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Abstract

There are currently no noninvasive imaging methods available for
astrogliosis mapping in the central nervous system despite its essen-
tial role in the response to injury, disease, and infection. We have
developed a machine learning-based multidimensional MRI framework
that provides a signature of astrogliosis, distinguishing it from nor-
mative brain at the individual level. We investigated ex vivo cortical
tissue specimen derived from subjects who sustained blast induced
injuries, which resulted in scar-border forming astrogliosis without
being accompanied by other types of neuropathology. By performing a
combined postmortem radiology and histopathology correlation study
we found that astrogliosis induces microstructural changes that are
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robustly detected using our framework, resulting in MRI neuropathol-
ogy maps that are significantly and strongly correlated with co-registered 
histological images of increased glial fibrillary a cidic p rotein deposi-
tion. The demonstrated high spatial sensitivity in detecting reactive 
astrocytes at the individual level has great potential to significantly 
impact neuroimaging studies in diseases, injury, repair, and aging.

Keywords: astrogliosis, traumatic brain injury, TBI, blast,
radiological-pathological correlations, GFAP, multidimensional MRI, 
diffusion, relaxation, machine learning

Introduction

Astrocytes are glial cells that are spread throughout the mammalian central
nervous system (CNS) where they represent the most abundant cell population
in the brain [1]. As part of their many functions in the healthy CNS, astro-
cytes respond to CNS damage and disease through a process called astrogliosis,
which occur in multiple CNS disorders including traumatic brain injury (TBI)
[2, 3], autoimmune disease [4], stroke [5], neoplasia [6], and neurodegenerative
diseases [7], and which plays an essential role in regulating CNS inflamma-
tion. The phenotypic cellular changes in astrocytes that are associated with
astrogliosis can range from mild, with variable degrees of hypertrophy of cell
body and stem processes, to that seen in scar-border forming astrogliosis,
where cell processes overlap and intertwine to form compact borders [8]. The
degree of glial fibrillary acidic protein (GFAP) deposition in reactive astro-
cytes often parallels the severity of the neuropathology [9] and is therefore the
most widely used marker of astrogliosis.

Although reactive astrocytes are integral and essential components of CNS
innate immunity and have numerous beneficial functions [10, 11], they can also
cause harmful effects [2, 8, 12] that are regarded as detrimental to clinical out-
comes. Regardless of the role astrogliosis plays in different conditions, it is a
dominant feature and common component of almost all CNS disorders. How-
ever, the successful development of noninvasive imaging techniques, primarily
ones based upon magnetic resonance imaging (MRI), to make astrogliosis visi-
ble has been elusive, mainly because of the failure of conventional MRI methods
to detect it, but also, and perhaps more importantly, due to the experimen-
tal difficulty of disentangling astrogliosis from the neurological condition(s)
that caused it. The latter is especially true in MRI and diffusion tensor
imaging (DTI) studies involving TBI animal models that result in axonal
injury, demyelination, neurodegeneration, edema, or neuroinflammatory pro-
cesses that are concurrent with astrogliosis [13–16]. Studying astrogliosis is
particularly difficult because of the challenges of decoupling the response to
cellular alterations it generates from the response to the other microstructural
and chemical processes that take place due to co-morbidities [17, 18].
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In addition to the experimental difficulty of isolating astrogliosis in brain
tissue, a basic limitation of MRI is its low spatial resolution – on the order of
1 mm3 on clinical scanners. Although relaxation and diffusion contrast mecha-
nisms carry information about components at the micron length scale, coarse,
voxel-averaged images “flatten” any intra-voxel heterogeneity, leading to loss
of sensitivity and specificity in detecting microstructural changes induced by
astrogliosis. There has been a recent push within the neuroimaging community
to maximize the amount of information in an image by using a combination of
magnetic field profiles to probe relaxation and diffusion mechanisms simulta-
neously, i.e., multidimensional MRI [19, 20]. That, combined with theoretical
[21–24] and technological innovations [25, 26], have allowed the acquisition of
MR images with effectively sub-voxel resolution, resulting in the identification
of multiple biological components within a given voxel [27–31].

In this study we developed a multidimensional MRI machine learning
framework to map astrogliosis in individual brains by focusing on blast induced
TBI, which is a unique type of injury. Contrary to blast exposure, sequela of
impact head injury (i.e., impact TBI) are well described [32]. Blast TBI is
prevalent in the military cohort [33], and our understanding of the neuropathol-
ogy following blast exposure is still in its infancy, particularly concerning its
chronic sequelae. However, studies suggest that blast TBI is characterized by
scar-border forming astrogliosis at brain interfaces including the subpial glial
plate, around penetrating cortical blood vessels, at grey-white matter junc-
tions (as illustrated in Fig. 1), and structures lining the ventricles, and which
has been coined Interface Astroglial Scarring (IAS) [34, 35]. Importantly, scar-
border forming astrogliosis is generally not accompanied by substantial axonal
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Fig. 1 Illustration of microstructural changes occurring in the gray-white matter junc-
tion in (A) normal conditions, and (B) when scar-border forming astrogliosis is present. In
(A) axons are tightly aligned forming a densely packed cellular environment. In (B) scar-
border forming reactive astrocytes have overlapping processes that sequester damaged tissue
and inflammation, while preventing injured axons from growing through the border. These
changes are hypothesized to be reducing the overall cellular density in the white matter.
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damage or phosphorylated tau (pTau) pathology, making these blast TBI cases
ideally suited for studying chronic reactive astrocytes.

Here, we performed a combined postmortem multidimensional MRI and
histopathology study to investigate the ways in which astrogliosis affects MRI
relaxation and diffusion, and to establish whether multidimensional MRI can
be used to map the presence of scar-border forming astrogliosis in brain tissue.
We compared brain sections from blast-exposed military service members and
from control individuals using robust quantitative radiological-pathological
correlations, and developed a multidimensional MRI machine learning frame-
work to map astrogliosis. We showed the spatial accuracy and sensitivity of
the proposed framework, and its ability to produce results at the individual
subject level. Our hope is that noninvasive mapping of astrogliosis would pro-
vide an important new tool for investigating and diagnosing a wide array of
CNS disorders.

Table 1 Main demographic and histopathological findings in patients with history of
traumatic brain injury (TBI) and healthy controls

Case† Age
Manner of

death
PMI (h) Blast exposure Impact TBI Astrogliosis††

1 63
Natural

(cardiovascular)
12

None
reported

None
reported

None

2 70
Accident
(MVA)

<12
None

reported
MVA Mild

3 60
Accident
(MVA)

N/A
None

reported
MVA Moderate

4 48
Natural

(cardiovascular)
22

None
reported

None
reported

None

5 52 Suicide N/A
None

reported

Multiple
concussions;

MVA
None

6 32 Suicide N/A
None

reported
None

reported
Mild

7 59 Suicide 21
None

reported
Multiple
MVAs

None

8 38 Suicide N/A
IED exposure
with LOC

As secondary
injury

Scar-
forming

9 46 Suicide N/A Multiple
Multiple

concussions;
MVA

Scar-
forming

10 29 Suicide <48 Multiple
Fall with

LOC
Scar-

forming

11 35 Undetermined <56 Multiple
None

reported
Scar-

forming

12 40 Suicide N/A
At least

one exposure
Multiple

concussions
Scar-

forming

13 64
Natural

(cardiovascular)
<48

None
reported

None
reported

Scar-
forming

14 44 Suicide N/A Multiple
Multiple
MVAs

Scar-
forming

Postmortem interval (PMI); Traumatic brain injury (TBI); Motor vehicle accident (MVA); Impro-
vised explosive device (IED); Loss of consciousness (LOC).

†All subjects in this study were males
††Microscopically confirmed GFAP-positive
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Results

Blast induced astrogliosis pathology

Table 1 and Supplementary Table 1 summarize the main demographic data
and known medical history for each examined subject and histopathological
findings observed in each studied tissue block. Of the total 14 cases evaluated,
there were 7 cases with known IAS and 7 control cases negative for IAS.

Scar-border forming astrogliosis pathology is demonstrated in immunos-
tained sections for GFAP from four representative cases in Fig. 2. Consistent
with previous findings [34], blast-exposed subjects were characterized by dense
astrogliosis at brain interfaces, including the grey-white matter junctions. The
astrogliosis pathology in our cohort was notably present at the gray-white mat-
ter junction in white matter (WM), without associated accumulation of pTau
in involved cortical regions, and otherwise not seen in the pattern of a known
tauopathy (e.g., chronic traumatic encephalopathy, CTE). Astrogliosis did

Fig. 2 GFAP immunoreactivity in specimens without impact or blast exposure TBI, with
impact TBI but without blast exposure, without impact TBI but with blast exposure,
and with both impact and blast exposure TBI cases. (A), (E), and (I) show minimal
GFAP immunoreactivity (Case 1). (B), (F), and (J) show limited GFAP immunoreactivity
with mild reactive astrocytes (Case 3). (C), (G), and (K) show dense scar-border forming
astrogliosis at the grey–white matter junction (Case 11). (D), (H), and (L) show a similar
pattern of dense scar-border forming astrogliosis at the grey–white matter junction (Case 8).
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not coexist with axonal injury that would be indicated by amyloid precursor
protein (APP) immunohistochemistry (Supplementary Figure 1). Addition-
ally, hematoxylin and eosin (H&E)-based staining did not reveal evidence of
ischemic-necrotic lesions, presence of vascular lesions, microhemorrhages, or
tissue rarefaction.

There was a single IAS-positive case in which there is no reported history
of blast or impact TBI exposure (Case 13); the cause of the pathology in this
case is uncertain and may relate to under-reported TBI history.

Astrogliosis has a multidimensional MRI signature

Our multidimensional MRI data reveal that a distinct signature exists for
scar-border forming astrogliosis, which cannot be seen using one-dimensional
MRI measurements. Investigation of the spatially-resolved subvoxel multidi-
mensional spectral components illustrates these findings, and to this end, it
is useful to summarize the rich dataset in a visually accessible manner. Each
image slice of this data contains 4D information consisting of spatially-resolved
spectra with 50×50 elements in each voxel. We can visualize these data as
arrays of maps with varying subvoxel T1, T2, and mean diffusivity (MD) val-
ues. To make them more readable, the 50×50 spectra were sub-sampled on a
16×16 grid. Such summarized data of the T2-MD contrast from representative
control (Case 7) and injured (Case 10) subjects are shown in Figs. 3 A and B,
respectively. In addition, the marginal distributions (i.e., 1D spectra) of sub-
voxel MD values (top row) and subvoxel T2 values (right column) are shown to
illustrate the information content of any 1D approach (yellow frames in Figs.
3 A and B). The GFAP histological image of each case is also shown on the
upper-left corner of each panel, for reference.

The scar-border forming astrogliosis multidimensional MRI signature can
be seen by examining the T2-MD range that contains most of the spectral
information, highlighted as white rectangles. Magnifications of this range in
the spectra are shown below in Figs. 3 C and D for the control and injured
subjects, respectively. A clear separation of gray (blue frame) and white matter
(green frame) can be seen in both control and injury states. However, we
identified a distinct diagonal T2-MD spectral region (pink frame, Fig. 3D) in
which intensities are concentrated at the gray-white matter junction on the
WM side; these intensities follow closely the GFAP histological pattern (see
inset image in Fig. 3B), while this newly found spectral information is absent
in the control subject (Fig. 3C). Furthermore, the diagonal pattern in T2-MD
points directly at a joint dependency with respect to T2 and MD, making it
clear that this unique injury-related information cannot be seen by looking at
T2 or MD separately (i.e., conventional 1D relaxation or diffusion MRI).

Generalizing these findings, we move from representative cases to averaged
normal-appearing WM, gray matter (GM), and astrogliosis T2-MD spectra
across the entire study (Fig. 3E left to right, respectively). A visualization of
these three spectral clusters together is shown in the outermost right panel in
Fig. 3E. The clear GM-WM separation can be easily seen, and in addition, the
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Fig. 3 Changes in the T2-MD multidimensional MR signature induced by confirmed
astrogliosis. Maps of 2D spectra of subvoxel T2-MD values reconstructed on a 16×16 grid
of a representative (A) control (case 7) and (B) injured (case 10) subjects, along with their
respective GFAP histological image (top left of each panel). (C) Magnified spectral region
from the control case shows the clear separation of white (yellow frame) and gray (teal
frame) matter according to their diffusion and T2 values. (D) The same magnified spectral
region as in (C) from the injured case shows that while the WM and GM spectral informa-
tion content is still clearly separable (yellow and teal frames, respectively), new WM-specific
spectral components can be seen on the gray-white matter interface (purple frame), which is
qualitatively similar to the GFAP staining pattern of the sample. (E) T2-MD spectra aver-
aged across all subjects in WM, GM, and GFAP-positive spatial regions of interest (ROIs,
left to right), and a superposition of the average spectra from the three ROIs.
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astrogliosis-related spectral information can be seen with most intensities lying
in between the GM and WM peaks (gray-white matter junction), and some
residual intensities towards higher values of T2 and MD (GM and meningeal
border).

We also examined the T1-MD and T1-T2 datasets. We found that while they
contain astrogliosis-related information, it is significantly reduced and harder
to distinguish as compared with the T2-MD contrast, thus the latter provides
the most potentially useful information. Nevertheless, summarized T1-MD and
T1-T2 data are shown in Supplementary Figures 2 and 3, respectively.

Anomaly detection in individuals

Although we demonstrated in the previous section that a multidimensional
MRI signature associated with astrogliosis exists, being able to detect and
refine it in an unsupervised and objective manner presents a significant chal-
lenge, especially when the information is hard to discern (e.g., T1-MD and
T1-T2 in Supplementary Figures 2 and 3). In this work we build on previous

Fig. 4 Schematic representation of the proposed anomaly detection framework. (A) The
original GFAP histological image is processed in two steps: (B) co-registration to the MRI
dataset, and (C) subsequent deconvolution and downsampling to match the MRI resolution.
(D) This GFAP density image is then thresholded, inverted, and used as an image domain
mask for normative brain voxels on the (E) multidimensional MRI data. A Monte Carlo
cross-validation procedure is used to create Ncv = 1, 000 multiple random splits of 66%
and 34% of the normal-appearing voxels into training and validation data, respectively,
resulting in a 1,000 (F) normative spectral signatures, each of which is binarized to obtain
(G) spectral masks of normative brain. To detect anomalies, the normative spectral mask is
inverted and is used on the full multidimensional data to directly obtain (H) Ncv = 1, 000
versions of abnormal signal components maps, which are then averaged to yield the final (I)
neuropathology MRI biomarker map.
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frameworks [31, 36] and propose a within-subject anomaly detection procedure
that results in MRI neuropathology biomarker maps. Conceptually, the prin-
ciple is to first define what the ‘normal’ (i.e., uninjured in the desired context)
multidimensional MRI signature is for a given individual, and then look for
deviations from that ‘normal’. Here we implemented this framework by inte-
grating co-registered histological images with multidimensional MRI data by
using the GFAP density to define what is normative. Alternatively, the norma-
tive brain multidimensional signature could eventually be defined by collecting
baseline multidimensional MRI data from healthy participants in vivo.

A schematic representation of the pipeline is shown in Fig. 4, where after
the co-registration and deconvolution steps (Fig. 4 A-C), the GFAP density
image is inverted to obtain a ‘normal’ mask in the image domain (Fig. 4 D).
This mask is then applied on the multidimensional MRI dataset to isolate
voxels outside of the injury regions. Once all normal-appearing voxels are iden-
tified within a subject, a Monte Carlo cross-validation procedure [37] is used
to create multiple random splits (Ncv = 1, 000 in this study) of 66% and 34%
of the normal-appearing voxels into training and validation data, respectively.
For each such split, the average multidimensional signature is computed using
the training data (Fig. 4F), then thresholded to obtain a binary spectrum
(i.e., spectral mask) of the normal-appearing tissue (Fig. 4G). In the next
step, the inverse of this spectral mask is assumed to contain abnormal spectral
information and is used, after binary dilation, voxelwise on the full multidi-
mensional data to result in a map of abnormal signal components. This process
is repeated Ncv = 1, 000 times to allow the assessment of uncertainty and pre-
dictive accuracy, resulting in a set of neuropathology-related maps (Fig. 4H).
The results are then averaged over the splits, yielding the final neuropathology
MRI biomarker map (Fig. 4I).

This strategy to detect anomaly in individuals was used separately on each
subject and with each of the T2-MD, T1-MD, and T1-T2 datasets. It should be
noted that it can be applied to any multidimensional data, with any number
of dimensions.

Multidimensional MRI maps of astrogliosis

First, we examined the performance of our machine learning framework in visu-
alizing astrogliosis by assessing their spatial sensitivity and specificity. Figure
5 shows conventional MRI and DTI maps, multidimensional MRI maps, and
histological GFAP density images of six representative control and injured
cases (Cases 3, 4, 7, 10, 11, 12 shown in Figs. 5 A-F, respectively).

Qualitatively, the multidimensional MRI neuropathology maps follow
closely the GFAP density images, with the T2-MD maps having a significantly
larger dynamic range of intensities as compared with the T1-MD and T1-T2

maps, pointing to increased sensitivity. The standard deviations of the MRI
neuropathology biomarkers could be computed from the multidimensional
processing framework, thus providing a quantified measure of the biomarker
uncertainty. Maps of the standard deviations of the cases in Fig. 5 are shown
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Fig. 5 Multidimensional and voxel-averaged MRI maps. (A)-(C) are subjects that were
not exposed to blast (Cases 3, 4, and 7), while (D)-(F) were (Cases 10-12). The different
rows correspond to the different MRI contrasts, including all the conventional relaxation
and DTI parameters, and the proposed multidimensional astrogliosis maps. In addition, the
co-registered histological GFAP density maps are shown. Multidimensional neuropathology
maps overlaid onto proton density images show substantial injury along the gray-white mat-
ter interface, while conventional MRI maps of T1, T2, AD, RD, and FA do not show visible
abnormalities. Note that to facilitate visualization, the multidimensional neuropathology
MRI biomarker maps were thresholded at 10% of the maximal intensity and overlaid on
grayscale proton density images.
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in Supplementary Figure 4. The standard deviations are under an order of
magnitude smaller than the corresponding means, pointing to relative stability
and low uncertainty.

Conventional MRI and DTI maps provided useful anatomical macroscopic
information, especially gray-white matter separation, however, they fail to
capture the microstructural changes that are induced by astrogliosis.

Strong correlation between MRI measures and GFAP
density

The multimodal data set in this study allows one to investigate the strength
of the relationships between the multidimensional MRI derived biomarkers we
discovered and histologically based astrogliosis and their spatial agreement.
A whole image approach (as opposed to ROIs), in which all regions from
the MRI maps and histological images were included, was selected to achieve
the most objective measures of correlations. After matching the GFAP den-
sity images resolution to their MRI counterparts, both MRI and histological
maps were downsampled by a factor of 12 to account for co-registration errors
and to reduce spatial dependencies (Supplementary Figure 5), resulting in
a total of 556 pairs of MR image volumes and GFAP densities from all 14
subjects. Figure 6 summarizes the association between the investigated MR
metrics – multidimensional MRI neuropathology biomarker maps and conven-
tional voxel-averaged images – and the pathological findings across the entire
images, grouped according to the Case number. This way allows for infer-
ences about both within and between subject correlations (see the Statistical
Analysis section for more details).

We found that GFAP density was strongly and significantly correlated with
the T2-MD neuropathology biomarker (r = 0.864, p < 0.0001), the T1-MD
neuropathology biomarker (r = 0.788, p < 0.0001), and the T1-T2 neuropathol-
ogy biomarker (r = 0.834, p < 0.0001). Importantly, these results indicated
that higher intensity of the multidimensional neuropathology MRI biomark-
ers is associated with increased astrogliosis severity, regardless of the tissue
type studied. Notably, while the slopes (β1 in Fig. 6) from the T1-MD and T1-
T2 regression analyses indicated potentially low sensitivity (0.025 and 0.034,
respectively), the slope from the T2-MD neuropathology MRI biomarker was
an order of magnitude larger (0.392). From the conventional voxel-averaged
images, the only measure that had a significant yet weak correlation with
GFAP density was the adjusted T2 (r = −0.459, p = 0.004). The effect of the
subject’s age was insignificant for all MRI contrasts.

Astrogliosis is detectable in individuals

We compared multidimensional MRI neuropathology maps intensities from
normal-appearing and injured regions to test whether our approach can be used
to image astrogliosis in a single subject. Normal-appearing and injured ROIs
were defined automatically based on the GFAP density image (e.g., Fig. 4D),
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Fig. 6 Radiological-pathological correlations between MRI metrics and GFAP density.
GFAP density (% area) from 556 tissue regions from 14 subjects (color-coded, see legend)
and the corresponding MR parameter correlations. Individual data points represent the mean
value from each postmortem tissue sample. Scatterplots of the mean (with 95% confidence
interval error bars) % area GFAP and (A) T2-MD, (B) T1-MD, and (C) T1-T2 injury MRI
biomarkers show strong positive and significant correlation with GFAP density. The con-
ventional MRI metrics (D)-(G) did not result in strong and significant correlations with %
area GFAP, with the exception of weak yet significant correlation of (H) voxel-averaged T2.

and were used as binary masks on the multidimensional MRI neuropathology
maps to obtain average and 95% confidence intervals of the intensity values.
Figures 7 A-C show these comparisons for the neuropathology MRI biomarkers
derived from T2-MD, T1-MD, and T1-T2, respectively, for all subjects. With
the exception of Case 9 for T2-MD and T1-MD, and of Case 14 for T1-T2,
the multidimensional MRI neuropathology maps were shown to be capable
of detecting astrogliosis in individuals, illustrated by significant differences
between the ROIs (p < 0.0001).
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areas with increased GFAP density had significantly stronger intensities compared with nor-
mative regions.

Discussion

This is the first report of a noninvasive MRI framework to directly map
astrogliosis in individual brains ex vivo. In this study we showed that astroglio-
sis induces microstructural changes that result in a distinct multidimensional
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MRI spectral signature. Further, we developed a novel approach to utilize this
information and obtain MRI maps of astroglial neuropathology in individual
human brains. We found that the multidimensional MRI astrogliosis biomarker
maps are significantly and strongly correlated with co-registered histological
images of increased GFAP expression. We showed that our approach has the
spatial sensitivity to detect altered tissue states at the individual level by com-
paring normal-appearing and histologically confirmed regions within the same
brain.

All the injured cases we examined in this study (i.e., chronic blast TBI)
had scar-border forming astrogliosis but importantly, absent additional cellular
changes, most notably without evidence of tau pathology or axonal injury. This
neuropathological uniqueness towards astrogliosis presented an opportunity
for a targeted study that provided inferences with a good degree of specificity.
Conversely, very few studies have directly investigated the effect astrogliosis
has on MRI diffusion and relaxation properties, and those who have did so by
using animal injury models that always resulted in substantial axonal damage
and other major cellular microstructural changes in addition to gliosis [13–16].

Our results show that scar-border forming astrogliosis was mainly present
in superficial WM and involved the gray-white matter junction, in all the
cases we examined in this study. Therefore, focusing on changes to the mul-
tidimensional spectral signature between normal-appearing WM and regions
with astrogliosis could elucidate the chemical and microstructural alterations
induced by this type of neuropathology. In terms of T2 relaxation, severe
astrogliosis causes an increase in T2 compared with normal-appearing WM,
and similarly, regions with astrogliosis are characterized by faster MD com-
pared with normal-appearing WM (pink highlight in Figs. 3D and E). Increases
in both relaxation times and diffusivities point to a reduction in the degree
of axonal packing and density that is expected to result from the presence of
highly reactive astrocytes (see Fig. 1) [14, 38]. These measurable microstruc-
tural changes can be attributed solely to astrogliosis because no axonal damage
or demyelination were histologically observed in any of the cases in the study.
In addition, we recently reported that axonal injury has a distinct multidi-
mensional MRI signature characterized by shortening of T1 and T2 [31]. These
findings along with the current results indicate that decoupling of axonal injury
and astrogliosis using a single framework should be possible because of the
opposing effects these neuropathologies have on their respective multidimen-
sional MRI spectra (i.e., reduction or increase in T1 and T2 for axonal injury
and astrogliosis, respectively).

The novel framework we propose here helped to elucidate the underpinning
of MRI signal response from astrogliosis, and importantly, showed that no one-
dimensional T1, T2, or diffusion MRI measurement is able to disentangle the
microstructural alterations caused by this neuropathology. It is therefore not
surprising that very little progress has been made thus far towards the radio-
logical assessment and mapping of astrogliosis, as this study appears to be the
first one to use multidimensional MRI to address this problem. In principle,
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our framework can be readily extended to include more MR dimensions (e.g.,
diffusion orientation [23] and magnetization transfer [39]) to improve sensi-
tivity, and more histological stains (e.g., axonal damage, myelin) to improve
specificity.

DTI metrics are well-studied in the context of microstructural alterations
due to TBI [40–42], however, it is becoming increasingly evident that they
are inconsistent in their observed response [43–45]. Moreover, one of the only
comprehensive MRI studies that examined the contribution of astrogliosis to
DTI metrics showed that while significant increase in FA was associated with
astrogliosis in cortical GM, significant changes in WM were related to demyeli-
nation, and not astrogliosis [14]. These findings are consistent with our results
that showed correlations between DTI metrics and astrogliosis in WM were not
significant, reflecting the heterogeneity and variability of real life TBI cases,
as opposed to animal models.

Although we used histological data to infer the spatial distribution of
astrogliosis as an integrated part of our machine learning framework, our
approach is not limited to ex vivo studies. Using histology to locate normal-
appearing regions of the brain can be replaced by collecting baseline multidi-
mensional MRI spectra from healthy participants that will define a normative
brain, and then apply our approach to detect abnormalities in the rich data.
Acquiring such data in a clinical setting has become feasible following recent
developments of multidimensional MRI clinical protocols by multiple groups
[28, 46, 47]. As is the case with any other single-patient analysis methods,
substantial amounts of normative data will be required to establish a ref-
erence ‘atlas’ [48, 49]. Additional limitations and confounds specific to our
study include the effects of postmortem decay, fixation and resulting dehy-
dration. The fixation process by itself and the delay in fixation from the time
of death (i.e., postmortem interval, PMI) cause changes to tissue properties
and affect measured MRI parameters [50], which prevents direct comparison
with in vivo data. Furthermore, information regarding the PMI was available
from only about half of the subjects and cannot be controlled for in our study.
Although showing that the GFAP deposition corresponds to changes in the
multidimensional signature was only possible using combined ex vivo MRI and
immunostaining, it remains to be demonstrated in vivo.

In summary, being able to selectively focus on sub-voxel relaxation and
diffusion components combined with a simple yet effective machine learning
approach to detect anomalies in individual subjects provides a framework for
mapping of astrogliosis with high precision. While MRI may offer promise
to detect subtle microstructural differences at the group level, the goal of
clinical neuroimaging is to be applicable at the individual level, potentially
facilitating individualized diagnosis and subsequent therapy. This work empha-
sizes the importance and the potential of combining relaxation and diffusion
MRI with artificial intelligence for studying human brain astroglial reactivity
noninvasively.
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Methods

Donor specimens

We evaluated 14 autopsy-derived brain autopsy specimens from two different
human brain collections. Formalin-fixed portions of approximately 20×20×10
mm3 from the frontal lobe were obtained from two civilian subjects enrolled
in the Transforming Research and Clinical Knowledge in Traumatic Brain
Injury study (TRACK-TBI; https://tracktbi.ucsf.edu/transforming-research-
and-clinical-knowledge-tbi) (Cases 2 and 3), and 12 military subjects from the
Department of Defense/Uniformed Services University Brain Tissue Reposi-
tory (DoD/USU BTR, https://www.researchbraininjury.org, Uniformed Ser-
vices University of the Health Sciences, Bethesda, MD; Cases 1, 4-14). For each
case, the next–of-kin or legal representative provided written consent for dona-
tion of the brain for use in research. The brain tissues used have undergone
procedures for donation of the tissue, its storage, and use of available clinical
information that have been approved by the USU Institutional Review Board
(IRB) prior to the initiation of the study. All experiments were performed in
accordance with current federal, state, DoD, and NIH guidelines and regula-
tions for post-mortem analysis. A detailed description of demographics for the
subjects from whom brain tissue samples were obtained is listed in Table 1
and Supplementary Table 1.

Of the total 14 cases evaluated, there were 7 cases with known IAS and
7 control cases negative for IAS, based on prior neuropathologic examination
at the DoD/USU BTR. IAS pathology was diagnosed in these cases from
microscopic examination of cerebral sections immunostained for GFAP, based
on the presence of prominent scar-border forming astrogliosis involving subpial
glial plate, penetrating cortical blood vessels, grey-white matter junctions,
and structures lining the ventricles, as has been described and published by
authors in this study (DPP) [34]. However, initially, tissues from all 14 of these
cases were received from the DoD/USU BTR for blinded MRI examination
without access to the corresponding histopathology findings, TBI history, or
other medical history.

MRI acquisition

Prior to MRI scanning, each formalin-fixed brain specimen was transferred to a
phosphate-buffered saline (PBS) filled container for 12 days to ensure that any
residual fixative was removed from the tissue. The specimen was then placed
in a 25 mm tube, and immersed in perfluoropolyether (Fomblin LC/8, Solvay
Solexis, Italy), a proton free fluid void of a proton-MRI signal. Specimens
were imaged using a 7 T Bruker vertical bore MRI scanner equipped with a
microimaging probe and a 25 mm quadrupole RF coil.

Multidimensional data were acquired using a 3D inversion recovery
diffusion-weighted sequence with a repetition time of 1,000 ms, in-plane res-
olution of 200×200 µm2, and slice thickness of 300 µm. To encode the
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multidimensional MR space spanned by T1 and T2 (i.e., T1-T2), by T1 and dif-
fusion (i.e., T1-MD), and by T2 and diffusion (i.e., T2-MD), 56, 302, and 302
images were acquired, respectively, according to a previously published sam-
pling scheme [31, 36]. Additional parameters of the MRI pulse sequence can
be found in the Supplementary Material.

A standard DTI imaging protocol was applied with the same imaging
parameters as the multidimensional data and using 21 diffusion gradient
directions and four b-values ranging from 0 to 1400 s/mm2.

Lastly, a high-resolution MRI scan with an isotropic voxel dimension of
100 µm was acquired using a fast low angle shot (FLASH) sequence [51] with
a flip angle of 49.6◦ to serve as a high resolution reference image and facilitate
co-registration of histopathological and MR images.

Histology and Immunohistochemistry

After MRI scanning, each tissue block was transferred for histopathological
processing. Tissue blocks from each brain specimen was processed using an
automated tissue processor (ASP 6025, Leica Biosystems, Nussloch, Germany).
After tissue processing, each tissue block was embedded in paraffin and cut
in a series of 5 µm thick consecutive sections. The first section was selected
for hematoxylin and eosin (H&E) stains, while the remaining sections were
selected for immunohistochemistry procedures using a Leica Bond III auto-
mated immunostainer with a diaminobenzidine chromogen detection system
(DS9800, Leica Biosystems, Buffalo Grove, IL). Immunohistochemistry was
performed for glial fibrillary acidic protein (GFAP) to evaluate presence of
astrogliosis, for amyloid precursor protein (APP) for the detection of axonal
injury, and for abnormally phosphorylated tau (AT8) protein. Two sections
per antibody were stained at 300 µm apart from each other, in accordance
with the MRI slice thickness. More details regarding immunohistochemistry
can be found in the Supplementary Information.

All stained sections were digitally scanned using an Aperio scanner sys-
tem (Aperio AT2 - High Volume, Digital whole slide scanning scanner, Leica
Biosystems, Inc., Richmond, IL) and stored in Biolucida, a hub for 2D and
3D image data (MBF Bioscience, Williston, VT) for further assessment and
analyses. A Zeiss Imager A2 (ImagerA2 microscope, Zeiss, Munich, Germany)
bright-field microscope with ×40 and ×63 magnification lenses was used to
identify and photograph histologic and pathologic details, as needed.

Quantification of astrogliosis

Images of GFAP-stained sections were digitized using an Aperio whole slide
scanning scanner system (Leica Biosystems, Richmond, IL) at ×20 magnifica-
tion. The following steps, all implemented using MATLAB (The Mathworks,
Natick, MA), were taken to allow for a quantitative analysis of the GFAP
images. First, the images were transformed into a common, normalized space
to enable improved quantitative analysis [52]. Then, the normalized images
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were deconvolved to unmix the primary (GFAP) and secondary (H&E) stains,
and background to three separate channels [53]. Once an GFAP-only image
has been obtained, a final thresholding step individualized for each slice was
taken to exclude non-specific staining and to allow for a subsequent % area
calculation.

Histology-MRI co-registration

The high-resolution MR images were used as anatomical references to which
the histological images were registered to. Areas in the histological images that
grossly diverged from the wet tissue state (i.e., the MR images) due to deforma-
tion were manually removed, while maintaining the image aspect ratio. Follow-
ing convergence of 2D affine co-registration of histology and MR images (Image
Processing Toolbox, MATLAB, The Mathworks, Natick, MA), we performed a
2D diffeomorphic registration refinement between the GFAP image slices and
MRI volumes. This was done to recover true in-plane tissue shape and bridge
over residual differences between the modalities. The diffeomorphic registra-
tion procedure in this study was performed using an efficient implementation
of the greedy diffeomorphic algorithm [54], provided as an open-source soft-
ware package (greedy, https://github.com/pyushkevich/greedy). The greedy
software was initialized and used as previously described [55]. The transformed
histology images were overlaid on MR images to assess the quality of the co-
registration, and the Jaccard index [56] was computed to quantify the overlap
scores between the co-registered modalities (Supplementary Figure 6).

T1 and T2 maps and diffusion tensor MRI processing

Diffusion tensor imaging parameters [57], axial diffusivity (AD), radial diffu-
sivity (RD), and fractional anisotropy (FA), were calculated using in-house
MATLAB (The Mathworks, Natick, MA) code based on previous work [58].

Conventional quantitative relaxation maps were first computed by fitting
the signal decay to monoexponential functions. The T1 value was computed
by fitting a subset of the multidimensional data that included 20 images with
inversion times in the range of 12 ms and 980 ms. The T2 value was computed
by fitting a subset of the multidimensional data that included 20 images with
echo times in the range of 10.5 ms and 125 ms.

We also applied a commonly used strategy [41, 59] to correct for possi-
ble between-subject differences arising from postmortem effects; we adjusted
each voxel-averaged MRI parameter by dividing them by the mean for that
parameter across all the normal-appearing WM voxels in each brain sample.

Image domain masks

The FA maps were used to derive WM and GM image masks (defined using a
threshold of 0.2). The co-registered GFAP density image and its inverse image
(i.e., complementary binary image) were used as ‘injured’ and ‘normal’ image
domain masks, respectively. Normal-appearing WM and GM image domain



Astrogliosis mapping in individuals 19

masks were obtained by multiplying the WM and GM masks with the ‘normal’
tissue mask. All image masks were eroded using a disk-shaped structuring
element with a radius of 1 to avoid partial volume bias from adjacent structures
or from the edges of the brain tissue block.

Multidimensional MRI processing

Prior to processing, multidimensional MRI data were denoised using an adap-
tive nonlocal multispectral filter (i.e., NESMA [60]), which was shown to reduce
noise and improve the accuracy of the resulting injury MRI biomarker maps
[61]

The filtered data were then processed using a marginally-constrained,
ℓ2-regularized, nonnegative least square optimization to compute the multidi-
mensional distribution in each voxel, as previously described [27, 31, 36]. It is
a well-tested approach that had been proved robust and reliable [62–65], which
in this study had resulted in three types of distributions in each voxel: T1-T2,
T2-MD, and T1-MD.

We implemented the following procedure to correct for possible between-
subject differences arising from postmortem effects: First, the normal-
appearing WM mask was applied, and the maximal peak location in the
spectral domain (e.g., T1-T2) was automatically found (this step was repeated
for each subject). A control subject was then selected to be used as a refer-
ence (Case 1 in this study), to which all the remaining cases were aligned to in
the spectral domain. This procedure ensures standardization across subjects,
equivalent to the well-established strategy employed for voxel-average images,
in which image values are divided by the mean across all the normal-appearing
WM voxels in each brain sample [41, 59].

Statistical analysis

Linear mixed-effects model framework was used to study correlations between
MRI-derived maps and GFAP density images. Random effects were added
to model the within-subject correlation among histological samples. A whole
image approach (as opposed to ROIs), in which all regions from the MRI maps
and histological images were included, was used to achieve the most objec-
tive measures of correlations. Potential spatial correlation and co-dependencies
within subjects were accounted for in two ways: (1) both MRI and histologi-
cal maps were downsampled by a factor of 12 to reduce spatial dependencies
[66], and (2) a Gaussian structured noise covariance matrix was included in
the linear mixed-effects regression process to account for the spatial correla-
tions among voxels. Subject age was included as covariate. A two-sample t-test
was performed on all pairs of ROIs (i.e., normal-appearing and astrogliosis) to
determine whether they are significantly different from one another.

False discovery rate (FDR) correction was carried out to take the over-
all number of pairwise contrasts into account [67]. A P-value of 0.05 was
considered statistically significant. R was used for the computation.
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