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 2 

Abstract  23 

Understanding processes that determine community membership and abundance is important for 24 

many fields from theoretical community ecology to conservation. However, spatial community 25 

studies are often conducted only at a single timepoint despite the known influence of temporal 26 

variability on community assembly processes. Here we used a spatiotemporal study to determine 27 

how environmental fluctuation differences induced by mesocosm volumes (larger volumes were 28 

more stable) influence assembly processes of aquatic bacterial metacommunities along a press 29 

disturbance gradient. By combining path analysis and network approaches, we found mesocosm 30 

size categories had distinct relative influences of assembly process and environmental factors 31 

that determined spatiotemporal bacterial community composition, including dispersal and 32 

species sorting by conductivity. These processes depended on, but were not affected 33 

proportionately by, mesocosm size. Low fluctuation, large mesocosms primarily developed 34 

through the interplay of species sorting that became more important over time and transient 35 

priority effects as evidenced by more time-delayed associations. High fluctuation, small 36 

mesocosms had regular disruptions to species sorting and greater importance of ecological drift 37 

and dispersal limitation indicated by lower richness and higher taxa replacement. Together, these 38 

results emphasize that environmental fluctuations influence ecosystems over time and its impacts 39 

are modified by biotic properties intrinsic to ecosystem size. 40 

 41 

 42 

 43 

 44 

 45 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2022. ; https://doi.org/10.1101/2022.01.10.475621doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.10.475621
http://creativecommons.org/licenses/by-nc-nd/4.0/


 3 

Introduction 46 

The community composition of both micro- and macro-organisms at a given point in 47 

space and time results from the interaction of multiple assembly processes, including ecological 48 

drift, species sorting (environmental filtering), dispersal, and speciation (1-5). Most 49 

observational metacommunity studies, however, focus only on spatial snapshots without 50 

considering temporal dynamics of community assembly and association networks, or historical 51 

contingencies (2, 6). Hence, we still lack knowledge about the underlying mechanisms and 52 

regulating factors that temporal dynamics encompass.  53 

When species sorting assembles communities, their composition tracks changes in 54 

environmental conditions that occur in time and space (2, 7). However, environmental tracking 55 

can be hindered or disrupted (8). Such asynchrony can lead to historical contingencies by priority 56 

effects (e.g., (8, 9), which can occur during early community formation or when communities re-57 

assemble following perturbation. An important consequence of priority effects is that they 58 

impede or delay environmental tracking enacted by species sorting.  59 

Environmental changes may influence temporal community assembly processes and the 60 

strength of this can be regulated by ecosystem size (e.g., 6). Studies have shown that microbial 61 

communities exposed to disturbances are initially, and often to a strong degree, stochastically 62 

assembled, but that the importance of species sorting increases later during community re-63 

assembly as more species from the regional species pool arrive (11-14). Rapidly fluctuating 64 

environmental conditions, however, may continuously disrupt environmental tracking by 65 

reducing opportunities for species sorting to select and shape local communities before the 66 

environmental conditions change again. This might promote coexistence of species with different 67 

niche optima (20-22) and, thus, reduce beta diversity (16), or could cause extinctions that bolster 68 
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dispersal limitation and priority effects (23). Nevertheless, many studies happen in controlled 69 

settings; thus, we lack knowledge on the temporal dynamics of these processes within larger, 70 

more complex habitats which track environmental changes (2, 17). Disturbance strength may 71 

uniquely affect microbial communities in ecosystems of different sizes as ecosystem size may 72 

influence assembly processes by increasing habitat heterogeneity, community abundance (6, 18, 73 

19), and the pace at which communities track environmental changes. For instance, communities 74 

may experience different environmental variability including press disturbances (e.g., climate 75 

warming, eutrophication, or saltwater incursion), periodic and stochastic environmental 76 

fluctuations, where the latter may influence community assembly in response to the former over 77 

time and space.  78 

Here, we implemented an experiment with freshwater bacterial metacommunities to test 79 

how different ecosystem size-induced environmental fluctuations influence the temporal 80 

dynamics of community assembly mechanisms. We collected a 64-day time series from 81 

mesocosms that allowed bacterial communities sufficient time to experience natural 82 

environmental fluctuations. Specifically, we set-up a natural experimental landscape with 83 

mesocosms containing identical lake water that differed in volume, which induced differences in 84 

environmental fluctuation intensity among the mesocosms. We created a press disturbance by 85 

applying a salinity gradient to each set of mesocosm volumes as it has been shown that salinity 86 

affects bacterial communities in many ecosystems (e.g., (10-13). We hypothesized that the 87 

importance of species sorting would increase over time in local communities of larger 88 

mesocosms that experience relatively minor environmental fluctuations because their 89 

communities will have sufficient time for species selection in response to the initial salinity. 90 

Second, other environmental changes occurring in mesocosms would be slow in large 91 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2022. ; https://doi.org/10.1101/2022.01.10.475621doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.10.475621
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5 

mesocosms and this would allow time for taxa to be recruited from internal and external 92 

dispersal sources and to become active. We expected that species sorting related to salinity 93 

differences across communities, i.e., at the metacommunity scale, promotes recruitment of taxa 94 

best suited to the salinity. Last, we hypothesized that stochastic and/or dispersal-related assembly 95 

processes should be more important in small mesocosms where communities experience strong 96 

environmental fluctuations that continually disrupt environmental tracking. We combined 97 

quantitative path analysis methods that aim to estimate metacommunity processes with a network 98 

approach that identifies environmental tracking patterns through local and time-delayed co-99 

occurrences to provide insights into temporal dynamics of microbial ecosystems (14).  100 

 101 

Methods 102 

Experimental set-up 103 

Three different sizes (24.5, 70, or 200 L) of hard-shell polyethylene mesocosms were 104 

arranged in a field beside Lake Erken (16 per size category) and filled with 0.1 mm filtered lake 105 

water from Lake Erken in Sweden (59°51'N 18°35'E) (water properties in Supplementary 106 

Information). Mesocosms were seeded with 1 L of sieved and mixed surface sediments collected 107 

from Lake Erken at ~0.5 m water depth.  108 

To induce species sorting with a press disturbance, a salinity gradient was created within 109 

each mesocosm size category using nitrate- and phosphate-free sea salt (Red Sea Aquatics Ltd, 110 

Verneuil-sur-Avre, France) and ranged from freshwater (0 ‰) to 6 ‰ with 0.4 ‰ increments 111 

(rationale for range in Supplementary Information). Mesocosm water surface area and volume 112 

were proportional such that air or rain dispersal was proportional across size classes. Mesocosm 113 
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sediment was also a recruitment source (15-17). Equal mesocosm bottom surface areas allowed 114 

for equal recruitment independent of fluctuation category.  115 

Monitoring and sampling 116 

Mesocosms were monitored on days 1, 2, and 4, and then every fourth day for 64 days 117 

from July to September 2016. Monitoring included depth profiles of conductivity (to measure 118 

salinity changes) and temperature, and depth integrated pH, chlorophyll-a, and colored dissolved 119 

organic matter (CDOM) fluorescence (see Supplementary Information for details). Weather data 120 

from Svanberga, Sweden (0.87 km southwest of the site) included daily precipitation and hourly 121 

air temperature (Swedish Meteorological and Hydrological Institute). Every eighth day, water 122 

was collected for total organic carbon (TOC), total nitrogen (TN), and total phosphorus (TP) and 123 

analyzed using established methods (18). 124 

Water samples for enumerating microorganism cells were collected simultaneously with 125 

bacterial community composition (below) and preserved with sterile formaldehyde to 2.5 % (19). 126 

Samples were stained with SYTO™ 13 Green Fluorescent Nucleic Acid Stain (ThermoFisher 127 

Scientific), counted (CyFlow Space flow cytometer, Partec, Münster, Germany) and analyzed 128 

using FlowingSoft software (Perttu Terho). Total community size was calculated as cell 129 

abundance (mL
-1

) multiplied by mesocosm volume. 130 

Bacterial community composition 131 

 Mesocosm water was collected on days 1, 2, 4, 8 and every 8
th

 day thereafter for 64 days 132 

to assess community composition through 16S rRNA amplicon sequencing to specifically detect 133 

active members (20). Depth integrated 0.5 L water samples, and air and rain immigration 134 

samples (see Supplementary Information), were collected and filtered onto 0.2 µm pore-size 135 

filters (47 mm Supor-200 filters, Pall Corporation, Hampshire, UK) until 5 minutes or 0.5 L 136 
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volume was reached. Filters were flash-frozen in liquid nitrogen and stored at −80 ºC. DNA from 137 

initial lake water and sediment used in the experiment were sampled to learn initial communities 138 

and seed banks. 139 

Nucleic acids were extracted using a modified protocol from Easy-DNA™ kit 140 

(Invitrogen, Carlsbad, CA, USA). See Supplementary Information and DOI for a detailed 141 

protocol (dx.doi.org/10.17504/protocols.io.xekfjcw). Samples were submitted to SNP&SEQ 142 

Technology platform at SciLife in Uppsala, Sweden for two Illumina MiSeq PE300bp 143 

sequencing runs with v3 chemistry.  144 

Data processing 145 

Sequencing resulted in 35.6 million paired reads from 609 demultiplexed samples 146 

including 12 extraction and PCR negatives. Primers were removed from sequences using 147 

cutadapt v 2.7 ref. (21). The DADA2 pipeline (22) was used for sequence processing and 148 

taxonomy assignment of Amplicon Sequence Variants (ASVs) using the SILVA v. 138.1 149 

reference database (23) (Supplementary Information, Table S1).  150 

For beta diversity analyses, ASVs with counts less than 10 were removed and samples 151 

were subsampled to a minimum of 5 028 reads, retaining 7 983 unique ASVs. Samples not 152 

meeting the 5 028 reads requirement were excluded (Table S2). Both alpha and beta diversity 153 

datasets represented 99 % coverage. Raw sequences are available in the European Nucleotide 154 

Archive (study accession number PRJEB26595). 155 

Statistical analyses 156 

Statistical analyses were conducted in R (v3.4.3 and v4.0.2) ref. (24) with package 157 

“vegan” (25) unless otherwise specified. 158 

Fluctuation magnitudes among mesocosm sizes 159 
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For each environmental variable, fluctuations data were analyzed using the mean of 160 

absolute differences of mesocosms in a size category between one date and the previous 161 

sampling date. For variables with depth profiles (conductivity and temperature), the absolute 162 

difference at each depth was used to calculate the mean change per mesocosm. The 163 

environmental variables dataset is in the DiVA repository (26). To determine if the magnitude of 164 

changes differed between mesocosm sizes over time, nonparametric tests for repeated measures 165 

with an ANOVA-type statistic (ATS) were used (R package and function nparLD, ref. (27)). 166 

Mesocosms were assessed using principal components analysis (PCA) of original and absolute 167 

changes of environmental variables (both log-transformed) and fit with environmental vectors 168 

(Fig. S2).  169 

Community composition, diversity, and recruitment  170 

Non-metric multidimensional scaling (NMDS) with Bray-Curtis dissimilarities was used 171 

to visualize bacterial community composition and environmental variables. Shannon’s index and 172 

Pielou’s evenness were calculated and richness was estimated using the package “breakaway” 173 

(28). Temporal beta diversity differences in each mesocosm were evaluated by comparing each 174 

community with the previous using Jaccard pairwise dissimilarity values. Dissimilarity was 175 

partitioned between taxa turnover (taxa replacement) and community nestedness (chronological 176 

subsets of taxa) using package “betapart” v1.5.2 ref. (29). Variation from each partition captured 177 

by mesocosm size was compared using PERMANOVA tests (30) with function adonis and 999 178 

permutations. 179 

Recruitment was evaluated by pooling each mesocosm’s active ASVs across days; ASVs 180 

present on day one were removed from the pool leaving those recruited during the experiment. 181 

Recruited ASVs were matched with their source seed bank(s) based on DNA from sediment, 182 
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initial lake water, air, and rain. Sources for unmatched ASVs were considered unknown. For 183 

each mesocosm, the percent of recruited ASVs was calculated, split into each source, and 184 

examined across the salinity gradient using Pearson’s correlations. 185 

Path analysis 186 

To detect drivers of metacommunity dynamics, a spatiotemporal path analysis was used 187 

(31). This method calculates dissimilarity for all community pairs sampled over time and space 188 

and estimates, as individual paths on this beta-diversity measure, the influences of spatial 189 

distance (Δx), temporal distance (Δt), environmental distance (ΔE), mean community size (<J>, 190 

cell abundance multiplied by mesocosm volume), and absolute differences in community size 191 

(ΔJ) and taxa richness (ΔS). Nestedness between sites should explain a positive link between 192 

differences in community size and richness thereby increasing community dissimilarity (31). 193 

Bray-Curtis dissimilarity was used for the community dissimilarity matrix (βbc). A permutation-194 

based approach adjusted with Benjamini-Hochberg procedure indicated path significance. Model 195 

fit was assessed with the standardized root mean square residual (SRMR). The analysis was run 196 

separately for each mesocosm size using the days required for network analysis (Supplementary 197 

Information), with the sem function in R package “lavaan” (32).  198 

Network analysis 199 

To uncover local and time-delayed microbial associations and the extrinsic effects of 200 

environmental variables on bacteria, extended local similarity analysis (eLSA) was applied (14). 201 

Given our temporal data, this approach detects undirected associations (e.g., without time 202 

delays), and associations where the change of one factor (a taxon or environmental variable) 203 

chronologically leads or follows another factor. For a link between taxa and environmental 204 

variables, the association type (delayed or non-delayed) can indicate tracking that is time-lagged 205 
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due to transient priority effects, or simultaneous through species sorting, respectively. 206 

Associations were determined for each mesocosm size using eLSA wherein mesocosms from 207 

each size category were used as fluctuation level replicates (n = 16). Because of the within- and 208 

across-size variability of bacterial communities (e.g., significant differences in taxa richness), we 209 

selected and analyzed only the core bacterial groups for each mesocosm size to make it 210 

comparable. Hence, networks used the 50 most abundant ASVs from each size category. eLSA 211 

(v1.0.2) was run over eight sampling points, allowing for local similarity (LS) correlations 212 

between samples taken eight days apart (d = 1). LS correlations (LS value ≥ 0.05; Q ≤ 0.01) were 213 

visualized in Cytoscape v3.8.2 (33). Network characteristics were calculated using the Cytoscape 214 

plugin NetworkAnalyzer (34). See Supplementary Information for details on sample selection, 215 

dominant ASV abundances, and statistics. 216 

Results 217 

Environmental fluctuations in mesocosms 218 

Environmental variable fluctuations corresponded with mesocosm size and reflected 219 

rainfall and air temperature (Fig. S1, Table S3, Fig. S2). Size categories experienced 220 

significantly different conductivity and temperature fluctuations. After four days small and 221 

medium mesocosm conductivity fluctuated more than large mesocosms (Fig. S1, Table S3). 222 

Mean temperature fluctuation increased inversely with mesocosm size (Table S3). Mesocosm 223 

depth profiles showed stable conductivity, but temperature decreased with depth in medium and 224 

large mesocosms (Fig. S3).  225 

Mesocosm sizes differed in nutrient concentrations and the absolute change of other 226 

environmental variables (chl-a, CDOM, pH, TN, TOC, TP and cell abundance, Table S3) and 227 

most pairwise comparisons showed that the degree of change differed significantly between sizes 228 
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with the greatest changes in small mesocosms. Absolute changes between sampling dates and 229 

individual timepoints grouped according to size (Fig. S2). Measured nutrients and conductivity 230 

positively correlated with decreasing mesocosm sizes (environmental vector correlations, p < 231 

0.05). For water temperature, sampling date was more influential than mesocosm size. Cell 232 

abundances (cells mL
-1

) increased over time and was highest in small and medium mesocosms 233 

(ATS, p < 0.001, Fig. S4A). From day 24, total community abundance per mesocosm was lower 234 

in small than medium and large mesocosms (ATS, all p < 0.002, Fig. S4B).  235 

Community composition, diversity, and recruitment 236 

 Bacterial community composition shifted with time and initial conductivity in all 237 

mesocosm sizes (Fig. S5). Diversity indices (estimated richness, Pielou’s evenness, Shannon’s 238 

index) did not differ on the first day (two-way ANOVA, all p > 0.05), but over time all three 239 

indices differed by mesocosm size (Fig. 1, repeated measures ANOVA, all overall p ≤ 0.001; 240 

pairwise Bonferroni adjusted). All sizes differed significantly in bacterial richness which was 241 

lowest in small and highest in large mesocosms (all p ≤ 0.001). The more evenly distributed 242 

ASV abundances in large mesocosms widened the separation in Shannon’s index diversity 243 

between large and small or medium mesocosms, indicating a greater presence of dominant 244 

and/or rare taxa in smaller mesocosms (Fig. 1). Mesocosm size explained some variability in 245 

beta diversity from turnover (F model = 13, R
2
 = 0.04, p ≤ 0.001) with communities in small 246 

mesocosms experiencing higher turnover by taxa replacement than those in large mesocosms 247 

(Wilcoxon Test, W = 4276, Bonferroni p.adj. = 0.02, Fig. S6A). Statistically, mesocosm size did 248 

not explain variability in nestedness, although communities in large mesocosms trended towards 249 

greater nested species loss (Fig. S6B). 250 
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 Recruited ASVs as a percentage of total unique ASVs, had weak negative correlations 251 

with the salinity press disturbance in small and large mesocosms (r = -0.35 and -0.39, p < 0.005, 252 

respectively, Fig. S7). Less than 15 % of recruited ASVs in each mesocosm were attributed to a 253 

known source. In all mesocosm sizes, recruitment from water declined significantly with initial 254 

salinity (small: r = -0.90, medium: r = -0.85, large: r = -0.89, all p < 0.001). Recruitment from 255 

sediment showed different patterns across salinity levels in small and large mesocosms: it 256 

decreased in small mesocosms and was unchanged in large mesocosms (r = -0.70, p = 0.002; r = 257 

0.45, p = 0.08, respectively). Sediment was typically the largest recruitment source in the most 258 

saline mesocosms. Air and rain recruitment was related to salinity level only in the medium 259 

mesocosms where it was weakly positively correlated (air: r = 0.52, p = 0.04, rain: r = 0.58, p = 260 

0.02).  261 

Path analysis 262 

Bacterial metacommunities in mesocosms of different sizes experienced disparate 263 

relative influences from species sorting by environmental variation, demographic stochasticity, 264 

and dispersal limitation (Fig. 2). The model fit for small mesocosms was roughly twice that of 265 

medium and large mesocosms (Fig. 2). 266 

Species sorting (ΔE) had the most influential direct effect on community dissimilarity 267 

(βbc) (Fig. 2). This effect was strongest in small mesocosms and similar in medium and large 268 

mesocosms (sum of absolute standardized estimates 0.925, 0.773, and 0.766, respectively), but 269 

all sizes had significant environmental distance and community dissimilarity relationships 270 

(Tables S4-S6). Small mesocosms had five significant relationships between community 271 

dissimilarity and environmental variables (conductivity, temperature, chlorophyll-a, TOC, and 272 

TN); large mesocosms had three (conductivity, temperature, and chlorophyll-a), and medium 273 
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mesocosms had only conductivity. Conductivity correlated most strongly with community 274 

dissimilarity of medium, followed by large and small mesocosms. Significant correlations 275 

between temporal (Δt) or spatial (Δx) distance and environmental (ΔE) distance were positive 276 

and increased with mesocosm size. The indirect effect of time on community dissimilarity 277 

through species sorting was apparent with all measured variables except conductivity. 278 

Demographic stochasticity was indicated by significant negative relationships between 279 

mean community size (<J>) and community dissimilarity in all mesocosm sizes (Fig. 2, Tables 280 

S4-S6). Small mesocosms had the strongest influence by demographic stochasticity. All 281 

mesocosm sizes had positive correlations between temporal distance and community 282 

dissimilarity indicating additional demographic stochasticity. Relationship strengths differed 283 

with size: temporal changes had the greatest influence in large, then small, then medium 284 

mesocosms.  285 

Dispersal limitation shown as a positive correlation between geographic distance and 286 

community dissimilarity appeared only for small mesocosms (Fig. 2). Large mesocosms had a 287 

significant negative correlation between geographic distance and community dissimilarity but 288 

this was considered an artefact of the linear modelling framework (31) and negligible compared 289 

with the relationship between space and community dissimilarity via the environmental variation 290 

pathway.  291 

The path analysis for medium and large mesocosms also suggested an effect of taxa 292 

nestedness whereby communities form as subsets of original communities over time or space 293 

(Tables S4-S6). First, differences in community richness (ΔS) positively correlated with 294 

community dissimilarity. This relationship was strongest in large mesocosms. Second, a 295 
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significant positive relationship occurred between differences in community size (ΔJ) and 296 

richness in medium and large mesocosms.  297 

Association networks 298 

Association networks of the 50 most abundant ASVs (members of Actinobacteriota, 299 

Bacteroidota, Cyanobacteria, Planctomycetota and Proteobacteria) differed among the three 300 

mesocosm sizes (Fig. 3, Table S7). The number of total edges and ASV nodes increased with 301 

mesocosm size, and the proportion of delayed (time-shifted) associations were higher in larger 302 

mesocosms (small: 25.9 %, medium: 49.8 %, large: 46 %) (Table S7). Small mesocosms had the 303 

most ASVs (n = 18) that were unassociated with environmental variables and bacterial 304 

abundance while medium and large mesocosms had only 4 and 6 ASVs, respectively (Table S7). 305 

Network subsets showed no connection between conductivity and ASVs of small mesocosms, 306 

while conductivity influenced many abundant ASVs from medium and large mesocosms (mainly 307 

phylum Proteobacteria). In large mesocosms, conductivity had a direct (non-delayed) influence 308 

on ASVs (except one Cyanobacterium), while in medium mesocosms it had both time-shifted 309 

(e.g., mainly positive in Bacteroidota and negative in Proteobacteria) and non-delayed (e.g., 310 

Cyanobacteria) associations with taxa (Fig. S8, Table S8).  311 

Association networks were quantitatively compared by mesocosm size with commonly 312 

used topological characteristics. Negative associations, average number of neighbors, and 313 

network density (the proportion of possible edges that are associated with nodes) increased with 314 

mesocosm size (Table S7). Further, small and medium mesocosms networks were less 315 

centralized (the concentration of centrality among the nodes) than those in large mesocosms. 316 

When considering only taxa associations, small mesocosms had the least centralized network 317 

with more taxa displaying similar numbers of links (Table S7). 318 
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 319 

Discussion 320 

Here we show how differences in environmental fluctuation strengths due to differences 321 

in ecosystem, i.e. mesocosm, size influenced the temporal dynamics of community assembly in 322 

response to a salinity press disturbance (Fig. 4). First, species sorting was generally the most 323 

influential process for all mesocosms but differences in how species sorting operated among 324 

mesocosm sizes at the community (path analysis) and individual taxa levels (association network 325 

analysis). These evaluations indicated that under low environmental fluctuations, dominant ASV 326 

populations were effective trackers of environmental conditions. When ecosystem size-induced 327 

environmental fluctuations were strong (i.e., small mesocosms), environmental tracking was 328 

disrupted. Second, the salinity press disturbance initiated environmental tracking, especially 329 

under stable conditions (i.e., larger mesocosms), through the recruitment of taxa from seed banks 330 

(mainly sediment at high salinity). Third, stochasticity and dispersal-related assembly processes 331 

(e.g., dispersal limitation) generally were more important for communities of small ecosystems. 332 

Overall, our study aligns with previous findings that ecosystem size influences community 333 

assembly processes (35-37), but we identifed this effect to derive from environmental 334 

fluctuations created by ecosystem size differences and corresponding differences in species 335 

sorting effects. 336 

 337 

Salinity press disturbance enforces environmental tracking  338 

Differences in the magnitude of salinity press disturbances induced clear compositional 339 

shifts within and across mesocosms over time. This was expected as we used salinity to induce 340 

species sorting because it is an environmental factor that causes clear taxonomic differences in 341 
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aquatic bacterial communities (13, 38-41). However, there were disparities in how well 342 

communities in each mesocosm size tracked temporal changes in salinity. 343 

The path analysis and network analysis results indicated that species sorting patterns 344 

differed across mesocosm sizes and were altered by time. The direct effects of significant 345 

environmental variables with unidirectional influences (i.e., salinity and temperature) on species 346 

sorting were most influential in medium and large, stabler mesocosms. However, when variables 347 

prone to feedbacks (i.e., nutrients, see below) were included into the total environmental effect 348 

on composition, species sorting was greatest in small, highly fluctuating mesocosms. In contrast, 349 

the indirect effect of time on composition via species sorting increased with mesocosm size and 350 

was driven primarily by changes in all environmental variables except for salinity (which 351 

changed minimally within a mesocosm compared to the salinity gradient). This temporal pattern 352 

generally agreed with the network results of the 50 most abundant bacteria which showed that 353 

they best tracked multiple environmental variables over time in large and medium mesocosms. 354 

Here, almost all ASVs directly linked to environmental variables and populations of core groups 355 

of taxa oscillated correspondingly with temporal salinity changes. In addition, when we isolated 356 

taxa and salinity associations, the network approach revealed many non-delayed associations in 357 

large mesocosms, indicating that the most abundant bacterial populations rapidly 358 

(simultaneously) tracked changes. Despite the path analysis results, no associations were found 359 

in the small mesocosms which could otherwise indicate salinity tracking through time.  360 

Several reasons may explain the contradiction between the two analytical approaches 361 

regarding direct species sorting. First, in the network analysis, we calculated associations only 362 

among the 50 most abundant taxa, thus, we likely overlook conditionally rare taxa that can be 363 

temporarily abundant (42) as a consequence of the rapidly changing environment in small 364 
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mesocosms. This is supported by the trend of higher taxa turnover and direct demographic 365 

stochasticity (discussed below) in small mesocosms. Another explanation may include the 366 

phenomenon that bacterial communities can be an imprint of past environmental conditions (43) 367 

and the correlations detected between community dissimilarity and environmental variables 368 

might coincide with prior processes. Last, the analytical approaches generally agreed concerning 369 

direct effects by salinity, but differed for variables with the potential for feedbacks (i.e., 370 

nutrients). Although the path analysis portrays nutrients as effect variables, they are also 371 

modified by microorganisms. Likely due to the salinity and greater proportions of sediment, 372 

small mesocosms had greater nutrient concentrations and higher cell densities including from 373 

observed algal blooms. These conditions could increase competition which hinders synchrony 374 

between abiotic variables and taxa abundances (44).  375 

Taken together, our findings (conceptualized in Fig. 4) around the importance of species 376 

sorting and the strong temporal influences highlight the distinct differences in the mechanisms 377 

underlying species sorting in mesocosms of different sizes. These findings became apparent 378 

through combining the path analysis, which captures both spatial and temporal patterns at the 379 

whole community level, and the network analysis, which captures time-associated patterns of the 380 

most abundant populations. 381 

 382 

Ecosystem size regulates community assembly and associations among bacterioplankton 383 

While the different environmental conditions from the press disturbance and ongoing 384 

environmental changes throughout the experiment might explain why species sorting was the 385 

main driver of metacommunity assembly, our study suggests that other factors related to 386 
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ecosystem size (e.g., spatial environmental heterogeneity) could further regulate 387 

metacommunities. 388 

 The importance of species sorting can increase with environmental heterogeneity, i.e., 389 

the number of niches that are available for colonization across patches (45, 46). In our study, 390 

large mesocosms contained greater spatial environmental heterogeneity evidenced by depth 391 

associated changes in temperature and light. Hence, across mesocosms spatial environmental 392 

heterogeneity could explain why species sorting was more apparent in large compared to small 393 

mesocosms based on the network analysis. This might also explain the increased associations in 394 

larger mesocosms, enhancing the probabilities for true biotic interactions. This increase may be 395 

attributed to (i) the greater availability of niches (and consistency of nutrients) found in larger 396 

mesocosms, or (ii) the synchronous establishment of bacteria which might have a better chance 397 

in a stable environment. In a study of protists experiencing light-dark fluctuations in aquatic 398 

microcosms and models, high fluctuations disrupted species synchrony between patches (47). 399 

Spatial heterogeneity could also explain the greater bacterial richness as ecosystem size 400 

increased.  401 

Network topological features were partially influenced by mesocosm size: bacteria were 402 

more connected in medium or large than small mesocosms, suggesting that abundance dynamics 403 

were less similar across small mesocosms and indicating asynchrony among dominant bacteria. 404 

In these less densely populated, large mesocosms, competition may have lessened which can 405 

lead to greater synchrony between species that is driven by changes in abiotic conditions (44). In 406 

our mesocosms, more connected, centralized communities with greater network density occurred 407 

as size increased, indicating the presence of subnetworks or cliques and that, due to lower 408 

fluctuation strength, the establishment of more connected, denser networks were common under 409 
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stabler environments (Fig. 4). Because size replicates in the network analysis spanned the 410 

salinity gradient, this further suggests that the spatial environmental heterogeneity of salinity had 411 

less importance for potential biotic associations among stabler mesocosms.  412 

Taken together, we suggest that these patterns indicate mesocosm size-specific 413 

mechanisms of species sorting: in small mesocosms, changes in community composition from 414 

species sorting primarily occurred through taxa replacement in response to variation in multiple 415 

environmental factors. In contrast, in larger mesocosms, environmental change was more gradual 416 

and cascaded into compositional differences through abundant bacteria tracking environmental 417 

changes over time by changing in relative population size, with lower replacement (Fig. 4).  418 

 419 

Recruitment of the members of bacterioplankton 420 

Initial community size due to differences in mesocosm volume might have affected the 421 

resulting community composition through species sorting, but other factors related to the 422 

experimental set-up were unlikely to have substantial influence. The experimental set-up ensured 423 

no extensive differences in the recruitment of novel species from external sources due to 424 

proportional mesocosm surface areas and equal initial sediment volumes. There were also no 425 

differences in estimated richness of active bacteria between mesocosms on the first day of the 426 

experiment. The dispersal sources (rain and air deposition as well as seed banks in sediments and 427 

lake water) all harbored high diversity and in previous studies were shown to be important 428 

recruitment sources for novel taxa following salinity disturbances (15-17) and other types of 429 

environmental change (48). Although large mesocosms contained more total microorganisms 430 

and thereby possibly a larger planktonic seed bank from which taxa could respond to the salinity 431 

disturbance, recruitment from the water seed bank declined with salinity in all mesocosm sizes 432 
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(Fig. 4). Even with reduced dispersal, future studies that extend temporal sampling beyond the 433 

64 days sampled here may eventually see eco-evolutionary processes such as increased tracking 434 

of environmental conditions in small mesocosms due to bacterial diversification, which can be 435 

intensified by a history of environmental adversity (49). The high percentage of ASVs for which 436 

we did not identify a source (85%) could indicate dispersal from other sources such as the snails 437 

we observed on most mesocosms. or the effect of sequencing depth which can miss the rarest 438 

taxa. 439 

 440 

Roles of stochasticity and dispersal-related processes 441 

Demographic stochasticity (leading to ecological drift) was an important driver of 442 

community assembly of all mesocosms via community size with the strongest direct effect in 443 

small mesocosms (Fig. 4). This result is bolstered by previous studies showing that ecological 444 

drift more often occurs in small communities (50, 51) especially when the importance of species 445 

sorting is weak (52) or when the effective community size is small due to dispersal limitation 446 

(53). This may be why we did not detect synchronous environmental tracking from the dominant 447 

populations across the small mesocosms. Drift can also alter the outcome of niche selection (54). 448 

Nevertheless, the effect of time on community composition indicated that large mesocosm 449 

communities were most influenced by demographic stochasticity arising from temporal 450 

influences. In this case, large mesocosms may more strongly reflect (i) random changes in births 451 

and deaths from a community that grew in number over time, (ii) stochasticity based on priority 452 

effects from slower time-delayed tracking, or (iii) may reflect sampling timepoints that 453 

underrepresented the larger total community. 454 
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Dispersal limitation as driver of metacommunity dynamics (considering all mesocosms at 455 

one time point) was present only in small sized mesocosms and suggests that multiple 456 

communities emerged from similar initial conditions in the small mesocosms. However, the 457 

interpretation of the dispersal limitation is ambiguous (e.g.(55)). It could be true dispersal 458 

limitation whereby niche spaces that are opened (i.e., when species become inactive in response 459 

to the initial salinity changes which increase habitat specialists (56) and/or the strong 460 

environmental changes) remain empty (57). However, it does not necessarily indicate true 461 

dispersal limitation between patches (55) or reduced immigration from a regional pool. Instead, 462 

it can be explained by the low richness of these mesocosm communities decreasing the 463 

likelihood that they contain superb dispersers. When dispersal rates are low, local adaptations to 464 

environmental fluctuations can lead to strengthened priority effects by preemptive taxa (58), 465 

which might have occurred during the experiment. For example, the many time-delayed 466 

associations between salinity and bacterial taxa in medium mesocosms could be a sign of 467 

transient priority effects where taxa (i.e., Bacteroidota and Proteobacteria but not Cyanobacteria) 468 

maintained abundances for a short period without environmental tracking. Nevertheless, with our 469 

data and the applied approaches, it is not possible to clearly support or exclude assembly 470 

processes and other factors that regulate them.  471 

 472 

Conclusions 473 

Overall, our results partially align with those from previous studies which show that after 474 

disturbances, stochastic community assembly initially is important, but the dominant influence 475 

shifts to deterministic processes in later successional stages (e.g. (59)), especially when 476 

environmental conditions are stable. Dispersal limitation and ecological drift (demographic 477 
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stochasticity) were drivers of metacommunity dynamics after community establishment with 478 

strong environmental fluctuations. Mesocosms with reduced environmental fluctuations may 479 

facilitate considerable time-delayed species sorting and thus possibly, a transient influence of 480 

priority effects. The novelty of our study is that we could show, by applying both path and 481 

network approaches, that the trajectories of (meta)community development are influenced by 482 

size-induced environmental fluctuations in concert with a salinity press disturbance. Our results 483 

represent the advantage of joining a network analysis together with metacommunity models, and 484 

stress that environmental fluctuations are important to consider in future community assembly 485 

studies as they can modify community assembly under natural conditions. 486 

 487 

Acknowledgements 488 

This work was mainly supported by the Carl Tryggers Foundation. Sequencing was performed 489 

by the SNP&SEQ Technology Platform in Uppsala. The facility is part of the National Genomics 490 

Infrastructure (NGI) Sweden and Science for Life Laboratory. The SNP&SEQ Platform is also 491 

supported by the Swedish Research Council and the Knut and Alice Wallenberg Foundation. 492 

Computations were enabled by resources provided by the Swedish National Infrastructure for 493 

Computing (SNIC) at the Uppsala Multidisciplinary Center for Advanced Computational 494 

Science (UPPMAX) partially funded by the Swedish Research Council through grant agreement 495 

no. 2018-05973. This field mesocosm experiment has been made possible by the Swedish 496 

Infrastructure for Ecosystem Science (SITES), in this case the Erken Laboratory. SITES receives 497 

funding through the Swedish Research Council under the grant no. 2017-00635. This study was 498 

supported in part by resources and technical expertise from the Georgia Advanced Computing 499 

Resource Center, a partnership between the University of Georgia’s Office of the Vice President 500 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2022. ; https://doi.org/10.1101/2022.01.10.475621doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.10.475621
http://creativecommons.org/licenses/by-nc-nd/4.0/


 23 

for Research and Office of the Vice President for Information Technology. The authors thank 501 

Christoffer Bergvall and Robin Hagblom for laboratory guidance and assistance, and Karsten 502 

Meier for help with fieldwork and data management.  503 

 504 

Data accessibility statement: The data supporting the results are archived in the public 505 

repository European Nucleotide Archive with accession number PRJEB26595 and 506 

environmental data are made available in the Swedish institutional repository, DiVA, (diva-507 

portal.org) with the following accession number: diva2:1210995. 508 

 509 

Competing Interests 510 

The authors declare no competing interests. 511 

 512 

References 513 

1. Vellend M. Conceptual synthesis in community ecology. The Quarterly Review of 514 

Biology. 2010;85(2):183-206. 515 

2. Leibold MA, Chase JM. Metacommunity Ecology. Princeton, NJ.: Princeton University 516 

Press,; 2017. 517 

3. Logue JB, Mouquet N, Peter H, Hillebrand H, Metacommunity Working G. Empirical 518 

approaches to metacommunities: a review and comparison with theory. Trends Ecol Evol. 519 

2011;26(9):482-91. 520 

4. Hanson CA, Fuhrman JA, Horner-Devine MC, Martiny JB. Beyond biogeographic 521 

patterns: processes shaping the microbial landscape. Nat Rev Microbiol. 2012;10(7):497-506. 522 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2022. ; https://doi.org/10.1101/2022.01.10.475621doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.10.475621
http://creativecommons.org/licenses/by-nc-nd/4.0/


 24 

5. Lindström ES, Langenheder S. Local and regional factors influencing bacterial 523 

community assembly. Environ Microbiol Rep. 2012;4(1):1-9. 524 

6. Langenheder S, Lindström ES. Factors influencing aquatic and terrestrial bacterial 525 

community assembly. Environ Microbiol Rep. 2019;11(3):306-15. 526 

7. Leibold MA, Holyoak M, Mouquet N, Amarasekare P, Chase JM, Hoopes MF, et al. The 527 

metacommunity concept: a framework for multi-scale community ecology. Ecology Letters. 528 

2004;7(7):601-13. 529 

8. Vass M, Langenheder S. The legacy of the past: effects of historical processes on 530 

microbial metacommunities. Aquatic Microbial Ecology. 2017;79(1):13-9. 531 

9. Fukami T. Historical contingency in community assembly: integrating niches, species 532 

pools, and priority effects. Annual Review of Ecology, Evolution, and Systematics. 533 

2015;46(1):1-23. 534 

10. Herlemann DP, Labrenz M, Jurgens K, Bertilsson S, Waniek JJ, Andersson AF. 535 

Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME 536 

J. 2011;5(10):1571-9. 537 

11. Neubauer SC, Piehler MF, Smyth AR, Franklin RB. Saltwater Intrusion Modifies 538 

Microbial Community Structure and Decreases Denitrification in Tidal Freshwater Marshes. 539 

Ecosystems. 2018;22(4):912-28. 540 

12. Rath KM, Fierer N, Murphy DV, Rousk J. Linking bacterial community composition to 541 

soil salinity along environmental gradients. ISME J. 2019;13(3):836-46. 542 

13. Tang X, Xie G, Shao K, Tian W, Gao G, Qin B. Aquatic Bacterial Diversity, Community 543 

Composition and Assembly in the Semi-Arid Inner Mongolia Plateau: Combined Effects of 544 

Salinity and Nutrient Levels. Microorganisms. 2021;9(2). 545 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2022. ; https://doi.org/10.1101/2022.01.10.475621doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.10.475621
http://creativecommons.org/licenses/by-nc-nd/4.0/


 25 

14. Xia LC, Steele JA, Cram JA, Cardon ZG, Simmons SL, Vallino JJ, et al. Extended local 546 

similarity analysis (eLSA) of microbial community and other time series data with replicates. 547 

BMC Systems Biology. 2011;5:S15. 548 

15. Langenheder S, Comte J, Zha Y, Samad MS, Sinclair L, Eiler A, et al. Remnants of 549 

marine bacterial communities can be retrieved from deep sediments in lakes of marine origin. 550 

Environ Microbiol Rep. 2016;8(4):479-85. 551 

16. Comte J, Lindstrom ES, Eiler A, Langenheder S. Can marine bacteria be recruited from 552 

freshwater sources and the air? ISME J. 2014;8(12):2423-30. 553 

17. Comte J, Langenheder S, Berga M, Lindstrom ES. Contribution of different dispersal 554 

sources to the metabolic response of lake bacterioplankton following a salinity change. Environ 555 

Microbiol. 2017;19(1):251-60. 556 

18. Langenheder S, Ragnarsson H. The role of environmental and spatial factors for the 557 

composition of aquatic bacterial communities. Ecology. 2007;88(9):2154-61. 558 

19. del Giorgio PA, Bird DF, Prairie YT, Planas D. Flow cytometric determination of 559 

bacterial abundance in lakeplankton with the green nucleid acid stain SYTO 13. Limnology and 560 

Oceanography. 1996;41:783-9. 561 

20. Blazewicz SJ, Barnard RL, Daly RA, Firestone MK. Evaluating rRNA as an indicator of 562 

microbial activity in environmental communities: limitations and uses. ISME J. 563 

2013;7(11):2061-8. 564 

21. Martin M. Cutadapt removes adapter sequences from high- throughput sequencing reads. 565 

EMBnet Journal. 2011;17:10-2. 566 

22. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. DADA2: 567 

High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13(7):581-3. 568 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2022. ; https://doi.org/10.1101/2022.01.10.475621doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.10.475621
http://creativecommons.org/licenses/by-nc-nd/4.0/


 26 

23. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA 569 

ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic 570 

Acids Res. 2013;41(Database issue):D590-6. 571 

24. R-Core-Team. R: A language and environment for statistical computing. Vienna, Austria: 572 

R Foundation for Statistical Computing; 2020. 573 

25. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: 574 

Community Ecology Package. R package version 2.5-7. ed2020. 575 

26. Bier RL. Field and chemistry data from 2016 Fluctuations Project Data sets. In: DiVA, 576 

editor. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-3517382016. 577 

27. Noguchi K, Gel YR, Brunner E, Konietschke F. nparLD: An R software package for the 578 

nonparametric analysis of longitudinal data in factorial experiments. Journal of Statistical 579 

Software. 2012;50:1-23. 580 

28. Willis A, Martin BD, Trinh P, Teichman S, Barger K, Bunge J. breakaway: Species 581 

Richness Estimation and Modeling. R package version 4.7.3. ed2020. 582 

29. Baselga A, Orme D, Villeger S, De Bortoli J, Leprieur F, Logez M. betapart: Partitioning 583 

beta diversity into turnover and nestedness components. R package version 1.5.2 ed2020. 584 

30. Anderson MJ. Permutational Multivariate Analysis of Variance (PERMANOVA ). Wiley 585 

StatsRef: Statistics Reference Online2017. p. 1-15. 586 

31. Jabot F, Laroche F, Massol F, Arthaud F, Crabot J, Dubart M, et al. Assessing 587 

metacommunity processes through signatures in spatiotemporal turnover of community 588 

composition. Ecol Lett. 2020;23(9):1330-9. 589 

32. Rosseel Y. lavaan: An R Package for Structural Equation Modeling. Journal of Statistical 590 

Software. 2012;48:1-36. 591 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2022. ; https://doi.org/10.1101/2022.01.10.475621doi: bioRxiv preprint 

http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-3517382016
https://doi.org/10.1101/2022.01.10.475621
http://creativecommons.org/licenses/by-nc-nd/4.0/


 27 

33. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a 592 

software environment for integrated models of biomolecular interaction networks. Genome Res. 593 

2003;13(11):2498-504. 594 

34. Assenov Y, Ramirez F, Schelhorn SE, Lengauer T, Albrecht M. Computing topological 595 

parameters of biological networks. Bioinformatics. 2008;24(2):282-4. 596 

35. Drake JA. Community-Assembly Mechanics and the Structure of an Experimental 597 

Species Ensemble. The American Naturalist. 1991;137(1):1-26. 598 

36. Orrock JL, Fletcher Jr. RL. Changes in Community Size Affect the Outcome of 599 

Competition. The American Naturalist. 2005;166(1):107-11. 600 

37. Fukami T. Community assembly along a species pool gradient: implications for 601 

multiple‐ scale patterns of species diversity. Population Ecology. 2004;46(2):137-47. 602 

38. Lozupone CA, Hamady M, Kelley ST, Knight R. Quantitative and qualitative beta 603 

diversity measures lead to different insights into factors that structure microbial communities. 604 

Appl Environ Microbiol. 2007;73(5):1576-85. 605 

39. Werba JA, Stucy AL, Peralta AL, McCoy MW. Effects of diversity and coalescence of 606 

species assemblages on ecosystem function at the margins of an environmental shift. PeerJ. 607 

2020;8:e8608. 608 

40. Logares R, Brate J, Bertilsson S, Clasen JL, Shalchian-Tabrizi K, Rengefors K. 609 

Infrequent marine-freshwater transitions in the microbial world. Trends Microbiol. 610 

2009;17(9):414-22. 611 

41. Logares R, Lindstrom ES, Langenheder S, Logue JB, Paterson H, Laybourn-Parry J, et al. 612 

Biogeography of bacterial communities exposed to progressive long-term environmental change. 613 

ISME J. 2013;7(5):937-48. 614 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2022. ; https://doi.org/10.1101/2022.01.10.475621doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.10.475621
http://creativecommons.org/licenses/by-nc-nd/4.0/


 28 

42. Shade A, Jones SE, Caporaso JG, Handelsman J, Knight R, Fierer N, et al. Conditionally 615 

rare taxa disproportionately contribute to temporal changes in microbial diversity. mBio. 616 

2014;5(4):e01371-14. 617 

43. Andersson MGI, Berga M, Lindström ES, Langenheder S. The spatial structure of 618 

bacterial communities is influenced by historical environmental conditions. Ecology. 619 

2014;95(5):1134-40. 620 

44. Lee AM, Sæther B-E, Engen S. Spatial covariation of competing species in a fluctuating 621 

environment. Ecology. 2020;101(1):e02901. 622 

45. Ai D, Gravel D, Chu C, Wang G. Spatial structures of the environment and of dispersal 623 

impact species distribution in competitive metacommunities. PLoS One. 2013;8(7):e68927. 624 

46. Maloufi S, Catherine A, Mouillot D, Louvard C, Couté A, Bernard C, et al. 625 

Environmental heterogeneity among lakes promotes hyper β-diversity across phytoplankton 626 

communities. Freshwater Biology. 2016;61(5):633-45. 627 

47. Firkowski CR, Thompson PL, Gonzalez A, Cadotte MW, Fortin M-J. Multi-trophic 628 

metacommunity interactions mediate asynchrony and stability in fluctuating environments. 629 

Ecological Monographs.n/a(n/a):e1484. 630 

48. Lennon JT, Jones SE. Microbial seed banks: the ecological and evolutionary implications 631 

of dormancy. Nat Rev Microbiol. 2011;9(2):119-30. 632 

49. Knope ML, Forde SE, Fukami T. Evolutionary history, immigration history, and the 633 

extent of diversification in community assembly. Front Microbiol. 2011;2:273. 634 

50. Fukami T. Assembly history interacts with ecosystem size to influence species diversity. 635 

Ecology. 2004;85(12):3234–42. 636 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2022. ; https://doi.org/10.1101/2022.01.10.475621doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.10.475621
http://creativecommons.org/licenses/by-nc-nd/4.0/


 29 

51. Orrock JL, Watling JI. Local community size mediates ecological drift and competition 637 

in metacommunities. Proc Biol Sci. 2010;277(1691):2185-91. 638 

52. Chase JM. Community assembly: when should history matter? Oecologia. 639 

2003;136(4):489-98. 640 

53. Ron R, Fragman-Sapir O, Kadmon R. Dispersal increases ecological selection by 641 

increasing effective community size. Proc Natl Acad Sci U S A. 2018;115(44):11280-5. 642 

54. Siqueira T, Saito VS, Bini LM, Melo AS, Petsch DK, Landeiro VL, et al. Community 643 

size can affect the signals of ecological drift and niche selection on biodiversity. Ecology. 644 

2020;101(6):e03014. 645 

55. Vass M, Szekely AJ, Lindstrom ES, Langenheder S. Using null models to compare 646 

bacterial and microeukaryotic metacommunity assembly under shifting environmental 647 

conditions. Sci Rep. 2020;10(1):2455. 648 

56. Shen D, Langenheder S, Jurgens K. Dispersal Modifies the Diversity and Composition of 649 

Active Bacterial Communities in Response to a Salinity Disturbance. Front Microbiol. 650 

2018;9:2188. 651 

57. Cunze S, Heydel F, Tackenberg O. Are plant species able to keep pace with the rapidly 652 

changing climate? PLoS One. 2013;8(7):e67909. 653 

58. Loeuille N, Leibold MA. Evolution in metacommunities: on the relative importance of 654 

species sorting and monopolization in structuring communities. Am Nat. 2008;171(6):788-99. 655 

59. Dini-Andreote F, Stegen JC, van Elsas JD, Salles JF. Disentangling mechanisms that 656 

mediate the balance between stochastic and deterministic processes in microbial succession. Proc 657 

Natl Acad Sci U S A. 2015;112(11):E1326-32. 658 

 659 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2022. ; https://doi.org/10.1101/2022.01.10.475621doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.10.475621
http://creativecommons.org/licenses/by-nc-nd/4.0/


 30 

Figure Legends 660 

Figure 1. Temporal patterns of alpha diversity metrics for bacterial communities in dispersal 661 

sources (air and rain), source media (sediment and water) (DNA) and mesocosm water (RNA). 662 

Error bars are standard error. Diversity metrics for large mesocosms greater than both small and 663 

medium mesocosms (repeated measures ANOVA, pairwise t-test with Bonferroni correction, p < 664 

0.05). Source media n = 3, mesocosm sizes n = 16, air and rain n = 1. Note difference in y-axis 665 

scales. 666 

 667 

Figure 2. Path analysis diagrams of small, medium, and large mesocosm sizes. The influence of 668 

spatial distances (Δx), temporal distances (Δt), environmental distances (ΔE), mean community 669 

size (<J>), absolute difference in community size (ΔJ) and species richness (ΔS) on community 670 

dissimilarity (βbc) was quantified following Jabot et al.’s framework (2020). Arrow width 671 

represents standardized estimate strength with positive estimate arrows in solid lines and 672 

negative estimates in dashed lines. For environmental variables, the absolute values of 673 

standardized estimates were added. Effects shown have p < 0.05. SRMR = Standardized Root 674 

Mean Square Residual. See Tables S4-S6 for standardized estimate values. 675 

 676 

Figure 3. Association networks and the relative abundances of the 50 most abundant bacteria of 677 

the three mesocosm size categories (n = 16). All significant ((p ≤ 0.01 and Q ≤ 0.01) pairwise 678 

local similarity (LS) correlations ≥ 0.05 are shown as edges in the networks. Each node 679 

represents an ASV (ellipse) or an environmental factor (rectangle). Edge transparency is 680 

proportional to the association strength (based on LS values). Solid lines refer to positive 681 

associations while dashed lines to negative ones. Edge colors indicate delayed (blue) and non-682 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2022. ; https://doi.org/10.1101/2022.01.10.475621doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.10.475621
http://creativecommons.org/licenses/by-nc-nd/4.0/


 31 

delayed (black) associations between ASVs and/or environmental variables. Arrows point 683 

toward the lagging node. 684 

 685 

Figure 4. Conceptual figure for the interpretation of statistical results and patterns based on path 686 

analysis, network analysis, and the partitioning of beta-diversity. In our study, the dominant 687 

deterministic force was the applied salinity press disturbance. Ecosystem size was manipulated 688 

by different volumes of mesocosms. Darker shading in bars indicates greater influence of the 689 

process. 690 
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