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Abstract 

We leveraged publicly available data on juvenile tree height of 299 Central European Norway 
spruce populations grown in a common garden experiment across 24 diverse trial locations in 
Austria and weather data from the trial locations and population provenances to parse the 
heritable and climatic components of juvenile tree height variation. Principal component analysis 
of geospatial and weather variables demonstrated high interannual variation among trial 
environments, largely driven by differences in precipitation, and separation of population 
provenances based on altitude, temperature, and snowfall. Tree height was highly heritable and 
modeling the covariance between populations and trial environments based on climatic data led 
to more stable estimation of heritability and population × environment variance. Climatic 
similarity among population provenances was highly predictive of population × environment 
estimates for tree height. 
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Introduction 

Under rapid anthropogenic climate change, ecosystem dominant conifer species, such as 
Norway spruce (Picea abies), are facing environmental conditions to which they have not been 
adapted (Lindner et al. 2010; Seidl et al. 2017). Although Norway spruce has broad genetic 
diversity and geographic adaptation, long generation times and the confounded effects of 
population structure and local adaptation make breeding populations for new environments 
challenging (Leslie et al. 2012; Yeaman et al. 2016; Wang et al. 2020). Common garden 
experiments can be used to evaluate a select number of diverse individuals or populations in 
different environments (Oleksyn et al. 1998; Kapeller et al. 2012; Aitken and Bemmels 2016). 
Assisted migration can then be applied, where well-adapted individuals are introduced into 
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locations with compatible (current or forecasted) climates (Williams and Dumroese 2013; Aitken 
and Bemmels 2016).  

Precise estimation of genetic and environmental effects on tree growth phenotypes is critical for 
assisted migration and breeding program selections (Williams and Dumroese 2013; Aitken and 
Bemmels 2016). In addition to proper experimental design, germplasm choice, and phenotyping 
methods, statistical approaches can also increase the genetic signal and prediction accuracy of 
phenotypes (Heslot et al. 2015; Crossa et al. 2017; Isidro y Sánchez and Akdemir 2021). For 
example, leveraging genetic marker, geospatial, and/or climatic data to model relationships 
between individuals, trial locations, and genotype × environment interactions is a common 
approach in agricultural and forest genetics and breeding (Heslot et al. 2014; Crossa et al. 
2016; Rodríguez-Álvarez et al. 2018; Avanzi et al. 2019; Bustos-Korts et al. 2019).  

In this study, we combined publicly available datasets on (a) juvenile tree height from a common 
garden experiment of Norway spruce, in which 299 Central European populations were 
evaluated across five years in 24 locations in Austria and (b) historical monthly precipitation and 
temperature measurements from the common garden trial locations and population 
provenances (Efthymiadis et al. 2006; Hiebl et al. 2009; Chimani et al. 2011, 2013; Kapeller et 
al. 2012, 2017). Previous studies have used this dataset to understand varying selection and 
intraspecific variation in climate response from an ecological perspective (Kapeller et al. 2012, 
2017). Here, we employed agricultural statistical methods to parse and to predict the heritable 
(genetic) and environmental components of phenotypic variance in tree height. 

Materials and methods 

Common garden experiment 

We used a publicly available dataset to investigate population and environmental effects on 
juvenile tree growth in Norway spruce (Picea abies) (Nather and Holzer 1979; Schulze 1985; 
Kapeller et al. 2012, 2016, 2017). The plant material was derived from 299 Norway spruce 
populations collected across Central Europe during commercial seed harvests in 1971. Seeds 
from each population were germinated and seedlings were then transplanted into a nursery in 
Austria in 1973. In 1978, a total of 65,534 five-year-old trees were transplanted into 24 trial 
locations across Austria in a balanced incomplete block design. On average, each population 
was grown at two locations, 27 populations were grown in each location, and 102 trees 
(replications) from each population were split into three randomized blocks within each location. 
The height (cm) of each tree was recorded at the ages of 7-10 and 15 years in 1980-1983 and 
1988, respectively, resulting in a total of 300,310 observations. The previously published 
dataset also included the altitude, latitude, and longitude for all trial locations and for 278 
population provenances. 

Weather data 

We accessed monthly precipitation (total, liquid, solid) and temperature data from the publicly 
available Historical Instrumental Climatological Surface Time Series of the Greater Alpine 
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Region (HISTALP) resource (Efthymiadis et al. 2006; Hiebl et al. 2009; Chimani et al. 2011, 
2013). The HISTALP dataset includes monthly temperature and precipitation grids from 1780-
2009 and 1801-2003, respectively, at 5 min x 5 min resolution ranging from 4-19°E and 43-
46°N. We extracted data from the original Network Common Data Form (NetCDF) formatted 
HISTALP files using the “netcdf4” package in R (R Core Team 2020; Pierce 2021).  

Climatic analysis 

All altitude, latitude, longitude, and HISTALP weather variables used in the analyses described 
in this subsection were centered and scaled using the “scale” function in R (R Core Team 
2020). We conducted principal component analysis (PCA) using the “FactoMineR” package in R 
(Lê et al. 2008; R Core Team 2020). To investigate spatiotemporal variation across the common 
garden experiment, we extracted monthly temperature and precipitation data from the grids 
closest to the trial locations in 1980-1983 and 1988 from the HISTALP dataset. We then 
conducted PCA using the altitude, latitude, longitude and monthly weather data from each trial 
location in each year, henceforth referred to as trial environments (PCAEnv). To explore climatic 
differences among population provenances, we extracted monthly temperature and precipitation 
data from the grids closest to the population provenances from 1801 (earliest year with both 
temperature and precipitation data in HISTALP) to 1970 (year before seed harvests). Weather 
data from this time period should reflect the climates experienced by the parental populations of 
the trees evaluated in the common garden experiment. We then conducted a PCA using the 
altitude, latitude, longitude, and monthly weather data from each population provenance 
(PCAProv). 

We used the altitude, latitude, longitude, and HISTALP weather data described above to model 
the relationships among population provenances and environments (trial location-years). We 
first calculated Euclidian distance matrices using said geospatial and weather variables for all 
pairs of population provenances (�����) and trial environments (����) with the “dist” function in 
R (R Core Team 2020). We then transformed the distance matrices into similarity matrices as 
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������
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��	
�����
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�����
 for further use in phenotypic modeling. 

Phenotypic analysis using climatic data 

Due to the large number of observations (N=300,310) in the common garden experiment, it was 
not computationally feasible to specify complex variance-covariance matrices for the entire 
dataset in one model. As such, we used a two-stage approach common in multi-environment 
plant breeding and genetics studies (Piepho et al. 2012, 2020), with mixed linear models fit with 
the “breedR” package in R (Muñoz and Sanchez 2020; R Core Team 2020). In the first stage, 
we fit the following mixed model within each environment (location-year):  

����	
�� � � �  
��� � ������ � ��� 

(1) 
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where ����	
�� is the tree height response, � is the overall mean, 
��� is the fixed effect of 

population �, ������ is the random effect of block �, and ��� is the random error. The random 

effects were independent and identically normally distributed as ������~��0, ���
�� and 

���~��0, ���
��. We then extracted the fitted values (����) for each population � within each block � 

from each within-environment model (1) as 

���� � � � ���� !"� � #����� !
� 

(2) 

Where � is the intercept, ���� !"� is the best linear unbiased estimate (BLUE) of population �, 
and #����� !
� is the best linear unbiased predictor (BLUP) of block �. We combined the fitted 

values across environments, resulting in a reduced and refined set of phenotypes for further 
analysis (N = 7,314). Only fitted values for populations with climatic information were included in 
the second stage of the analysis (278/299 populations).  

In the second stage, we fit a naïve across-year mixed model to understand the environmental 
and genetic (population-level) effects on juvenile tree growth as:  

���� � � �  $�%& � 
��� � "'(� � 
��"'(�� � ��� 

(3) 

where ���� are the fitted values from each within-environment model (2), � is the overall mean, 

$�%& is the continuous fixed effect of year, 
��� is the random effect of population �, "'(� is the 

random effect of trial environment �, 
��"'(�� is the random effect of the interaction between 

population � and trial environment �, and ��� is the random error. The random effects were 

assumed to be independent and identically normally distributed, where 
���~��0, ���
��, 

"'(�~��0, ���
��, 
��"'(��~��0, ����

� �, and ���~��0, ���
��.  

We also fit an across-year mixed model with form similar to model (3) using historical weather 
data to model similarity among trial environments and populations provenances as: 

���� � � �  $�%& � 
&�(� � "'(� � 
&�("'(�� � ��� 

(4) 

where ���� are the fitted values from each within-environment model (2), � is the overall mean, 

$�%& is the continuous fixed effect of year, 
&�(� is the random effect of population provenance 
�, "'(� is the random effect of trial environment �, 
&�("'(�� is the random effect of the 

interaction between population provenance � and trial environment �, and ��� is the random 

error. The random effects were distributed as 
&�(�~��0, �������
��, "'(�~��0, ������

��, 


&�("'(��~��0, ����
� �, and ���~��0, ���

��.  

We fit naïve within-year mixed models with the form in order to understand the environmental 
and genetic effects on juvenile tree height within developmental stage (tree age) as: 
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(5) 

where ���� are the fitted values from each within-environment model (2) from a given year (1980, 

1981, 1982, or 1983), � is the overall mean, 
��� is the random effect of population �, "'(� is 

the random effect of trial environment �, 
��"'(�� is the random effect of the interaction 

between population � and trial environment �, and ��� is the random error. The random effects 

were assumed to be independent and identically normally distributed, where 
���~��0, ���
��, 

"'(�~��0, ���
��, 
��"'(��~��0, ����

� �, and ���~��0, ���
��.  

We also fit a within-year mixed model with form similar to model (5) using environmental and 
population provenance weather data as: 

���� � � �  
&�(� � "'(� � 
&�("'(�� � ��� 

(6) 

where ���� are the fitted values from each within-environment model (2) from a given year (1980, 

1981, 1982, or 1983), � is the overall mean, 
&�(� is the random effect of population 
provenance �, "'(� is the random effect of trial environment �, 
&�("'(�� is the random effect of 

the interaction between population provenance � and trial environment �, and ��� is the random 

error. The random effects were distributed as 
&�(�~��0, �������
��, "'(�~��0, ������

��, 


&�("'(��~��0, ����
� �, and ���~��0, ���

��, where ����� and ���� were subset for the population 

provenances and environments included in each within-year model, respectively.  

In models (4) and (6), we used the term “population provenance” rather than “population” for two 
reasons: (i) to distinguish models (4) and (6) from models (3) and (5) and (ii) the population 
variance was modeled as the similarity matrix estimated from climatic data from the 
provenances (seed source locations) of the populations. Because of insufficient population × 
environment replication in 1988, we did not fit within-year models for 1988. 

For each second stage model (3-6), we estimated broad-sense heritability (��) as 

�� �
��

�

��
� � ����

� '��⁄ � ���
� '�'��⁄

 

(7) 

where '� and '� are the number of trial environments ('� = 10 across years; '� = 2 within 
years) and replications per population/provenance per trial environment ('� = 3), respectively, 
and ��

�, ���
� , and ��

� are the variance components for population provenance, 
population/provenance × environment, and error, respectively (Holland et al. 2003; Piepho and 
Moehring 2007).  

Predictions using climatic covariance 
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Genomic prediction, in which phenotypes are predicted based on genetic similarity (kinship), is 
a widely used approach in plant and animal breeding for quantitative traits (controlled by many 
genes with small individual effects) (Hickey et al. 2017). In addition, genotype × environment 
interactions can be modeled with both genetic and weather-based covariance structures to 
improve genomic prediction accuracy (Jarquín et al. 2014; Chen et al. 2017; Gillberg et al. 2019; 
Costa-Neto et al. 2021). We extracted the population, environment, and population × 
environment BLUPs from the naïve across-year phenotypic model (3) and then fit the following 
mixed models:  

���� !
� � � � 
&�(� � �� 
(8) 

�'(� !
� � � � "'(� � �� 

(9) 

���"'(� !
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(10) 

���"'(� !
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(11) 

���"'(� !
�� � � � 
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����� !
 � ���"'(� !
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 � ���"'(� !
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(15) 

 

 

where ���� !
�  is the population BLUPs from model (3) as the response for model (8), 
�'(� !
� is the environment BLUPs from model (3) as the response for model 

(9), ���"'(� !
� , ���"'(� !
�, and ���"'(� !
�� are the population × environment BLUPs 

from model (3) as the response for models (10-12), respectively, ����� !
 � ���"'(� !
��, 
����� !
 � ���"'(� !
��, and ����� !
 � ���"'(� !
��� are the sum of the population 

and population × environment BLUPs from model (3) as the response for models (13-15), 
respectively, � is the overall mean for models (8-15), 
&�(� is the random effect of population 
provenance � in models (8, 10, 12, 13, and 15), "'(� is the random effect of trial environment � 
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in models (9, 11, 12, 14, and 15), and �� is the random error for models (8-15). The random 
effects were distributed as 
&�(�~��0, �������

��, "'(�~��0, ������
��, and ��~��0, ���

��. Each 

model was five-fold cross-validated with 20 replications. Predictive ability was estimated within 
each fold of each replication as the Pearson’s correlation between the observed and predicted 
values of the test set. 

Results 

Climatic modeling increases heritable signal for juvenile tree growth 

In the “naïve” across-year phenotypic model (3), we found that population and population × 
environment explained a smaller proportion of the total variance in tree height (9% each) than 
environment, which accounted for 75% of the total variance (Table 1). Although population 
variance was low (9%), the highly replicated experimental design allowed for a high estimation 
of broad-sense heritability for tree height (H2 = 0.89) (Table 1). Year had an effect estimate of 
13.46 ± 0.73 cm. 

We also fit a “climatic” across-year phenotypic model (4) in which the variance-covariance of the 
population provenance and environment random effects were modeled as the climatic similarity 
matrices between population provenances and trial environments, respectively. The climatic 
across-year model increased the proportion of the total variance in tree height explained by 
environment (92%) compared to the naïve across-year model (75%) (Table 1). Although 
population and population × environment variance were smaller (population = 5%, population × 
environment = 2%) than in the naïve across-year model (population = 9%; population × 
environment = 9%), broad-sense heritability increased (H2

naive = 0.89; H2
climatic = 0.96) (Table 1). 

Year had no effect on tree height in the across-year climatic model. 

In the naïve within-year analysis (model 5), environmental variance increased while broad-
sense heritability and population variance tended to decrease over time from 1980 (seven-year-
old trees, H2 = 0.81, genetic variance = 33%, environmental variance = 46%) to 1983 (10-year-
old trees, H2 = 0.49, genetic variance = 4%, environmental variance = 83%) (Table 1). In 
contrast, specifying the variance-covariance of the population and environment terms with 
climatic similarity matrices (“climatic” model 6) led to more stable estimates of broad-sense 
heritability (H2

1980→1983 = 0.94 → 0.77) and population × environment variance (population × 
environment variance1980→1983 = 4 → 2%) over time (Table 1). Within-year climatic modeling (6) 
demonstrated an increase in environmental variance and a decrease in population variance 
over time (genetic variance1980→1983 = 36 → 4%, environmental variance1980→1983 = 58 → 92%) 
similar to that of the naïve models (Table 1).  

Climate explains environmental variance in tree height 

Because the common garden experiment consisted of even-aged stands planted in the same 
year across trial locations, tree age (physiological growth stage) and trial environment (location-
year) may have been confounded. As such, we modeled the environment BLUPs for tree height 
with climatic similarity between trial environments (model 9). The environmental similarity 
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matrix, estimated from climatic and geospatial data across trial location-year environments, 
explained 71% of the variance in environmental BLUP estimates for tree height and had a 
predictive ability of r = 0.48 (Table 2). Complementarily, climatic phenotypic modeling including 
climatic variance-covariance matrices within (model 6) and across (model 4) years increased 
the variance explained by the environment term (Table 2) and removed the effect of year on 
tree height when compared the naïve phenotypic modeling (models 3 and 5). Combined, these 
results suggest that the variation in tree height estimates among trial location-year environments 
was largely driven by climatic variation rather than by the confounding effects of tree growth 
stage. 

Provenance climate is highly predictive of inter-population and population × environment 
variation in tree height 

The population provenance similarity matrix, estimated from historical climatic and geospatial 
data across population provenances, demonstrated strong population structure (Figure 1) and 
explained 45% of the variance in populations BLUPs for tree height (model 8), with a predictive 
ability of r = 0.44 (Table 2). Although population × environment BLUPs were poorly modeled (r < 
0; explained variance ≤ 1%) by provenance and/or environment climatic similarity (models 10-
12), provenance climatic similarity explained nearly all of the variance (>91%) in and was highly 
predictive (r = 0.68) of the sum of population BLUPs plus population × environment BLUPs 
(models 13 and 15) (Table 2). In addition, climatic phenotypic modeling (models 4 and 6) 
demonstrated more stable estimation of population × environment effects when compared to the 
naïve phenotypic models (3 and 5). These results indicate a strong signal of local adaption, 
where populations from provenances with similar geography/climate have similar tree growth, 
regardless of the trial environment in which they are observed. 

Climatic and geospatial variation among trial environments and population provenances 

In a PCA using geospatial and weather data from trial environments (location-years), the first 
and second principal components (PCs) explained 28% and 21% of the variance, respectively 
(Figure 2). The first PC demonstrated a separation between environments based on altitude and 
summer/winter temperature (Figure 2). On the second PC, environments were separated by 
year, spring/winter temperature, and summer precipitation (Figure 2). 

We also conducted PCA for population provenances using geospatial and weather data. The 
first and second PCs explained 44% and 23% of the variance, respectively (Figure 1). The 
eigenvectors of the PCA predictor variables demonstrated that variation in PC 1 was driven by 
altitude, temperature, and snowfall (solid precipitation), while variation in PC 2 was driven by 
rainfall (liquid precipitation). Hierarchical clustering of the PCA revealed six clusters, which were 
geographically distributed as Carinthia, Austria and Slovenia; Styria, Austria; Lower Austria, 
Germany, Czech Republic, Slovakia, and Poland; and three alpine regions (Figure 1). 

Conclusions 
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We used agricultural statistical methods to dissect the heritable and environmental components 
of juvenile tree growth in Central European Norway Spruce. The highly replicated design of the 
common garden experiment allowed for precise estimation of genetic (population and 
population × environment) and environmental (trial location-year) effects. Population explained 
a relatively small proportion of the total variance in tree height compared to environment, similar 
to previous findings in this dataset (Kapeller et al. 2017; Messina et al. 2018; Washburn et al. 
2020) and consistent with low estimates of population differentiation between Norway spruce 
populations (Androsiuk et al. 2013). However, broad-sense heritability was moderate to high 
and previous studies on tree height in clonal and progeny trials of Norway spruce (Hannrup et 
al. 2004; Chen et al. 2017) have reported similar heritability estimates. Modeling the variance-
covariance of the population provenance and environment terms using climate data led to 
higher estimates of heritability and environmental variance and more stable estimation of 
heritability and population × environment for tree height across developmental time. The higher 
heritability estimates with climatic modeling were likely the result of increased environmental 
signal and subsequently decreased error variance. Tree height becomes less predictive of total 
biomass with age and growth habit (branching pattern etc.) may be a better indicator of tree 
growth after the transition between the juvenile and adult stages (Zianis et al. 2005), which may 
partially explain the reduction in heritability and genetic variance for tree height over time in this 
study. Drought conditions in Central Europe increased in severity from the beginning to the end 
of the trials (1983-1988), with a large historical drought event beginning in 1987 (Spinoni et al. 
2015), supporting the PCA separation between the 1988 and 1981-1983 trial years reported 
here. In addition, the increasing environmental variance for tree height with developmental age 
may be partially explained by increasing drought severity across the trial period. 

Although genetic marker data was not available in this dataset, we modeled inter-population 
relationships using historical climatic data from the population provenances. Plant and animal 
breeders frequently use climate and/or genetic marker data to model relationships among 
individuals and/or environments in order to improve the prediction accuracy of phenotypes in 
new (genetically related) material and even in new environments (Heslot et al. 2014; Jarquín et 
al. 2014; Crossa et al. 2016; Chen et al. 2017; Messina et al. 2018; Bustos-Korts et al. 2019; 
Gillberg et al. 2019; Washburn et al. 2020; Costa-Neto et al. 2021). Previous studies have 
demonstrated that local adaptation is prevalent in tree species, including Norway spruce, and 
that ancestral environment is a strong predictor of growth phenotypes in Norway spruce (Alberto 
et al. 2013; Berg and Coop 2014; Aitken and Bemmels 2016; Milesi et al. 2019). We found that 
climatic relationships among population provenances (a) were highly predictive of population + 
population × environment tree height variation and (b) demonstrated population structure nested 
within geography, indicating that these populations have strong local adaptation (Aitken and 
Bemmels 2016). Our findings complement previous results from ecological modeling of the 
dataset, where within-population variation was driven by population provenance temperature 
(Kapeller et al. 2017). The modeling used in this study results in refined tree growth estimates 
for population and population × environment, which could be used to identify potential sources 
of material adapted to new environments.  
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Figures and tables 

Figure 1. Plots of the first and second principal components (PCs) from principal component 
analysis (PCA) of trial environments based on geospatial and climatic data. Trial environments 
were labeled based on (A) a combination of altitude, longitude, and latitude and (B) year. 
Eigenvectors for the geospatial and weather predictors of the PCA are shown in (B). 

Figure 2. (A) Plot of the fist and second principal components (PCs) from principal component 
analysis (PCA) of population provenances based on geospatial and climatic data. (B) Map of 
population provenances. Points in (A) and (B) were labeled based on the five clusters identified 
by hierarchical clustering. (C) Population provenance climatic distance matrix, organized by 
hierarchical clustering. 
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Table 1. Broad-sense heritability (H2) and number of levels and estimated variances for 
population/provenance, environment, and residual random effects from tree height models 
across (1980-1988) and within (1980-1983) years. 

Year Model Term Estimated variance  
± standard error 

Proportion of 
total variance 

Levels H2 

Across Naive Population 35.67 ± 3.67 0.094 278 0.89 
(1980-  Environment 284.38 ± 39.62 0.747 107  
1988)  Pop × Env 32.55 ± 1.42 0.086 2702  
  Error 27.91 ± 0.63 0.073   
 Climatic Provenance 289.49 ± 44.30 0.050 278 0.96 
  Environment 5325.40 ± 717.78 0.920 107  
  Prov × Env 115.60 ± 4.15 0.020 2702  
  Error 59.77 ± 1.29 0.010   
1980 Naive Population 14.06 ± 1.63 0.333 278 0.81 
  Environment 19.33 ± 5.85 0.457 24  
  Pop × Env 5.78 ± 0.59 0.137 612  
  Error 3.09 ± 0.14 0.073   
 Climatic Provenance 60.57 ± 9.81 0.362 278 0.94 
  Environment 96.66 ± 29.47 0.578 24  
  Prov × Env 6.84 ± 0.60 0.041 612  
  Error 3.08 ± 0.14 0.018   
1981 Naive Population 14.91 ± 1.99 0.169 278 0.72 
  Environment 56.16 ± 16.80 0.638 24  
  Pop × Env 8.50 ± 1.01 0.097 612  
  Error 8.46 ± 0.39 0.096   
 Climatic Provenance 60.17 ± 11.20 0.160 278 0.91 
  Environment 297.05 ± 89.45 0.792 24  
  Prov × Env 9.57 ± 0.96 0.026 612  
  Error 8.43 ± 0.39 0.022   
1982 Naive Population 18.42 ± 3.23 0.073 278 0.57 
  Environment 191.41 ± 56.97 0.762 24  
  Pop × Env 20.31 ± 2.42 0.081 612  
  Error 20.97 ± 0.96 0.083   
 Climatic Provenance 73.21 ± 16.98 0.069 278 0.84 
  Environment 938.58 ± 281.11 0.890 24  
  Prov × Env 21.55 ± 2.21 0.020 612  
  Error 20.93 ± 0.97 0.020   
1983 Naive Population 29.73 ± 6.24 0.042 278 0.49 
  Environment 582.74 ± 173.03 0.825 24  
  Pop × Env 47.06 ± 5.49 0.067 612  
  Error 46.68 ± 2.17 0.066   
 Climatic Provenance 109.13 ± 30.34 0.041 278 0.77 
  Environment 2427.60 ± 724.66 0.922 24  
  Prov × Env 50.90 ± 5.07 0.019 612  
  Error 46.56 ± 2.16 0.018   
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Table 2. Predictive ability and proportion of total variance in population, environment, and/or 
population × environment best linear unbiased predictors (BLUPs) for tree height explained by 
population provenance and/or trial environment climatic similarity matrices. 
Response 
(BLUPs) 

Model Provenance 
(prop. var.) 

Environment 
(prop. var.) 

 Predictive ability 

Population 8 0.450 ± 0.068   0.441 ± 0.083 
Environment 9  0.706 ± 0.115  0.476 ± 0.157 
Population × Environment 10 7x10-7 ± 5x10-7   -0.068 ± 0.061 b 
 11 1x10-6 ± 6x10-7   -0.169 ± 0.037 a 
 12 0.014 ± 0.049 5x10-17 ± 3x10-17  -0.090 ± 0.073 b 
Population +  13 0.911 ± 0.091   0.678 ± 0.064 a 
Population × Environment 14  0.024 ± 0.090  0.063 ± 0.084 b 
 15 0.921 ± 0.009 6x10-18 ± 6x10-17  0.676 ± 0.028 a 
All models were five-fold cross-validated with 20 replications. Predictive ability was defined as 
the Pearson’s correlation between the observed and predicted values of the test set. 
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