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Neural system identification aims at learning the response1

function of neurons to arbitrary stimuli using experimen-2

tally recorded data, but typically does not leverage normative3

principles such as efficient coding of natural environments.4

Visual systems, however, have evolved to efficiently process5

input from the natural environment. Here, we present a nor-6

mative network regularization for system identification mod-7

els by incorporating, as a regularizer, the efficient coding hy-8

pothesis, which states that neural response properties of sen-9

sory representations are strongly shaped by the need to pre-10

serve most of the stimulus information with limited resources.11

Using this approach, we explored if a system identification12

model can be improved by sharing its convolutional filters13

with those of an autoencoder which aims to efficiently encode14

natural stimuli. To this end, we built a hybrid model to pre-15

dict the responses of retinal neurons to noise stimuli. This16

approach did not only yield a higher performance than the17

“stand-alone” system identification model, it also produced18

more biologically-plausible filters. We found these results to19

be consistent for retinal responses to different stimuli and20

across model architectures. Moreover, our normatively reg-21

ularized model performed particularly well in predicting re-22

sponses of direction-of-motion sensitive retinal neurons. In23

summary, our results support the hypothesis that efficiently24

encoding environmental inputs can improve system identifi-25

cation models of early visual processing.26

Correspondence: thomas.euler@cin.uni-tuebingen.de27

Introduction28

In the past years, advances in experimental techniques29

enabled detailed, large-scale measurements of activity at30

many levels of sensory processing (1). As a consequence,31

neural system identification (SI) approaches have flour-32

ished (Fig. 1a top). They empirically fit the stimulus-33

response (transfer) function of neurons based on experi-34

mentally recorded data (2–4). A classic example is the35

generalized linear model (GLM, (2, 5)), which consists of36

a linear filter as a first order approximation of a neuron’s37

response function (i.e., its receptive field; (6)), followed38

by a point-wise nonlinear function for the neuron’s output.39

To account for additional non-linearities (e.g., (7, 8)), sev-40

eral extensions, such as linear-nonlinear cascades (9, 10),41

have been proposed. More recently, deep neural network-42

based SI approaches inspired by the hierarchical process-43

ing along the visual pathway (11, 12) have been developed44

(reviewed in (13–17)). While SI methods became particu-45

larly successful in predicting responses of visual neurons46

(18–22), they often require large amounts of training data47

and, more critically, do rarely consider adaptions to the48

natural environment.49

However, like other senses, vision has evolved to promote50

a species’ survival in its natural environment (23), driv-51

ing visual circuits to efficiently represent information un-52

der a number of constraints, including metabolic limits and53

space restrictions (24, 25). As a consequence, the visual54

system has adapted to natural statistics, as shown, for ex-55

ample, by the fact that the distribution of orientation pref-56

erences of visual neurons mirrors the dominance of cardi-57

nal orientations in natural scenes (26–28).58

Such adaptations are at the heart of efficient coding (EC)59

approaches (Fig. 1a bottom): They derive algorithmic prin-60

ciples underlying neural systems from the statistical prop-61

erties of natural stimuli and by incorporating biological62

constraints (15, 24, 25, 29–31). Here, one popular strat-63

egy starts from the assumption that early visual processing64

serves to decorrelate the redundant signals in natural en-65

vironments (32, 33). This theory can reproduce feature66

selectivity, e.g., difference-of-Gaussian (DoG) kernels that67

have similar receptive field (RF) properties as retinal gan-68

glion cells (RGCs; (34)). Recently, deep neural networks-69

augmented EC approaches were proposed, such as con-70

volutional autoencoders (35, 36), which are trained to op-71

timally reconstruct inputs in the presence of an informa-72

tion "bottleneck" (i.e., from a constrained latent represen-73

tation). Such convolutional autoencoders have been shown74

to yield center-surround spatial RFs with similar proper-75

ties as those observed in RGCs when encoding either pink76

(1/f ) noise or natural scenes (37, 38). Still, a downside77

of EC is that it is not always straightforward to experimen-78

tally measure coding efficiency and feature selectivity pre-79

dicted by these approaches in neural systems (discussed in80

(39, 40)) and, hence, the interpretation of EC models with81
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respect to the biological underpinnings remains challeng-82

ing.83

Notably, the intersection between EC and SI has long re-84

mained largely unexplored but lately shifted more into85

focus. In particular, Mlynarski and colleagues recently86

proposed a theoretical framework incorporating normative87

theories for statistical inference on simulated or pre-fit neu-88

ral data (41). Their framework enables conducting rigor-89

ous statistical hypothesis tests of coding principles, but has90

not yet been applied to predicting neural responses to ar-91

bitrary stimuli with minimal assumptions. Here, we tested92

whether the EC hypothesis can serve as a useful induc-93

tive bias for learning the response functions of neurons.94

To do so, we built a hybrid model combining a SI branch95

with an EC branch, forced the two branches to share fil-96

ters (Fig. 1b) and asked, if knowledge about natural scene97

statistics could help predicting retinal responses. To this98

end, we experimentally recorded Ca2+ signals of neurons99

in the mouse retina while presenting it with visual stimuli100

and then used these responses to train the SI branch, which101

aims to predict retinal responses. We used natural movies102

that we recorded in mouse habitats outdoors to train the103

EC branch, which aims to represent natural scenes effi-104

ciently (38). We found a synergy between neural predic-105

tion and natural scene statistics: The hybrid approach did106

not only have a better predictive performance than a pure107

SI approach, it also produced more biologically-plausible108

filters. Our results demonstrate that predicting sensory re-109

sponses benefits from considering adaptations to the natu-110

ral environment.111

Results112

Hybrid system identification and efficient coding113

models. To test if learning an efficient representation of114

natural input could help predict neuronal responses in the115

early visual system, we employed normative regulariza-116

tion, i.e., statistical regularization that is informed by nor-117

mative coding principles, such as the idea that sensory sys-118

tems have evolved to efficiently process natural stimuli.119

Specifically, we used this strategy to incorporate EC as a120

regularizer and developed a hybrid model that combines121

SI-based neural prediction and EC in a single model. The122

two model branches are linked by shared convolutional fil-123

ters (Fig. 1b).124

The SI branch approximates the response functions of125

recorded neurons to a visual dense noise (see below), and126

was implemented using a convolutional neural network127

(CNN) (Fig. 2a). Here, we used an L2 regularization on128

the convolutional layers to encourage smooth filters (42)129

and an L1 regularization on the fully connected (FC) layer130

for sparse readouts ((19); for details, see Methods).131

The EC branch was trained to efficiently reconstruct in-132

put stimuli (i.e., natural scenes) from a constrained latent133

representation. For this branch, we used a convolutional134

autoencoder network that we published before (for details,135

see (38) and Methods). Also in the EC branch, we en-136

forced smooth filters by using L2 regularization, and lim-137

ited the bandwidth by adding Gaussian noise and imposing138

L1 regularization on the hidden activations. The latter reg-139

ularization also encourages sparse representations.140

In the hybrid model, we implemented interactions between141

the two branches by shared filters (symbolized by red cir-142

cle in Fig. 1b). Both branches were trained in paral-143

lel, with a weighted sum of their respective losses (LSI144

and LEC ) used as optimization objective. By changing145

the weighting of the two losses, we were able to con-146

trol the relative contribution of two branches on shaping147

the shared filters, and test our hypothesis to which degree148

efficient representations of natural scenes improve neural149

predictions (Fig. 2a,b). Specifically, weight w was used150

to define the hybrid model’s loss function as LHybrid =151

w · LSI + (1 − w) · LEC (Methods). For w = 1, the EC152

branch had no influence on the shared filters and, hence,153

the hybrid model behaved like the pure SI model. Con-154

versely, for w = 0, the SI branch had no influence on the155

shared filters and, hence, the hybrid model behaved like156

the pure EC model. Thus, the smaller the weight, the more157

the EC branch contributed to shaping the filters.158

To evaluate the influence of stimulus statistics on neural159

response predictions, we fed not only natural stimuli to160

the EC branch, but also phase-scrambled natural stimuli as161

well as noise. We refer to these models as hybrid-natural,162

hybrid-pha-scr and hybrid-noise (Fig. 2c). Moreover, to163

examine whether the performance improvements could be164

attributed to simple low-pass filtering, we trained SI net-165

works using spatial convolutional filters composed from166

different numbers of basis functions derived from principle167

component analysis (PCA) on natural images (Fig. 2d), or168

the discrete cosine transform (DCT). These models are re-169

ferred to as SI-PCA and SI-DCT networks.170

To train the SI branch of our hybrid framework, we171

recorded somatic Ca2+ responses from populations of cells172

in the ganglion cell layer (GCL) of the ex-vivo mouse173

retina to 9-minute long noise stimuli using two-photon174

imaging (Fig. 3a; Methods; (43, 44)). The GCL con-175

tains the RGCs, which represent the retina’s output neu-176

rons and form in the mouse about 40 parallel feature177

channels to higher visual brain areas (reviewed in (23)).178

RGCs gain their specific response properties by integrat-179

ing upstream input from distinct sets of bipolar cells and180

amacrine cells. Note that the GCL also contains some "dis-181

placed" amacrine cells (dACs; (43, 45)). If not indicated182

otherwise, we did not distinguish between these two GCL183

cell classes in our datasets. The noise stimulus contained184

two chromatic components (UV, green) matching the spec-185

tral sensitivities of mouse photoreceptors (46). We used186

the data of n=96 GCL cells that passed our quality crite-187

ria (Methods) to fit a pure SI model with factorized spatial188

and temporal convolutional filters, whose predictive per-189

formance served as our baseline (Fig. 3b left).190

Neural system identification benefits from natural191

scene statistics. First, we measured the predictive per-192
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Fig. 1. Illustration of our hybrid model combining SI and EC. a. Illustration of two common approaches to studying visual systems: system identification, symbolized by the
green-labeled branch, aims at predicting responses of neuronal circuits (black rectangle) to specific stimuli, whereas efficient coding (purple-labeled branch) seeks working
out principles of the visual system based on environmental statistics. As these two approaches are rarely combined in a single modeling framework, their potential synergies
remain largely unexplored. b. Our hybrid modeling approach combines system identification (green) and efficient coding (purple) in a single model with shared filters (red
circle) to predict neural responses to arbitrary visual stimuli.

Fig. 2. Hybrid model with shared spatial filters. a,b. Schemata of SI model (a) and EC model (b) from Qiu et al. (38). The SI model branch consists of spatial and temporal
convolutional layers, a fully connected (FC) layer and a nonlinear layer (see Methods). The EC model branch is a convolutional autoencoder, consisting of an encoder and a
decoder network. In the hybrid model, the two branches were trained in parallel with shared spatial filters (red). InputSI: 8-frame UV-green noise (t1 ... t8); OutputSI: predicted
GCL cell Ca2+ responses; InputEC: UV-green natural images; OutputEC: reconstructed InputEC. c. Example for the different inputs (natural images, phase-scrambled natural
images, and noise) for the EC branch in hybrid models (hybrid-natural, hybrid-pha-scr, hybrid-noise). d. Using PCA filters as basis vectors for spatial convolutional filters of
the SI model; SI-PCA learned 16 weight vectors (−→w1 ... −−→w16) with same vector length as the number of PCA basis elements.
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formance of the hybrid-natural model on the validation193

data (for hyperparameter tuning) by systematically vary-194

ing the relative impact of the two branches by changing195

the weight w. We found that the performance steadily in-196

creased with increasing EC influence (i.e., decreasing w)197

up to an optimum (peaking at w = 0.2; Fig. 3c, red), af-198

ter which the SI had too little influence on the shared fil-199

ters and the performance dropped. Note that the correla-200

tion values for the validation data are relatively low be-201

cause these predictions were calculated on a single-trial202

basis (Methods).203

Next, we replaced the natural input to the EC pathway by204

phase-scrambled scenes (hybrid-pha-scr) and white noise205

across space and chromatic channels (hybrid-noise). Like206

for the hybrid-natural model, the performance of the two207

control models also increased with increasing EC influ-208

ence up to a certain point, peaking at w = 0.3 and w =209

0.4 for hybrid-pha-scr and hybrid-noise, respectively (Fig.210

3c). This indicates that when incorporating EC, all hybrid211

model versions showed some improvement up to certain w212

values, before performance sharply declined.213

To test to what extent simple low-pass filtering contributes214

to the performance improvement observed for the hybrid-215

natural model, we quantified the performance of two addi-216

tional SI models, one with PCA and the other one with217

DCT bases. By varying the number of bases used, we218

found a maximum in predictive performance at 16 and 4219

bases for SI-PCA and SI-DCT (zig-zag ordering), respec-220

tively (Suppl. Fig. S1b).221

Finally, to compare the performance on the test data across222

models, we picked for each model, the w or number of223

bases with the best predictive performance for the vali-224

dation data. We found that the hybrid model with natu-225

ral inputs to the EC branch attained the best performance226

among all tested models (Fig. 3d,e). The hybrid-natural227

model’s superior performance compared to the hybrid-228

pha-scr model suggests that the benefit of learning natu-229

ral scene statistics extends beyond second-order statistics230

such as the 1/f power spectrum of natural images. Nev-231

ertheless, the hybrid-pha-scr model performed better than232

the hybrid-noise version, pointing at a general benefit of233

learning second-order statistics in the EC branch. More-234

over, the hybrid-natural model was consistently better than235

low-pass filtering control models (SI-PCA and SI-DCT),236

suggesting that simple low-pass filtering does not fully ex-237

plain the benefits of sharing kernels with the EC branch238

trained to efficiently represent natural stimuli.239

Together, our results suggest that normative network reg-240

ularization — in particular, based on natural statistics —241

can improve the performance of neural SI models.242

Hybrid models with natural inputs learn the most bi-243

ologically-plausible filters. To confirm that our hybrid244

models capture the properties of the recorded cells, we245

estimated their RFs (Fig. 3b; Suppl. Fig. S1f; Meth-246

ods). Indeed, we found that the models learned antago-247

nistic center-surround RFs with biphasic temporal kernels,248

reminiscent of RGC RFs found in other studies (2, 43). To249

get insights to which degree our models resembled biolog-250

ical vision systems, we next investigated the internal repre-251

sentations by analyzing the filters of the models’ subunits252

(18, 47). To this end, we compared the shared spatial con-253

volutional filters between our tested models. As neurons in254

the retina and further upstream in the early visual system255

often feature smooth, Gaussian or DoG shaped RFs (e.g.,256

(43, 48, 49)), we considered models with such shared fil-257

ters as more biological plausible than those with other filter258

organizations.259

Interestingly, while the learned neuronal RFs were quite260

consistent between models (cf. Fig. 3b), their shared spa-261

tial filters differed considerably (Fig. 3f,h). When us-262

ing natural images in the EC branch (hybrid-natural), fil-263

ters indeed became smoother and more Gaussian-shaped,264

which may be a result of the regularization by the EC265

branch on the SI branch and which may have con-266

tributed to the performance improvement of predicting re-267

sponses. This effect persisted though reduced when phase-268

scrambled images were used (hybrid-pha-scr). More-269

over, for smaller w values (i.e., stronger EC influence),270

Gaussian-shaped filters became more frequent in the271

hybrid-natural but not in the hybrid-noise model (Fig. 3f,272

upper vs. lower row). For the SI models with PCA or DCT273

basis, we found all filters to be smooth as they profited274

from low-pass filtering of the respective transformation.275

However, compared to the hybrid-natural model, their fil-276

ters were less frequently Gaussian-shaped (Fig. 3h).277

To quantify these findings, we fitted 2D Gaussian func-278

tions to the filters and measured the goodness of the fit279

via the coefficient of determination (R-squared; Methods).280

Notably, for all three hybrid models, the w with the best281

Gaussian fit was the same w that also resulted in the best282

response predictive performance (w = 0.2, w = 0.3, and283

w = 0.4 for hybrid-natural, hybrid-pha-scr, and hybrid-284

noise, respectively; Fig. 3g). The filters of the hybrid-285

natural model resembled smooth 2D Gaussians more than286

for any other model (Fig. 3i), including SI-PCA and SI-287

DCT. The difference of fit quality between hybrid-natural288

vs. hybrid-pha-scr and hybrid-pha-scr vs. hybrid-noise289

may be related to higher-order statistics and second-order290

statistics of natural scenes, respectively.291

Taken together, our comparisons of the hidden spatial rep-292

resentations suggest that natural scene statistics promote293

latent feature representations akin to transformations in the294

early visual system.295

Efficient coding increases the data efficiency of sys-296

tem identification. Next, we asked if the observed per-297

formance increase in the hybrid-natural vs. the baseline SI298

model was sensitive to the amount of training data, both299

with respect to their response predictions (Fig. 4a) and300

their learned spatial filters (Fig. 4b). To this end, we301

trained the SI and the hybrid-natural model (w = 0.2) with302

different amounts of data, ranging from 30% to 100%.303

Not unexpectedly, when more training data was used, pre-304
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Fig. 3. Neural encoding tasks benefit from natural scene statistics. a. Region-of-interest (ROI) mask of one recording field in dorsal retina (left) and mean Ca2+ responses
(black) of exemplary ROIs in response to 6 repeats of noise stimuli (single trials in gray). b. Three representative GCL cell responses (gray) to the noise stimulus (cf. Fig.
2a, left), together with predictions of best performing models on test data (black, SI; red, hybrid w/ natural scenes as input to the EC path, i.e., InputEC), and learned spatio-
temporal receptive fields (RFs) visualized by SVD. c. Model performance (linear correlation coefficient, CC; mean for n=10 random seeds per model) based on validation data
for hybrid model with natural scenes (red), with phase-scrambled scenes (brown), or with noise (magenta) as InputEC, and for different weights. d. Best performance (mean
for n=10 random seeds per model) based on test data for SI, SI-PCA (16 bases), SI-DCT (4 bases), hybrid-natural (w=0.2), hybrid-pha-scr (w=0.3) and hybrid-noise (w=0.4;
p<0.0001 for SI vs. hybrid-natural, p=0.0085 for SI-PCA vs. hybrid-natural, p=0.0011 for hybrid-natural vs. hybrid-pha-scr, two-sided permutation test, n=10,000 repeats). e.
Scatter plot for model predictions based on test data for hybrid-natural (w=0.2) vs. SI at one random seed, with each dot representing one neuron. f. Representative spatial
filters (shared convolutional filters) for hybrid models with different InputEC and different weights. Upper: with w=0.5; lower: with optimal w (see (c)) for hybrid models. g.
Mean R-squared of fitting a 2D Gaussian to spatial filters (cf. (f)), for hybrid model with natural scenes (red), with phase-scrambled scenes (brown), or with noise (magenta)
as InputEC, and for different w (n=10 random seeds per model). h. Representative spatial filters (shared convolutional filters) for SI, SI with PCA filters (16 bases) and SI with
DCT filters (4 bases). i. Mean R-squared of fitting a 2D Gaussian to the spatial filters for one chromatic stimulus channel (green; n=10 random seeds per model; p<0.0001
for SI vs. hybrid-natural, p<0.0001 for SI-PCA vs. hybrid-natural, p=0.0074 for hybrid-natural vs. hybrid-pha-scr, two-sided permutation test, n=10,000 repeats). Error bars in
(c),(d),(g),(i) represent 2.5 and 97.5 percentiles obtained from bootstrapping.

dictive performance increased for both models (Fig. 4a305

top). However, we also found that the performance of the306

hybrid-natural model was consistently higher than that of307

the SI model, with the difference becoming significant for308

≥ 60% and peaking at around 90% training data (Fig. 4a309

bottom). Additionally, for both models the spatial filters310

became increasingly more Gaussian-like with more data311

(Fig. 4b). We also observed that the performance differ-312

ence dropped for large dataset sizes — which, we expect,313

may be asymptotically near zero in the regime of infinite314

data.315

Together, these results suggest that a hybrid-natural model,316

which has access to natural statistics, requires significantly317

less training data than the baseline SI model.318

Hybrid models for testing temporal coding strate-319

gies. It has been suggested that early stages of visual pro-320

cessing, rather than encoding a past stimulus, aim at pre-321

dicting future stimuli in their temporal stream of inputs322

(24, 50–52). Such a future prediction strategy is thought323

to require a smaller dynamic range to be encoded than that324

needed for representing past stimuli (past encoding), and325

thus allows for lower energy consumption (53, 54). There-326

fore, we next tested if the neural encoding task would profit327

even more from natural statistics when spatio-temporal328

(i.e., 3D) filters were shared between the hybrid model’s329
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Fig. 4. Hybrid-natural models with better data efficiency for neural prediction. a. Mean model performance (top) based on test data for SI and hybrid-natural (w=0.2; n=10
random seeds) with different training data sizes and mean difference between SI and hybrid-natural (bottom). b. Mean R-squared (top) of fitting a 2D Gaussian to spatial
filters for green stimulus channel for SI and hybrid-natural (w=0.2; n=10 random seeds) with different training data sizes, and the mean difference between R-squared for SI
and hybrid-natural (bottom). Error bars represent 2.5 and 97.5 percentiles with bootstrapping.

two branches. We implemented both strategies — past330

encoding and future prediction — in the EC branch, and331

compared their influence on the SI task (55).332

We modified the 2D SI model to use spatio-temporal (in-333

stead of factorized spatial and temporal) convolutional fil-334

ters to predict neural responses for 8-frame noise movies335

(3D SI model; Suppl. Fig. S2a). Likewise, we employed336

spatio-temporal convolutional filters for the EC branch. As337

before, the two branches of the resulting hybrid model338

were trained in parallel, but now sharing spatio-temporal339

filters. In the past encoding case, the EC branch was340

trained to reconstruct the 7th frame (at t − 1) of a contin-341

uous 8-frame natural movie clip based on frames at t − 7342

to t (hybrid-natural-past; Suppl. Fig. S2b,c). In the future343

prediction case, the EC branch was trained to predict the344

8th unseen frame based on the first 7 frames (t−7 to t−1)345

of the clip (hybrid-natural-future; Suppl. Fig. S2d left).346

Like for the 2D models, we varied w or the number of347

bases and then selected the best model for each condition348

(3D SI, hybrid-natural-past, hybrid-natural-future, and 3D349

SI-PCA) based on validation performance. We next quan-350

titatively compared the different models using the test data351

(Fig. 5a,b; Suppl. Fig. S3c). We found that the 3D SI-352

PCA model outperformed the 3D SI model, presumably353

because the former profited from the low-pass filtering of354

the PCA transformation. Importantly, both hybrid models355

displayed a better performance than the 3D SI-PCA model.356

While the hybrid-natural-past model performed slightly357

better than its hybrid-natural-future counterpart, this dif-358

ference was not statistically significant. In summary, both359

the past encoding and future prediction strategy in the EC360

branch turned out to be equally beneficial for the neural361

encoding task and, as before, the benefit extended beyond362

low-pass filtering effects. However, no performance in-363

crease was achieved with respect to the 2D hybrid-natural364

model (Fig. 5b vs. Fig. 3d).365

We also analyzed the shared spatio-temporal filters using366

the same metric as for the 2D case, which assesses the sim-367

ilarity between spatial filters (after performing a low-rank368

decomposition of 3D shared filters into spatial and tempo-369

ral components; see Methods) and smooth 2D Gaussians370

(Fig. 5c,d). Again, we found higher R-squared values for371

the hybrid models and the 3D SI-PCA model compared372

to the baseline SI case. Note that here, the 3D SI-PCA373

model did not significantly differ from the two hybrid mod-374

els, possibly due to a large number of bases (n = 128 vs.375

n = 16 in the 2D case).376

Next, we asked if the fact that we did not see a significant377

advantage of 3D over 2D could be due to the relatively378

slow (5 Hz) noise stimulus, which may drive insufficiently379

temporal properties of the GCL cell responses. There-380

fore, we recorded a new dataset (n = 64 cells) in which381

we presented a 30-Hz dense noise stimulus and used it382

with the 3D hybrid models. Like for 5-Hz noise, hybrid-383

natural-past and hybrid-natural-future models performed384

similarly on the validation data, with a peak in perfor-385

mance at around w = 0.7 (Suppl. Fig. S4a), as well as on386

the test data, where they were significantly better than the387

3D SI model (Suppl. Fig. S4b). Moreover, both 3D hy-388

brid models learned shared filters with similar R-squared389

values, which were significantly higher than that of the 3D390

SI model (Suppl. Fig. S4c). But again, the 3D models391

performed only equally well compared to the 2D models.392

In summary, the hybrid-natural models achieved a higher393

performance for different noise stimuli (5-Hz vs. 30-Hz)394

and different shared filter organizations (2D vs. 3D) than395

all other tested models. Therefore, it is likely that their su-396

perior predictive performance for neuronal responses and397

their more biologically plausible filters resulted from the398

EC branch having access to natural statistics.399

Direction-selective neurons benefit more than oth-400

ers from hybrid models. The retina encodes the visual401

scene in a number of features that are represented by the402

more than 40 different types of RGC whose outputs are403

relayed in parallel to higher visual centers in the brain404

(43, 56–59). Thus, we next asked, if access to natural405
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Fig. 5. Past encoding or future prediction strategies using 3D shared filters perform equally well. a. Top row: Responses of three exemplary GCL cells to 5-Hz noise
stimulus (gray) and predictions of best performing models on test data (black, SI; blue, SI with PCA filters; red solid, hybrid for encoding the past; red dotted, hybrid for
predicting the future). Bottom row: Respective learned RFs of the three cells (visualized by SVD). b. Mean model performance based on test data for SI, SI-PCA (128
bases), hybrid-natural-past, and hybrid-natural-future (both w=0.4; n=10 random seeds; p<0.0001 for SI vs. hybrid-natural-past, p=0.0005 for SI-PCA vs. hybrid-natural-past,
p=0.2563 for hybrid-natural-past vs. hybrid-natural-future, two-sided permutation test, n=10,000 repeats). c. Representative shared spatial and temporal filters of 3D models
(n=1 random seed, visualized by SVD; temporal kernels for UV and green stimulus channels indicated by purple and green, respectively). d. Mean R-squared of fitting a 2D
Gaussian to shared spatial filters (for green stimulus channel; n=10 random seeds per model; p=0.0003 for SI vs. hybrid-natural-past, p=0.4356 for SI-PCA vs. hybrid-natural-
past, p=0.1895 for hybrid-natural-past vs. hybrid-natural-future, two-sided permutation test, n=10,000 repeats). Error bars in (b),(d) represent 2.5 and 97.5 percentiles with
bootstrapping.

statistics allows our hybrid models to predict some cell406

types better than others (Fig. 6). Earlier, it has been shown407

that motion-relevant properties emerge in the efficient cod-408

ing framework for both past encoding and future prediction409

approaches (55). Therefore, we employed our 3D hybrid410

models (cf. Fig. 5) and focused on direction-selective (DS)411

cells (43, 60).412

For this analysis, we used a set of n=427 GCL neurons,413

whose responses were recorded not only to the 5-Hz noise414

stimulus (for training the models) but also to full-field415

chirp and moving bar stimuli. The latter two stimuli (Fig.416

6a) enabled us to identify the functional type of each417

recorded GCL neuron (43) using a cell type classifier (see418

Methods; Suppl. Fig. S5).419

To explore cell type-specific effects, we chose a dataset420

size (30% of total recording time) for which the synergy421

between neural SI and EC was particularly pronounced.422

As expected, we found that both hybrid networks (hybrid-423

natural-past and hybrid-natural-future) performed signifi-424

cantly better than the SI model, with no significant differ-425

ence between the two hybrid models (cf. Fig. 5b, Suppl.426

Fig. S4b).427

First, we evaluated if any of the broader functional groups428

of GCL cells profited more from natural statistics than oth-429

ers. For this, we sorted the cells into 6 groups based on430

their response polarity (ON vs. OFF) and transience, and431

based on whether they were RGCs or dACs (for group432

sizes, see Fig. 6 legend). For all 6 groups, the hybrid433

models showed a better predictive performance than the SI434

model (Fig. 6b). However, no significant differences were435

observed between any pair of groups (p>0.05 for all pair-436

wise comparisons, two-sided permutation test, n=10,000437

repeats; Fig. 6c) and the two hybrid models (p>0.05 for all438

pair-wise comparisons; Suppl. Fig. S6a).439

Next, we grouped the cells into DS (p<0.05, direction440

tuning using a permutation test; n=90) and non-DS cells441

(n=300) based on their moving bar responses (Fig. 6a442

right). Note that n=37 neurons were excluded as they did443

not pass the quality check for chirp and moving-bar re-444

sponses (Methods). We found that the predictive perfor-445

mance for DS cells was significantly higher than that of446

the non-DS cells for both hybrid-natural-past (Fig. 6d,e;447

p=0.0027) and hybrid-natural-future (Suppl. Fig. S6b,c;448

p=0.0042). To test whether this performance difference449

was merely due to different signal-to-noise ratios in DS vs.450

non-DS cells, we compared their response quality indices451

(QI; Methods). While DS cells had significantly higher452

QI values for moving-bar responses (QIbar) than non-DS453

cells, we did not find any significant difference between the454

two groups with respect to their noise (QInoise) or chirp455

responses (QIchirp; Suppl. Fig. S6e-g). These results sug-456

gest that DS cells benefit more from the EC branch of the457

hybrid models than non-DS cells, partially consistent with458
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earlier findings ((55); see also Discussion).459

In summary, efficient coding of natural statistics served as460

a beneficial normative regularization for all types of mouse461

GCL cells and in particular DS cells, suggesting the poten-462

tial role of motion statistics in the natural environment on463

shaping neuronal response properties.464

Discussion465

In this study, we asked if access to natural scene statis-466

tics can help predicting neural responses. To address this467

question, we combined system identification (SI, (3)) and468

efficient encoding (EC, (25)) methods into a normatively469

regularized (hybrid) modeling framework. Specifically,470

we used models that efficiently represent natural scenes471

recorded in the mouse’ habitat to regularize models that472

predict retinal responses to visual stimuli. We analyzed473

such hybrid models with shared spatial filters, and found474

that natural images as input to the EC branch indeed im-475

proved the performance in predicting retinal responses and476

allowed the model to generate filters that resembled RFs477

found in the early visual system. These improvements ex-478

tend beyond those gained by simple low-pass filtering or479

using second-order statistics of the natural scenes. Our hy-480

brid models with shared spatio-temporal filters performed481

similarly well as those with shared spatial filters, indepen-482

dently of whether they used a past encoding or a future483

prediction strategy. Notably, predictions for DS cells in484

the mouse retina improved the most in the hybrid mod-485

els with natural input. In summary, our results suggest486

that sourcing information about an animal’s environment487

— e.g., through hybrid SI-EC models — helps building488

more predictive and biologically-plausible models of neu-489

ronal networks. More generally, our findings lend support490

to the idea that knowledge of natural statistics is already491

encoded in sensory circuits.492

Hybrid models improve data efficiency. The differ-493

ence in predictive performance between the hybrid and the494

baseline SI model was significant and it depended on the495

amount of available data, indicating that our hybrid model-496

ing approach increased data efficiency. We note that both497

the stimulus (dense noise) and the neural model system498

(retinal neurons) present much easier SI problems than,499

for instance, predicting more nonlinear neural responses to500

natural stimuli (18, 61). For those more challenging prob-501

lems at downstream visual areas, where neural response502

functions and, hence, the neural prediction tasks, become503

more complex (62), the data efficiency of a hybrid ap-504

proach and the improvement from natural scene statistics505

may be even higher.506

Biological plausibility and temporal coding princi-507

ples in hybrid models. The biological plausibility of508

most learned models was positively correlated with their509

predictive performance except some indeterminacy for SI-510

DCT models, suggesting that more biologically plausible511

filters increased performance. Note that we used the filters’512

similarity to smooth 2D Gaussian functions as a measure513

of biological plausibility, following the assumption that514

RFs in the retina (and at early downstream stages of the vi-515

sual system) often feature smooth, Gaussian-like structure516

(43, 48, 49). However, a deep, systematic understanding517

of artificial and neuronal networks and their hidden repre-518

sentations likely calls for other methods besides of filter519

inspection (discussed in (63)).520

As the natural environment is not static, we also created521

hybrid models that acknowledge the time domain by shar-522

ing spatio-temporal filters. Surprisingly, both variants —523

past encoding and future prediction — behaved quite sim-524

ilar. However, in the stand-alone EC models (that is only525

the respective EC branch), the temporal components of the526

filters learned by the future prediction were much more527

diverse than those of past encoding (Suppl. Fig. S2c,d528

right). Interestingly, the differences between temporal fil-529

ter of these stand-alone EC models decreased with the in-530

corporation of the neural prediction task in the hybrid mod-531

els.532

The filter diversity in our 3D hybrid models is reminis-533

cent of earlier findings by Chalk and colleagues (2018),534

who reported the emergence of filters sensitive to motion535

direction and motion speed in their past encoding and fu-536

ture prediction EC models, respectively. However, in con-537

trast to their results, we did not see a difference between538

our hybrid-past and hybrid-future models with respect to539

motion-sensitive filters: Both of them performed better in540

predicting responses of DS vs. non-DS cells. Further work541

is needed to understand that partial (mis)match between542

our work and that by Chalk et al., and why specifically DS543

cells profited from both our 3D hybrid models.544

Hybrid models of retinal signal processing. It has545

been suggested that natural stimuli drive more diverse neu-546

ral responses, and more complex feature transformations547

are required to determine the respective stimulus-response548

functions ((18, 64), but also see (65)). Therefore, one fu-549

ture direction may be to record retinal activity while pre-550

senting natural movies (e.g., from (38)) and use it as input551

for the SI branch of the hybrid model. Finding a more pro-552

nounced performance improvement compared to the base-553

line SI model would support the notion that the noise stim-554

ulus we used in this study may have indeed limited the ben-555

efits from the EC branch (see above). Neural data to natu-556

ral stimuli would also allow us to revisit our hybrid mod-557

els with respect to the prediction of motion sensitive cells558

and the differences between our results and those from ear-559

lier work ((55); see above). Furthermore, such data may560

be useful for characterizing model generalization (domain561

transfer, see e.g., (61, 64)) by using responses to natural562

stimuli as unseen test data with a hybrid model trained with563

cell responses to noise stimuli.564

For our current analysis, we used broad group assign-565

ments (e.g., FastON RGCs), which include several func-566

tional types of RGC (e.g., ON-step, ON-transient, ON-567

high-frequency etc; (43)) or dACs, but did not detect any568
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Fig. 6. Direction-selective (DS) neurons benefit more from hybrid models. a. Recorded (gray) and predicted (black, SI; red, hybrid-natural-past; response amplitude scaled
with a constant 1.5 for better visualization) responses to noise, RFs, as well as full-field chirp responses and moving bar responses (gray, single trials; black, means) of
representative DS and non-DS cells. Note that the RFs were dominated by UV stimulus channel because cells were recorded in ventral retina (see Methods). b. Mean model
performance based on test data for SI, hybrid-natural-past and hybrid-natural-future (both w = 0.7; n=10 random seeds per model; trained with responses of n=427 GCL
cells to 5-Hz noise stimulus; p<0.0001 for SI vs. hybrid-natural-past, p=0.9307 for hybrid-natural-past vs. hybrid-natural-future; two-sided permutation test, n=10,000 repeats).
c. Difference in mean performance between hybrid-natural-past and SI based on test data for 6 broad functional groups of GCL cells (35 OFF, 59 ON-OFF, 49 fast-ON, 38
slow-ON, and 64 uncertain RGCs, as well as 145 dACs; see Methods and Results; n=10 random seeds per model). d. Like (b) but for n=90 DS and n=300 non-DS cells.
e. Cumulative histogram of difference in mean prediction between hybrid-natural-past (w = 0.7) and SI on test data for DS (red) and non-DS cells (black), at one particular
seed. Error bars in (b)–(d) represent 2.5 and 97.5 percentiles with bootstrapping.

differences in performance gain except for the DS neurons.569

Still, it is possible that distinct types of RGC profit more570

than others from the EC branch of our hybrid models. For571

example, the so-called W3 RGCs, for which the best stim-572

ulus found so far is a small dark moving spot (66), may573

not be “designed“ to efficiently represent natural stimuli574

but rather to extract survival-relevant features (i.e., detect-575

ing aerial predators). Here, we could build models with576

different normative regularization or tasks (i.e., detecting577

predators in images of the sky) and would expect that this578

RGC type profits little from efficiently encoding natural579

statistics in the hybrid model. Studying coding strategies580

across RGC types could contribute an important biological581

perspective to the perennial debate between efficient cod-582

ing (67) and feature detection (56) proponents.583

Normative network regularization as a framework584

for studying neural coding. In this study, we regularized585

the filters of a SI model with a normative EC model to pre-586

dict visually-evoked responses of cells in the retina. Some587

forms of such normative regularization have also been dis-588

cussed and/or applied in earlier work. For example, Den-589

eve and Chalk (68) discussed the relations between SI (en-590

coding) models and EC, and argued that the latter may pro-591

mote shifting the focus in SI from the single-cell to the592

population level. The integration of stimulus-oriented ap-593

proaches (such as EC) for discriminative tasks (such as ob-594

ject recognition) was proposed by Turner et al. (15). Later,595

Teti et al. (69) employed sparse coding with lateral inhibi-596

tion in simulations of neuronal activation in visual cortex.597

More recently, Młynarski et al. (41) presented a probabilis-598

tic framework combining normative priors with statistical599

inference and demonstrated the usefulness of this approach600

for the analysis of diverse neuroscientific datasets. How-601

ever, their work was rather conceptual, with the datasets602

they used being either simulated or low-dimensional. No-603

tably, they tested their framework on pre-fit retinal RFs,604

but not directly on actual RGC stimulus-response data.605

Compared to their framework, our method does not require606

marginalization across all parameter space to estimate op-607

timality and could be applied to more general or complex608

inference problems. Hence, our work not only provides609

further evidence to the feasibility of combining coding610

principles for identification of neural response properties611

on high-dimensional data, it also demonstrates the benefits612

of leveraging natural scene statistics for neural prediction.613

However, compared to the framework by Młynarski et al.,614

with our approach it is more difficult to conduct rigorous615

statistical tests of normative theory.616

We expect that our hybrid modeling strategy may also617

work for different processing stages along the early visual618

pathway (and potentially other modalities, e.g., sound).619

This said, however, one needs to keep in mind that dif-620

ferent stages along the visual pathway have different tasks621

and constraints, and, thus, likely incorporate different ef-622

ficient coding principles: For instance, the retinal hard-623

ware is space-limited and has to encode visual features in624

view of a bottleneck with limited bandwidth (optic nerve),625
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whereas the primary visual cortex has comparably abun-626

dant resources which might serve for accurate probability627

estimation for behavioral tasks, such as novelty detection628

(discussed in (24, 70)). It is also worth to note that different629

visual processing stages (such as primary visual cortex vs.630

higher visual areas, or adaptation of visual coding to dif-631

ferent behavioral states) may benefit from the hybrid mod-632

eling to a different degree, as efficient coding approaches633

learn filters that may be more relevant to stimulus-related634

features, but not high-level behavior goals (see discussion635

in (15)). Additionally, it would be interesting to compare636

our hybrid models with SI models regularized with other637

behavioral tasks such as object recognition (e.g., (11)) or638

predator detection (see above) for neural predictions along639

the ventral visual stream.640

There is a long tradition of using SI models (reviewed in641

(3)) in predicting the responses of neurons to a great va-642

riety of stimuli (e.g., (2, 4, 18, 19, 71, 72)). Our results643

demonstrate how the EC hypothesis can be successfully644

leveraged as normative regularization for the identification645

of neural response properties. More generally, using EC646

as a flexible tool to impose regularization on modeling,647

the hybrid framework offers an opportunity to test differ-648

ent coding principles and unsupervised learning objectives649

with regards to experimental data for understanding neu-650

ronal processing.651

Materials and Methods652

Animal procedures and retinal activity recordings.653

Animal procedures. All animal procedures were per-654

formed in accordance with the law governing ani-655

mal protection issued by the German Federal Govern-656

ment (Tierschutzgesetz), approved by the governmen-657

tal review board (Regierungspräsidium Tübingen, Baden-658

Württemberg, Konrad-Adenauer-Str. 20, 72072 Tübingen,659

Germany). We used n=5, 5-9 weeks old female C57BL/6660

mice (wild-type; JAX 000664, Jackson Laboratory, USA).661

Due to the exploratory nature of our study, we did not use662

any statistical methods to predetermine sample size, nor663

did we perform blinding or randomization.664

Animals were housed under a standard light-dark665

(12h:12h) cycle. All procedures were carried out under666

very dim red illumination (>650 nm). Prior to the start of667

the experiment, animals were dark-adapted for ≥1 h, then668

anesthetized with isoflurane (Baxter, Germany), and killed669

by cervical dislocation.670

The eyes were enucleated and hemisected in carboxy-671

genated (95% O2, 5% CO2) artificial cerebrospinal fluid672

(ACSF) solution containing (in mM): 125 NaCl, 2.5 KCl,673

2 CaCl2, 1 MgCl2, 1.25 NaH2PO4, 26 NaHCO3, 20 glu-674

cose, and 0.5 l-glutamine (pH 7.4). Next, the retina was675

flat-mounted onto an Anodisc (#13, 0.2 µm pore size,676

GE Healthcare, Germany) with the ganglion cell layer677

(GCL) facing up. To uniformly label the GCL cells,678

bulk electroporation was performed with the fluorescent679

Ca2+ indicator Oregon-Green BAPTA-1 (OGB-1; Invitro-680

gen, Germany), as described earlier (44, 73), using 4-mm681

plate electrodes (CUY700P4E/L, Xceltis, Germany) and 9682

pulses (∼9.2 V, 100 ms pulse width at 1 Hz). After elec-683

troporation, the tissue was immediately moved to the mi-684

croscope’s recording chamber, where it was continuously685

perfused with carboxygenated ACSF at ∼36◦C and left to686

recover for ∼30 min before recordings started. Addition-687

ally, Sulforhodamine-101 (SR101, Invitrogen, Germany)688

was added to the ACSF (∼0.1 µM final concentration) to689

visualize blood vessels and identify damaged cells.690

Two-photon Ca2+ recordings and light stimulation. We691

recorded light stimulus-evoked Ca2+ signals in GCL cells692

of the explanted mouse retina using a MOM-type two-693

photon (2P) microscope (74, 75) from Sutter Instruments694

(purchased from Science Products, Germany), as de-695

scribed earlier (43, 44). In brief, the microscope was696

powered by a mode-locked Ti: Sapphire laser (MaiTai-HP697

DeepSee, Newport Spectra-Physics, Germany) at 927 nm.698

Two detection pathways allowed simultaneously record-699

ing of OGB-1 and SR101 fluorescence (HQ 510/84 and700

HQ 630/60, respectively; both Chroma/AHF, Germany)701

through a 16x water immersion objective (CFI75 LWD×16702

/0.8W, DIC N2, Nikon, Germany). A custom-written soft-703

ware (ScanM, by M. Müller and T.E.) running under IGOR704

Pro 6.3 for Windows (Wavemetrics, USA) was used to ac-705

quire time-lapsed (64x64 pixels) image scans at a frame706

rate of 7.8125 Hz. Higher resolution images were acquired707

using 512x512 pixel scans. Additionally, to register the708

scan field positions, the outline of the retina and the optic709

disc were traced.710

The retinas were presented with color noise stimulus us-711

ing a visual stimulator tuned to the spectral sensitivities712

of mice (76). This stimulus consisted of independent bi-713

nary dense noise (28x28 pixel frames, each pixel covering714

(0.83◦)2 of visual angle) in the UV and green stimulator715

channels at 5 or 30 Hz. The stimulus contained 5 different716

training sequences (96 s each) interspersed with 6 repeats717

of a 10 s test sequence (Suppl. Fig. S1a).718

In total, we used three data sets for modeling: (i) re-719

sponses of n=96 GCL neurons to 5-Hz noise recorded in720

dorsal retina (n=2 eyes); (ii) responses of n=427 GCL721

neurons to 5-Hz noise recorded ventrally (n=5 eyes); in722

this dataset, we also presented two other stimuli: a full-723

field chirp (700 µm in diameter) and a moving bar stimu-724

lus (300x1,000 µm bright bar moving at 8 directions at 1725

mm/s). The responses to these latter stimuli were used to726

functionally classify the recorded GCL neurons (43). (iii)727

n=64 GCL neurons to 30-Hz noise recorded ventrally (n=2728

eyes). Note that all cell numbers are after quality control729

(see below).730

Data preprocessing and analysis. For each cell, we cal-731

culated a quality index (QI , with 0 ≤ QI ≤ 1) for its re-732

sponses to each stimulus type as follows:733

QI = Var[E[C]r]t/E[Var[C]t]r (1)
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where C is a t-by-r response matrix (time samples, t, by734

repetitions, r). The higher QI , the more reliable the re-735

sponse and the higher the signal-to-noise ratio. For the736

noise stimulus, QInoise was determined based on the test737

sequence responses. For the following analysis, we only738

used cells with QInoise > 0.25; in case chirp and moving739

bar responses were also recorded, neurons had to fulfill740

QIchirp > 0.35 or QIbar > 0.6 to be included.741

In case of the noise stimulus, we preprocessed each cell’s742

Ca2+ signal by Z-normalizing the raw traces and matching743

sampling frequency of the recording (7.8125 Hz) to the744

stimulus frequency (5 or 30 Hz) via linear interpolation.745

Then, the traces were detrended using a high-pass filter746

(> 0.1 Hz) and their 1st order derivatives were calculated,747

with negative values set to zero. We used the average of748

a cell’s responses to the 6 test sequence repeats as ground749

truth. Excluding the test sequences, we had per cell a to-750

tal of 480 s of data, of which we used 440 s (∼91%) for751

training and the remaining 40 s (∼9%) for validation (i.e.,752

to pick the hyperparameters of the SI model, see below).753

For chirp and moving bar responses, we first detrended the754

traces and then normalized them to [0,1] (44). Using these755

responses, the cells were classified to different functional756

groups (43) using RGC type classifier (see below).757

To estimate the directional tuning from the moving bar re-758

sponses, we first performed singular value decomposition759

(SVD) on the mean response matrix, resulting in a tem-760

poral and a directional component. We then summed the761

directional vectors in 2D planes and used the resulting vec-762

tor length as direction selectivity index. Next, by shuffling763

trial labels and computing the tuning curve for 1,000 times764

(permutation test), we got the null distribution (no direc-765

tional tuning). The percentile of true vector length was766

used as p-value of directional tuning (43). Here, we con-767

sidered cells with p < 0.05 as direction-selective (DS) and768

the remaining ones as non-DS.769

RGC type classifier. To predict the functional type of GCL770

cells, we used a Random Forest Classifier (RFC; (77)),771

which was trained on a published mouse dataset (43).772

In that study, features were extracted from the responses773

to different visual stimuli (e.g., chirp and moving bar)774

and used to cluster GCL cells into 32 RGC types and775

14 additional dAC types. Here, we learned a mapping776

f from response features (20 features from responses to777

chirp, ϕchirp and 8 features from responses to moving778

bar stimulus, ϕmb) and two additional parameters Θ =779

{θsoma,θDS} to functional cell type labels L by training780

a RFC for the dataset from (43):781

f : (ϕchirp,ϕbar,Θ) 7→ L (2)

where θsoma denotes soma size to distinguish between al-782

pha and non-alpha RGC types and θDS denotes p-value of783

permutation test for direction selectivity to distinguish be-784

tween DS and non-DS RGC types.785

We fit the RFC on a subset of data from (43) and val-786

idated its performance on a held-out test dataset. The787

classifier had a prediction accuracy of ∼76% on a held-788

out test dataset (Suppl. Fig. S5). To apply the trained789

classifier to our newly recorded dataset, we projected the790

RGC responses (normalized to [−1,1]) into the feature791

space described in (43) by computing the dot product be-792

tween the response and the feature matrices. We used793

the RFC implementation provided by the python package794

scikit-learn (78) to train the classifier.795

2D models.796

Stand-alone SI model (2D). As baseline model to predict797

the responses of neurons to the noise stimulus, we em-798

ployed a stand-alone SI model (supervised learning), in799

which we used factorized spatial and temporal convolu-800

tional filters (Fig. 2a; (79, 80)). This SI model consisted801

of one spatial convolutional layer (16x2x1x9x9, output802

channels x input channels x depth x image width x image803

height), one temporal convolutional layer (16x16x8x1x1,804

with 8 stimulus frames preceding an event), and — af-805

ter flattening the spatial dimension — one fully connected806

layer (FC; 96x6,400, output x input channels), followed by807

an exponential function. No padding was used. The loss808

function was defined as:809

LSI =
∑

i

(−̂→ri −−→ri log−̂→ri )+α1∥−→wcs∥2

+α2∥−→wct∥2 +β∥−→wf ∥1

(3)

Here, the first term is the Poisson loss between predicted810

responses (−̂→ri ) and ground truth (−→ri ) (with i denoting the811

neuron index), the second term is the L2 penalty on the812

weights of the spatial convolutional filters (−→wcs) with hy-813

perparameter α1, the third term is the L2 penalty on the814

weights of temporal convolutional filters (−→wct) with hyper-815

parameter α2, and the last term is the L1 penalty on the FC816

layer (−→wf ) with hyperparameter β.817

After performing a grid search for the three hyperparame-818

ters, we picked α1 = 10,α2 = 10,β = 1/16 which yielded819

the best performance on the validation data. After train-820

ing, we estimated the neurons’ spatio-temporal RF filters821

by computing gradients for each neuron, starting with a822

blank image sequence as input. These gradients represent823

the first-order approximation of the input that maximizes824

the neuron’s activation (6). For visualization, we extracted825

the spatial and temporal RFs via SVD.826

As a metric of biological plausibility, we calculated the co-827

efficient of determination (R-squared; [0,1]) of fitting 2D828

Gaussian distributions to the spatial (component of) the829

convolutional filters. We set the R-squared value to 0 if830

the sigma of the fitted Gaussian was larger than the size831

of the filter (i.e., 9 pixels). We calculated this fit qual-832

ity for the filter of the chromatic channel with the domi-833

nant response. Because the mouse retina is divided into a834

more green-sensitive dorsal and a more UV-sensitive ven-835

tral retina (e.g., (44)), this meant that for dorsal neurons836

we only determined the R-squared for filters for the green837
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stimulus channel, and for ventral neurons for the UV stim-838

ulus channel.839

SI-PCA model (2D). The spatial convolutional filters of the840

SI-PCA model were composed from PCA basis functions841

(W ). The model was trained to learn the weights of these842

basis functions. The filters were produced by performing843

PCA transformation on natural images recorded in mouse844

habitats (38):845

W = UT (4)

where U contains the eigenvectors of the covariance matrix846

of the centered data in each column.847

For example, when using 4 PCA bases, the shape of learn-848

able weight matrix was 16x4 (channel number x basis849

number), the shape of PCA bases was 4x2x1x9x9 (basis850

number x chromatic channel x depth x image width x im-851

age height), and the resulted spatial filter had the shape of852

16x2x1x9x9. We varied the number of used basis (hyper-853

parameter) and selected the one which achieved the best854

performance on validation data (Suppl. Fig. S1b; Suppl.855

Fig. S3b).856

SI-DCT model (2D). For the SI-DCT model, its spatial con-857

volutional filters were composed from DCT basis func-858

tions, which were defined as:859

F (u,v) = α(u)α(v)cos[ (2i+1)π
2N

u] cos[ (2j +1)π
2N

v] (5)

α(u) =


√

1
N u = 0√
2
N u ̸= 0

(6)

α(v) =


√

1
N v = 0√
2
N v ̸= 0

(7)

where i and j denote pixel index of the input image (size860

(N,N)); u and v denote DCT coefficient index of the DCT861

filter. Here, we employed DCT basis functions for one-862

channel gray images and thus used different bases for each863

chromatic channel. For example, when using 4 DCT bases,864

the shape of learnable weight matrix was 16x4x2 (channel865

number x basis number x chromatic channel), the shape of866

basis function was 4x1x9x9 (basis number x depth x image867

width x image height), and the resulted spatial filter had868

the shape of 16x2x1x9x9. Like for SI-PCA, we varied the869

number of used basis and picked the one which achieved870

the best performance on validation data (Suppl. Fig. S1b).871

Stand-alone EC model (2D). We used a similar EC model872

architecture (convolutional autoencoder) and loss function873

as in (38). The model’s encoder contained a single con-874

volutional layer (with weights denoted −→wc) followed by a875

rectified linear unit (ReLU) function, one FC layer, and876

another ReLU function. The decoder contained one FC877

layer, one ReLU function, a single deconvolutional layer878

(with weights denoted −→wd), and a hyperbolic tangent (tanh)879

function to map back to the original data range ([−1,1]).880

As a measure of reconstruction quality, we used mean881

squared error (MSE; (37, 38)). Gaussian noise was added882

to the encoder output for redundancy reduction (37, 81, 82)883

and an L1 penalty (hyperparameter β) was imposed to its884

activation (
−→
h ) for sparse readouts (37, 81, 83). We also ap-885

plied L2 regularization on the convolutional and deconvo-886

lutional layers to encourage the learning of smooth filters887

(42, 84, 85). We used 16 9x9 convolutional and decon-888

volutional filters. The activation tensor (16x28x28, out-889

put channel x image width x image height) following the890

first convolutional layer was flattened to a one-dimensional891

vector with 12,544 inputs before feeding into the FC layer.892

The loss function for the EC model was:893

LEC =
∑

i

(−→xi −−̂→xi)2 +α(∥−→wc∥2 +∥−→wd∥2)+β∥
−→
h ∥1 (8)

where the first term is the MSE error between the predic-894

tion −̂→xi and ground truth −→xi with image index i, and the895

next two terms denote the L2 and L1 penalties.896

Hybrid model (2D). The hybrid (semi-supervised) model897

consisted of a SI and an EC branch (for details on the two898

models’ architectures, see above). These branches were899

trained simultaneously, sharing the spatial convolutional900

filters (−→wcs). The total loss function of the hybrid model901

was derived from the loss functions of the two branches as902

follows:903

LHybrid = wLSI +(1−w)LEC (9)

LSI =(
∑

i

(−̂→ri −−→ri log−̂→ri )+α1∥−→wcs∥2 +α2∥−→wct∥2/w

+β1∥−→wf ∥1/w)/N1

(10)

LEC =(
∑

j

(−→xj −−̂→xj)2 +α3∥−→wcs∥2 +α3∥−→wd∥2/(1−w)

+β2∥
−→
h ∥1/(1−w))/N2

(11)

Here, i and j denote neuron and image index, respectively;904

N1 and N2 the number of neurons and images, respec-905

tively. The weight (w, with 0 ≤ w ≤ 1) controlled the906

impact of each branch’s loss function on the shared spa-907

tial filters. Practically, we used w = 10−8 for LSI and908

w = (1 − 10−8) for LEC when w = 0 and w = 1, respec-909

tively. Note that we added w to the denominator of the last910

two terms to maintain the same regularization for −→wct and911

−→wf in a stand-alone SI model when varying w. For LEC ,912

similar to LSI , we added (1 − w) to the denominator of913

the last two terms to keep the same regularization for −→wd914

and
−→
h in a stand-alone EC model when varying w. We915

used different data to train the EC branch of the hybrid916

model: natural images, phase-scrambled natural images917

and noise. All hybrid models were trained for a maximum918
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of 100 epochs (Suppl. Fig. S1c,d); training was stopped919

early when the validation loss started decreasing.920

Tuning all hyperparameters jointly in a grid search was921

computationally prohibitive. Hence, for the SI branch,922

we varied the hyperparameters around those determined923

for the stand-alone configuration (α1 = 10,α2 = 10,β1 =924

1/16; see above), while for the EC branch, we varied the925

hyperparameters systematically around the values (α3 =926

103,β2 = 1/16) used in (38). To tune w, we devised a927

linear search approach by normalizing the loss functions928

(using N1 and N2).929

After training the hybrid model, we estimated the spatio-930

temporal RFs of all neurons using a gradient ascent algo-931

rithm (6). We visualized the spatial and temporal compo-932

nent of RFs using SVD (cf. Fig. 3b), and the magnitude of933

the RF was indicated in the spatial component.934

We trained 2D models using all training data (440 s) with a935

learning rate of µ = 10−4. In case less data were used (i.e.,936

to evaluate data efficiency), we kept all hyperparameters937

the same as for the full data case but doubled the learning938

rate. This was done because the stand-alone SI model and939

the hybrid model could not reach the minimum of valida-940

tion loss within 100 epochs (when less data were used).941

3D models.942

Stand-alone SI model (3D). The 3D SI model consisted943

of one spatio-temporal convolutional layer (16x2x8x9x9,944

output channels x input channels x depth x image width945

x image height; depth varied with the frequency of noise946

stimuli, n=8 and n=30 for 5-Hz and 30-Hz noise, respec-947

tively), and — after flattening all dimension — one FC948

layer (96x6,400, output channels x input channels; output949

channel varied with cell numbers n=96, 64 or 427 for dif-950

ferent data sets; see above), followed by an exponential951

function. No padding was used. The loss function was952

defined as:953

LSI =
∑

i

(−̂→ri −−→ri log−̂→ri )+α∥−→wc∥2 +β∥−→wf ∥1 (12)

This equation differs from Equation () with respect to the954

L2 penalty, which is here on the weights of the spatio-955

temporal convolutional filters (−→wc) with hyperparameter α956

for the second term. After performing a grid search for the957

two hyperparameters, we picked α = 100,β = 1/4 which958

yielded the best performance on the validation data. After959

training, we estimated and extracted the cells’ spatial and960

temporal RFs via SVD for visualization.961

SI-PCA model (3D). For the 3D SI-PCA models, we applied962

Equation () to the movie clips (2x8x9x9, chromatic chan-963

nel x depth x image width x image height; depth varied964

with the frequency of noise stimuli, n=8 and n=30 for 5-965

Hz and 30-Hz noise, respectively). Like for 2D SI-PCA966

models, we varied the number of used bases and picked967

the number for which the model achieved the best perfor-968

mance on the validation data (Suppl. Fig. S3a).969

Stand-alone EC model (3D). The 3D EC models used a se-970

quence of frames from a movie clip as input and featured971

3D spatio-temporal convolutional layers (with weights de-972

noted −→wc) in the encoder. The decoder contained deconvo-973

lutional layers with weights −→wd. In the past-encoding case,974

we fed an 8-frame clip (frames at t − 7 to t) to the model975

and aimed at reconstructing the 7th frame (at t − 1). In the976

future-prediction case, the goal was to predict the 8th frame977

(at t) with the input being the first 7 frames (t−7 to t−1)978

of the clip. The loss functions was similar to that given979

by Equation () except that (i) −→wc features different a shape980

(16x2x8x9x9, output channel x chromatic channel x filter981

depth x filter width x filter height), and (ii) xi denotes the982

7th frame for the past encoding and the 8th frame for the983

future prediction model (Suppl. Fig. S2b,c,d).984

Hybrid model (3D). The 3D hybrid models consisted of a985

SI branch and an EC branch with shared spatio-temporal986

convolutional filters (−→wc; see above). Like for the 2D hy-987

brid models, the total loss function was a weighted sum of988

losses for the two branches as follows:989

LHybrid = wLSI +(1−w)LEC (13)

LSI =(
∑

i

(−̂→ri −−→ri log−̂→ri )+α1∥−→wc∥2

+β1∥−→wf ∥1/w)/N1

(14)

LEC =(
∑

j

(−→xj −−̂→xj)2 +α2∥−→wc∥2 +α2∥−→wd∥2/(1−w)

+β2∥
−→
h ∥1/(1−w))/N2

(15)

Here, i denotes neuron index, j movie clip index, N1 neu-990

ron number, and N2 the number of movie clips. Again,991

instead of tuning all hyperparameters jointly via a grid992

search, we varied the hyperparameters around the val-993

ues determined for the stand-alone SI configuration (α1 =994

100,β1 = 1/4) for the SI branch. For the EC branch,995

we varied the hyperparameters systematically around the996

values (α2 = 104,β2 = 1/16) used in the stand-alone EC997

models. We then tuned w linearly after normalizing the998

loss functions (using N1 and N2). We also visualized the999

spatial and temporal RF components using SVD (Fig. 5a,1000

bottom).1001
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Supplemental Fig. S 1. Training of 2D models. a. The noise stimulus (9 minutes in total) containing training and validation data (1 repeat) and test data (6 repeats). b. Model
performance (mean) based on validation data for SI-PCA and SI-DCT with different numbers of basis. SI-PCA and SI-DCT yielded best performance when using 16 and 4
bases, respectively (each model for n=10 random seeds; error bars represent 2.5 and 97.5 percentiles with bootstrapping). c. Training loss as a function of training epochs
for the hybrid model (InputEC, natural scenes) with different weights (w), indicated by color (right). d. Model performance based on validation data (with linear correlation
coefficient as metric) during the hybrid-natural model training with different weights (colors as in (c)). As weight decreased from 1 to 0.2, more training epochs were needed
to reach the best performance. The hybrid model performed best for w = 0.2. Note that the hybrid model showed a slower change in correlation coefficient (CC) around the
peak at w = 0.2 (compared to w = 1), demonstrating the regularization effects of the EC branch on the hybrid model. e. Scatter plots for model predictions based on test
data at a particular seed (each dot representing one neuron). Hybrid with natural scenes as inputEC (w = 0.2) vs. SI, SI with PCA basis (16 bases), SI with DCT basis (4
bases), hybrid-pha-scr (w = 0.3) and hybrid-noise (w = 0.4). f. Upper: Three representative GCL cell responses (gray traces) to noise stimulus together with predictions
of the best performing models on test data (black, SI; blue, SI with PCA basis; cyan, SI with DCT basis; red, hybrid w/ natural scenes as input in EC path; brown, hybrid w/
phase-scrambled scenes as input in EC path; magenta, hybrid w/ noise as input in EC path). Lower: Learned spatio-temporal RFs of the example cells, visualized by SVD.
Same random seed as in (e).
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Supplemental Fig. S 2. Three-dimensional hybrid networks embedding natural movies. a,b. Illustration of SI network (a) with 3D spatio-temporal convolutional filter, and
EC network (b), reconstructing the 7th frame (at t − 1) based on 8 continuous frames (t − 7 to t; encoding the past, c). Combined as a hybrid network, the two branches
were trained in parallel with shared 3D filters (InputEC, 8-frame UV-green movie clip; OutputEC, reconstruction of the 7th frame of InputEC). c. Example for input/output of
the EC model for encoding the past (left; also see b) and exemplary spatio-temporal convolutional filters when using natural movies as input to train the EC model alone
(right). d. Example for input/output of the EC model for predicting the future, i.e., predicting the 8th frame from the first 7 frames (t − 7 to t − 1) of the clip, and exemplary
spatio-temporal filters when using natural movies as input to train the EC model alone. During preprocessing, the 8th frame of input was set to the mean of the first 7 frames,
for UV and green channel, respectively. Note that for stand-alone EC models, all temporal components of filters for past encoding were very similar while those for future
prediction were much more diverse.
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Supplemental Fig. S 3. Training of 3D hybrid models. a,b. Model performance (mean) based on validation data for hybrid models w/ natural movies as inputEC (a),
applying past encoding (hybrid-natural-past) or future prediction (hybrid-natural-future) and for different weights, and for the SI-PCA model (b) with different numbers of basis
(each model for n=10 random seeds). c. Scatter plots for model predictions based on test data at a particular seed (each dot representing one neuron). hybrid-natural-past
(w = 0.4) vs. SI, SI-PCA (128 PCA bases) and hybrid-natural-future (w = 0.4). Error bars in (a)–(b) represent 2.5 and 97.5 percentiles with bootstrapping. Both 3D hybrid
models performed similarly, with a peak in predictive performance on the validation data at around w = 0.4 (a). This value of w was higher than for the 2D hybrid models
(w = 0.2; cf. Fig. 3c). We also examined the low-pass filtering effects on the 3D SI model by using PCA filters (3D SI-PCA) and varying the number of basis (b). Like for the
2D case when varying the number of basis, we found a maximum in performance on the validation data at 128 bases, which was larger than the 16 bases in the 2D case (cf.
Suppl. Fig. S1b).

Supplemental Fig. S 4. Hybrid model for encoding neuronal responses to 30-Hz dense noise. To test hybrid models for different stimuli, we recorded neuronal responses
to the 30-Hz dense noise in the ventral retina. We yielded n=64 neurons after quality control (Methods), which were used to train the SI and hybrid networks. a. Model
performance (mean) based on validation data for hybrid models (w/ natural movies as inputEC), applying encoding-past (hybrid-natural-past) or predicting-future (hybrid-
natural-future) and for different weights. Each model for n=10 random seeds. Both models with similar performance for all weights, peaking at w = 0.7. b. Model
performance (mean) based on test data for SI, hybrid-natural-past (w = 0.7) and hybrid-natural-future (w = 0.7). Each model for n=10 random seeds. The two hybrid
models had better performance with smaller standard deviation compared the SI model (p<0.0001 for SI and hybrid-natural-past, p=0.9992 for hybrid-natural-past and hybrid-
natural-future; two-sided permutation test, n=10,000 repeats). c. R-squared (mean) of fitting a 2D Gaussian to all the spatial filters in UV stimulus channel (each model for
n=10 random seeds; p<0.0001 for SI and hybrid-natural-past, p=0.9888 for hybrid-natural-past and hybrid-natural-future; two-sided permutation test, n=10,000 repeats). d.
Learned spatio-temporal filters of the three representative cells, visualized by SVD. Note that because all neurons in this data set were recorded in the ventral retina, their
responses were dominated by the UV channel. Different temporal filters in the UV channel were observed for these neurons (cf. the very similar temporal filters in the green
channel for neurons’ responses to 5-Hz noise in Fig. 3b, Fig. 5a lower). e. Exemplary shared spatial and temporal filters of 3D models, visualized by SVD and for one random
seed. Temporal: UV and green channels indicated by purple and green lines, respectively. Error bars in (a)–(c) represent 2.5 and 97.5 percentiles with bootstrapping.
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Supplemental Fig. S 5. Confusion matrix for a trained random forest classifier. Normalized confusion matrix (true cell types against predicted cell types) for a trained
random forest classifier evaluated on a test dataset (for details, see Methods). Dotted line indicates separation of 6 broad functional cell groups (43).
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Supplemental Fig. S 6. Hybrid model for different cell types. a. Performance difference (mean) between hybrid-natural-future and SI based on test data for different cell
types (each model for n=10 random seeds). b. Performance difference (mean) between hybrid-natural-future and SI based on test data for DS and non-DS cells (each model
for n=10 random seeds). c. Cumulative histogram of model prediction difference between hybrid-natural-future (w = 0.7) and SI on test data, for DS (red) and non-DS
cells, at one particular seed. d. Scatter plots for model predictions based on test data at a particular seed (each dot representing one neuron) for DS and non-DS cells and
hybrid-natural-past (w = 0.7) vs. hybrid-natural-future (w = 0.7). Note that the predictions of two hybrid models were similar for most of neurons. e. Quality index (mean)
for DS and non-DS cells based on responses to the repeated test sequences in the noise stimuli (p=0.2881, two-sided permutation test, n=10,000 repeats; for details, see
Methods). f. Like (e) but for chirp responses (p=0.6714, two-sided permutation test, n=10,000 repeats). g. Like (e) but for bar stimulus responses (p<0.0001, two-sided
permutation test, n=10,000 repeats). Error bars in (a),(b),(e)-(g) represent 2.5 and 97.5 percentiles with bootstrapping.
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