution from each noise source is an affine function of x. 154

The first three conditions ensure that the state covariance at time t takes a canonical 155

form. The last condition ensures that the state covariance can be separated into 156

contributions from each noise source. The results provided in the main text assume that 157

both the conditional expectation and variance are strictly linear functions of the state x. 158

The generalization to affine functions of x is provided in S3 Appendix. 159

Example Model Types 160

The following models satisfy the sufficient conditions: 161

Continuous-Time First-Order Reaction Networks: 162

A continuous-time first order reaction network is specified by a set of reactions R, 163

and a propensity λr(x, t) and stoichiometry sr for each reaction r ∈ R. The 164

propensity λr(x, t) is the expected rate at which reaction r occurs at time t. In a 165

first order reaction network, the propensities are linear functions of x, denoted pᵀrx. 166

The actual reaction times are random. The probability that reaction r occurs once 167

in a small time interval is λr(x, t)∆t+O(∆t2), doesn’t occur is 168

1− λr(x, t)∆t+O(∆t2), and occurs more than once is O(∆t2). If reaction r occurs 169

at time t then X(t) is replaced with X(t) + sr. 170

Langevin Approximation to Continuous-Time First-Order Reaction 171

Networks: 172

The Langevin approximation to a continuous-time first order reaction network is 173

dX(t) = AX(t)dt+B(x, t)dW (t) where W (t) is a Wiener process, A =
∑
r∈R srp

ᵀ
r , 174

and B(x, t) =
∑
r∈R

√
λr(x, t)sre

ᵀ
r where er is the rth |R| × 1 indicator 175

vector [7, 12,13]. The associated diffusion matrix, D(x, t) =
∑
r∈R λr(x, t)srs

ᵀ
r , 176

governs the instantaneous production of variance, while A governs the expected 177

behavior of X(t). 178

Discrete-Time First-Order Reaction Networks: 179

A discrete-time first order reaction network is also specified by a set of reactions, 180

propensities which are linear functions of x, and stoichiometries. However, the 181

number of times each reaction occurs in each time interval is Poisson distributed 182

with mean λr(Xt, t)∆t (c.f. [2]). 183

Discrete-Time Matrix Models: 184

A discrete-time matrix model is a model where the distribution of Xt+∆t, given 185

Xt = x, is parameterized by a linear function of x, say Ax for some matrix A, and 186

some fixed external parameters. Usually the expected value of Xt+δt is given by Ax. 187

For example, we could set each entry of Xt equal to a Poisson random variable, with 188

means fixed by AXt−∆t. 189

In practice, not all discrete-time matrix models use Poisson distributed random 190

variables. Instead, the product aijxtj may represent the mean of a different 191

January 6, 2022 5/35

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2022. ; https://doi.org/10.1101/2022.01.10.475598doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.10.475598
http://creativecommons.org/licenses/by/4.0/


distribution. In an age or stage-structured population model, the entries of the first 192

row of A represent fecundity rates (reproduction), and the remaining entries all 193

represent transition probabilities between stage/age classes j and i [14]. Then, the 194

actual number of individuals who transition from class j to class i is binomially 195

distributed, with xtj trials and probability aij . Thus the expected number of 196

individuals making the transition is aijxtj , but the variance in the number is 197

aij(1− aij)xtj , not aijxtj . Nevertheless, the variance remains a linear function of x. 198

Transitions representing survival, dispersal, aging, or growth often take this form. 199

Binomial survival distributions appear widely in discrete time population models 200

subject to demographic stochasticity [15]. 201

Fecundity distributions are more model dependent, and may not be known 202

explicitly [16]. While some authors and software packages adopt the Poisson 203

distribution [17,18], the Poisson distribution is often ill-suited to modeling the 204

distribution of offspring since it often lacks biological justification, is unbounded 205

above, and may have unrealistic variance given its mean. While a different 206

parametric family of distributions could be used, for example, the generalized 207

Poisson recommended in [16], our analysis depends only on the functional form of 208

the conditional moments (see §White-Tailed Eagles). If it is assumed that, 209

conditioned on their shared environment, the number of offspring produced by any 210

individual (or mating pair) is independent of the number produced by any other 211

individual, then the variance in the number of offspring produced by any age or 212

stage class is a linear function of the number of individuals in that class. Thus it is 213

enough to know the variance in the number of offspring per individual or mating 214

pair to perform our analysis. 215

Results 216

Theoretical Results 217

If the stochastic process satisfies conditions P1-P4 above, then the state covariance 218

takes a standard form. Let V (t) or Vt denote the covariance in the state, and x̄(t) or x̄t 219

denote the expected state, at time t. Here we provide an explicit derivation for Vt given 220

x̄0 and V0. For simplicity, we assume that the time units are chosen so that ∆t = 1. 221

The results for continuous-time systems are entirely analogous. We articulate the 222

explicit forms for each case. Appendix S1 Appendix provides the derivation for 223

continuous-time systems. In this section we restrict attention to the case when the 224

conditional expectation and variance are strictly linear functions of x. The affine case is 225

treated in S3 Appendix, and results are reported at the end of that section. 226

Under conditions P1-P2, the expected state given the previous state is a 227

time-independent linear or affine function of the previous state. In the linear case there 228

exists some update matrix A such that: 229

E[Xt+1] = AE[Xt] (1)

in which case, E[Xt] = AtE[X0]. 230

The covariance also satisfies a recursion. Since the process is Markovian, we can 231

apply the law of total variance to decompose the covariance at time t+ 1: 232

Cov[Xt+1] = Cov[E(Xt+1|Xt)] + E(Cov[Xt+1|Xt]). (2)

The expected value of Xt+1 given Xt is AXt+1 so: 233

Cov[E(Xt+1|Xt)] = Cov[AXt] = A (Cov[Xt])A
ᵀ. (3)
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This term represents the forward propagation of past uncertainty into the present. The 234

product A(·)Aᵀ is the forward propagation operator. 235

Under condition P3, there exists some linear function of x, D(x, t), such that: 236

Cov[Xt+1|Xt] = D(Xt, t). (4)

Then, since D(x, t) is linear: 237

E(Cov[Xt+1|Xt]) = E(D(Xt, t)) = D(x̄t, t). (5)

Therefore the covariance satisfies the recursive update equation: 238

Vt+1 = AVtA
ᵀ +D(x̄t, t). (6)

The recursion closes, leaving: 239

Vt = AtV0A
tᵀ +

t∑
h=1

At−hD(x̄h, h)At−h
ᵀ

(7)

where x̄h = AhE[X0]. The proof follows by induction. The first term in Eq. 7 is the 240

forward propagation of uncertainty in the initial conditions to the variance at time t, 241

while the second term is the forward propagation of the additional uncertainty 242

introduced at each intermediate time step. Each term in the sum is the uncertainty 243

produced at time h, D(x̄h, h), carried forward by the propagation operator 244

At−h(·)At−hᵀ. 245

The state covariance for a continuous-time process takes an analogous form: 246

V (t) = eAtV (0)eAt
ᵀ

+

∫ t

s=0

eA(t−s)D(x̄(s), s)eA(t−s)ᵀds (8)

where A is the matrix such that d
dtE[X(t)] = AE[X(t)] and D(x(t), t) is the matrix such 247

that d
dtCov[X(t)] = D(x, t) if X(t) = x. In continuous time the forward propagation of 248

uncertainty is governed by eAt(·)eAtᵀ, and uncertainty is produced continuously, so the 249

sum over the past is replaced with an integral. 250

In both cases, the second term is the variance produced by the process during the 251

time interval [0, t]. We will generally focus on this term, since the variance inherited 252

from uncertainty in the initial conditions is independent of the noise sources. The 253

variance produced by the process with initial expectation x̄(0) is the same as the 254

variance in the process if initialized at X(0) = x̄(0). Therefore, for the rest of this 255

discussion we drop the initial variance from Eq. 7 and Eq. 8. 256

Noise Source Expansion and Importance 257

Under condition P4, we can decompose the variance production term D(x, t) into a sum 258

over noise sources. Let N denote the set noise sources, and let Dn(x, t) be the 259

variability in Xt or X(t) produced by the nth noise source. Then: 260

D(x, t) =
∑
n∈N

Dn(x, t). (9)

The variance produced by the process is: 261

Vt =
∑
n∈N

t∑
h=0

At−hDn(x̄h, h)At−h
ᵀ
,

V (t) =
∑
n∈N

∫ t

s=0

eA(t−s)Dn(x̄(s), h)eA(t−s)ᵀ.

(10)
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Two important properties of the state covariance can be inferred directly from 262

Eq. 10. First, the uncertainty at any time t can be expressed as a sum over each noise 263

source at each time in the past. In a simulated process, this decomposition expresses 264

the uncertainty at time t as a sum over uncertainty contributed by each previous 265

random number draw. It follows that the state covariance is additive in the sense that: 266

Lemma 2: (Additivity) If S(t) and S ′(t) are disjoint subsets of N at all t, then
the state covariance in the process with noise sources S ∪ S ′ equals the sum of the
covariances in the reduced processes with noise sources S and S ′ separately.

The second property of eq. 10 involves ordering of covariance matrices. Covariance 267

matrices can be (partially) ordered since they are real-symmetric and positive 268

semi-definite. If B and C are both Hermitian positive-definite then B ≥ C if B − C is 269

positive semi-definite, and B > C if B − C is positive definite [19]. If || · || is a 270

monotone matrix norm then B ≥ C implies ||B|| ≥ ||C||. From here on ‖ · ‖ will denote 271

a monotone matrix norm. 272

Eq. 10 ensures that the state covariance is monotonically nondecreasing as more 273

noise sources are added. The noise source expansion in Eq. 10 represents the variance 274

produced by the process as a sum of positive semi-definite matrices, one for each noise 275

source. Therefore: 276

Lemma 2: (Monotonicity) If S ′(t) ⊆ S(t) for all t and V ′(t) and V (t) are the
covariances produced by the processes with noise sources T (t) and S ′(t) then
V ′(t) ≤ V (t) and ||V ′(t)|| ≤ ||V (t)|| for any monotone matrix norm.

The importance of a set of noise sources can be analyzed by considering the variance 277

produced by a reduced process with the noise removed from the remaining sources. Let 278

S(t) denote the set of noise sources that are included in the process at time t. Then the 279

variance produced by the reduced process is given by restricting the sum over noise 280

sources to the sum over S. 281

To analyze noise source importance, we also need to specify how we measure the size 282

of a covariance matrix, and whether we are interested in the full state of the process or 283

some observable function of the state. Here we restrict our focus to observables that are 284

linear functions of the state. Let Mᵀ be the Jacobian of the observable so that each 285

column of M corresponds to a specific observable, and inner products with columns of 286

M represent measurements. The matrix M is the measurement matrix. Then the 287

importance R of noise sources S at time t, given initial expectation x̄0, and 288

measurement matrix M , is the ratio of the norm of the covariance in the observable for 289

the reduced process, to the norm of the covariance in the observable for the full process. 290

That is, if V
(S)
t denotes the state covariance in the process with sources S, then: 291

R(S|M, || · ||, x̄0, t) =
||MᵀV

(S)
t Mᵀ||

||MᵀV
(N )
t Mᵀ||

,

R(S|M, || · ||, x̄(0), t) =
||MᵀV (t)(S)Mᵀ||
||MᵀV (t)(N )Mᵀ||

.

(11)

Then, for discrete and continuous-time respectively: 292

R(S|M, || · ||, x̄0, t) =
||
∑t
h=0

∑
n∈S(h)M

ᵀAt−hDn(x̄h, h)At−h
ᵀ
M ||

||
∑t
h=0

∑
n∈N M

ᵀAt−hDn(x̄h, h)At−h
ᵀ
M ||

,

R(S|M, || · ||, x̄(0), t) =
||
∫ t
s=0

∑
n∈S(s)M

ᵀeA(t−s)Dn(x̄(s), h)eA(t−s)ᵀMds||

||
∫ t
s=0

∑
n∈N M

ᵀeA(t−s)Dn(x̄h, h)eA(t−s)ᵀMds||
.

(12)
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Note that if the chosen norm is linear in the matrix entries, then the importance can 293

be interpreted as the fraction of the uncertainty contributed by noise sources S. It is 294

also natural to seek a matrix norm that is unitarily invariant, so that the size of the 295

covariance is independent of our representation of the state space. The only linear, 296

unitarily invariant matrix norm on symmetric-positive definite matrices is the trace 297

norm. The trace is a monotone norm for positive semi-definite matrices since the 298

diagonal entries of a positive semi-definite matrix are all nonnegative. The trace is also 299

a natural choice in this context, since the trace of a covariance is the expected (squared) 300

distance between a sampled observable and its expectation. 301

Eigen-Expansion and Closed Form 302

Suppose that the matrix A is diagonalizable and the set of noise sources considered, 303

S(t), is constant in time. Then we can close the sum/integral over the past. The 304

discrete-time derivation is provided here. 305

If A is diagonalizable then A = UΛW ᵀ where U and W are matrices whose columns 306

are the right and left eigenvectors respectively, and W ᵀ = U−1. Then: 307

x̄t = Atx̄0 =
∑
k

ukλ
t
kw

ᵀ
k x̄0. (13)

Next, since Dn(x, t) is linear in x, and time independent: 308

Dn(x̄t, t) =
∑
k

λtk(wᵀ
k x̄0)Dn(uk). (14)

Therefore, the variance produced by the process at time t is: 309

V
(S)
t =

∑
n∈S

U

[∑
k

(wᵀ
k x̄0)

t∑
h=1

λhkΛt−hW ᵀDn(uk)WΛt−h

]
Uᵀ (15)

where the sum over noise sources can be moved outside the sum over time via the 310

assumption that the set of noise sources is unchanging. 311

Next, define the matrix: 312

D̂(k, n) = W ᵀDn(uk)W. (16)

Then Eq. 15 can be expanded into a sum over triples of eigenvalues: 313

V
(S)
t =

∑
n∈S

∑
i,j,k

(wᵀ
k x̄0)

[
t∑

h=1

λhkλ
t−h
i λt−hj

]
d̂ij(k, n)uiu

ᵀ
j . (17)

The sum can be rewritten as a geometric series, so: 314[
t∑

h=1

λhkλ
t−h
i λt−hj

]
=

((λiλj)
t − λtk)

λiλj − λk
. (18)

In the special case when λiλj = λk the sum equals λk
tt. 315

Therefore, the closed form for the covariance produced by the reduced process with 316

noise sources S is: 317

V
(S)
t =

∑
i,j,k

(wᵀ
k x̄0)

(λiλj)
t − λtk

λiλj − λk

[∑
n∈S

d̂ij(k, n)

]
uiu

ᵀ
j . (19)
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The analogous equation in continuous-time is: 318

V (S)(t) =
∑
i,j,k

(wᵀ
k x̄(0))

e(λi+λj)t − eλkt

λi + λj − λk

[∑
n∈S

d̂ij(k, n)

]
uiu

ᵀ
j . (20)

Then, to compute finite time importance, substitute Eq 19 or 20 into Eq 11. Note 319

that the existing measure introduced by Schmidt and Thomas, only considered 320

importance in the long time limit [1]. Finite time importance is of interest in 321

applications whenever fluctuations about transients matter, such as during an invasion 322

process. 323

The only difference in the discrete and continuous-time expressions is the time 324

independent term in V (S)(t) involving the eigenvalues in equations 19 and 20. If the 325

discrete-time model is chosen to discretize a continuous-time model then the two 326

expressions converge in the limit of small ∆t (see S2 Appendix). 327

Long-Time Limits 328

Eq. 11 establishes a closed form for finite-time noise source importance. The long-time 329

limit remains. 330

For processes with a non-degenerate steady state distribution, the state covariance 331

converges to a fixed matrix. For processes without a steady state, the covariance can 332

diverge or converge to zero. In these cases, we scale the covariance by its asymptotic 333

growth rate, and analyze importance with respect to the scaled covariance. Scaling the 334

variances by the asymptotic growth rate does not change the importance measure since 335

||αB|| = |α| · ||B||, so the numerator and denominator are scaled by the same constant. 336

To analyze the long-time limit we require an additional property: 337

P5 Dominant Eigenvalue: A has a dominant eigenvalue λ1 such that |λ1| > |λj |, 338

in discrete time, or Real(λ1) > Real(λj), in continuous time, for any j > 1. 339

The limiting behavior of the variance depends on the limiting behavior of Eq. 18 as t 340

gets large. These limits depend, in turn, on whether |λ1| is greater than, equal to, or 341

less than one, which determines whether Xt is expected to grow, remain constant, or 342

shrink. When growing, the variance grows proportionally with λ2t
1 , when neutral the 343

variance grows proportionally with t, and when shrinking the variance shrinks 344

proportionally with λt1. 345

The respective limits are: 346

Growing: if |λ1| > 1 then lim
t→∞

1

λ2t
1

λtk − (λiλj)
t

λk − λiλj
=


1

λ2
1 − λk

if i = j = 1

0 else


Neutral: if λ1 = 1 then lim

t→∞

1

t

λtk − (λiλj)
t

λk − λiλj
=

{
1 if i = j = k = 1

0 else

}

Shrinking: if |λ1| < 1 then lim
t→∞

1

λt1

λtk − (λiλj)
t

λk − λiλj
=


1

λ1 − λiλj
if k = 1

0 else


(21)

In each case, the scaled variances take the general form: 347∑
i,j,k∈J

1

f(Λ)
(wᵀ

k x̄0) d̂(k, n)ij
(
Mᵀuiu

ᵀ
jM
)

(22)

where J is an index set and f(Λ) is a function of the eigenvalues. Both J and f(Λ) 348

depend on the limiting scenario, cf. Table 1. 349
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Scenario Condition Growth Rate of Vt J = {(i, j, k)} f(Λ)

Growing |λ1| > 1 λ2t
1 (1, 1, k) λ2

1 − λk
Neutral λ1 = 1 t (1, 1, 1) 1

Shrinking |λ1| < 1 λt1 (i, j, 1) λ1 − λiλj
Table 1. Index set and eigenvalue dependence for long time limit of discrete-time
variances, scaled by their growth rate.

Note that each of the cases has different limiting behavior. For example, when 350

growing, the covariance converges to a constant when rescaled by λ2t
1 , the growth rate of 351

||x̄(t)||2. Then the limiting behavior of the scaled covariance is equivalent to the 352

covariance in Y (t) = X(t)−x̄(t)
||x̄(t)|| , the relative fluctuations about the expected state. When 353

shrinking, the variance is proportional to λt1 instead of λ2t
1 . The difference in these 354

limiting behaviors can be explained by considering the primary sources of uncertainty at 355

long times. 356

If X(t) is expected to grow, then the expected trajectories diverge exponentially. As 357

a result, the uncertainty at some long time is mostly generated by uncertainty produced 358

at the start of the process. Thus, uncertainty early in the process (far in the past) is 359

compounded over time, amplified by the diverging trajectories. 360

In contrast, if X(t) is expected to shrink, then all the expected trajectories are 361

converging exponentially. As a result, the uncertainty at some long time is mostly 362

generated by fluctuations in the immediate past. The influence of uncertainty early in 363

the process (far in the past) is suppressed as the trajectories converge. 364

To see this distinction mathematically, consider the contribution of variance 365

introduced at time h to the state variance at time t > h. This contribution depends on 366

2t− h products with the matrix A, since the expected state at time h depends on Ah, 367

and the forward propagation of variance depends on a product on the left and right 368

with At−h. If some of the eigenvalues of A are greater than one, then maximizing the 369

exponent 2t− h will maximize products with A2t−h. For fixed t, the exponent is 370

maximized for h = 0 (the distant past) and the variance grows in proportion to 371

λ2t−h
1 = λ2t

1 . In contrast, if all of the eigenvalues of A are less than one, then 372

minimizing the exponent 2t− h will usually maximize products with A2t−h. The 373

exponent is minimized for h = t (the near-term) and the variance decays in proportion 374

to λt1. Thus, the distinction between the growing and shrinking cases comes from 375

whether the dominant contribution to the long time variance is the amplification of past 376

uncertainty, or uncertainty generated in the immediate past. 377

What if X(t) is neither expected to grow nor shrink? Then there is a direction along 378

which X(t) is a martingale. Specifically, if λ1 = 1, then the component of X(t) along 379

the dominant eigenvector, u1, is an unbiased random walk. This random walk accrues 380

variance linearly in time. Past variance does not decay or grow, so the variance along u1 381

grows steadily with each added step. Meanwhile, the projection of X(t) onto all other 382

eigenvectors vanishes, so the long time variance is dominated by the linear growth along 383

u1. 384

The continuous-time results are entirely analogous. In fact, Eq. 22 applies, with the 385

same choice of index set, only with different f(Λ). The necessary choices are 386

summarized in Table 2. 387

The finite time noise source importance depends on the set of noise sources 388

considered, the measurement matrix (the choice of observable), the chosen norm, and 389

the initial expected state of the process. Our next Lemma answers the question: What 390

does the long time noise source depend on? 391
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Scenario Condition Growth Rate of V (t) J = {(i, j, k)} f(Λ)

Growing Real(λ1) > 0 e2λ1t (1, 1, k) 2λ1 − λk
Neutral λ1 = 0 t (1, 1, 1) 1

Shrinking Real(λ1) < 0 eλ1t (i, j, 1) λ1 − λi − λj
Table 2. Index set and eigenvalue dependence for long time limit of continuous-time
variances, scaled by their growth rate.

Lemma 3: In the growing case, the long time noise source importance,
limt→∞R(S|M, || · ||, x̄0, t), is independent of the choice of measurement matrix M and
norm || · ||. In the shrinking case, the long time noise source importance is independent
of the initial conditions x̄(0). In the neutral case without a conservation constraint, the
long time noise source importance is independent of the choice of measurement matrix
M , the norm || · ||, and the initial conditions x̄(0).

Proof: In both the growing and neutral cases (without conservation constraint) all 392

contributions to the covariance take the form of a scalar coefficient times Mᵀu1u
ᵀ
1M . It 393

follows that the variance associated with a set of noise sources is the sum of those scalar 394

coefficients times the matrix Mᵀu1u
ᵀ
1M . The same holds when using all noise sources. 395

Therefore the covariance in any reduction of the process is proportional to the 396

covariance in the full process. The ratio of the norm of two proportional matrices is the 397

ratio of their proportionality constants, since ||αA|| = |α|||A|| for any norm. Thus, the 398

asymptotic importance in the growing and neutral case only depend on the scalar 399

coefficients that scale Mᵀu1u
ᵀ
1M . 400

In particular, in the growing case, the asymptotic importance for discrete and 401

continuous models takes the form: 402

lim
t→∞

R(S|M, || · ||, x̄0, t) =

∣∣∣∑k(wᵀ
k x̄(0)) 1

f(Λ)

∑
n∈S d̂(k, n)11

∣∣∣∣∣∣∑k(wᵀ
k x̄(0)) 1

f(Λ)

∑
n∈N d̂(k, n)11

∣∣∣ . (23)

In the shrinking and (unconstrained) neutral cases, all contributions to the 403

covariance are proportional to (wᵀ
1 x̄(0)), so the dependence on initial conditions cancels. 404

Thus, in the shrinking case: 405

lim
t→∞

R(S|M, || · ||, x̄0, t) =
||
∑
i,j

1
f(Λ)

[∑
n∈S d̂(1, n)ij

]
Mᵀuiu

ᵀ
jM ||

||
∑
i,j

1
f(Λ)

[∑
n∈N d̂(1, n)ij

]
Mᵀuiu

ᵀ
jM ||

, (24)

and in the unconstrained neutral case: 406

lim
t→∞

R(S|M, || · ||, x̄0, t) =

∣∣∣∑n∈S d̂(1, n)11

∣∣∣∣∣∣∑n∈N d̂(1, n)11

∣∣∣ . (25)

Therefore in the growing case the importance is independent of the measurement matrix 407

and choice of norm, in the shrinking case the importance is independent of the initial 408

conditions, and in the unconstrained neutral case the importance is independent of the 409

measurement matrix, norm, and initial conditions. � 410

Lemma establishes that noise source importance is independent of what is observed 411

when the process grows or wanders. This result stands in contrast to the existing 412

literature, where the choice of measurement strongly influences which noise sources are 413

important. Indeed, the stochastic shielding heuristic as originally proposed by 414
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Schmandt and Galan [2] is predicated on the assumption that the only important noise 415

sources are those that directly change the observable. In that case, edge importance is 416

entirely determined by what is measured. Schmidt and Thomas introduced their 417

measure to show that the heuristic does not always hold [1]. Nevertheless, edge 418

importance reversal usually occurs when the dynamics of the observable are strongly 419

coupled, albeit indirectly, to a distant noise source [7]. Thus, importance is still directed 420

by the observable. 421

As Lemma ?? establishes, the long time noise source importance does not depend on 422

the choice of observable, when the triple sum over i, j, k is restricted to a sum over k. 423

Recall that the sum over k accounts for the expected dynamics up to an intermediate 424

time, while the sum over i, j account for the propagation of variance after that 425

intermediate time (cf. Eq. (17)). This occurs when most of the variance is produced in 426

the distant past, as in the growing case, or when it accrues linearly along one direction 427

and shrinks along all others, as in the wandering case. Note that, in both cases, the 428

finite time importance still depends on the choice of measurement matrix. If the 429

eigenvalues of A are ordered in decreasing magnitude, then the dependence on the 430

measurement matrix decays as O((||λ2||/||λ1||)t) in the growing case, and as 431

O((||λ2||t)/t) in the wandering case. 432

The Steady State Case 433

So far we have not considered a limiting scenario in which the process approaches a 434

steady state distribution other than a delta distribution. The edge importance measure 435

introduced in [1] is only defined for processes with a non-degenerate steady state 436

distribution. The non-degenerate steady state case can be recovered from our analysis 437

by enforcing a conservation constraint. This special case is recovered by the additional 438

assumptions: 439

1. Neutral: |λ1| = 1 (discrete-time) or λ1 = 0 (continuous-time) 440

2. Conservation: The dominant left eigenvector w1 is in the nullspace of Dn(x, t) 441

for all n, x, t. 442

This situation occurs naturally in reaction networks where all the reactions have 443

stoichiometry vectors which conserve a quantity (for example, the total number of 444

particles or channels). The conservation constraint ensures that no noise source 445

produces variance along w1, so the inner product of wᵀ
1Xt is conserved. 446

Then d̂1,:(k, n) = 0 and d̂:,1(k, n) = 0, since w1 is orthogonal to the range of D, so 447

any term in the triple sum in Eq. 17 with i = 1 or j = 1 is automatically zero, which 448

sets the diverging term to zero. If k 6= 1 then the entire term converges to zero, so the 449

only surviving terms are k = 1, i 6= 1, j 6= 1. Then the long time limit (steady-state) 450

covariance equals: 451

lim
t→∞

V
(S)
t =

∑
n∈S

∑
i,j 6=1

C
1

1− λiλj
d̂ij(1, n)uiu

ᵀ
j (26)

where C = wᵀ
1 x̄0 = wᵀ

1X(t) is the conserved quantity. 452

The analogous result in continuous-time is: 453

lim
t→∞

V (S)(t) =
∑
n∈S

∑
i,j 6=1

C
−1

λi + λj
d̂ij(1, n)uiu

ᵀ
j . (27)

To compare to the edge importance measure proposed in [1] we write out d̂i,j(1, n) 454

in detail. First, note that D̂(k, n) = W ᵀDn(uk)W. Next, if the continuous-time model is 455
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a reaction network, then each reaction r is a noise source, so we replace n with r and 456

Dr(u1) = (pᵀru1)srs
ᵀ
r . Then: 457

lim
t→∞

V (S)(t) =
∑
r∈S

∑
i,j 6=1

C
−1

λi + λj
(pᵀru1)(wᵀ

i sr)(s
ᵀ
rwj)uiu

ᵀ
j . (28)

In a continuous-time first-order reaction network u1 is proportional to the 458

steady-state distribution, and Cpᵀru1 is the rate at which reaction r occurs at steady 459

state. This flux, Jr, is the steady state flux of reaction r. Then the uncertainty 460

contributed by a single reaction is: 461

Jr
∑
i,j 6=1

−1

λi + λj
(wᵀ

i sr)(s
ᵀ
rwj)uiu

ᵀ
j . (29)

The associated asymptotic importance is: 462

R(r|M, || · ||) =
||Jr

∑
i,j 6=1

−1
λi+λj

(wᵀ
i sr)(s

ᵀ
rwj)M

ᵀuiu
ᵀ
jM ||

||
∑
r∈R Jr

∑
i,j 6=1

−1
λi+λj

(wᵀ
i sr)(s

ᵀ
rwj)Mᵀuiu

ᵀ
jM ||

(30)

which coincides with the edge-importance measure defined by Schmidt and Thomas for 463

first-order continuous-time reaction networks when the observable is one-dimensional 464

(M has only one column) [1]. 465

Affine Conditional Moments 466

The previous sections assumed that the conditional moment equations were linear 467

functions of the state. Here we generalize our results to the affine case. The derivation 468

largely follows from the linear case and is provided in S3 Appendix. 469

In the affine case Eq. 1 and Eq. 4 are replaced with: 470

E[Xt+1|Xt = x] = Ax+ bt

Cov[Xt+1|Xt = x] =
∑
n∈N

Dn(x, t), Dn(x, t) = D(0)
n (t) +D(1)

n (x, t) (31)

where each Dn(x, t) is an affine function of the state x, D
(0)
n (t) is the x independent 471

part of each noise source (zeroth order term), and D
(1)
n (x, t) is the x dependent part of 472

each noise source (first order term). Note that linearity requires both the conditional 473

expectation and variance to be linear functions of x, which requires b = 0 and D(n) = 0. 474

Affine conditional moments arise naturally in problems with source reactions. For 475

example, consider a population subject to immigration from a reservoir not included in 476

the state. Then the immigration process is independent of the state of the system, so 477

adds state-independent terms to the conditional moments. Similarly, in a reaction 478

network with source reactions, the source reactions randomly add new particles from a 479

state-independent distribution, so the resulting conditional moments include 480

state-independent terms. 481

Affine conditional moments also arise naturally when linearizing nonlinear stochastic 482

models. If realizations of a nonlinear stochastic model tend to remain near some 483

non-zero equilibrium state, then, provided the fluctuations are small relative to the 484

second derivative of the reaction rate functions, we can approximate the stochastic 485

dynamics by linearizing the rate functions, or by linearizing the otherwise nonlinear 486

conditional moments. Linearization will generally produce affine conditional moments 487

since, if the linearization is based on Taylor expansion, the zeroth order terms in the 488

Taylor expansion will become state-independent terms in the conditional moments. 489
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Alternatively, if the linearization is based on a best fit linear model to observed 490

dynamics then the linearization will include state-independent terms whenever the fit 491

intercepts are nonzero. We consider an example of this kind in §Wood Frogs. 492

If the conditional moment equations are affine, then the moments satisfy the same 493

recursions as before, x̄t+1 = Ax̄t + bt, and Vt+1 = AVtA
ᵀ +

∑
n∈N Dn(x̄t, t). The 494

recursions are unchanged since they depend only on the linearity of expectation, law of 495

total variance, and linearity of the conditional moments. 496

While the recursions are unchanged, the long time limits of the moments are 497

changed by adding state independent terms. In particular, adding constant source terms 498

to the conditional moment equations introduces a new limiting scenario. 499

In absence of a constant source term, the only limiting scenario with a 500

non-degenerate steady state distribution was the neutral case, λ1 = 1, with a 501

conservation constraint. In the shrinking case, |λ1| < 1 the steady state distribution was 502

a delta distribution at the origin. In the presence of constant source terms the |λ1| < 1 503

case admits non-degenerate steady states. If b > 0 and |λ1| < 1, then the expected state 504

will converge towards a nonzero equilibrium, and thus the variance source terms will 505

approach constant, nonzero values. The resulting steady state distribution balances the 506

fluctuations produced by the nonzero noise sources, with their tendency to decay back 507

towards the equilibrium. This is the type of steady state commonly observed in 508

Ornstein-Uhlenbeck processes. If b = 0 then x̄t will converge to the origin. In the linear 509

case the intensity of each noise source is proportional to x, so when x̄t approaches the 510

origin all the noise sources stop producing noise - hence the approach to a delta 511

distribution. In the affine case, when b = 0 it must be true that D
(0)
n 6= 0, so the noise 512

sources Dn(x, t) do not vanish. Then the constant terms in the noise sources produce 513

fluctuations even when the expected state approaches the origin. These fluctuations 514

maintain a non-degenerate steady state. 515

As in the linear case, we can compute the long-time variance in the state by 516

expanding the recursions onto the eigenvectors of A, then closing the resulting sums 517

over the past, and evaluating the limiting behavior. Results for each limiting scenario 518

are provided below (see S3 Appendix for derivation): 519

Growing: if |λ1| > 1 then:

lim
t→∞

1

λ2t
1

V
(S)
t =

 1

λ2
1 − 1

 ∑
n∈S(0)

d̂
(0)
1,1(n) +

∑
n∈S(1)

∑
k

x̂∗kd̂
(1)
1,1(k, n)

+ . . .

. . .
∑

n∈S(1)

∑
k

1

λ2
1 − λk

(ˆ̄x0 − x̂∗)kd̂(1)
1,1(k, n)

u1u
ᵀ
1

Wandering: if λ1 = 1 then:

lim
t→∞

1

t
V

(S)
t =

 ∑
n∈S(0)

d̂
(0)
1,1(n) +

∑
n∈S(1)

∑
k

x̂∗kd̂
(1)
1,1(k, n) + . . .

. . .
∑

n∈S(1)

(ˆ̄x0 − x̂∗)1d̂
(1)
1,1(1, n)

u1u
ᵀ
1

Steady State: if |λ1| < 1 then:

lim
t→∞

V
(S)
t =

∑
i,j

1

1− (λiλj)

 ∑
n∈S(0)

d̂
(0)
i,j (n) +

∑
n∈S(1)

∑
k

x̂∗kd̂
(1)
i,j (k, n)

uiuᵀj .

(32)

Here D̂ = W ᵀDW , x̂ denotes expansion on the eigenbasis, x̂ = W ᵀx, and x∗ denotes 520
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the equilibrium of the expected dynamics, limt→∞ E[Xt] = x∗ =
∑
i(w

ᵀ
i b)

1
1−λi

ui. 521

Once the long time variance has been computed, the importance of each noise source 522

can be analyzed using the usual approach. Computing the long time variance in the 523

affine case is considerably more expensive than in the linear case, as all scenarios 524

require computing a sum over each eigenvalue, and the steady state scenario requires 525

computing a sum over all triples of eigenvalues. 526

Sample Applications 527

The four models introduced in §Scope differ only in the formulation of A and Dn(x). 528

For both continuous-time reaction networks A =
∑
r∈R srp

ᵀ
r and Dr(x) = (pᵀrx)srs

ᵀ
r . 529

For a discrete-time reaction network with time step τ the matrices are 530

A = I + τ
∑
r∈R srp

ᵀ
r and Dr(x) = τ(pᵀrx)srs

ᵀ
r . For a discrete-time matrix model, A is 531

explicitly fixed by the model parameterization, while Dn(x, t) will depend on the 532

distributions used to sample the updates. 533

We consider three applied examples in detail. The first is a chemical reaction 534

network model of a component of a cellular signalling process. We use this example to 535

demonstrate the utility of the existing edge importance measure. The remaining two 536

examples are structured population models, that demonstrate the extension to 537

discrete-time, discrete-state models, with or without a steady state, evaluated at finite 538

times. The last case demonstrates the importance of the affine generalization. Together, 539

these studies show how to answer the question: Which sources of noise are important to 540

which quantities of interest? 541

Continuous-time Reaction Networks: Inositol Trisphosphate and Calcium 542

Signalling 543

Cells utilize a variety of cellular signalling pathways to respond to external stimuli and 544

to perform essential functions. Calcium ions, Ca2+, are widely used cellular 545

messengers [20,21] involved in liver cell metabolism, contraction of ventricular, atrial, 546

vascular, lymphatic and smooth muscle fibers, fluid secretion in intestinal, pancreatic, 547

salivary, and sweat cells, aggregation of blood platelets, ion channel opening in T cells 548

and astrocytes, differentiation in osteoblasts, proliferation of smooth muscle, brown fat, 549

mesangial and T cells, fertilization, and neuronal synaptic plasticity in Purkinje and 550

hippocampal neurons [22–27]. Calcium ions are stored in the endoplasmic reticulum 551

(ER) at high concentrations (> 1 mM) while the concentration of free calcium ions in 552

the surrounding medium (the cytosol) is tightly maintained at lower concentrations 553

(100-700 µM) [28]. Calcium is released from the ER by second messengers to raise 554

intracellular Ca2+ concentrations and trigger a cellular response. Inositol trisphosphate, 555

InsP3, is a ubiquitous second messenger involved the calcium-mediated processes listed 556

above. It triggers Ca2+ release by binding and activating ion channels in the ER 557

membrane [22,29]. Sensitivity to InsP3 is modulated by the concentration of free 558

intracellular calcium through calcium-induced calcium-release (CICR). CICR amplifies 559

the signal so that a few InsP3 binding events can trigger a rapid release of calcium from 560

the ER into the cytosol. Free calcium then diffuses through the cytosol. If enough 561

calcium is released, then the diffusing calcium binds to an activating channel receptor 562

and triggers the release of more calcium producing propagating waves [29]. Calcium also 563

binds to an inhibitory channel receptor which inhibits further channel openings when 564

the free calcium concentration is high [30]. Then the free calcium is gradually 565

reabsorbed into the ER. 566

The combination of high InsP3 sensitivity at low Ca+2 concentrations, inhibition at 567

high concentrations, and diffusion, allows complex temporal and spatial dynamics. 568

These dynamics range from stochastic “blips” released by individual InsP3 channels, to 569
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“puffs” released by a cluster of channels, to travelling waves [28]. Shuai et al. present a 570

discrete-state continuous-time Markov model for a single subunit of the channel to 571

which InsP3 binds (hereafter, “InsP3 channel”). The subunit has nine states and 26 572

directed edges [30] (Figure 1). The subunits can change configuration, but are 573

conserved in number, so Shuai’s model is an example of a reaction network model 574

subject to a conservation constraint. 575

Fig 1. A single subunit in the InsP3 channel. The subunit has 9 states (vertices), 1 of
which is active, and 8 which are inactive. The 8 inactive states form a cube where each
axis corresponds to binding or unbinding at one of three different sites. Moving up
binds inositol; moving front to back binds activation calcium, and moving left to right
binds inhibitory calcium. In order to transition into the active state the subunit must
bind to InsP3 (move up), bind activation calcium (move back), and not bind inhibitory
calcium (move left).

One of the nine subunit states comprises an “active” configuration. The full InsP3 576

channel model contains four identical subunits, and the channel opens if at least three 577

of the subunits are in the active state. As shown in Figure 1, each subunit has three 578

binding sites, one for InsP3, and two for Ca+2. One calcium binding site activates the 579

channel, and the other inhibits the channel. The first is responsible for CICR, while the 580

second is responsible for closing the channel when free Ca+2 concentrations are high. 581

Following [30], we use a 1 to denote a bound site and a 0 to denote an unbound site. 582

Each subunit has nine states, eight corresponding to the 23 possible states of the 583

binding sites, and an additional state representing a conformational change that 584

activates the subunit. The first eight states form a cube, and binding events move along 585

the edges of the cube (black arrows in 1). The final state is connected to the (110) 586

corner, since the subunit can only activate if it is bound to InsP3, the active calcium 587

binding site is bound, and the inhibitory site is unbound. Shuai et al. demonstrated 588

that, for appropriately chosen parameters, this model correctly reproduced the 589

probability that the channel is active, and the expected time the channel spends closed 590

as a function of calcium concentration [30]. The exact model and parameters are 591

provided in [30]. Note that all binding events are first order reactions, and occur with 592

rates that depend on the InsP3 and Ca+2 concentrations. 593

Since the number of active subunits controls whether a channel opens or closes, the 594

only observable transitions are transitions into and out of the ninth state (active state). 595
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Since the model conserves the total number of subunits, it admits a steady state 596

distribution and falls into the fourth limiting scenario (“persisting”). We study the 597

importance of each noise source to the steady state variance in the number of open 598

channels as a function of the InsP3 and Ca+2 concentrations. All importance values are 599

calculated using Eq. 29. Finite time importance can also be computed using Eq. 11. 600

Finite time importance could be relevant when considering the channel’s response to a 601

spike in InsP3 or Ca+2. We focus on steady state importance here. 602

To compute importance, we specify a set of noise sources. We start by considering 603

individual edges as noise sources; however the edges could also be grouped by reaction 604

type. The importance of a reaction type can be recovered by summing the importance 605

of the edges in that class. Four pairs of binding and unbinding edges correspond to the 606

InsP3 binding site. Similarly, four pairs of edges correspond to binding and unbinding of 607

the activator calcium binding site, and four pairs correspond to binding and unbinding 608

at the inhibitory calcium site. These sets correspond to all edges of the cube that move 609

up and down (InsP3), forward and back (activator calcium), and left and right 610

(inhibitory calcium). The remaining pair of reactions corresponds to the conformational 611

change from inactive to active (edges linking (110) to the active state). Since this pair 612

contains the only observable reactions, the stochastic shielding heuristic would predict 613

that these edges are the most important sources of noise for the number of active 614

subunits [2]. However, we will show that the InsP3 and Ca+2 concentrations determine 615

which edges are most important, and the pair of activating and inactivating reactions 616

are not the most important in all situations. 617

The importance can be simplified by grouping forward and backward edges. The 618

network contains 26 edges, consisting of 13 forward and backward pairs. The 619

importance of the edges in each pair are always identical since the model obeys detailed 620

balance [30]. In detailed balance, the steady state flux on all forward reactions matches 621

the steady state flux on their backward partners. Moreover, if a forward reaction has 622

stoichiometry s→ = s then the corresponding backwards reaction has stoichiometry 623

s← = −s, so s→s
ᵀ
→ = ssᵀ = (−s)(−sᵀ) = s←s

ᵀ
←. Therefore, the variance contributed 624

by each forward reaction to the steady state will match the variance contributed by its 625

backwards partner. 626

Importance is not evenly distributed among the 13 reaction pairs. For any 627

combination of InsP3 and Ca+2 concentrations, the 4 most important edges account for 628

more than half the steady state variance, and the 8 most important account for more 629

than 90% of the steady state variance. The number of reactions needed to account for 630

50%, 90%, and 95% of the steady state variance is shown in Figure 2. Three of the four 631

edge pairs involving the active calcium binding site never contribute more than a percent 632

of the total variance. Binding of activating Ca+2 only matters if the inhibitory site is 633

unbound, and the InsP3 site is bound. Most of the edges contribute less than a percent 634

of the total variance when the calcium concentration is low (< 0.1 µM) or the InsP3 635

concentration is low. Consequently, most edge pairs do not contribute significantly to 636

the steady state variance unless the calcium concentration is intermediate (1 to 10 µM) 637

and the InsP3 concentration is small (< 1 µM). Similar results extend to the classes of 638

edges corresponding to particular reactions. Figure 3A shows regions in the Ca+2 InsP3 639

plane where each class of reactions is the least important. 640

Since most of the reactions do not contribute significantly to the variance in the 641

number of active subunits the simulation of the InsP3 channel could be streamlined by 642

simulating unimportant reactions deterministically rather than stochastically. If the free 643

Ca+2 and InsP3 concentrations are held fixed for the duration of the simulation, then 644

the importance of each reaction could be computed a priori, and unimportant reactions 645

could be identified and simulated deterministically. This approach is easily implemented 646

for Langevin approximations (c.f. [1, 7]) to the reaction network, and reduces the 647
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Fig 2. The number of edges needed to reach 50%, 90%, and 95% of the total variation
in the number of active subunits depends on the InsP3 concentration (marked I) and
the free Ca+2 concentration (marked C). All concentrations are in µ M and range from
10−2 to 101.75 µ M. We never need more than 19 of the 26 edges to reach 95% of the
total variance, and do not need most of the edges unless the Ca+2 concentration is
intermediate and the InsP3 concentration is low.

computation cost by reducing the total number of random numbers needed to perform 648

the simulation. 649

Figure 3B shows regions where each class contributes a plurality and majority of the 650

steady state variance. Binding to the activation site is most important when the Ca+2
651

concentration is low ( < 0.1 µM), and binding to the inhibitory site is most important 652

when the Ca+2 concentration is high (> 10 µM). Within the intermediate Ca+2 region, 653

the conformational change into the active state is most important when the InsP3 654

concentration is not small (> 0.1 µM), and the InsP3 binding site is most important 655

when the InsP3 concentration is small (< 0.01 µM). Thus, the directly observable 656

reactions are only most important in the concentration regime where the channel spends 657

most of its time activated. Outside of this region, the most important edges do not 658

directly change the observable. This situation is an example of edge importance 659

reversal [7]. 660

Edge importance reversal occurs when the subunit spends most of its time closed, 661

and only activates after a rare fluctuation. For example, the InsP3 binding edges are 662

most important when the Ca+2 concentration is intermediate, but the InsP3 663

concentration is low. Then the subunit spends most of its time in the (010) state, and is 664

immediately ready to activate if it happens to bind to InsP3 (move from 010 to 110). 665

These binding events are rare when the InsP3 concentration is small. In contrast, if the 666

subunit happens to bind to InsP3 then it moves to the 110 state, and is likely to 667

activate (the activating and inactivating rates connecting the 110 to the active state are 668

relatively fast). Then the rare InsP3 binding events contribute the majority of the 669

variance in the number of active subunits. 670

Figure 4 shows the importance of the four classes of reactions. Each of the three 671

classes of unobservable reactions are of negligible importance for a region corresponding 672

to the colored regions in Figure 3A. In contrast, the importance of the observable 673

reactions does not approach zero anywhere, and is never less than 0.14 (high Ca+2, low 674

InsP3 concentrations). The observable reactions are never of negligible importance since 675

the observable only changes when observable reactions occur. Thus, even if other 676

reactions are more important, the observable events still matter. 677
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Fig 3. Importance maps. A) Reaction type contributing the least variance. The color
of the region denotes which reaction type is least important. Grey hatching marks a
region where the least important class contributes more than a percent of the total
variance. B) Reaction types contributing the most variance. The color of the region
indicates which reaction is most important. Grey hatching marks a region where the
single most important class contributes more than half the total variance. The red line
marks the boundary of this region, and matches the red contours shown in Figure 4.

Discrete-Time Matrix Models for Populations 678

Next, we present two examples of discrete-time matrix population models. The models 679

incorporate age and spatial structure. Models of this kind are widely used in ecology to 680

manage populations and to inform conservation efforts. Population viability analysis, 681

among other methods, commonly uses discrete-time matrix models to guide 682

management choices, determine which life events are most important for the success of 683

the population, and the expected behavior population [14,31]. Here we show that the 684

tools developed in §Theoretical Results can be used to analyze noise structure in 685

discrete-time matrix models. We identify which life events (e.g. reproduction, survival, 686

dispersal, sex determination) produce the most variability in the population size at long 687

times. We also identify when (at what age) and where (which transition) noise is most 688

important. The examples are chosen to illustrate the theory. The first example offers 689

growing and shrinking populations and has linear moment dynamics. The second 690

example is a linearized nonlinear age and spatially structured metapopulation model. 691

The linearization produces affine moment update equations, so requires the fully general 692

analysis presented in §Affine Conditional Moments. We consider importance at both 693

long times and at short times during a recolonization process. 694

White-Tailed Eagles (Haliaeetus albicilla) 695

White-tailed eagles are a large, long-lived species found across the Palearctic. Like other 696

species of eagle, white-tailed eagles suffered severe population declines in the 20th 697

century due to direct persecution and pollution from heavy metals and pesticides such 698

as DDT [32]. Eagle populations have recovered rapidly since the 1980’s. The eagles 699

have been carefully studied in Germany since their recolonization in 1947. Both 700

population and individual data are available for time series covering 62 years [33]. 701

Here we consider a pair of discrete-time matrix models for white-tailed eagles in 702

Schleswig-Holstein based on a model formulated by Krüger et al. A full description and 703

parameterization can be found in [33]. Here we develop a stochastic interpretation of 704

Krüger’s model that incorporates demographic stochasticity according to natural choices 705
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Fig 4. Importance surfaces. A) Importance of binding and unbinding to the activation
site. B) Importance of binding and unbinding to the inhibition site. C) Importance of
InsP3 binding and unbinding. D) Importance of the observable reactions. The bottom
row shows each surface as a heat map. All panels share the same color bar. The red
lines mark importance 0.5. Note that the importance of activation is largest when the
Ca+2 concentration is small, and decreases as the concentration increases. Binding to
the active site goes beneath 0.5 at the boundary where the green region ends in Figure
3B. Binding to the active site becomes unimportant when the Ca+2 concentration is
large, near the boundary of the yellow region in Figure 3B. The importance of the
inhibitory reaction is large when the Ca+2 concentration is large, and decreases as it
decreases. Like the activation reaction, the inhibition reaction’s importance falls
beneath 0.5 at the boundary of the yellow region, and becomes negligible in the green
region of Figure 3B. This leaves an intermediate Ca+2 concentration regime (between
0.1 and 10 µM) where the other two reaction classes are important. The InsP3 binding
reaction is important when the InsP3 concentration is low, while the observable
reactions (conformational change in the subunit between active and inactive) is
important when the InsP3 concentration is large. The importance of the observable
reactions closely follows the probability that the channel is active.

of distributions. Where needed, we estimate conditional variances using data in [33]. 706

Krüger’s model is an age-structured model containing 37 age classes (ages 0 through 707

36 years). All individuals of age 36 are assumed to die. Eagles begin breeding after age 708

four. Separate life history rates were estimated for the periods 1947 to 1974, when the 709

species was endangered due to pollution, and 1974 to 2008, when the species recovered. 710

We assume that eagle deaths are independent, and that within a given time period 711

(1947-1974 or 1974-2008), the probability an eagle dies depends only on its age. Then 712

the number of eagles who survive in a given age class each year is a binomial random 713

variable, with parameters fixed by the survival rate for that age class, and the number 714

of individuals in that age class. The expected number of surviving birds from each age 715

class is linear in the number of birds in the preceding age class, as is the variance. This 716

model is supported by [34] who found no evidence for density dependence in eagle 717

survival rates. 718

Survival rates were estimated by [33] based on age of death for 80 birds between 1953 719

and 2008. Due to small population sizes only 25 dead birds were recorded before 1974. 720
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As a result, survival rates were only estimated up to age 4 for the 1947-1974 period, and 721

all survival rates for older eagles were set equal to the estimated survival rates for 722

1975-2008 [33]. The impacts of DDT on egg, chick, and adult survival rates are studied 723

in [32,35,36]. Not all survival rates could be estimated directly. Survival rates for age 724

classes missing data were set to the average of survival rates for neighboring age classes. 725

Here we present results based on Krüger’s reported survival parameters [33]. These 726

parameters appear noisy, likely due to limited sample size. In order to evaluate the 727

impact of parametric noise on our results, we also considered a version of the model in 728

which survival rates as a function of age are smoothed after age 5. Survival rates were 729

only smoothed after age 5, for two reasons. First, chick mortality is higher than juvenile 730

mortality. Second, mortality at age 4 is high due to territorial competition between 731

immigrant eagles of age 4 seeking a nesting site and adult eagles with established nests 732

who defend their territories [34,37]. We found that the smoothed model generated 733

smoother trends in importance across ages, but as our qualitative conclusions were 734

unaffected, we present results for the original unsmoothed model here. 735

We modeled the birth process as follows. The probability a particular female of a 736

given age breeds is provided by [33]. Breeding probability is lower for young adults 737

(0.620 at age 5) and approaches 1 for older adults (0.970 by age 8). Assuming 738

independence, the number of females of a given age who breed is a binomial random 739

variable with parameters equal to the probability any female breeds, and the number of 740

females of the given age. Krüger et al. also supply the average fecundity of each age 741

class, that is, the average number of fledged chicks per breeding female. Before 1975 742

each breeding female produced, on average, only 0.2 chicks each year. In contrast, after 743

1975 breeding females produced 0.55 to 0.77 chicks per year, with fecundity reaching a 744

peak at middle age, before declining in older eagles. This dramatic change in fecundity 745

is the main change in eagle life-history rates responsible for the recovery of the 746

species [33]. 747

To study the importance of each noise source we need an estimate for the variance in 748

fecundity (fledged chicks per breeding female). Unfortunately, this variance is not 749

provided explicitly in [33]. We used a two-pronged approach to bridge this gap. On one 750

hand, we used clutch size data from [33] to estimate the variance. We validated our 751

estimates against studies of Lithuanian and Swedish white-tailed eagle populations 752

(see [38,39]). On the other hand, we developed a variational approach that provided 753

interval estimates for the importances. In the variational approach, we impose 754

biologically motivated constraints on an unknown distribution, fix its mean, then 755

maximize and minimize its variance given the constraints. We use this approach to 756

avoid introducing specific distributional assumptions that are convenient but lack good 757

biological motivation. For example, we avoid assuming that clutch sizes are Poisson 758

distributed, as is assumed in some models (c.f. [34]), since clutch sizes above three or 759

four eggs are virtually never observed and are physiologically implausible. Instead, we 760

assumed that eagles: a) lay at most four eggs, b) lay zero eggs with probability 0.7 for 761

1947-1974 and 0.2 for 1975-2008 [33], and c) lay 3 eggs more frequently than they lay 4 762

eggs, as was observed in empirical clutch size distributions [38,39]. Then, for each age 763

class, we found the distribution with largest and smallest possible variance satisfying 764

constraints a-c with mean equal to the average fecundity provided in [33]. The 765

variances estimated from clutch size data [33] always fell between the max and min 766

variance provided by the variational approach. Therefore, we report results from the 767

variational approach which demonstrate the range of plausible importances across the 768

range of plausible fecundity variance. 769

Eagle sex ratios at birth are close to 0.5 [33], so we assume that the number of 770

female fledged chicks is a binomial random variable with mean equal to half the number 771

of fledged chicks. We do not model males. 772
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Each step in the life cycle is a separate noise source. We can then decompose the 773

variance produced by birth into components associated with separate life events. Since 774

we only track the number of fledged female chicks produced at the end of the birth 775

sequence, we use the law of total variance to decompose the variance in the number of 776

fledged female chicks into contributions from each random event (whether a female 777

breeds, clutch size, and sex determination). The sum of these contributions is the 778

overall contribution of noise from reproduction. Decompositions of this kind could be 779

introduced to other steps where there is enough modelling information to decompose 780

the events. For example, the number of fledged chicks could be separated into the 781

number of eggs laid, then the number of eggs that survive. Mortality could also be 782

decomposed into mortality from separate causes (disease, predation, starvation, etc.) 783

given enough data. The actual structure of the decomposition into separate noise 784

sources is both model and species dependent. For example, some species of birds 785

double-clutch (c.f. [40]), in which case the birth event should include a separate random 786

event that accounts for the number of clutches laid in a breeding season. 787

Pre and post 1974 models differ primarily in fecundity. Fecundity before 1974 was 788

reduced by egg-shell thinning due to pollution, and resulted in a declining population. 789

Our model, like Krüger’s, predicts a 6% annual decline in eagle population each year 790

prior to 1974 (λ1 = 0.947). After 1974 the model predicts a 4% annual growth in the 791

eagle population (λ1 = 1.04). Both the growth and decay rates are consistent with 792

Krüger’s predictions [33]. 793

To compute noise source importance, we set the initial population equal to ten 794

individuals, and partition the population into age classes according to the stable age 795

distribution. We then compute the importance of each noise source to the total 796

population using equations 23 and 24. Figure 5 illustrates results for the maximum 797

variance case. 798

In all cases, we find that mortality contributes more to the overall noise in eagle 799

populations than reproduction, with mortality accounting for 59 to 62% of variance 800

before 1974 (max and min variance in clutch sizes), and 79 to 82% of all variance after 801

1974. After 1974 the importance of mortality peaked at age 4. This peak can be 802

explained in two ways. First, eagle mortality is high at age 4 due to territorial contests 803

between young adults hoping to establish a new nest, and established adults. Notably, 804

this increase in mortality is not observed before 1974 when eagle populations were small, 805

so nesting space was less limited [33]. Second, the transition from age 4 to age 5 is 806

crucial, as it represents the transition to sexual maturity. Before 1974 the most 807

important noise source is chick mortality. We find that, across most population models 808

studied, the most important noise source is either mortality preceding the transition 809

into sexual maturity, or mortality during the first year of life, which is often high. In 810

both eras, we see large noise source importance for mortality during the first 8 to 10 811

years of life. These are crucial years, since individuals must survive the first four years 812

to reproduce, have notably lower survival rates as young adults, and take approximately 813

8 years before they breed reliably. 814

Reproduction accounts for 38 to 40% of the total variance in population size before 815

1974 (min and max variance in clutch sizes), and 18 to 20% of the total variance after 816

1974. The variance contributed by whether or not a female breeds is largest at age 5 817

and declines quickly as 97% of all females older than 8 breed. Thus, uncertainty in 818

breeding generally contributes the least variance of all noise sources considered (≤ 1%), 819

and is negligible for eagles over 8 years old. Before 1974, variance due to clutch size is 820

consistently larger than variance due to individuals’ sex, accounting for 26 to 29% of the 821

total variance. Variance due to individuals’ sex accounted for 11 to 12% of the variance 822

in these cases. After 1974, clutch size and sex contribute comparable amounts of 823

variance, accounting for 8 to 12% of the total variance each. In general, the importance 824
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Fig 5. Top row: Importance of noise sources for variance in white-tailed eagle
populations before 1974, assuming maximum variance in clutch sizes. Note the high
variance from chick mortality, large noise contributions from ages 4 and 8, and the slow
decay in the importance of reproduction. The erratic behavior of importance in
mortality at later ages is likely due to noise in the estimated survival rates, and was
smoothed out after smoothing the survival rates (not shown). Bottom row:
Importance of noise sources for white-tailed eagles after 1974, assuming maximum
variance in clutch sizes. Note the spike in importance at age 4, preceding the transition
to sexual maturity, and for young adults experiencing greater mortality.

of each reproduction event peaks at age 6, and then declines steadily with increasing age. 825

Accounting for all sources of noise at a given age we find that, before 1974, noise 826

from the first year of life is particularly important, and total importance peaks at age 7. 827

That said, noise at later ages is still important. The first 10 years of life account for 828

62.5% of the total variance, the first 15 years account for 78.9% of the total variance in 829

population size, and the first 20 years account for 89.4% of the total variance. Similar 830

results hold after 1975, except noise source importance peaks at age 4, and declines 831

faster, with the first 10 years of life accounting for 83.6% of the total variance in the 832

eagle population. 833

Thus, when eagle populations are shrinking, reproduction, in particular clutch size, 834

contributes more to the total variation in the population, importance is distributed 835

more evenly across age classes, and adults in their prime reproductive years (near age 8) 836

and chicks contribute most of the noise. When eagle populations are growing, 837

reproduction contributes notably less of the total variance, importance peaks at age 4 838

(the transition into sexual maturity), and decays faster with age. 839

Note that, to perform this type of analysis we do not need a full stochastic 840

population model, only the conditional moment update equations. Full stochastic 841

models are helpful when the distribution of a random quantity can be inferred naturally 842

from the life-history. For example, as long as deaths occur independently, survival can 843

usually be modeled as a binomial random variable, in which case the conditional mean 844
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and variance are parameterized by the survival probabilities. However, we are often 845

missing information needed to build a full stochastic model. For example, birth events 846

are often more difficult to model, since clutch, brood, or litter sizes do not necessarily fit 847

a standard family of distributions. Instead annual reproductive success often depends 848

on a sequence of random events, resulting in distributions that are often multimodal or 849

skewed [16]. Nevertheless, it is possible to use empirical information to constrain the 850

moment update equations as illustrated by our variational approach. In all cases, had 851

we assumed a Poisson or binomial distribution for clutch size we would have 852

overestimated the variance in clutch size. 853

Wood Frogs (Rana sylvatica) 854

Wood frogs are a well-studied (c.f. [41–43]) North American amphibian. In order to 855

study the relative importance of distinct noise sources within wood frog populations, we 856

linearize a nonlinear metapopulation model. We consider two distinct ecological 857

scenarios: equilibrium across life stages and local habitats, and global recovery from a 858

large perturbation. Because the linearized conditional moment equations are affine, we 859

apply the results from §Affine Conditional Moments. In addition, this example 860

demonstrates how to analyze noise source importance along transients, in particular 861

during a colonization process following a large perturbation. 862

Adult wood frogs migrate to ponds to breed in the early spring, where adult females 863

lay a single egg mass. There, the eggs hatch into fully aquatic larvae which 864

metamorphose into terrestrial juvenile frogs in the early summer. Wood frogs typically 865

reach sexual maturity after two years on land before they return to the pond to breed as 866

what we will refer to as “young adults”. Some frogs, which we call “mature adults”, 867

survive to breed a second time in the following year. When wood frog ponds are spread 868

across a large terrestrial habitat, they may act as a metapopulation [42,44]. While the 869

majority of individuals return to breed in the pond they hatched in, some frogs disperse 870

during their juvenile life stage and breed in a new pond [42]. Variation in dispersal 871

contributes to population variability within individual ponds, and as a whole. Thus, 872

unlike the eagle model, the wood-frog model incorporates spatial structure and noise 873

from dispersal. 874

The source wood frog metapopulation model (Rollins, Benard, Huffmyer, and 875

Abbott, in prep.) was a nonlinear deterministic ODE model based on data collected by 876

Michael F. Benard at the University of Michigan’s E. S. George Reserve (ESGR) shown 877

in 6. The model focuses on females, operates on a discrete one year time scale, includes 878

21 ponds and 4 age classes: eggs, juveniles, young adults, and mature adults. The 879

continuous terrestrial environment surrounding the ponds is shared by all juvenile and 880

adult individuals. The model is nonlinear since, as in other amphibians, survival from 881

egg to juvenile is density-dependent (due to larval competition within each pond), as is 882

survival from juvenile to young adult (reflecting juvenile competition across the whole 883

terrestrial environment) [43,45,46]. Each of these density-dependent transitions uses a 884

Beverton-Holt model [47], which outperformed linear versions of each transition in 885

AIC [48] goodness of fit tests. Note that the model ignores certain important features of 886

the ESGR by assuming that the ponds are equivalent, thereby ignoring the differences 887

in predation between large and small ponds. For these reasons, our results should not 888

be interpreted as specific predictions about the ESGR, which would require a more 889

detailed model, but as illustration of our theory in a model with realistic age, stage, and 890

spatial structure. 891

To make the model amenable to our measures, we replace it with a stochastic model 892

whose conditional moment equations are affine. We perform this conversion in two steps. 893

First, we define a fully stochastic model consistent with the deterministic nonlinear 894

model, and compute the conditional moment equations. These equations are nonlinear 895

January 6, 2022 25/35

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2022. ; https://doi.org/10.1101/2022.01.10.475598doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.10.475598
http://creativecommons.org/licenses/by/4.0/


Fig 6. Map of the 21 ponds in the E. S. George Reserve, adapted from [49]. The ponds
are numbered, and relative sizes of the ponds are represented by the sizes of the blue
circles marking each pond. Pond 8 (Fish Hook Marsh) is significantly larger than the
other ponds, and ponds 1 - 4 are at least 3 times larger than the remaining ponds. The
mean dispersal distance d0 is marked with a solid black line on the bottom left. The
distance from pond 8 to pond 2 is shown in units of d0 for scale. All ponds within a
distance of 4.6 d0 are expected to exchange one disperser each year when the source
pond population is at its local equilibrium. We report equilibrium results in which all
ponds are occupied, as well as results for colonization from pond 8 to pond 3 (marked
source and target respectively).

due to density dependence in survival. Next, we fit a linear stochastic model to long 896

simulated trajectories from the nonlinear stochastic model. Advantages and 897

disadvantages of this approach, as well as other linearization methods, are discussed in 898

S4 Appendix 899

The stochastic model follows. First, all young and adult female frogs reproduce in 900

each pond. While the form of the egg mass distribution is not known (roughly 901

log-normal), the necessary moments can be estimated from available data. Each female 902

lays 723.7± 197.3 eggs (mean and standard deviaiton). For the sake of simulation, we 903

use a log-normal distribution, rounded to integer values. We assume that the number of 904

eggs laid by each female is independent, so the variance in the total number of eggs laid 905

in a pond is the sum of the variance in the number of eggs laid by each female. We do 906

not consider sex at birth, or the probability a female does not reproduce, because data 907

on tadpole sex is not available and females who did not return to the pond habitat to 908

breed cannot and need not be distinguished from females who had died. Egg survival to 909

the juvenile stage is binomial with a density dependent survival probability: 910

sE(E) = s1
M1

M1 + E
(33)

where s1 is the survival probability of a single egg in the absence of any other eggs, M1 911

is the half-saturation constant, and E is the number of eggs in the pond. Surviving eggs 912

become aquatic tadpoles, who metamorphose into terrestrial juveniles. 913

Juveniles then enter the terrestrial phase, during which time they disperse. Juveniles 914
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are terrestrial for two years, so we introduce a lag population that counts the terrestrial 915

juveniles who have not yet reached sexual maturity. 916

Next we model dispersal. Each juvenile individual has a 94% chance of returning to 917

their birth pond to breed once they mature, so only a small fraction disperse. The 918

remaining frogs disperse according to an exponentially decaying dispersal kernel. The 919

probability of a juvenile dispersing from ponds separated by distance d is set 920

proportional to exp(−d/d0) where d0 is a reference distance (average dispersal distance 921

of frogs that do not return to their natal pond). Note that this dispersal model does not 922

distribute frogs equally across the ponds. Instead, well connected ponds tend to receive 923

more immigrants than they produce emigrants, so have higher total steady state 924

populations. Since survival is nonlinear and the ponds don’t maintain the same total 925

populations, the ponds also don’t share exactly the same age-distribution, though 926

dispersal is rare enough that the effect on the age distribution is small. 927

Once a breeding pond has been assigned to each juvenile, we sample a fraction that 928

survive to arrive in that pond at the end of the two-year juvenile stage. Survival 929

probability sL is density dependent, and depends on the total number of individuals in 930

the terrestrial environment. Specifically, 931

sL(L) = s2
M2

M2 + L
(34)

where L is the total lag population (individuals in the terrestrial environment that have 932

not yet reached breeding age), s1 is the survival probability for an individual in absence 933

of any others, and M2 is a half-saturation constant. The number of young adult 934

individuals that survive to breed in pond i is then sampled from a binomial distribution 935

with survival probability set to sL(L) and number of trials set to the number of lag 936

individuals assigned to migrate into pond i. 937

Young adults who survive another year return to their breeding pond one year later 938

as mature adults. Survival of the young adults is not density dependent, so the number 939

of mature adults each year is drawn from a binomial distribution with a fixed survival 940

probability sY . All mature adults die in the subsequent year. 941

To validate the stochastic model, we ran the deterministic ODE model to 942

equilibrium, and compared the equilibrium to the average populations in each age class 943

and pond after a long (2× 105 years) trial run of the stochastic model. We found that 944

the deterministic equilibrium agrees with the average predicted by the stochastic model, 945

to within a maximum relative error 0.6% over all age classes and ponds. 946

The stochastic model does not have linear conditional moments, because egg and lag 947

survival are both density dependent (see equations 33 and 34). So, to apply the noise 948

source importance measures, we require a linearization procedure. We linearize by 949

repeating long realizations (2× 105 years) of the nonlinear stochastic model, estimating 950

the conditional moments, and fitting to affine functions. 951

After linearizing about the steady state, the conditional moment updates for the 952

number of juveniles Jt(i) in pond i at time t, given the number of eggs e in the pond, 953

are E[Jt(i)|Et(i) = e] = 0.0136e+ 938.3 and Cov[Jt(i)|Et(i) = e] = 0.0133e+ 905.3. 954

Ninety-five percent confidence intervals for the four parameters are 955

[0.0134, 0.0138],[926, 951],[0.0122, 0.0145], and [840, 970]. Note that the slope was 956

usually determined with much higher precision than the intercept, since both linear fits 957

are primarily sampled at large egg counts. 958

The number of young adults who arrive at pond k depends on both the survival rate 959

of frogs during the pre-reproductive (“lag”) terrestrial phase, which depends on the total 960

lag population, and the number of surviving lag individuals who choose pond k. Thus, 961

we fit the expectation and variance in the number of immigrating lag individuals into 962

each pond to the number assigned to that pond and the total number of lag individuals. 963
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The associated fits were E[Yt+1(j)|Lt = l] = 0.031l(k)− 0.00065
∑
i l(i) + 22.9 and 964

Cov[Yt+1(k)|Lt = l] = 0.027l(k)− 0.0008
∑
i l(i) + 34.37, with confidence intervals, 965

[0.307, 0.031], [−0.0007,−0.0006], [20.7, 25.1], [0.024, 0.030], [−0.0015,−0.0002], and 966

[11.3, 57.4]. 967

Once the conditional mean and variance of each intermediate stage have been 968

approximated, we compute the contribution of each noise source by using the law of 969

total variance to group sequences of reactions that account for the transitions between 970

tracked variables. 971

With the linearized model established, we compute the importance of each noise 972

contribution (egg counts, egg survival, dispersal, juvenile survival, and young survival) 973

to each age and space class (the total frog population, the number of juveniles in each 974

pond, number of young in each pond, number of adults in each pond, and number of 975

reproductive individuals (young and old) in each pond). We also tested the importance 976

of each noise source to the total frog population in each pond. All noise sources were 977

identified by a life history event, producing 105 different noise sources. Figure 7 978

illustrates the results. 979

Fig 7. Importance of each noise source for five different observables. The five observed
quantities are the total frog population (blue), juvenile population predestined for each
pond (orange), young adult population in each pond (yellow), mature adult population
in each pond (purple), and the total population of reproductive individuals (young +
mature adults) in each pond (green). The noise sources are organized by life-history
event. The box plot for each life history event represents the distribution of importance
across the 21 ponds. The horizontal central line is the median importance, the box
marks the first and third quantiles, whiskers mark the range excluding outliers which
are marked with individual points.

First, we observe that the importances depend much more strongly on which life 980

event is considered, than which pond it occurs in. Figure 7 illustrates this effect: the 981

variance in importance between life history events (differences among box heights) is 982

much larger than the variance across ponds (size of box and whisker associated with 983

each event). 984

Broadly speaking, the most important event is juvenile survival, followed by young 985

adult survival, egg survival, egg count, then dispersal, though the importance order may 986

change depending on which life stages are observed. For example, egg survival and 987

count are more important to variance in juvenile population size than young adult 988

survival is, but young adult survival is more important than any other event, even 989

juvenile survival, to variance in the mature adult population. Juvenile survival is the 990
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most important event in most cases since it is the survival stage preceding reproduction. 991

Dispersal is the least important in all cases since, in the linearized model, the ponds are 992

indistinguishable and interact only with the total lag population, which is independent 993

of pond assignment. Consequently, while dispersal contributes to the variance in the 994

number of frogs in any individual pond, it does not contribute any variance to the total 995

population across ponds. Dispersal also plays a small role since the 94% of all frogs 996

return to their birth pond. 997

So, dispersal (and the associated spatial component of the model) is not an 998

important source of randomness in the process if we consider the total population across 999

all ponds after reaching a stationary distribution. However, if we consider specific 1000

ponds, or a transient away from equilibrium, then dispersal plays a more important role. 1001

For example, if only a single pond is considered, then all five noise sources associated 1002

with that pond are more important than noise generated in other ponds, and match the 1003

ordering of importance shown for the total population across ponds. The importance of 1004

noise sources in the other ponds is generally very small. If we track the population in 1005

pond i, then the most important event in pond j is always dispersal, since the only way 1006

noise can propagate from pond j to pond i is via dispersal. This fact is an elegant 1007

illustration, in an ecological context, of stochastic shielding [1, 2, 7]. 1008

Dispersal is also important during transients. During particularly dry summers, 1009

some of the ponds in the reserve may desiccate, killing off the aquatic life stages. In 1010

subsequent, wetter years, frogs will disperse out from the larger ponds to repopulate 1011

smaller ponds that dried out. To complete our study, we considered the importance of 1012

each different noise source over the course of an recolonization from the largest pond in 1013

the reserve. The largest pond in the reserve is Fish Hook Marsh (Pond 8 in Figure 6). 1014

We initialize the system by setting the frog population to 0 in all ponds except pond 8, 1015

and set the population in pond 8 to its multi-pond equilibrium value. This initial 1016

condition is far from equilibrium, so we need to relinearize the model. S4 Appendix 1017

describes the relinearization technique. 1018

After linearizing about the perturbed initial conditions, we computed the importance 1019

of each noise source to the total population in a set of target ponds. Figure 8 shows the 1020

results when the source pond is set to pond 8 and the target pond is set to pond 3. This 1021

example is representative. Pond 3 was chosen as the displayed target since it is 1022

connected to Pond 8 by a chain of smaller ponds, so, for the right dispersal parameters 1023

we might expect to see a cascade of importance in dispersal down the chain from 8 to 3. 1024

Pond 3 is also an interesting target since it is large, but far removed from 8, and 1025

neighbors a cluster of smaller ponds (16, 5, 18). 1026

In the first year, the most important noise source to variance in the target pond’s 1027

population size (pond 3) is dispersal out of the source pond (pond 8). Dispersal out of 1028

the source pond remains among the most important noise sources in later years, but 1029

decays quickly in importance after the first year. Juvenile survival in the target pond 1030

replaces dispersal out of the source pond as the most important source in year two, then 1031

remains the dominant source of noise in all but the first year. As the frog population in 1032

the target pond grows, the importances of the other life events in the target pond grow, 1033

approaching the importance order seen at equilibrium. While the noise sources in the 1034

target pond are the most important sources at relatively long times, dispersal out of the 1035

source pond remains more important than most of the noise sources in the target pond 1036

(excluding juvenile survival) until 15 - 18 years after invasion. This slow decay in the 1037

importance of dispersal is noteworthy given how little dispersal, contributes at 1038

equilibrium. 1039

The slow decay of the importance of dispersal out of the source after the first year is 1040

a result of the cumulative nature of the measure. Dispersal importance out of the source 1041

pond includes all variance contributed by dispersal out of the source pond up to the 1042
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Fig 8. Importance of each noise source during recolonization from pond 8 (source S) to
pond 3 (target T ). The horizontal axis represents the cumulative importance of each
noise source up to a specific year since recolonization. Frogs live at most 3 years.
Consequently, the model exhibits decaying oscillations with period 3 years. So, we
sample the process at one year intervals from 1 to 15, and 3 year intervals from 15 to 36.
Each line represents the importance of all the noise produced by a particular source up
to each year. The lines are colored by life event. Light blue: egg count. Dark purple:
egg survival. Magenta: dispersal. Rust orange: juvenile survival. Yellow: young adult
survival. The noise sources shown with dashed lines are all negligible (importance less
than 10−4), so could be ignored in a reduced stochastic model of the invasion process.
The noise sources shown with solid lines are marked according to their pond, and
labeled in the legend. Diamonds represent events in the target pond. Squares mark
events in the source pond. Circles mark events in the closest neighbors of the target
pond (ponds 16, 5, 18, in decreasing proximity to the target).

current year. Thus, since dispersal out of the source pond is necessary to seed the frog 1043

population in all other ponds, dispersal out of the source in year one is a crucial noise 1044

source that contributes a significant portion of the noise in the target pond at future 1045

times. 1046

Juvenile survival in the source pond is also important for similar reasons. Dispersal 1047

is a relatively rare event, so the target pond may not be seeded during the first year 1048

post invasion. In that case, survival of the juveniles in the source pond is important for 1049

seeding the target pond in subsequent years. 1050

The remaining important noise sources are all associated with the cluster of ponds 1051

neighboring the target pond (16, 5, 18). Juvenile survival in ponds 16, 5, and 18 are the 1052

next most important noise sources, and are ordered in importance by their distance 1053

from the target pond. Thus, spatial structure influences importance during the initial 1054

phase of colonization. This effect stands in contrast to the situation at equilibrium, in 1055

which spatial structure plays no role. 1056

On the other hand, at intermediate time scales, importance rapidly shifts from 1057

dispersal out of the source to local dynamics within the target pond. Indeed, after the 1058

first time step, over 95% of the total variance in the target population is generated by 1059

variance in juvenile survival in the target pond. This rapid shift results from the 1060

relative time-scales of dispersal and the within-pond dynamics. While only a small 1061

fraction of individuals disperse (7/117 in the model realization depicted), the number of 1062

juveniles who survive to disperse is itself large enough (1749) that most of the ponds are 1063

seeded in the first time step. If the distance d0 which controls the average dispersal 1064
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distance were small, then we would expect to see invasion spread in a travelling front 1065

across the reserve. We do not observe this effect here. The mean dispersal distance d0 is 1066

large enough that most ponds are seeded in the first year, consistent with the treatment 1067

of the terrestrial environment as a single well-mixed patch. In fact, all of the ponds are 1068

close enough to pond 8 so that the expected number of immigrating individuals after 1069

one time step is greater than 1. The initial seeding leads to rapid growth in the local 1070

population, at which point the within-pond dynamics produce most of the relevant 1071

noise, since the time scale for mixing through dispersal is slower than the time scale of 1072

the within-pond dynamics. 1073

Discussion 1074

The measures developed here apply to a wide range of stochastic models used in biology. 1075

They reveal how noise propagates through those models, and they identify important 1076

and unimportant noise sources for a range of quantities of interest. In most of the 1077

examples explored here, a small subset of noise sources contributed most of the 1078

uncertainty in the quantity of interest, suggesting that noise source importance could be 1079

used to guide model reduction. 1080

Not all stochastic models have linear, or approximately linear, conditional moment 1081

dynamics. Future work could investigate whether it is possible to generalize the 1082

importance measures developed here to other functional forms for the conditional 1083

moments. In particular, when applied to population models, our framework is largely 1084

limited to demographic noise, since environmental noise typically arises via time varying 1085

model parameters, which introduce multiplicative noise. In separate work [50], we have 1086

developed analogous noise source sensitivity analysis that applies to a class of 1087

discrete-time matrix models with time varying rates (c.f. [51]). 1088

While we focused on case studies in this paper, it would be interesting to perform a 1089

meta-analysis of collections of stochastic models that share a linear formulation. For 1090

example, the COMADRE and COMPADRE databases [52,53] could be mined for 1091

discrete-time matrix populations models as in [50]. A study of this kind could identify 1092

whether there are general patterns that predict noise source importance. Future 1093

theoretical work could also consider families of random networks, and search for network 1094

signatures which identify which noise sources are likely to contribute the most to a 1095

given observable. 1096

Supporting information 1097

S1 Appendix. Continuous-time analysis. This appendix derives the 1098

continuous-time variance decomposition and noise source importance measures 1099

presented in §Theoretical Results. 1100

S2 Appendix. Convergence of discrete-time approximations. This appendix 1101

shows that the noise source importance measure associated with a discrete-time 1102

approximation to a continuous time process converges to the noise source importance 1103

measure for the original continuous time process. 1104

S3 Appendix. Affine conditional moment equations. This appendix derives 1105

the noise source importance measures presented in §Affine Conditional Moments. 1106

S4 Appendix. Linearization of the wood frog model. This appendix 1107

documents the linearization procedures used to approximate the nonlinear wood frog 1108
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model with a linear model. The methods are compared, and their respective advantages 1109

and disadvantages are discussed. 1110
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