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Abstract

Motivation: Sequencing long reads presents novel challenges to mapping. One such
challenge is low sequence similarity between the reads and the reference, due to high
sequencing error and mutation rates. This occurs, e.g., in a cancer tumor, or due to
differences between strains of viruses or bacteria. A key idea in mapping algorithms is
to sketch sequences with their minimizers. Recently, syncmers were introduced as an
alternative sketching method that is more robust to mutations and sequencing errors.
Results: We introduce parameterized syncmer schemes, a generalization of syncmers,
and provide a theoretical analysis for multi-parameter schemes. By combining these
schemes with downsampling or minimizers we can achieve any desired compression and
window guarantee. We implemented the use of parameterized syncmer schemes in the
popular minimap2 and Winnowmap2 mappers. In tests on simulated and real long read
data from a variety of genomes, the syncmer-based algorithms, with scheme parameters
selected on the basis of the theoretical analysis, reduced unmapped reads by 20-60% at
high compression while usually using less memory. The advantage was more pronounced
at low sequence identity. At sequence identity of 75% and medium compression,
syncmer-minimap had only 37% as many unmapped reads, and 8% fewer of the reads
that did map were incorrectly mapped. Even at lower compression and error rates,
parameterized syncmer based mapping mapped more reads than the original
minimizer-based mappers as well as mappers using the original syncmer schemes. We
conclude that using parameterized syncmer schemes can improve mapping of long reads
in a wide range of settings.
Availability: https://github.com/Shamir-Lab/syncmer_mapping
Supplementary information: Supplementary data are available at
https://github.com/Shamir-Lab/syncmer_mapping.

Author summary

Popular long read mappers use minimizers, the minimal hashed k-mers from
overlapping windows, as alignment seeds. Recent work showed that syncmers, which
select a fixed set of k-mers as seeds, are more likely to be conserved under errors or
mutations than minimizers, making them potentially useful for mapping error-prone
long reads. We introduce a framework for creating syncmers, that we call parameterized
syncmer schemes, which generalize those introduced so far, and provide a theoretical
analysis of their properties. We implemented parameterized syncmer schemes in the
minimap2 and Winnowmap2 long read mappers. Using parameters selected on the basis
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of our theoretical analysis we demonstrate improved mapping performance, with fewer
unmapped and incorrectly mapped reads on a variety of simulated and real datasets.
The improvements are consistent across a broad range of compression rates and
sequence identities, with the most significant improvements for lower sequence identity
(high error or mutation rates) and high compression.

Introduction 1

As the volume of third-generation, long read sequencing data increases, new 2

computational methods are needed to efficiently analyze massive datasets of long reads. 3

One of the most basic steps in analysis of sequencing data is mapping reads to a known 4

reference sequence or to a database of many sequences. Several long read mappers have 5

been proposed [1, 2], with minimap2 [3] being the most popular. minimap2 is a 6

multi-purpose sequence mapper that uses sequence minimizers as alignment anchors. 7

Minimizers, the minimum valued k-mers in windows of w overlapping k-mers of a 8

sequence, are used to sketch sequences. They have greatly improved the computational 9

efficiency of many different sequence analysis algorithms (e.g. [4], [5], [6]). A key 10

criterion in evaluating minimizer schemes is their compression rate, the number of 11

k-mers in the sequence divided by the number of k-mers selected. Achieving higher 12

compression rate is desirable, as fewer anchors are used. 13

Recent work has shown that minimizers are less effective under high error or 14

mutation rates [7]. Motivated by this observation, Edgar [7] recently introduced a novel 15

family of k-mer selection schemes called syncmers. Syncmers are a set of k-mers defined 16

by the position of their minimum s-long substring (s-minimizer). Syncmers constitute a 17

predetermined subset of all possible k-mers and, unlike minimizers, they are defined by 18

the sequence of the k-mer only and do not depend on the rest of the window in which 19

they appear. Syncmers are therefore more likely to be conserved under mutations than 20

minimizers. This difference is crucial in long reads, which have much higher error rate 21

than short reads [8]. Another key difference between syncmer and minimizer schemes is 22

that the latter guarantee selection of a k-mer in every window of w consecutive k-mers 23

(this is called a window guarantee), while syncmers do not. For longer reads with a 24

higher error rate, conservation of the selected k-mers becomes more important than the 25

window guarantee, especially when there are also mutations. For example, it was shown 26

that with 90% identity between aligned sequences, only about 30% of the positions on 27

the sequence will overlap a conserved minimizer in minimap2 [7]. 28

Edgar defined several syncmer variants, including the families of open syncmers, 29

whose s-minimizer appears at one specific position, and closed syncmers, whose 30

s-minimizer appears at either the first or the last position in the k-mer [7]. He 31

computed the properties of a range of syncmer schemes and used them to choose a 32

scheme with a desired compression rate. Shaw and Yu [9] recently formalized the 33

notions of the conservation of selected positions and their clustering along a sequence, 34

and provided a broader theoretical analysis. 35

In this work we generalize Edgar’s syncmer schemes to multiple arbitrary 36

s-minimizer positions. We call these parameterized syncmer schemes (PSS; we use this 37

acronym for both singular and plural). The parameters are the possible indices of the 38

s-minimizer in a selected k-mer, and an n-parameter scheme uses n such indices. An 39

example is a 3-parameter scheme that selects any 15-mer with the minimum 5-mer 40

appearing at position 1, 5, or 9. We analyze the properties of such parameterized 41

syncmer schemes and determine which schemes perform well for a given compression 42

rate through theoretical analysis and empirical testing. PSS have the advantage of 43

allowing for a larger range of compression rates than syncmers, by varying the number 44

of parameters used, k-mer length, and s-minimizer length. Additionally, while closed 45
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syncmers are a subset of 2-parameter PSS, our analysis demonstrates that they are not 46

the optimal 2-parameter scheme under realistic mutation rates and enables us to instead 47

select the best 2-parameter scheme. 48

Two important related features of a scheme are robustness to sequence changes and 49

the distances between selected positions. The conservation of a scheme is the fraction of 50

positions in a sequence covered by selected k-mers that are unchanged after the 51

sequence is mutated. The spread of a scheme is a vector of probabilities, where P (α) is 52

the probability of selecting at least one position in a window of length α. Recently, 53

Shaw and Yu [9] obtained expressions for the conservation of open and closed syncmers 54

as a function of spread and implemented these syncmers in minimap2. Here we extend 55

the theoretical analysis by presenting a general recursive expression for the spread of 56

any PSS, including downsampling. These expressions allow for the calculation of the 57

conservation of any PSS. 58

We introduced PSS into two leading long read mappers: the latest release of 59

minimap2 [10] and Winnowmap2 [11], where PSS parameters were selected based on our 60

theoretical analysis, and measured the performance compared to the original algorithms 61

on both simulated and real long read data. The syncmers increased the number of 62

mapped reads across a large range of compression rates, resulting in 20-60% fewer 63

unmapped reads at high compression. Even at lower compression, the syncmer mappers 64

had 2-15% fewer unmapped reads. The syncmer versions used less memory but had 65

longer mapping times than the original mappers for the same compression. The most 66

marked improvements were observed when identity of the mapped reads and reference 67

sequences were low. With identity of 65% and 75% and medium compression, syncmer 68

mappers had 50-60% fewer unmapped reads and still had 8-13% fewer incorrectly 69

mapped reads. When using the best 2-parameter PSS according to our theoretical 70

analysis in minimap2 in comparison to minimap2 using Edgar’s 2-parameter closed 71

syncmers, the former showed a consistent improvement of up to 7% fewer unmapped 72

reads. 73

Our contributions in this work are thus three-fold: (1) We introduce PSS, 74

generalizing existing syncmer schemes. (2) We provide a theoretical analysis of PSS 75

properties. The analysis enables us to choose the optimal scheme for particular mutation 76

and compression rates. (3) We provide implementations of minimap2 and Winnowmap2 77

that use PSS and demonstrate their improved mapping performance compared to the 78

original minimizer versions and to using open syncmers. Unlike previous work, our 79

implementations also enable downsampling, so that any desired compression rate can be 80

achieved, and on the other hand they have the option to provide a window guarantee. 81

The paper is structured as follows: we first provide background, definitions, and 82

terminology; the next section provides theoretical analysis of PSS and describes the 83

practical implementation of PSS and their integration into minimap2 and Winnowmap2; 84

the following section presents experimental results of the original and PSS-modified 85

mappers; the final section discusses the results and future work. 86

Definitions and Background 87

Basic definitions and notations 88

For a string S over the alphabet Σ, a k-mer is a k-long contiguous substring of S. The 89

k-mer starting at position i is denoted S[i, i + k − 1] (string indices start from 1 90

throughout). We work with the nucleotide alphabet: Σ = {A,C,G, T}. 91

k-mer order: Given a one-to-one hash function on k-mers o : Σk → R, we say that 92

k-mer x1 is less than x2 if o(x1) < o(x2). Examples include lexicographic encoding or 93

random hash. We will write instead x1 < x2 when o is clear from the context. In this 94
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Fig 1. Minimizer and syncmer schemes. In both examples the lexicographic order
is used and the underlying sequence is shown at the top. By convention the leftmost
position is selected in the case of a tie. (A) Minimizers. Here w = 3 and k = 5, so the
minimizer is the least 5-mer in every window of length 7. The minimizer of each window
is highlighted in yellow; (B) Syncmers. Here we show the 1-parameter syncmer with
k = 5, s = 2 and t = 3, S5,2,lex(3). It selects 5-mers if their 2-minimizer appears at
position 3. The 2-minimizer in each 5-mer is underlined in red, and selected k-mers are
highlighted in yellow. The start positions of the k-mers in the underlying sequence that
are selected by each scheme appear in red and are marked with red arrows at the top.
Sequence positions 6-7 constitute a gap in the syncmer selection as they are not covered
by any selected k-mer.

work we use a random order unless otherwise noted. 95

Canonical k-mers: Denote the reverse complement of x by x̄. For a given order, the 96

canonical form of a k-mer x, denoted by Canonical(x), is the smaller of x and x̄. For 97

example, under the lexicographic order, Canonical(CGGT ) = ACCG. 98

Selection schemes 99

Selection scheme: A selection scheme is a function from a string to the indices of 100

positions in it f : Σ∗ → P(N) (P represents the power set). The scheme implicitly 101

selects the k-mers starting at these positions. For a string S ∈ Σ∗, 102

fk(S) = {i1, i2, ..., in} is the set of start indices of the k-mers selected by the scheme. 103

Minimizers: A minimizer scheme is a selection scheme that chooses the position of
the minimum value k-mer in every window of w consecutive k-mers in S:

Mk,w,o(S) =

|S|−w−k+2⋃
j=1

{
argmin

i:i∈j...j+w−1
Canonical(S[i, i + k − 1])

}
where the minimum is according to k-mer ordering o. By convention, ties are broken by 104

choosing the leftmost position. An example of a minimizer selection scheme is shown in 105

Fig 1A. By definition, minimizers select a k-mer in every window of w k-mers. This 106

property is called a window guarantee. 107

Syncmers: A syncmer [7] is a selection scheme that selects a k-mer if its minimum 108

s-mer is in a particular position or positions. A closed syncmer selects k-mers whose 109

smallest s-mer is at the start or end of the k-mer, and an open syncmer select k-mers 110

whose smallest s-mer is at the start only. Note that, unlike minimizers, a syncmer does 111

not have a window guarantee since it will only identify a fixed subset of all k-mers 112
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Parameterized syncmers: We are now ready to introduce the key new concept of
this study. A parameterized syncmer scheme (PSS) with parameters s, k, o and
x1, ..., xn where 0 < x1 < ... < xn−1 < xn ≤ k − s + 1 selects a k-mer if the minimum
s-mer of that k-mer appears at one of the positions xi in the k-mer. Formally:

Sk,s,o,{x1,...,xn}(S) = {i|Ms,k−s+1,o(Canonical(S[i, i + k − 1])) ∈ {x1, ..., xn}}

As o is fixed we will drop it from the notation where possible. An example of a PSS is 113

shown in Fig 1B. For convenience, we will denote the syncmer scheme with parameters 114

x1, ...xn as S(x1, ...xn) and the family of all n-parameter syncmers as Sn. Under these 115

definitions, the open and closed syncmer schemes are S1 and Sk,s(1, k − s + 1), 116

respectively. From here on, we will refer to PSS simply as syncmers. 117

Downsampled and windowed syncmers: In some situations we wish to cull the 118

selected k-mers or fill-in sequence segments where none was selected. Given a uniformly 119

random hash function h : Σk → [0, H], for a given string S, downsampling selects 120

syncmers only from the set of |Σ|k/δ k-mers with the lowest hash values. We call δ the 121

downsampling rate. Windowed syncmers fill in gaps using a minimizer scheme, thus 122

providing a window guarantee. See Supplement section S1 for formal definitions of these 123

sets. 124

Properties and evaluation criteria of schemes 125

We define some metrics for evaluating the performance of selection schemes. 126

Density and compression: The density of a scheme [12] is the expected fraction of 127

positions selected by the scheme in an infinitely long random sequence: 128

d(f) = E[|f(S)|/|S|] as |S| → ∞. The compression rate [7] is defined as c(f) = 1/d(f), 129

i.e. the factor by which the sequence S is “compressed” by representing it using only 130

the set of selected k-mers. 131

Conservation: Conservation [9] is the expected fraction of positions covered by a
selected k-mer in sequence S that will also be covered by the same selected k-mer in the
mutated sequence S′ where S′ is generated by iid base mutations with rate θ. Define
the set of positions covered by the same selected k-mer in both sequences

BS(f, θ, k) =
{
i | ∃j ∈ {i− k + 1, i− k + 2, ..., i}

s.t. j ∈ f(S) ∩ f(S′) ∧ S[j, j + k − 1] = S′[j, j + k − 1]
}

Then the conservation of the scheme is defined as Cons(f, θ, k) = ES [|BS(f, θ, k)|/|S|]. 132

Spread and distance distribution: One key feature of a scheme is the distance 133

between selected positions and the frequency with which selected positions appear close 134

together or far apart. Shaw and Yu [9] studied the probability distribution of selecting 135

at least one position in a window of length α. We refer to the vector P (f, α) of these 136

probabilities as the spread. 137

We define the distance distribution of consecutive selected positions: Pr(f, n) is the 138

probability that position i + n is the next selected position given that position i is 139

selected. 140

pN metric: The pN metric (N ∈ [0, 100]) is the Nth percentile of the distance 141

distribution, i.e., it is the length l for which N% of the distances between consecutive 142

selected positions are of length ≤ l. 143

ℓ and ℓ2 metrics: A gap is a nonempty stretch of sequence between two consecutive 144

selected k-mers. Gaps are uncovered by the scheme. Let the lengths of the gaps 145

generated by a scheme on the sequence S be l1, l2, .... We define ℓ = 1
|S|

∑
i

li and 146

ℓ2 =
√

1
|S|

∑
i

l2i . 147
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Fig 2. ℓ vs. ℓ2 metric. The selected positions of three different selection schemes S1,
S2 and S3 on the same sequence. Selected k-mers are highlighted and underlined. All
schemes have the same number of selected k-mers, but the metrics are different. S1:
ℓ = 0.529, ℓ2 = 2.974. S2: ℓ = 0.529, ℓ2 = 1.81. S3: ℓ = 0.647, ℓ2 = 2.808. While S1

and S2 have the same ℓ value, the k-mers selected by S2 are more evenly spread and
thus it has much lower ℓ2. Some of the k-mers selected by S3 overlap, resulting in a
higher ℓ value than the other schemes. However, because the gaps between covered
bases are more evenly spread, the ℓ2 value is lower than that of S1. Intuitively, it will be
easier to map reads using seeds selected by S3 than S1 despite the higher ℓ value,
suggesting that ℓ2 is a more appropriate metric.

While these metrics are defined in expectation for given sequence and mutation 148

models and the selection scheme, we also use the analogously defined empirical values 149

measured on a specific sequence. The metrics may also be considered on the positions 150

selected by a scheme in a reference, or only on the selected positions that are conserved 151

after mutation or sequencing error. We refer to the latter using the subscript mut, for 152

example, ℓ2,mut is defined analogously to ℓ2 except the gaps are between consecutive 153

selected k-mers that are conserved after mutation. 154

Choosing an appropriate metric to compare schemes 155

While Edgar shows convincingly that conservation is a more appropriate metric for 156

selection schemes than density, we argue that ℓ2,mut contains additional important 157

information for the purpose of mapping. Specifically, observe that, for given mutation 158

rate θ, k, and selection scheme f , we have E [ℓmut,θ,f,k] = 1− Cons(θ, f, k). While ℓ 159

(and conservation) counts the number of bases that are not covered by conserved 160

selected k-mers, it treats all gap lengths equally. In contrast, ℓ2,mut penalizes a few 161

large gaps more than many smaller gaps with the same total length. See the example in 162

Fig 2. When the selected k-mers are used as seeds for mapping, it is important to avoid 163

large gaps, in order to enable read mapping across gaps. Thus ℓ2 provides additional 164

information on how the selection scheme will affect mapping performance, and we use it 165

throughout to select the scheme for our syncmer based mappers. 166

Analysis of syncmer schemes – prior work 167

Edgar recently defined syncmers as an alternative to minimizers and other selection 168

schemes with the goal of improving conservation rather than density, arguing that 169

conservation is often dictated by the application and system constraints [7]. He 170

introduced open and closed syncmers and their rotated variants. He provided analyses 171

of syncmer densities, window guarantees, and distributions were provided for open, 172

closed, and downsampled syncmers. 173

Shaw and Yu greatly extended the framework for theoretical analysis of syncmers [9]. 174

They defined the spread and conservation of a scheme. The two are connected through 175

the number of unmutated k-mers overlapping a given position, α(θ, k), for a given 176

mutation rate, θ. Letting P (f) = [P (f, 1), P (f, 2), ...P (f, k)] be the spread, and 177

P (α(θ, k)) = [P (α(θ, k) = 1), P (α(θ, k) = 2), ..., P (α(θ, k) = k)], then 178

Cons(f, θ, k) = P (f) · P (α(θ, k)). Note that there is a closed form expression for 179
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Fig 3. Illustration of s-minimizers generating syncmers. A window of α = 5
consecutive 11-mers. A: When s = 5 and t = 3, then the s-minimizer of the entire
window generates a syncmer when its starting index is in the green region. If the
s-minimizer is in one of the red regions then a syncmer may be generated by the
s-minimizer of the remaining part of the window. For a two parameter scheme the
s-minimizer creates two syncmer generating regions that may be disjoint (B) if
s > t2 − t1 or overlapping (C) if s < t2 − t1. In this example, t1 = 3 and t2 = 9 in B
and t2 = 6 in C.

calculating P (α(θ, k) = α)), and that P (f, 1) = d(f). Their theoretical framework 180

allowed Shaw and Yu to obtain expressions for the spread (and therefore conservation) 181

of open and closed syncmers and other selection schemes. 182

Methods 183

In this section we first outline the main results of our theoretical analysis of PSS. These 184

results provide guidance for choosing PSS parameters in practice. We then describe how 185

we modify mappers to utilize them. Due to space constraints the full derivations and 186

analysis are deferred to Supplementary section Analysis of parameterized syncmer 187

schemes. Raw data for results presented in this and subsequent sections are available in 188

Supplementary Data File 1 from 189

https://github.com/Shamir-Lab/syncmer_mapping. 190

Recursive expressions for conservation of PSS 191

Shaw and Yu [9] obtained expressions for open and closed syncmer conservation as a 192

function of spread. Here we present a general recursive expression for the spread of any 193

PSS, including with downsampling. These expressions allow for the calculation of the 194

conservation of any PSS. The full derivation of the general expression is presented in 195

Supplementary section S2.1 while here we present only the final expression itself. 196

Consider a window of α consecutive k-mers. We assume random sequence (i.e., made 197

of iid bases) throughout. Let sβ be the s-minimizer in the window, at position β. Then 198

if t is a parameter of the syncmer scheme, sβ generates a syncmer if it is not in the first 199

t− 1 or last k − t positions in the window. If β is not in a position where it generates a 200

syncmer, we recursively check to the left or right of β to see if a syncmer is generated by 201

the s-minimizer of that region. See Fig 3 for an example. 202

For a PSS f with k-mer length k, s-minimizer length s, and downsampling rate δ,
let P (α) be the probability of selecting at least one syncmer in a window of α adjacent
k-mers. We assume a uniformly random hash over the s-mers, and condition on the
position of the s-minimizer in the α-window, β. For each β we sum over two cases: 1) β
generates at least one syncmer that is not lost due to downsampling, 2) β does not
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generate a syncmer, or all are lost due to downsampling, in which case a syncmer may
be generated by the part of the window to the left or right, resulting in a recursive
expression. Let PR = P (α− β) and PL = P (β − k + s− 1). Then we have:

P (α) = pβ
∑
β

P (α|β)

=
1

k + α− s
·
k+α−s∑
β=1

[(
1− (1− 1

δ
)count(β)

)
+ (1− 1

δ
)count(β)

(
PR + PL − PR · PL

)]
The probability of any of the k + α− s starting positions being the s-minimizer is 203

denoted as pβ and assumed to be uniform. count(β) represents the number of syncmers 204

generated by the s-minimizer sβ . For example, count(β) = 0 in the red region of Fig 3 205

and count(β) = 2 in the overlapped region when β = 6 or 7 in Fig 3C. Note we define 206

P (α) = 0 when α ≤ 0. 207

Calculating ℓ2,mut 208

We compute ℓ2,mut using the distance distribution. Let D(α) represent the probability
that the distance between two adjacent syncmer positions is α− 1, and Dmut(α) be the
same under mutation, then the expressions for ℓmut and ℓ2,mut can be written as:

ℓmut =
∞∑

x=k+1

(x− k) ·Dmut(x + 1)

ℓ2,mut =

√√√√ ∞∑
x=k+1

(x− k)2 ·Dmut(x + 1)

To calculate D(α) we define the new quantity F (α) denoting the probability that 209

only the first or only the last k-mer in a window of α k-mers is a syncmer, respectively. 210

We refer to these k-mers as K1 and Kα respectively. Note that for P (α) defined as 211

above, 1− P (α) gives the probability that no k-mer in an α-window is a syncmer. 212

We compute F (α) by conditioning on β as before. For simplicity we divide the sum
over β into cases based on the syncmers that are generated by sβ .With some abuse of
notation, we let Ki represent the event that sβ generates Ki as a syncmer.

F (α) =
k+α−s∑
β=1

1

k + α− s
×

{
1
δ .(1−

1
δ )count(β)−1 · (1− P (α− β)) K1

(1− 1
δ )count(β) · F (β − k + s− 1) · (1− P (α− β)) otherwise

In the first case we have the probability that K1 is not downsampled, any other 213

syncmer generated by sβ is downsampled, and there are no other syncmers generated to 214

the right of β. In the second case we have the probability that any syncmers generated 215

by sβ are downsampled, no syncmers are generated to the right of β, and the recursive 216

computation of the probability that the s-minimizer of the segment to the left of β 217

generates a syncmer at K1. 218

Similarly, D(α) is the probability that in a window of α k-mers only the first and
last k-mers are syncmers. Then

D(α) =

k+α−s∑
β=1

1

k + α− s
×


( 1
δ )2 · (1− 1

δ )count(β)−2 K1,Kα

1
δ · (1−

1
δ )count(β)−1 · F (α− β) K1,¬Kα

1
δ · (1−

1
δ )count(β)−1 · F (β − k + s− 1) Kα,¬K1

(1− 1
δ )count(β) · F (β − k + s− 1) · F (α− β) otherwise
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To compute ℓ2,mut we need the analogous expressions Fmut(α) and Dmut(α). The 219

expressions for these values are more involved, and left to Supplementary section S2.3. 220

After computing the theoretical ℓ2,mut according to these expressions, we use it select 221

the best PSS for any compression. 222

Because of the recursive nature of the theoretical expressions, their computation 223

even to a fixed accuracy is time consuming. In practice, simulating a very long sequence, 224

selecting syncmers, and simulating mutations to determine this metric empirically is less 225

time consuming. Our tests show that the theoretical and empirical results are very close. 226

For example, for S15,5,lex(i, j) for 1 ≤ i < j ≤ 11 and 15% mutations, the average 227

difference was 0.26%. (See Supplementary Table S1 and Supplementary Data File 1, 228

Table 3). We used this simulation method to compute ℓ2,mut for k = 11, 13, 15, 17 and 229

19, mutation rates 0.05, 0.15 and 0.25, and all 2- and 3-parameter schemes. The results 230

are presented in Supplementary Data File 1, Table 2 (note that for 1-parameter schemes 231

the best ℓ2 and ℓ are the same, and thus already known from [9]). ℓ2,mut values 232

computed using the exact theoretical expressions for some parameter combinations are 233

available in Supplementary Data File 1, Table 3. 234

Achieving the target compression 235

A simple extension of the expression for compression of open and closed syncmers yields 236

that the compression of an n-parameter PSS is ≈ k−s+1
n , where we assume that s is 237

long enough relative to k so that the s-minimizer is likely to be unique. In 238

Supplementary Data File 1, Table 4 the ℓ2,mut values for schemes that achieve the same 239

compression either by using more parameters or by downsampling. It is preferable to 240

achieve a specific compression with minimal downsampling. For example, the ℓ2 of the 241

best 2-parameter scheme with a downsampling rate of 2 is an order of magnitude worse 242

than that of the best 1-parameter scheme that has the same compression without 243

downsampling. Thus, to choose the best PSS for a given target compression, we can 244

choose one with parameters that yield the compression closest to, but below, the desired 245

compression and then downsample to reach the desired compression. 246

Note that while for 1-parameter PSS the best scheme always has its s-minimizer in 247

the middle position as shown by Shaw and Yu [9], for multi-parameter PSS the best 248

scheme may change depending on mutation rate and compression, there is no scheme 249

that is always best in every setting unlike for 1 parameter schemes. The table in 250

Supplementary Data File 1, Table 2 is used to select the best scheme for a given setting. 251

Implementing PSS in mappers 252

We modified the code of minimap2 (v2.22-r1105-dirty) and Winnowmap2 (v2.03) to 253

select our syncmer variants as seeds instead of minimizers. The code for our new 254

syncmer-based mappers is available from 255

https://github.com/Shamir-Lab/syncmer_mapping. 256

The implementation of the syncmer schemes defined in Definitions and Background 257

is straightforward. Sequences are scanned from left to right, the canonical k-mer at each 258

position is identified using a random hash function h1, and the index of the minimum 259

s-mer under another random hash h2 is determined, and compared against the list of 260

allowed positions of the PSS. 261

For downsampled schemes, syncmers are selected if their hash value normalized 262

between 0 and 1 is below 1/δ where δ is the downsampling rate. Note that a different 263

hash function than h1 must be used to ensure random downsampling. Windowed 264

schemes are integrated into the minimizer selection scheme of the mappers except that 265

syncmers are selected in each window first. If no syncmer is present, then the minimizer 266

is selected. 267
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Dataset source Species # scaffolds Length

GRCh GRCh38 [13] Human 639 3.111G
CHM13X CHM13 chrX [14] Human 1 154.3M
BAC PacBio [16] Microbial 24 59.1M
ECK12 GCF 000005845.2 [15] E. coli K-12 1 4.6M

Table 1. Reference genomes. Basic information about the reference genomes used in
our experiments. # scaffolds is the number of individual sequences present in the
reference genome fasta file and can include unplaced scaffolds, alternates, etc. Length is
the total length (in nt) of all of the scaffolds together, excluding ambiguous bases.

Pseudocode describing these implementations is presented in Algorithm 1 for regular 268

PSS and in Algorithm S1 in Supplementary section S3 for windowed PSS. Additional 269

implementation and optimization details are presented in Supplementary section S4. 270

Algorithm 1 Syncmer selection (regular, downsampled)

Input: Sequence S, syncmer parameters x1,x2, ...xn, k-mer length k, s-mer length s,
downsampling rate δ (default: 1)

Output: P , a list of selected positions.
1: P ← {}
2: for j ∈ 1 to |S| − k + 1 do
3: m = argmin

t∈[0,k−s]

h1(Canonical(S[j + t, j + t + s]))

4: if m ∈ {x1, x2..., xn} and h2(S[j, j + k − 1]) < 1/δ then
5: P ← P ∪ {j}
6: return P

Results 271

We first evaluated different PSS on real genomes to demonstrate their properties 272

compared to the theoretical analysis presented above. We then compared PSS-based 273

mapping to the original minimizer-based versions of minimap2 and Winnowmap2 on 274

simulated and real read data. 275

The reference sequences used for these experiments were: human genome 276

GRCh38.p13 [13], human chromosome X from CHM13 (v1.0) [14], E. coli K12 [15], and 277

a set of microbial genomes that we will call BAC, containing assemblies of 15 microbes 278

for which PacBio long read data is available [16] (three of the microbes were used in [9], 279

see Supplementary Section S6 for more details). Information about the sequences is 280

presented in Table 1. 281

We simulated PacBio and ONT reads from the human genome and from BAC with a 282

depth of 10 using PBSIM [17] and NanoSim [18]. Details of simulation parameters are 283

found in Supplementary section S5. 284

For tests on real read datasets we selected a random set of 10K ONT reads of the 285

NA12878 cell line with read length capped at 10kb (SRA accession ERR3279003), and 286

1K PacBio reads for each of the BAC microbes [16]. Details are available in Table 2. 287

Performance of parameterized syncmer schemes 288

Our theoretical analysis of PSS properties above relies on a number of assumptions. 289

Specifically, it assumes uniform iid sequences and mutations, allows substitutions only, 290
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Dataset Source Read type # reads Mean length (std)

pbsim x CHM13X PB simulated 173891 8871.1 (5570.1)
pbsim bac BAC PB simulated 66428 8894.2 (5617.4)
ns chm13 CHM13 ONT simulated 1000 8722.8 (7030.7)
pb bac BAC PB real 15000 9488.3 (5207.2)
ont na12878 ERR3279003 ONT real 10000 7131.6 (2348.5)

Table 2. Reads information. The long read datasets used in our experiments.
Source names are from Table 1 where relevant. PB=PacBio, ONT=Oxford Nanopore
Technologies.

and treats the sequence as a single forward strand. We therefore examined the 291

properties of PSS on real genomes where these assumptions do not necessarily apply, 292

and compared them to minimizer schemes. 293

We used k = 15 and selected the best syncmer schemes (based on ℓ2,mut) with 294

theoretical compression 5.5 and 10 (S(3, 9) and S(6), respectively). The default 295

minimizer scheme of minimap2 uses k = 15 and w = 10 yielding the theoretical 296

compression of 5.5. A theoretical compression of 10 is achieved by minimap2 with 297

k = 15 and w = 19. For compression 5.5 we also included in the comparison closed 298

syncmers (i.e. S(1, 11)) and a syncmer scheme that should perform poorly according to 299

the theoretical analysis (“bad PSS”, S(1, 2)). We compared the schemes on both 300

unmutated sequences and on sequences with iid substitutions simulated at a rate of 15%. 301

Since conservation is defined for index-preserving mutations, indels were not simulated 302

(sequencing errors were included in all subsequent simulations in the following sections). 303

We tested the schemes on the ECK12 and CHM13X sequences, with and without 304

mutations. On unmutated reference sequences, minimizers outperformed syncmers, with 305

much lower ℓ2 and p100 values for schemes with the same compression (Supplementary 306

section S7, Table S2). The theoretically best PSS outperformed the closed syncmer 307

scheme and the “bad PSS”. In contrast, under mutation, the advantage of syncmers is 308

clear (Table 3): PSS had better performance in all metrics, with the theoretically best 309

PSS performing better than minimizers and closed syncmers. While syncmers had 310

significantly more conserved positions than minimizers, the “bad PSS” S(1, 2) had a 311

worse distribution of selected positions and thus poorer ℓ and ℓ2 than minimizers. 312

We also wished to test the impact of using canonical k-mers on the distance 313

distribution between selected positions. Fig S2 shows the distance distributions for 314

syncmers selected only using forward strand k-mers and using canonical k-mers. We 315

conclude that while the theory is limited to single-stranded sequences it shows trends 316

that hold for canonical k-mers. Further details can be found in Supplementary 317

section S8. 318

The fraction of unmapped reads 319

We mapped reads using minimap2 and Winnowmap2 with M15,10 (low compression), 320

M15,50 (medium), and M15,100 (high) on four datasets. For each dataset, 321

syncmer-minimap and syncmer-winnowmap parameters yielding the best theoretical 322

ℓ2,mut for the same compression achieved by minimap2 were selected. This resulted in 323

S15,5(3, 9) matching the low compression, and S15,4(6) matching the medium and high 324

compression. The downsampling rate was manually selected to closely match the real 325

compression of the corresponding minimizer scheme. The exact compression and 326

downsampling rates are given in Supplementary Data File 1, Table 5. 327

Fig 4 (top) shows the percentage of unmapped reads of the mappers for simulated 328

PacBio and ONT reads mapped to the human reference genome. See Supplementary 329
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Dataset Scheme Description Comp- ℓ ℓ2 p90 p100 # conserved
ression

ECK12

M15,10 minimap minimizer 76.65 0.86 13.77 211 1045 60,557
S15,5(3, 9) optimal PSS 62.91 0.84 12.97 182 941 73,779
S15,5(1, 11) closed syncmer 63.37 0.85 13.42 188 1277 73,245
S15,5(1, 2) “bad PSS” 63.23 0.87 14.19 195 1443 73,413
M15,19 minimap minimizer 154.13 0.91 17.85 378 1981 30,115
S15,6(6) optimal PSS 116.04 0.90 16.18 303 1542 40,001

CHM13X

M15,10 minimap minimizer 54.29 0.81 11.70 152 1219 2,841,498
S15,5(3, 9) optimal PSS 45.65 0.80 11.12 132 1193 3,379,361
S15,5(1, 11) closed syncmer 44.71 0.81 11.46 134 1248 3,450,241
S15,5(1, 2) “bad PSS” 43.87 0.82 12.07 137 1387 3,515,931
M15,19 minimap minimizer 107.91 0.88 15.12 270 1946 1,429,555
S15,6(6) optimal PSS 83.20 0.86 13.83 219 1927 1,854,097

Table 3. Performance metrics of minimizer and syncmer schemes on real
sequences with simulated mutations. Substitutions were introduced in the
references at a rate of 15%. The values shown are for the conserved selected k-mers. #
conserved is the number of k-mers selected by a scheme that were conserved under
mutation. Best performance is shown in bold.

Fig S3 for additional results, including windowed mappers. Syncmer variants performed 330

essentially the same or better than the original mappers in all cases, with the largest 331

advantage at high compression. All mappers did much better on the PacBio reads than 332

on ONT reads, which have a higher proportion of deletions and substitutions. The jump 333

in the fraction of unmapped reads between medium and high compression may indicate 334

that in order to overcome the large fraction of non-conserved seeds, existing mappers 335

need to use a lower compression with many redundant seeds. 336

We compared the performance of all mappers on real data (Table 2) across a range 337

of compression values. The ONT reads were mapped against the human reference 338

GRCh and the PacBio bacterial reads were mapped against the BAC reference. For the 339

original minimap2 and Winnowmap2 different values of compression were achieved by 340

varying w. For the syncmer variants, schemes were selected with the best ℓ2,mut 341

according to the theoretical analysis and then downsampled as discussed above 342

(Achieving the target compression). Results are shown in Fig 5. The syncmer variants 343

had consistently higher percentage of mapped reads than the original minimizer-based 344

mappers, with syncmer-winnowmap performing the best across the larger part of the 345

compression range. For high compression, the minimizers had 20-40% more unmapped 346

reads than the syncmers. At low compression rates of 5.5− 11, minimizers had 2-15% 347

more unmapped reads than syncmers. Full results and scheme parameters are given in 348

Supplementary Data File 1, Table 6. 349

To compare the performance of PSS to syncmers, we mapped the PacBio bacterial 350

reads against BAC using syncmer-minimap with S15,5(3, 9), the theoretically best 351

2-parameter scheme, and with closed syncmers (equivalent to S15,5(1, 11)) across a 352

range of compression values. The results are shown in Fig S4. The PSS selected by our 353

analysis had consistently fewer unmapped reads than closed syncmers. Note that 354

1-parameter PSS and open syncmers are equivalent and the best scheme always has its 355

s-minimizer in the middle position as discussed above and by Shaw and Yu [9]. 356
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Fig 4. The percentage of unmapped and incorrectly mapped reads -
simulated data.
Top: Percent unmapped for low, medium and high compression. Left: PacBio reads
simulated from the CHM13X sequence mapped against ChrX sequences from GRCh38;
Right: 1000 ONT reads simulated from CHM13 mapped against GRCh38.
Bottom: The percentage of incorrectly mapped reads for low, medium and high
compression. Left: on PacBio reads simulated from the CHM13 ChrX sequence mapped
against CHM13X; Right: PacBio reads simulated from the 15 bacterial species in BAC
pooled together and mapped against the union of their references.

Fig 5. Percentage of unmapped reads – real datasets. Percentage is shown as a
function of compression rate, PSS parameters were chosen to achieve the desired
compression with lowest ℓ2,mut. Left: Pooled PacBio bacterial reads mapped against
BAC. Right: ONT human cell-line reads mapped against GRCh38.
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Fig 6. Impact of percent sequence identity on mapping quality. We varied the
mutation rate of 1000 PacBio simulated reads from CHM13X. The figures present the %
unmapped and incorrectly mapped by each method. Left: % unmapped reads. Right:
% of the mapped reads that were incorrectly mapped.

Mapping correctness 357

We evaluated the mapping correctness for PacBio simulated reads as done in [1] (see 358

Supplementary section S5 for details). The percentage of incorrectly mapped reads 359

simulated from CHM13X and the BAC genomes is shown in Fig 4 (bottom). 360

Winnowmap was consistently better than minimap, and the syncmer variants of 361

Winnowmap performed best at medium and high compression. 362

Although we cannot evaluate the mapping correctness on the real datasets, the 363

mapping quality scores reported by minimap2 can be used to compare the different 364

mappers. On the real datasets, reads mapped by syncmer-minimap but not by 365

minimap2 generally had higher mapping quality than those mapped by minimap2 and 366

not syncmer-minimap. For example, for the human cell line ONT reads, comparing 367

minimap2 with M15,50 to syncmer-minimap, the 39 minimap-only reads had average 368

mapping quality 31.4 (median 27), while the 94 syncmer-minimap-only reads had an 369

average quality score of 38.7 (median 42.5). Full results for different compression rates 370

are presented in Supplementary Data File 1, Table 7. 371

Impact of sequence identity level 372

We examined the impact of the level of identity between the sequenced reads and the 373

reference to which they are aligned. Differences between the sequences can be due to 374

sequencing errors, mutations in the sequenced organism, or differences between 375

sequenced and reference strains. We simulated 1000 PacBio reads from CHM13X at 376

percent identity 65%, 75%, 87% and 95%. The results are shown in Fig 6 and S7. For 377

minimap2 and Winnowmap2 we used M15,50, and in the syncmer variants we used 378

S15,4(6) with the other parameters selected as above to match the compression of 379

minimap2. 380

The syncmer variants outperformed the original tools in terms of fraction of reads 381

mapped, with larger gains as percent identity decreases. All tools performed very well 382

at higher percent identity, indicating that more than enough seeds were selected and 383

conserved to adequately map all reads (and thus perhaps compression could be 384

increased). Winnowmap2 performed noticeably worse at lower percent identity, leaving 385

almost all reads unmapped at 65% identity. Syncmer-minimap outperformed minimap2 386

on the fraction of correctly mapped reads in all cases. Winnowmap2 correctly mapped a 387

larger fraction of the mapped reads at 75% identity, but mapped only 35% of the reads, 388
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Task Method Scheme Index
time

Index
mem

Map
time

Map
mem

bacterial reads
vs BAC

minimap2 M15,10 3.29 0.32 11.10 3.14
Syncmer minimap S15,5(3, 9) 3.81 0.31 11.63 2.93

ChrX reads
vs CHM13X

minimap2 M15,10 7.96 1.01 65.29 5.35
Syncmer minimap S15,5(3, 9) 9.52 0.99 141.05 6.73
minimap2 M15,100 4.4 0.45 59.05 16.06
Syncmer minimap S15,4(6) 7.12 0.45 47.83 7.56

bacterial reads
vs CHM13X

minimap2 M15,10 As
above

As
above

25.61 8.26
Syncmer minimap S15,5(3, 9) 46.59 9.28

Table 4. Runtime and memory. Time (in seconds) and RAM (in GB) needed to
index the reference and map the simulated reads by each of the tools. The second and
third dataset use the same reference. Syncmer variant parameters were selected to
match the minimap2 compression rates as above.

compared to ≥ 95% for the other variants. At 95% identity the syncmer variants had 389

fewer incorrectly mapped reads. While very low percent identity may be unrealistic in 390

some cases, these results highlight the impact of the increased conservation of syncmers. 391

Performance of windowed syncmer schemes 392

Windowed schemes combine syncmers and minimizers, complementing the syncmer 393

scheme to provide a window guarantee. Supplementary section S10 presents the results 394

of the experiments on windowed PSS. Although windowed schemes perform better than 395

the unwindowed on some metrics (compare Tables S4, 3), in practice the windowed 396

variants of our syncmer mappers were similar or worse than the variants without 397

windowing for the same compression in most cases (Figures S5- S8). 398

Runtime and memory 399

We compared the runtime and memory usage of the six tested mappers on a number of 400

datasets. All experiments were performed on a 44-core, 2.2 GHz server with 792 GB of 401

RAM, using 50 threads. Peak RSS (in GB) and real time (in seconds) as measured by 402

the tools are reported. 403

Table 4 compares the separate performance of indexing and mapping on simulated 404

PacBio and ONT reads from bacteria and human. Winnowmap was not compared as it 405

does not allow for separate indexing and mapping, a disadvantage when many read sets 406

will be mapped to the same reference. For syncmer minimap variants the same 407

parameters matched to the minimizers as above were used. At low compression 408

minimap2 had better runtimes for both indexing and mapping, and memory usage was 409

similar between the tools. At high compression syncmer-minimap had longer indexing 410

time but lower mapping time and required less than half the memory. This is in 411

addition to having only 1/3 as many unmapped reads (Fig S3A). 412

We also compared the runtime and memory of all the runs for different compression 413

rates shown in Fig 5. Results are shown in Figures 7.Note that the results here are for 414

indexing and mapping together. minimap2 was consistently the fastest, followed by 415

syncmer-minimap, which took 50-100% longer. Interestingly, the two datasets show 416

opposite trends in memory usage (Fig 7, bottom). This is because the bacterial 417

reference genomes are relatively short, and thus the memory bottleneck is in the 418

mapping stage, while for the human reference genome the memory bottleneck is in the 419
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Fig 7. Memory usage and runtime vs. compression – real data.
Top: Runtime in seconds to index the reference and map reads by each method.
Bottom: Peak RAM usage in GB to index the reference and map reads. Left: PacBio
bacterial reads. Right: ONT human cell-line reads.

indexing stage. Increasing compression lowers index size but results in longer 420

alignments between anchors, requiring more memory in the mapping phase. Thus, when 421

indexing is the bottleneck, increasing compression reduces memory, while when mapping 422

is the bottleneck it increases memory. Winnowmap2 and its variants used less memory 423

in the mapping phase while minimap2 and its variants used less memory in the indexing 424

phase. In the case that indexing was the bottleneck, the syncmer variants required lower 425

memory usage than the original mappers across most of the range of compression rates 426

(Fig 7, bottom right). 427

Discussion 428

In this study we generalized the notion of syncmers to PSS and derived their theoretical 429

properties. We incorporated PSS into the long read mappers minimap2 and 430

Winnowmap2. Our syncmer mappers outperformed minimap2 and Winnowmap2, by 431

mapping more reads and correctly mapping a higher fraction of those mapped across a 432

range of different compression values for multiple real and simulated datasets. 433

As our results show, the advantage of using syncmers is most marked at high 434

compression and high error rates, as is expected due to their higher conservation. Yet 435

the advantage is already manifest at the lower compression rates commonly used by 436

existing mappers. For large genomes, such as the human genome, using the higher 437

compression enabled by syncmers also leads to lower RAM usage. Syncmer-minimap is 438

slower than the highly optimized minimap2, taking 50-100% longer to map reads, but it 439

is faster than Winnowmap2. Future work should focus on lowering the runtime by 440

optimizing the syncmer mapping implementation. 441
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The well-developed minimap2 and Winnowmap2 software tools have a variety of 442

internal parameters, and by adjusting them one may be able to achieve some of the 443

performance advantage of PSS. The approach we propose here is more principled and 444

avoids the need to guess or grid search across parameters in order to get the best 445

mapping performance. Increased performance achieved in such a manner could likely 446

improve the syncmer mappers as well, as improving the choice of alignment seeds is 447

orthogonal to many of the other algorithmic details of read mapping. 448

There are a number of issues and questions that this work leaves open, particularly 449

in the theoretical analysis. First, the analysis of windowed schemes and downsampled 450

schemes under mutation remains to be completed. Second, an expression for ℓ2 for 451

minimizer schemes could also be obtained. Third, can the theory be expanded to 452

canonical k-mers? Fourth, it would be helpful to obtain more robust definitions of 453

conservation and ℓ2 that do not depend on preserving indices between sequences, 454

thereby allowing indels to be included in the theoretical analysis. Finally, what is the 455

ideal metric for evaluating the performance of schemes? While we argue that ℓ2 is 456

preferable to ℓ, other new metrics may capture mapping performance even more 457

accurately. 458

Another possible avenue to explore is in the definition of the selection scheme itself. 459

Is it possible to select k-mers in a biased way in order to increase the compression but 460

still retain the beneficial distance distribution of syncmer schemes? Or could a 461

sequence-specific set of k-mers be determined efficiently for any desired compression 462

rate? The quest for a “best” selection scheme is not over. 463
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Supplementary information for
Parameterized syncmer schemes improve long-read mapping

S1 Definitions of downsampled and windowed syncmer schemes

Downsampled syncmers: Given a uniformly random hash function h : Σk → [0, H], for a given string S,
downsampling selects syncmers only from the set of |Σ|k/δ k-mers with the lowest hash values.

DSk,s,o,{x1,...,xn},h,δ(S) = {i|i ∈ Sk,s,o(x1, ..., xn)(S) ∧ h(S[i, i + k − 1]) < H/δ}

We call δ the downsampling rate.
Windowed syncmers: Windowed syncmers fill in gaps using a minimizer scheme, thus providing a window
guarantee. For clarity in the definition below let S(S) represent Sk,s,o(x1, ..., xn)(S).

fk,s,w,o,{x1,...,xn}(S) =
{
i|i ∈ S(S)

⋃
i ∈Mk,w,o(S[j, j + w − 1]) ∀j s.t. S(S[j, j + w − 1]) = ∅

}
Letting S represent all k-mers that can be syncmers in Sk,s,o(x1, ..., xn), an equivalent definition would be:
Mk,w,o′(S) where o′ is defined such that x ∈ S, x′ ∈ Σk \ S =⇒ x < x′.

S2 Analysis of parameterized syncmer schemes

S2.1 Recursive expressions for conservation of PSS

Consider a window of α consecutive k-mers. We assume randomly distributed sequence throughout. Let sβ
be the s-minimizer in the window, at position β. Then if t is a parameter of the syncmer scheme, sβ
generates a syncmer if it is not in the first t− 1 or last k − t positions in the window. If β is not in a
position where it generates a syncmer, we recursively check to the left or right of β to see if a syncmer is
generated by the s-minimizer of that region. See Fig S1 for an example.

For a 1-parameter scheme f with k-mer length k, s-minimizer length s, and parameter t let P (α) be the
probability of selecting at least one syncmer in a window of α adjacent k-mers. Then, assuming a uniformly
random hash over the s-mers, and conditioning on the position of the s-minimizer of the α-window, β:

P (α) = pβ
∑
β

P (α|β) =
1

k + α− s

t−1∑
β=1

P (α− β) +
t+α−1∑
β=t

1 +
k+α−s∑
t+α

P (β − k + s− 1)

 .

The probability of any of the k + α− s starting positions being the s-minimizer is denoted as pβ and
assumed to be uniform. If β is in the first t− 1 or last k − t starting positions (red regions in Fig S1A), then
a syncmer may be generated by the remaining α− β positions to the right or β − k + s− 1 positions to the

left, respectively. Note we define
j∑

x=i

= 0 when i > j and P (x) = 0 when x ≤ 0.

When downsampling syncmers, there is a probability of 1/δ that an s-minimizer in the syncmer
generating region (i.e. the green region in Fig S1A) really generates a syncmer. If it does not, then the left
and right regions are considered recursively, yielding the following expression, where we simplify notation by
letting P (α− β) = PR and P (β − k + s− 1) = PL:

P (α) =
1

k + α− s

[ t−1∑
β=1

PR +
t+α−1∑
β=t

(
1

δ
+ (1− 1

δ
) (PR + PL − PR · PL)

)
+

k+α−s∑
t+α

PL

]
.
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Fig S1. Illustration of s-minimizers generating syncmers. A window of α = 5 consecutive 11-mers.
A: When s = 5 and t = 3, then the s-minimizer of the entire window generates a syncmer when its starting
index is in the green region. If the s-minimizer is in one of the red regions then a syncmer may be generated
by the s-minimizer of the remaining part of the window. For a two parameter scheme the s-minimizer
creates two syncmer generating regions that may be disjoint (B) if s > t2 − t1 or overlapping (C) if
s < t2 − t1. In this example, t1 = 3 and t2 = 9 in B and t2 = 6 in C.

In the case of 2-parameter schemes, two syncmers are generated by sβ in regions that will overlap if the
parameters t1 and t2 are within s of each other, and will be disjoint otherwise (see Fig S1B,C). Combining
these two cases into a single recursive expression yields:

P (α) =
1

k + α− s
·
[ t1−1∑

β=1

PR +

min
(t2−1,t1+α−1)∑

β=t1

1 +

t1+α−1∑
β=min

(t2,t1+α)

1 +

t2−1∑
β=min

(t2,t1+α)

(
PR + PL

)
+

t2+α−1∑
β=max
(t1+α,t2)

1 +
k+α−s∑
t+α

PL

]
.

When downsampling is used then the 1 in the second and fifth sums is replaced by
1
δ + (1− 1

δ ) (PR + PL − PR · PL) as in the one parameter case. The third sum expresses the overlapped
region where either parameter creates a syncmer, when it exists. When both generated syncmers are
downsampled then the left and right sides are recursively checked, thus the 1 is replaced by
(1− (1− 1

δ )2 + (1− 1
δ )2 (PR + PL − PR · PL).

This expression can be greatly simplified by introducing the notation count(β) that represents the
number of syncmers generated by the s-minimizer sβ . For example, count(β) = 0 in the red region of Fig S1
and count(β) = 2 in the overlapped region when β = 6 or 7 in Fig S1C. The general expression for P (α) for
any PSS is:

P (α) =
1

k + α− s
·

k+α−s∑
β=1

(
1− (1− 1

δ
)count(β)

)
+ (1− 1

δ
)count(β) (PR + PL − PR · PL)

 .

Note that this definition relies on the definition P (x) = 0, x ≤ 0 to include the correct terms for the correct
values of β.

The value of P (α) can thus be computed efficiently for any PSS and used to calculate the conservation
using the formula from [1].
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S2.2 Calculating the distance distribution

For a given scheme, the distribution of distances between adjacent syncmer positions is specified by
Pr(d = x), the probability that the distance d is x. To calculate this probability, we define the new quantities
F (α) and L(α) denoting the probability that only the first or only the last k-mer in a window of α k-mers is
a syncmer, respectively. We refer to these k-mers as K1 and Kα respectively. Note that due to symmetry
F (α) = L(α). Note also that 1− P (α) gives the probability that no k-mer in an α-window is a syncmer.

We compute F (α) by conditioning on β as before. For simplicity we divide the sum over β into cases
based on the syncmers that are generated by sβ rather than breaking up the sum across different values of β.
With some abuse of notation, we let Ki represent the event the that sβ generates Ki as a syncmer.

F (α) =
1

k + α− s

k+α−s∑
β=1

{
1
δ .(1−

1
δ )count(β)−1 · (1− P (α− β)) K1

(1− 1
δ )count(β) · F (β − k + s− 1) · (1− P (α− β)) otherwise

In the first case we have the probability that K1 is not downsampled, any other syncmer generated by sβ
is downsampled, and there are no other syncmers generated to the right of β. In the second case we have the
probability that any syncmers generated by sβ are downsampled, no syncmers are generated to the right of
β, and the recursive computation of the probability that the s-minimizer of the segment to the left of β
generates a syncmer at K1.

Similarly, define D(α) to be the probability that in a window of α k-mers only the first and last k-mers
are syncmers. Then

D(α) =
1

k + α− s

k+α−s∑
β=1


( 1
δ )2 · (1− 1

δ )count(β)−2 K1,Kα

1
δ · (1−

1
δ )count(β)−1 · F (α− β) K1,¬Kα

1
δ · (1−

1
δ )count(β)−1 · F (β − k + s− 1) Kα,¬K1

(1− 1
δ )count(β) · F (β − k + s− 1) · F (α− β) otherwise

S2.3 Calculating ℓ2,mut

To compute the desired metric ℓ2,mut we must calculate the metrics from the previous section but only with
conserved syncmers. We add the subscript ‘mut ’ to a value to indicate that only conserved syncmers are
considered. The impact of mutations is similar to that of downsampling shown in the previous section,
except that when a syncmer is lost due to mutation, the surrounding k-mers are also lost. In this case we
consider no downsampling to make the expressions simpler.

Let Ωβ be the set of syncmers generated by sβ , and ωβi be the members of this set. Note that
|Ωβ | = count(β). Then,

Pmut(α) =
1

k + α− s

k+α−s∑
β=1

(Pr(∃ conserved ωβi ∈ Ωβ) + Pr(∄ conserved ωβi ∈ Ωβ ,∃ syncmer to the left or right))

For convenience we call the first probability Pconserved and the second Precurse.
Pconserved is computed using the inclusion-exclusion principle:

Pconserved =
∑
i

Pr(ωi conserved)−
∑
i<j

Pr(ωi, ωj conserved) +
∑

i<j<k

Pr(ωi, ωj , ωk conserved)− ...
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Every term in this series is calculated as (1− θ)countBases where θ is the mutation rate and countBases
counts the number of bases covered by the conserved k-mers (i.e. if two conserved syncmers overlap, the
shared bases are counted only once).

Precurse is more complicated. We again sum over all values of β. When Ωβ is empty (e.g. β is in the red
region), then the recursion is similar to the case without mutation. Otherwise, all of the syncmers are lost
due to mutation, and we additionally sum over the possible positions of the first and last points of mutation
in Ωβ , named f and l, respectively.

Precurse =
1

k + α− s
×

k+α−s∑
β=1

{
Pmut(α− β) + Pmut(β − k + s− 1)− Pmut(α− β) · Pmut(β − k + s− 1) Ωβ = ∅∑

f≤l Pr(∄ conserved ωβ ∈ Ωβ , f, l)× (Pmut(left) + Pmut(right)− Pmut(left) · Pmut(right)) otherwise

Here left = max(0,min(f − k, β − k + s− 1)) and right = max(0,min(α− l, α− β)). We expand the joint
probability as

Pr(∄ conserved ωβ ∈ Ωβ , f, l) = θy · (1− θ)x · Pr(∄ conserved ωβ ∈ Ωβ |f, l)

where y is 1 if l = f and 2 otherwise, and x is the number of unmutated bases that is fixed by the given
values of f and l. The conditional probability is written as

Pr(∄ conserved ωβ ∈ Ωβ |f, l) = 1− Pr(∃ conserved ωβ ∈ Ωβ |f, l)

and is computed using the inclusion-exclusion principle as above.
F (α) and D(α) are extended to the case of mutation similarly:

Fmut(α) =
1

k + α− s

k+α−s∑
β=1



∑
f≤l

Pr(∄ conserved ωβ ∈ Ωβ \K1,K1 conserved, f, l) · (1− Pmut(right|b)) K1,Ωβ \K1 ̸= ∅

Pr(K1 conserved) · (1− Pmut(α− β|b)) K1,Ωβ \K1 = ∅∑
f≤l

Pr(∄ conserved ωβ ∈ Ωβ , f, l) · (1− Pmut(right|b)) · Fmut(left|b′) ¬K1,Ωβ ̸= ∅

Fmut(β − k + s− 1) · (1− Pmut(α− β)) otherwise

Dmut(α) =
1

k + α− s
×

k+α−s∑
β=1



∑
f≤l

Pr(∄ conserved ωβ ∈ Ωβ \K1,K1 conserved, f, l) · Fmut(right|b) K1,¬Kα,Ωβ \K1 ̸= ∅

(1− θ)k · Fmut(α− β|b) K1,¬Kα,Ωβ \K1 = ∅∑
f≤l

Pr(∄ conserved ωβ ∈ Ωβ \Kα,Kα conserved, f, l) · Fmut(left|b) Kα,¬K1,Ωβ \Kα ̸= ∅

(1− θ)k · Fmut(β − k + s− 1|b) Kα,¬K1,Ωβ \Kα = ∅∑
f≤l

Pr(∄ conserved ωβ ∈ Ωβ \ {K1 ∪Kα}, {K1 ∪Kα} conserved, f, l) K1,Kα,Ωβ \ {K1 ∪Kα} ≠ ∅

Pr({K1 ∪Kα} conserved) K1,Kα,Ωβ \ {K1 ∪Kα} = ∅∑
f≤l

Pr(∄ conserved ωβ ∈ Ωβ , f, l) · Fmut(right) · Fmut(left|b) ¬K1,¬Kα,Ωβ ̸= ∅

Fmut(α− β) · Fmut(β − k + s− 1) ¬K1,¬Kα,Ωβ = ∅

22

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 5, 2022. ; https://doi.org/10.1101/2022.01.10.475696doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.10.475696
http://creativecommons.org/licenses/by-nc/4.0/


Scheme Theoretical Simulated

S(3, 4) 14.2717 14.3307
S(3, 5) 13.2935 13.317
S(3, 6) 12.6868 12.6947
S(3, 7) 12.3342 12.3426
S(3, 8) 12.1713 12.1776
S(3, 9) 12.1631 12.1809
S(3, 10) 12.2915 12.3076
S(3, 11) 12.5477 12.5702

Table S1. Comparison of theoretical and simulated values of ℓ2,mut. Values of ℓ2,mut for a selection
of schemes with k = 15, s = 5, θ = 0.15. Theoretical values were computed using 1200 terms. Simulated
values were found on a simulated sequence of length 1,000,000.

Here we again divide into cases depending on whether there are syncmers that can be lost. We have also
used recursive expressions that are similar to the above except we are given that b bases to the left or right
of the defined region are conserved. These are calculated using similar techniques as above.

Finally, we can use these expressions to compute:

ℓmut =
∞∑

x=k+1

(x− k) ·Dmut(x + 1)

ℓ2,mut =

√
∞∑

x=k+1

(x− k)2 ·Dmut(x + 1)

Note that, unlike P (α), which can be computed efficiently, the computation of these metrics includes an
infinite sum. The sum can be truncated at an appropriate distance x, however there are still many more
terms than in the computation of the conservation. In practice, simulating a very long sequence, selecting
syncmers, and simulating mutations to determine these metrics empirically is much less time consuming and
yields results that are very close to the true values. We used this simulation method to compute ℓ2,mut for
k = 11, 13, 15, 17 and 19, mutation rates 0.05, 0.15 and 0.25, and all 2- and 3-parameter schemes Results are
presented in Supplementary Data File 1, Table 2 (note that for 1-parameter schemes the best ℓ2 and ℓ are
the same, and thus already known from [1]). The exact theoretical expressions for some parameter
combinations are available in Supplementary Data File 1, Table 3. A comparison of the values computed
theoretically and by simulation for the 2-parameter schemes S(3, x), x ∈ [4, 11] with k = 15, s = 5, 15%
mutation rate can be seen in Table S1.

S3 Windowed PSS implementation

Algorithm S1 describes the implementation of windowed PSS.

S4 Syncmer based mapping implementations

Modifications to the mappers were minimal. Only the code that selects the k-mers to use as seeds to index
the reference sequence and as anchors from the query reads was modified. Here we describe implementation
details and optimizations in the code that differ from the high-level descriptions in Algorithm 1 and S1.

23

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 5, 2022. ; https://doi.org/10.1101/2022.01.10.475696doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.10.475696
http://creativecommons.org/licenses/by-nc/4.0/


Algorithm S1 Windowed syncmer selection

Input: Sequence S, syncmer parameters x1,x2, ...xn, k-mer length k, s-mer length s, window w, downsampling
rate δ (default: 1)

Output: P , a list of selected positions.
1: P ← {}
2: for j ∈ 1 to |S| − w + 1 do
3: hasSync← FALSE
4: for l ∈ 0 to w − k do
5: m = argmin

t∈[0,k−s]

h1(Canonical(S[j + l + t, j + l + t + s]))

6: if m ∈ {x1, x2..., xn} and h2(S[j + l, j + l + k − 1]) < 1/δ then
7: P ← P ∪ {j + l}
8: hasSync← TRUE

9: if hasSync is FALSE then
10: m = argmin

l∈[0,w−k]

h3(Canonical(S[j + l, j + l + k − 1]))

11: P ← P ∪ {j + m}
12: return P

In minimap2 the most frequent minimizers (0.02% by default) are dropped to reduce spurious matches
and lower the runtime and memory usage. We also drop the most frequent selected k-mers as the last stage
of all minimap syncmer variants for consistency. In Winnowmap, the most frequent k-mers (also 0.02% by
default) are re-weighted in the minimizer order so they are less likely to be selected as minimizers. In the
syncmer-winnowmap variant, we do not consider k-mer weighting, and thus we simply drop these k-mers if
they are selected. However, in the windowed syncmer-winnowmap variant we do re-weight the frequent
k-mers before selecting minimizers in empty windows.

We use several different hashes in our syncmer variants of the mappers: hcan to select canonical k-mers,
hs to select s-minimizers, hmin to select minimizers for windowed variants and hdown for downsampling. We
require that hcan ̸= hdown to maintain random downsampling. In minimap syncmer variants we use hash64
from minimap2 for hmin and a variant of MurmurHash2 that ensures murmur2(0) ̸= 0 to ensure
randomness for the other hashes. Thus hmin = −hash64/UINT64 MAX, hs(x) = murmur2(x),
hdown(x) = murmur2(x), and hcan(x) = murmur2(x << 1 + 5) to ensure that it has a different value than
hdown. For winnowmap variants we use hcan(x) = lexicographic(x) as this is what is used by the k-mer
counter Meryl, hmin(x) = −(murmur2(x)/UINT64 MAX)8 in the case that the minimizer is one of the most
frequent and −murmur2(x)/UINT64 MAX otherwise. The other hashes are as in the minimap variants.

In all windowed variants, downsampling occurs before filling in empty windows with minimizers.
ONT reads were mapped using the map-ont option in all mappers, while PacBio reads were mapped using

the map-pb option (map-pb-clr in Winnowmap and variants). The latter uses homopolymer compression
(HPC) and thus has a real compression (on the non-HPC sequence) that is above the theoretical one.

S5 Simulation details

PacBio reads were simulated using PBSim [2] with the CLR model and the following parameter settings:
depth 10, mean length 9000, length std 6000, minimum length 100, maximum length 40000, mean accuracy
0.87, accuracy std 0.02, minimum accuracy 0.85, maximum accuracy 1, and difference ratio 10:48:19. Error
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rates and read lengths roughly matched to the statistics observed in a recent benchmark of long read
correction methods [3] unless otherwise indicated.

ONT reads were simulated using NanoSim [4] with default parameters and the human pre-trained model
for Guppy base calls.

To evaluate mapping correctness for the PacBio simulated data we used the mapeval utility of paftools
packaged with minimap2. In this tool, reads are considered correctly mapped if the overlap between the read
alignment and the true read location is ≥ 10% of the combined length of the true read and aligned read
interval. This criterion was also used in [5].

S6 Bacterial species used

We chose a single representative assembly of each strain from [6] with the fewest, longest and most highly
covered contigs and concatenated all references into a single fasta file. Reads from the same samples were
downloaded. Assemblies and reads from following samples were used:

• bc1019, Bacillus cereus 971 (ATCC 14579)
• bc1059, Bacillus subtilis W23
• bc1101, Burkholderia cepacia (ATCC 25416)
• bc1102, Enterococcus faecalis OG1RF (ATCC 47077D-5)
• bc1111, Escherichia coli K12
• bc1087, Escherichia coli W (ATCC 9637)
• bc1018, Helicobacter pylori J99 (ATCC 700824)
• bc1077, Klebsiella pneumoniae (ATCC BAA-2146)
• bc1082, Listeria monocytogenes (ATCC 19117)
• bc1043, Methanocorpusculum labreanum Z (ATCC 43576)
• bc1047, Neisseria meningitidis FAM18 (ATCC 700532)
• bc1054, Rhodopseudomonas palustris
• bc1119, Staphylococcus aureus HPV (ATCC BAA-44)
• bc1079, Staphylococcus aureus subsp. aureus (ATCC 25923)
• bc1052, Treponema denticola A (ATCC 35405)

S7 Performance of minimizers and PSS on real genome sequences
without mutations

The metrics measured on real genomes without mutations are shown in Table S2.

S8 Distribution of distances between canonical syncmers

To test the impact of using canonical k-mers on the distance distribution between selected positions we used
S15,5(3, 9) on the unmutated CHM13X. Fig S2A shows the distance distribution for syncmers selected only
using forward strand k-mers. The minimum distance is 3 and there is a sharp peak at 6. In general, for a
scheme with parameters x1 < ... < xn, the minimum distance is min(x1, k − s− xn + 2) and there are peaks
at xi+1 − xi, in agreement with the expression for D(α) above (Calculating ℓ2,mut). In mapping, read
orientations are unknown and canonical syncmers are used. Fig S2B shows the results using canonical k-mers.
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Dataset Scheme Compression ℓ ℓ2 p90 p100 # positions

ECK12

M15,10 5.503 3.23× 10−6 0.005 9 10 843,408
S15,5(3, 9) 5.490 0.0191 0.377 10 53 845,419
S15,5(1, 11) 5.509 0.0255 0.443 11 52 842,557
S15,5(1, 2) 5.502 0.0566 0.715 13 66 843,634
M15,19 9.989 0.0527 0.398 18 19 464,660
S15,6(6) 9.986 0.133 1.375 19 99 464,810

CHM13X

M15,10 5.489 5.83× 10−8 0.0005 9 10 28,099,399
S15,5(3, 9) 5.523 0.0205 0.412 10 161 27,930,897
M15,19 9.977 0.0526 0.3974 18 19 15,461,458
S15,6(6) 10.055 0.137 1.419 20 735 15,342,238
S15,5(1, 11) 5.437 0.0259 0.449 11 260 28,371,548
S15,5(1, 2) 5.350 0.0549 0.706 13 122 28,835,008

Table S2. Properties of minimizer and syncmer schemes on real sequences without mutations.
The best syncmer schemes with theoretical compression of 5.5 and 10 were chosen. The table shows the
actual compression and other metrics on the real sequences, # positions is the number of positions that were
selected by the scheme.

The distance distribution still retains the peak at 6 and a local maximum at 3, but now adjacent positions
are selected, and it has a much longer tail of distances (compare Supplementary Table S2). We conclude
that while the theory is limited to single-stranded sequences it shows trends that hold for canonical k-mers.

S9 Supplemental performance results

Fig S3 shows additional results for the number of unmapped reads at low, medium, and high compression
rates.

Fig S4 compares the performance of the theoretically optimal 2-parameter PSS and closed syncmers in
mapping real PacBio bacterial reads against the BAC reference.

S10 Windowed syncmer scheme results

Tables S3 and S4 present the properties of windowed syncmer schemes on real genome sequences with and
without mutation, respectively.

Figures S5 and S6 present the number of unmapped reads and wrongly mapped reads for simulated
datasets. These correspond to Figure 4 and include the results for windowed variants. Fig S7 presents the
impact of percent sequence identity on the windowed variants as well, corresponding to Fig 6.

Results on the real human and bacterial reads are presented in Fig S8, and the runtimes and RAM usage
for these runs are in Figures S9 and S10. The runtime and memory usage on different tasks for the
windowed variants is presented in Table S5.
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A B

Fig S2. Distribution of the distances between selected positions in a syncmer scheme. The
distribution of distances between consecutive selected positions of syncmer scheme S15,5(3, 9) on the
CHM13X reference is shown. A. The distribution of syncmers selected only in the forward orientation. B.
Canonical syncmers. For visualization purposes the distribution is shown only for distances with frequency
> 10−5. The true maximum distance is 161 for canonical k-mers (see Supplementary Table S2) and 76 for
the forward k-mers, but the frequency of the longer distances is extremely low.

(A) pbsim x vs CHM13X (B) pb bac vs BAC

Fig S3. Percentage of unmapped reads – additional data. The percentage of unmapped reads is
plotted for one simulated and one real read dataset mapped to their corresponding references. Minimizer
and PSS parameters are as described in the Results section (The fraction of unmapped reads). (A) PacBio
reads simulated from the CHM13 ChrX sequence mapped against CHM13X. Window sizes of windowed
syncmer-minimap were w = 13, 80, 165 for the low, medium, and high compression variants, respectively, and
for windowed syncmer-winnowmap they were w = 14, 75, 170, respectively. (B) 1000 PacBio reads sampled
from each of the 15 bacterial species in BAC mapped against their reference genomes. Window sizes of
windowed syncmer-minimap were w = 13, 75, 175 and in windowed syncmer-winnowmap they were
w = 16, 75, 170 for the low, medium, and high compression variants, respectively.
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Fig S4. Comparison of 2-parameter PSS to closed syncmers. S(3, 9) and closed syncmers were used
in syncmer-minimap to map PacBio bacterial reads against BAC. Both schemes used k = 15, s = 5.

w δ c ℓ ℓ2 p90 p100 # positions # syncmer # minimizer

10 1 4.775 2.59×10−8 0.000255 9 10 32,309,357 27,969,919 4,339,438
15 1 5.322 2.59×10−8 0.000255 10 15 28,987,572 27,969,919 1,017,653
20 1 5.464 0.01047 0.1862 10 20 28,230,846 27,969,919 260,927
25 1 5.501 0.0167 0.3014 10 25 28,040,255 27,969,919 70,336
50 1 5.515 0.0197 0.3899 10 50 27,970,312 27,969,919 393
100 1 5.515 0.01973 0.3915 10 99 27,969,930 27,969,919 11
10 2 5.463 6.48×10−8 0.000729 9 10 28,238,334 14,002,723 14,235,611
15 2 7.435 6.48×10−8 0.000729 14 15 20,748,902 14,002,723 6,746,179
20 2 8.812 0.0493 0.4201 17 20 17,505,813 14,002,723 3,503,090
25 2 9.706 0.10495 0.8324 20 25 15,892,867 14,002,723 1,890,144
50 2 10.93 0.1986 1.788 23 50 14,112,958 14,002,723 110,235
100 2 11.015 0.2067 1.9811 23 100 14,003,934 14,002,723 1211

Table S3. Properties of windowed syncmers on CHM13X. Properties of windowed and
down-sampled variants of S15,5(3, 9) are shown for a range of window lengths w on the human chromosome
X sequence of CHM13. δ is the downsampling rate and c is the actual compression. The theoretical
compression of the PSS (not downsampled) is 5.5. # positions is the number of positions that were selected
by the scheme, # syncmers is the number of those that were selected by the PSS and # minimizers is the
number of minimzers added to fill in gaps of length ≥ w.
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w δ c ℓ ℓ2 p90 p100 # conserved conserved
syncmers

conserved
minimizers

10 1 41.745 0.7826 10.713 122 1221 3,695,319 3,378,302 317,017
15 1 45.008 0.7928 11.041 131 1221 3,427,368 3,378,302 49066
20 1 45.558 0.7951 11.1125 132 1221 3,386,019 3,378,302 7717
25 1 45.646 0.7955 11.126 132 1221 3,379,466 3,378,302 1164
50 1 45.662 0.7956 11.129 133 1274 3,378,304 3,378,302 2
100 1 45.662 0.7956 11.128 133 1274 3,378,302 3,378,302 0
10 2 52.34 0.8062 11.515 147 1221 2,947,249 1,692,160 1,255,089
15 2 71.027 0.8397 12.898 190 1691 2,171,847 1,692,160 479,687
20 2 81.734 0.8572 13.774 216 1703 1,887,340 1,692,160 195,180
25 2 86.999 0.8655 14.257 230 1736 1,773,121 1,692,160 80961
50 2 91.104 0.8722 14.709 242 1736 1,693,222 1,692,160 1062
100 2 91.161 0.8723 14.718 242 1736 1,692,160 1,692,160 0

Table S4. Properties of conserved windowed syncmers under mutation. Properties of windowed
and down-sampled variants of S15,5(3, 9) are shown for a range of window lengths w on CHM13X after
simulating substitutions at a rate of 15%. w is the window size and δ is the downsampling rate. Properties
of the conserved selected k-mers are reported.

(A) PacBio reads mapped to ChrX of GRCh (B) ONT reads mapped to GRCh

Fig S5. Percentage of unmapped reads – simulated datasets. The percentage of unmapped reads is
plotted for two simulated read datasets mapped to their reference sequences. Results are shown for low,
medium, and high compression. (A) PacBio reads simulated from the CHM13 ChrX sequence mapped
against ChrX sequences from GRCh38. Window sizes of windowed syncmer-minimap were w = 13, 77, 175
for the low, medium, and high compression variants, respectively. For windowed syncmer-winnowmap the
window sizes were w = 14, 75, 170, respectively. (B) 1000 ONT reads simulated from CHM13 mapped
against GRCh38. Window sizes of windowed syncmer-minimap were w = 13, 75, 175 for the low, medium,
and high compression variants, respectively and w = 13, 75, 170 for the corresponding windowed
syncmer-winnowmap variants.
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(A) PacBio reads mapped to CHM13X (B) PacBio reads mapped to BAC

Fig S6. Percentage of incorrectly mapped reads – simulated data. The percentage of incorrectly
mapped reads is plotted for two simulated read datasets and their reference sequences, for mappers using
low, medium, and high compression. (A) PacBio reads simulated from the CHM13 ChrX sequence mapped
against CHM13X. Window sizes of windowed syncmer-minimap were w = 13, 80, 165 for the low, medium,
and high compression variants, respectively. For windowed syncmer-winnowmap they were w = 14, 75, 170,
respectively. (B) PacBio reads simulated from the 15 bacterial species in BAC mapped against the union of
their references. Window sizes of windowed syncmer-minimap were w = 13, 75, 175 and in windowed
syncmer-winnowmap they were w = 16, 75, 170 for the low, medium, and high compression variants,
respectively.

(A) % unmapped reads (B) % incorrectly mapped reads

Fig S7. Impact of percent sequence identity. We varied the mutation rate of 1000 PacBio simulated
reads from CHM13X. The figures present the % unmapped and incorrectly mapped for each of the tools.
(A) % unmapped reads. (B) % of the mapped reads that were incorrectly mapped.
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(A) PacBio reads mapped to BAC (B) ONT reads mapped to GRCh

Fig S8. Percentage of unmapped reads – real datasets. Results are shown across a broad range of
compression rates. (A) Pooled PacBio bacterial reads. (B) ONT human cell-line reads.

(A) PacBio reads mapped to BAC (B) ONT reads mapped to GRCh

Fig S9. Runtime vs. compression – real data. The figures show runtime in seconds to index the
reference and map reads by each method. (A) PacBio bacterial reads. (B) ONT human cell-line reads.
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(A) PacBio reads mapped to BAC (B) ONT reads mapped to GRCh

Fig S10. Memory usage vs. compression – real data. Peak RAM usage in GB to index the reference
and map reads for the different methods. (A) PacBio bacterial reads. (B) ONT human cell-line reads.

Task Method Scheme Index time Index mem Map time Map mem

pbsim bac vs BAC Windowed syncmer minimap S15,5(3, 9) 4.36 0.32 11.96 2.92

pbsim chm13x
vs CHM13X

Windowed syncmer minimap S15,5(3, 9) 11.46 1.01 104.31 5.45
Windowed syncmer minimap S15,4(6) 7.79 0.45 48.81 9.60

pbsim bac vs CHM13X Windowed syncmer minimap S15,5(3, 9) As above As above 26.10 9.18

Table S5. Runtime and memory. Time (in seconds) and RAM (in GB) needed to index the reference
and map reads by each of the tools. The second and third dataset use the same reference and therefore have
the same indexing results. For S15,5(3, 9) window size w = 13 was used, with downsampling rate of 1.08 for
BAC and downsampling rate of 1.05 for CHM13X. For S15,4(6) the standard PSS used downsampling rate of
4.13, and the windowed PSS had window size w = 165 and downsampling rate 4.37.
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