A human fetal lung cell atlas uncovers proximal-distal gradients of differentiation and key regulators of epithelial fates

Peng He1,2,3, Kyungtae Lim1,4, Dawei Sun1,4, Jan Patrick Pett2, Quitz Jeng4, Krzysztof Polanski2, Ziqi Dong4, Liam Bolt2, Laura Richardson2, Lira Mamanova2, Monika Dabrowska2, Anna Wilbrey-Clark2, Elo Madissoon2,3, Zewen Kelvin Tuong2,5, Emma Dann2, Chenqu Suo2,10, Isaac Goh Kai’En6, Xiaoling He7, Roger Barker7, Sarah A Teichmann2,8, John C. Marion2,3,9, Kerstin B Meyer2,* , Emma L Rawlins4,*

1. Joint first authors
2. Wellcome Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
3. European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, UK.
4. Wellcome Trust/CRUK Gurdon Institute, Department of Physiology, Development and Neuroscience, Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge, CB2 1QW, UK.
5. Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK
6. Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
7. John van Geest Centre for Brain Repair, Department of Clinical Neurosciences and Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
8. Dept Physics/Cavendish Laboratory, University of Cambridge, JJ Thomson Ave, Cambridge CB3 0HE, UK
9. Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
10. Department of Paediatrics, Cambridge University Hospitals, Hills Road, Cambridge CB2 0QQ, UK

* Lead contacts: km16@sanger.ac.uk, e.rawlins@gurdon.cam.ac.uk

Highlights

- Spatiotemporal atlas of human lung development from 5-22 post conception weeks identifies 147 cell types/states.
- Tracking the developmental origins of multiple cell compartments, including new progenitor states.
- Functional diversity of fibroblasts in distinct anatomical signalling niches.
- Resource applied to interrogate and experimentally test the transcription factor code controlling neuroendocrine cell heterogeneity and the origins of small cell lung cancer.

Abstract
We present a multiomic cell atlas of human lung development that combines single cell RNA and ATAC sequencing, high throughput spatial transcriptomics and single cell imaging. Coupling single cell methods with spatial analysis has allowed a comprehensive cellular survey of the epithelial, mesenchymal, endothelial and erythrocyte/leukocyte compartments from 5-22 post conception weeks. We identify new cell states in all compartments. These include developmental-specific secretory progenitors that resemble cells in adult fibrotic lungs and a new subtype of neuroendocrine cell related to human small cell lung cancer; observations which strengthen the connections between development and disease/regeneration. Our datasets are available for the community to download and interact with through our web interface (https://fetal-lung.cellgeni.sanger.ac.uk). Finally, to illustrate its general utility, we use our cell atlas to generate predictions about cell-cell signalling and transcription factor hierarchies which we test using organoid models.

Introduction

Single cell mapping of cell states in the adult human lung in health and disease is being performed at increasing resolution (Carraro et al., 2021; Delorey et al., 2021; Deprez et al., 2020; Homer et al., 2020; Sauler et al., 2020; Travaglini et al., 2020; Vieira Braga et al., 2019). These studies are providing a foundation for the comparison of normal lung cellular physiology with disease end-states and generating hypotheses about the contributions of signalling and transcriptional changes to disease. However, the adult lung is a very static organ with low rates of cell turnover (Blenkinsopp, 1967; Rawlins and Hogan, 2008). This makes it difficult to capture transition states and progenitor cell types, even in very large adult single cell RNA sequencing (scRNAseq) studies. Moreover, there are developmental-specific cell states that do not exist in the adult. A high-resolution cell atlas of the embryonic and fetal human lung will identify developmental precursors and progenitor states, predict differentiation trajectories and potential gene regulatory networks. This will provide a baseline for studying adult homeostasis and disease, particularly the contribution of developmental mechanisms to disease processes. Moreover, the transcriptional core states recently observed for fibroblasts across different organs, species and perturbations (Buechler et al., 2021) show that the insights our atlas provides will be of wide relevance to human cell biology research.

The lung buds are specified in the developing human foregut endoderm at ~5 post conception weeks (pcw) (Burri, 1984; Nikolić et al., 2018). Subsequent morphogenesis is driven by branching of the distal-most bud tips. The bud tip epithelium comprises SOX9⁺, ID2⁺ multipotent progenitor cells which self-renew at the tip during branching (Alanis et al., 2014; Miller et al., 2018; Nikolić et al., 2017; Rawlins et al., 2009). As the bud tip epithelium branches into the surrounding mesoderm, the epithelial cells that remain in the stalk region start to differentiate, initially into bronchiolar (airway) epithelium (~5-16 pcw) and at later stages (from ~16 pcw) into the alveolar epithelium (Nikolić et al., 2018). The pattern of growth from undifferentiated multipotent epithelial progenitors at the distal tips means that the position of a cell along the proximal-distal
axis of the lung epithelial tree is a strong predictor of its maturity. The more mature cells, which exited the tip first, are found more proximally, whereas the most immature cell states, which exited the tip recently, are found in the tip-adjacent (stalk) regions (Rawlins et al., 2007). In other words, space reflects time in lung development. This means that coupling single cell state identification to in vivo spatial visualization can provide high confidence in the identification of novel progenitor cell states in the developing lung. Moreover, detailed spatial analysis of the cell states allows cell identity designations to be compared to more traditional histological definitions.

A number of cellular models are now available for studying human lung development (Hawkins et al., 2021; Kanagaki et al., 2021; Miller et al., 2018; Nikolić et al., 2017; Sucre et al., 2018; Sun et al., 2021b), including new genetic tools for functional studies in primary lung embryonic organoid cells (Sun et al., 2021a). These models are difficult to bench-mark against the primary tissue, but could potentially be exploited for functional validation of single cell predictions as well as disease modelling.

We have generated a high-resolution single cell atlas of human lung development using a combination of scRNAseq, scATACseq, Visium Spatial Transcriptomics, and mRNA in situ hybridisation using bespoke probes and the hybridisation chain reaction (HCR) method (Trivedi et al., 2018). Combining these data sources has allowed us to identify 147 cell states/types in 5-22 pcw lung samples. These include novel progenitor cell states, transition populations and a new subtype of neuroendocrine cell which is related to a subtype of human small cell lung cancer. We observe increasing cell maturation over time with many cell states identified in the adult human lungs already present at 22 pcw. Moreover, we have used our atlas to make predictions about cell signalling interactions and lineage-defining transcription factors, and we demonstrate how these can be efficiently tested using a genetically-tractable human fetal lung organoid model. The data sets we have generated are available for interactive analysis in a dedicated web interface.

Results

A single cell atlas of human lung development comprising 147 cell states

We obtained human embryonic and fetal lungs from 5-22 pcw for scRNAseq and scATACseq analysis. To focus on epithelial differentiation and region specialization, we deeply sampled 15, 18, 20 and 22 pcw lungs and separated proximal and distal regions while leaving lungs at 5, 6, 9 and 11 pcw intact, with deeper sampling in a companion study (co-submitted paper). These cell samples (except for one at 6 pcw) were split and processed for both scRNAseq and scATACseq. We used a mixture of cell dissociation methods to obtain a balanced mixture of cell types from all lung compartments (Fig. 1A) and produced high-quality profiles of transcriptome (Fig. S1A) and DNA accessibility (Fig. S1O,P) at more than 2400 genes per cell and more than 18,000 fragments per nucleus on average. The RNA profiles of cells from different dissociation protocols and compartments were then iteratively parsed out by clustering (Fig. S1C) and subclustering (Fig.
S1D) without batch correction to maintain biological features, similar to a previous study (Travaglini et al., 2020). To enrich biological features and mitigate technical ones (see methods), we removed doublet-driven clusters (Fig. S1E,G,H,K), stressed or low-quality clusters (except those expressing known markers, such as erythroid) (Fig. S1I,J,N), clusters composed of cells from only one sample when replicates are available, and clusters of cells from other organs due to contamination during dissection (Cao et al., 2020; He et al., 2020). We identified maternal cells, which are a minimal fraction in our atlas (Fig. S1M), based on genetic background (Fig. S1F). The result of this clustering is shown as a Uniform Manifold Approximation and Projection (UMAP) (Fig. 1A), on which we manually annotated fibroblast, epithelial, endothelial and erythrocyte/leukocyte lineages (Fig. 1B). Plotting the cell type distribution against time (excluding trypsin/CD326-enriched samples), showed that fibroblasts were the most prominent cell type seen, particularly in the younger lungs (Fig. 1C). Leukocytes and erythrocytes were observed in all lungs sampled, with B, T and NK cells becoming prominent from 15 pcw (Fig. 1C).

Further cell type annotation via sub-clustering (see methods) was carried out and naming of clusters was based on observed and published marker genes (Sup Table 1). These analyses resulted in a final assignment of 147 cell types/states (Fig. S2A). Sample age was a strong determinant of clustering ($\chi^2=163727$, $p \approx 0$), reflecting progressive cell type maturity in these developing lungs (Fig. S2B). Clusters mostly grouped into three distinct regions which we categorized as early (5, 6 pcw), mid (9, 11 pcw) and late (15-22 pcw) stages. In addition, cell cycle phase (Fig. S2C, $\chi^2=25361$, $p \approx 0$) and dissected region (Fig. S2D, $\chi^2=968$, $p = 8.9E-131$) were also associated with clustering. However, the latter is only prominent in a small number of proximally-located cell types (Fig. S2H), suggesting that most proximal to distal regions of the complex airway branch structure were still represented in both dissected regions of the lung. Epithelial cells were mostly derived from the trypsin-treated and CD326-enriched samples, although airway smooth muscle, myofibroblasts and alveolar fibroblasts were also enriched in these samples (Fig. S2E). Peripheral Nervous System (PNS) cells and chondrocytes were only obtained from 5-6 pcw lungs, likely correlating with lower extracellular matrix (ECM) complexity facilitating cell release and/or increased fragility of older neurons. PNS cells were clustered and assigned to cell types, but their scarcity and lack of available literature precluded further analysis (Fig. S2A,F,G). Logistic regression-based comparison (see methods) showed that the gene expression of our annotated cells corresponds well to those from adult lungs (Madissoon et al., 2021), particularly at the later stages of fetal development (Fig. S3A-E).

A differentiation trajectory of airway progenitor states lies along the distal to proximal axis of the developing lungs

The epithelial cells separate into three major groups as a function of age (Fig 2A,B), with many basal cells, MUC16$^+$ ciliated cells and secretory cells highly enriched in the proximally-dissected tissue (Fig 2B; S2H). We detected a hierarchy of epithelial progenitor and differentiating cell states
in our single cell data (Fig. 2C) and visualized these cells along the distal to proximal axis of the developing human lungs (Fig. 2G; S4). The most immature epithelial progenitors are tip cells: SOX9+ multipotent progenitors located at the distal branching tips of the respiratory tree (Nikolić et al., 2017). In our single cell data, tip cells are separated by developmental age into early (5,6 pcw), mid (9,11 pcw) and late (15-22 pcw) populations (Fig. 2A,B; discussed in Fig. 3). On the epithelial UMAP, each tip population clusters closely with adjacent stalk cells (SOX9LO, PDPNLO, HOPXLO) and airway progenitors (CYTL1L, PCP4+, SCGB3A2LO) (Fig. 2A). These three cell types form a differentiation trajectory in pseudotime from mid tip - mid stalk - mid airway progenitor which then branches into the neuroendocrine, or secretory, lineages (Fig. 2D,E). Visualizing gene expression along the inferred trajectory shows that the tip and stalk cells are transcriptionally similar (Fig. 2E,F). The stalk cells lose some tip markers, including functionally-important TFs FOXP2 and SOX9 (Li et al., 2016), and gain expression of a relatively small number of genes including PDPN and AGER. By contrast, the newly-defined airway progenitors upregulate a more specific set of marker genes, including CYTL1, CLDN4, SCGB3A2 and the Notch-responsive TF HES4, which are associated with airway fates (Guha et al., 2012; Kaarteenaho et al., 2010) (Fig. 2E,F). The tip, stalk, airway progenitors and secretory progenitors can be clearly visualized in a distal-proximal sequence in the tip-stalk region of the tissue at all stages tested (10-17 pcw) (Fig. 2G; S4A,B). In summary, we detect a novel airway differentiation trajectory in the developing human lungs. Cells first exit the tip into a tip-adjacent stalk-state, activate airway progenitor markers and eventually commit to secretory or neuroendocrine lineages.

Consistent with previous data (Cutz et al., 1985), the earliest differentiated epithelial cells detected in our single cell atlas were neuroendocrine (NE) cells in 5 pcw lungs (Fig. 2A-C). We identified two types of NE cells secreting different neuropeptides: classical pulmonary NE cells (GRP+) and GHRL+ NE cells (TTR+, GHRL+) in agreement with a recent human fetal cell atlas (Cao et al., 2020). We observed increasing maturity of NE cells over time (with specific populations denoted as precursors on the UMAP). In addition, an intermediate NE population, a putative transition state, connected the two NE cell types (Fig. 2A). At 11 pcw the classical GRP+ NE cells were always observed closer to the budding tips, suggesting that they begin to differentiate prior to the GHRL+ NE cells (Fig. 2H). However, this spatial difference was not apparent in the oldest samples where both GRP+ and GHRL+ cells were observed at all airway levels, although less abundant in the distal regions (Fig. S4C). We cannot identify the GHRL+ NE cells in mouse lungs by reanalysis of published data (Hurskainen et al., 2021; Negretti et al., 2021), however Ghrl is expressed in mouse ciliated cells (not shown). Moreover, extensive unsuccessful attempts have previously been made to spatially identify a second NE cell population in the mouse lungs (Borromeo et al., 2016). Together, these data suggest that the GHRL+ NE cells are not conserved between humans and mice.

We annotated 5 sub-types of differentiating secretory cells and one more immature secretory progenitor. (i) The secretory progenitors (SCGB3A2+, SCGB1A1, SCGB3A1, CYTL1+) were
detected in the single cell atlas at 9 pcw, prominent at 11 pcw, but rarer in older lungs consistent with a transient progenitor state (Fig. 2A-C). They were located more proximally than airway progenitors in vivo and lie between the airway progenitors and other secretory cells in pseudotime trajectory analysis (Fig. 2D-G; S4B,B’). (ii) Club cells (SCGB3A2+, SCGB1A1+, SCGB3A1+, SPDEF+, MUC16) were detected from 15 pcw in the single cell data (Fig 2A-C), or 12 pcw in the tissue (Fig. S4D). They were localised in dispersed clusters throughout the non-cartilaginous airways, but as solitary cells in the more proximal cartilaginous airways (Fig. S4D). (iii) Secretory 1 (SCGB1A1LO, SCGB3A2+, SCGB3A1+) and (iv) secretory 2 (SCGB1A1+, SCGB3A2+, SCGB3A1+) appeared from 11 pcw (Fig. 2I; S4E). Both were SPDEF+ (Chen et al., 2009), but MUC5AC− and MUC5B+, suggesting that they differentiate into goblet or mucous cells which are prominent in the adult proximal airways. By contrast, (v) secretory 3 (SCGB1A1+, SCGB3A2LOC+, SCGB3A1+) was detected from 15 pcw and was SPDEF+. All three luminal secretory cell populations were located predominantly in the proximal cartilaginous airways and were MUC16+ (Fig. 2C; S4E,F). (vi) The SMG secretory cells (LTF+, SCGB3A1+, SPDEF+) were detected from 15 pcw in the single cell data and are likely to be a precursor of serous or mucous-secreting SMG cells (Fig. 2C,I; S4G). These secretory cell designations are concordant with a recent single cell study of human adult airway epithelium which identified club cells (SCGB1A1+), mucous and goblet cells (SPDEF+) and an SMG-localised secretory cell (LTF+) (Carraro et al., 2021). Logistic-regression prediction suggests that our club, secretory 1, secretory 2 and SMG-secretory cells are the developmental counterparts of these adult cells (Fig. S3F), while secretory3 is likely to be a progenitor, or a cell type specific to prenatal or paediatric lungs. Interestingly, the developing secretory cell populations we have identified are all SCGB3A2+ or SCGB3A2+, SCGB3A1+. These phenotypes become prominent in secretory cells in end-stage pulmonary fibrosis lungs (Carraro et al., 2020; Habermann et al., 2020), suggesting that the disease cell states recapitulate developmental processes.

The airways also include ciliated and basal cells. Ciliated cells (FOXJ1+, ALOX15+) were detected in the single cell data from 11 pcw and were localised interspersed with secretory cells throughout the airways (Fig. 2A-C; S4H). Rare deuterosomal cells (FOXJ1+, CDC20B+) appeared at the same stages (Fig. 2A-C). MUC16+ ciliated cells (FOXJ1+, DNAH+, MUC16LO) were also detected from 11 pcw, but confined to proximal dissected regions in the single cell analysis (Fig. 2A-C). They were located in patches in the most proximal cartilaginous airways (Fig. S4I), and are likely to represent MUC16+ secretory cells generating ciliated cells, as has previously been suggested in the adult (Carraro et al., 2021; Deprez et al., 2020; Vieira Braga et al., 2019). Basal cells (TP63+, F3+) were present in the single cell atlas from 9 pcw (Fig. 2A-C; S4J) and were more frequent in proximal regions of the airway tree where specific subpopulations were seen (Fig. 2A-C). Rarer cell types (ionocytes, brush cells) that have been consistently identified in adult airways were not present in our single cell data, suggesting they are not differentiated by 22 pcw. However, we reproducibly detected a small population of MUC5AC+, ASCL1+ cells in 9,11 pcw lungs (Fig. 2A-C). These were localised to the proximal non-cartilaginous airways where they appeared as
solitary, somewhat basal, non-columnar cells (Fig. S4K). We hypothesize that they are an unknown progenitor cell, consistent with their transient appearance in our data and the observation that Ascl1+ NE cells in adult mice can generate club, ciliated and mucous cells following injury (Ouadah et al., 2019; Yao et al., 2018).

In summary, we have identified multiple epithelial progenitor states (tip; stalk; airway progenitor; secretory progenitor) and differentiating airway cells which we have also localised to a spatial differentiation gradient along the proximal-distal axis of the epithelium (summarised in Fig. S4L). The developing secretory cell populations show expression profiles that are similar to cells recently described in diseased lungs, suggesting the recapitulation of developmental states. Moreover, we identify GHRL+ neuroendocrine cells which do not exist in the mouse.

Late epithelial tip cells acquire alveolar identity prior to alveolar epithelial differentiation

The tip cells expressed a core set of tip-specific markers (SOX9+, ETV5+, TESC+, TPPP3+) at all stages sampled (Fig 2A-C). We observed a gradual decrease in tip marker expression and an increase in alveolar type 2 (AT2) cell gene expression in tip cells with developmental age (Fig 2C). Indeed, by 15 pcw the AT2 markers SFTPC, STC1 and SFTPA could be detected readily in the late tip cells where they were co-expressed with lower levels of core tip markers (Fig. 3A,B). This is a unique tip cell transcriptional state which has not been detected in single cell analyses of developing mouse lungs (Blackwell et al., 2021; Zepp et al., 2021). This change in tip gene expression correlated with a pseudotime differentiation trajectory from mid to late tip cells to AT2 and AT1 cell fates, suggesting that late tip cells are primarily producing alveolar-fated descendants (Fig. 3C,D; S5A). Throughout this period, similar to earlier stages, the late tip cells remain SOX9+ and the late stalk cells PDPN+ (Fig. S5B). Consistent with a switch in developmental competence of the tips from the production of airway-fated to alveolar-fated descendants, a small number of AT2 cells appear in the single cell data from 15 pcw, but are much more prominent from 22 pcw (Fig. 2A). Similarly, at 16 pcw late tip cells (SOX9+, SFTPC+) were clearly visualized in the tissue, but differentiating AT2 cells (SOX9LoC, SFTPC+) were rare suggesting that AT2 production is just beginning (Fig. 3E,F). Over the following weeks of development, the size of the tip regions decreased and increasing numbers of differentiating AT2 cells (SOX9LoC, SFTPC+) were detected (Fig. 3E,F). At 21 pcw smaller numbers of late tip cells persist and AT2 cells (SOX9+, SFTPC+, NASPA+, ETV5+) were found scattered throughout the developing air sacs (Fig. 3G, S5C-E). Consistent with the predicted change in tip fate potential (Fig. 3C-E), when late tip cells (16-20 pcw) were grown as organoids they retained a late tip phenotype in vitro (co-expression of tip and AT2 markers) and much more readily differentiated to mature AT2 fate than organoids derived from earlier developmental stages (9-12 pcw) (Lim et al., 2021).

In our single cell atlas, differentiating AT1 cells were first visible at 18 pcw, but much more prominent by 22 pcw (Fig. 2A-C). Similarly in tissue sections, AT1 cells were not detected at 17 pcw (Fig S5F). However, by 20 pcw differentiating AT1 cells (SPOCK2Lo, SFTPC+) were visible
and at 21 pcw AT1 cells (SPOCK2+, SFTPC-) lined the developing air sacs (Fig. 3I; S5G,H). Within the tissue sections, AT1 markers were only detected in cells which had undetectable, or extremely low levels of, SFTPC (Fig. S5F-H). Moreover, SFTPC-negative cells were always observed in the stalk regions from 16 pcw onwards (Fig. 3E). These expression data are consistent with an alveolar epithelial differentiation model in which from ~16 pcw the late tip progenitors first exit the tip state, turning off co-expressed AT2 cell markers, prior to initiating AT1 or AT2 cell differentiation in response to local signalling cues (Fig. 3J). Furthermore, the late stalk cells are connected to AT2, AT1 and late airway progenitors in the trajectory analysis (Fig. 2D), supporting our hypothesis that at all stages of lung development, cells enter a stalk-state after exiting the tip and prior to acquisition of fate identity. This model for spatial patterning of human alveolar development is different from the current prevailing mouse model in which AT2 and AT1 cells are thought to be specified early in development (Frank et al., 2019; Zepp et al., 2021); confirming the importance of human cellular models to study aspects of human lung development that cannot be modelled in mice.

Lung endothelial cells exhibit early specialization into arterial and venous identities

In the 5-6 pcw lungs, the endothelial cells (ECs) comprised capillary ECs (early Cap: THY1+, CD24+), GRIA2+ arterial ECs (GRIA2+, GJA5+) and lymphatic ECs (PROX1+, STAB1+, UCP2LO) (Fig. S6A-C); showing that capillaries and lymphatic vessels are already distinct from the earliest stages of lung development and that arterial specification begins prior to venous specification. With increasing developmental age, the capillary EC lineage on the UMAP moves from early (THY1+, CD24+, EGLN1+) to mid (CA4+, KIT+, EGLN1+) to late (CA4+, KIT+) sub-types (Fig. S6A-C), similar to the age transitions seen in other compartments. In addition, trajectory analysis suggests that both mid and late Cap cells generate arterial and venous ECs (Fig. S6G,H). Recently described capillary ECs (Gillich et al., 2020; Vila Ellis et al., 2020) specialized for gas exchange and leukocyte trafficking, aerocytes (CA4LO, S100A3+), were also observed at 20 pcw and more clearly at 22 pcw (Fig. S6A-C). Spatially the aerocytes are arranged around the developing air sacs (Fig. S6D). As reported in the mouse (Vila Ellis et al., 2020), microvasculature specification therefore occurs relatively late in human fetal life coincident with the development of AT1 cells.

Broad markers of arterial and venous specification were clear in the tissue at 20 pcw (Fig. S6E). Overall, three distinct arterial ECs were detected. GRIA2+ ECs and arterial ECs (DKK2+, SSUH2+) form a continuous differentiation trajectory in pseudotime (Fig. S6G,H) and the GRIA2+ ECs are likely to be a more immature form of arterial endothelium. The OMD+ ECs (GJA5+, DKK2+, PTGIS+, OMD+), cluster with the arterial ECs on the UMAP and can be seen lining the larger arterial vessels on the Visium data (Fig. S9B). The venous ECs (PVLAP+, ACKR3+, HDAC9+) and the pulmonary venous ECs (PVLAP+, PTGISI+, PTGIS+) separate into two distinct clusters, with the pulmonary venous ECs represented by a small number of cells detected at 20/22 pcw (Fig. S6A-C). Systemic versus pulmonary circulation EC gene expression differences have previously
been detected in the veins of adult lungs (Schupp et al., 2021); here, we show that these are becoming established by 20 pcw while the fetal circulatory shunts are still present.

The lymphatic ECs were distinct from the other ECs. Two major lymphatic ECs were detected, lymphatic ECs (\textit{PROX1}+, \textit{STAB1}+, \textit{UCP2}LO) and SCG3+ lymphatic ECs (\textit{PROX1}+, \textit{SCG3}+), with an intermediate EC population connecting them (Fig. S6A-C,F). The SCG3+ lymphatic ECs resemble a lymphatic valve population which was recently described at a transcriptional level (Takeda et al., 2019).

\textbf{Haematopoietic cell types in the developing lung}

Alongside the development of the vascular system, erythrocytes and leukocytes were captured. At the early stages (5-6 pcw) when arterial, capillary and lymphatic endothelial cells were present, embryonic erythrocyte, HMOX1+ erythroblast and a small number of macrophages and ILC progenitors were detected, representing the early progenitors of haematopoiesis. After 11 pcw the relative numbers of lymphoid and myeloid cells grew rapidly, dominated by macrophages, dendritic cells, NK cells, ILCs, T cells and B cells (Fig. 1C, S2A,B, S7A-K). Immature T cells are largely absent from the atlas, consistent with the idea that T cell development is restricted to the thymus. In contrast, a range of early B cell precursors and the ILC precursor were detected. We further enriched TCR and BCR fragments from our scRNA-seq libraries which supported cell-type identities and subdivision (Fig. S7). To look for lung-specific features of the leukocyte cells, we compared our atlas with a pan-fetal human atlas (Cao et al., 2020). Unlike epithelial, endothelial and fibroblast cells, leukocytes in our atlas are transcriptionally highly similar to those of other organs with minimal evidence of lung-specificity (Fig. S7L).

\textbf{Developmental trajectories of mesenchymal cells}

Our scRNAseq atlas reveals new types of mesenchymal cells which we have localised to specific niches. The broad fibroblast cluster comprises fibroblasts, myofibroblasts, airway and vascular smooth muscle (ASM and vSMC), pericytes, mesothelium and chondrocytes (Fig. 4A,B). There is a distinct separation of cell clusters by age (Fig. 4C), but proximal-specific cell types were not detected except for airway fibroblasts (Fig. S2H). Airway SM cells were observed from 9 pcw, consistent with previous immunostaining (Nikolić et al., 2017), and showed increasing maturity over time (Fig. 4A,C). Two distinct populations of vSMC were observed throughout the scRNAseq time course: vSMC1 (\textit{NTRK3}+, \textit{NTN4}+, \textit{PLN}+) and vSMC2 (\textit{NTRK3}+, \textit{NTN4}+, \textit{PLN}+) (Fig. 4A,B). Both were localised to blood vessels on Visium analysis (Fig. 4D) and could be seen intermingled around the same vessels on tissue sections (Fig. S8A). vSMC1 was enriched in genes relating to ECM organisation and cell adhesion, whereas vSMC2 was enriched for transcripts encoding contractility proteins and signalling molecules (Fig. S8B). Since intermingling of vSMC subtypes with different levels of contractility proteins has been seen in adult lungs (Frid et al., 1997), our developmental observation suggests that these represent normal functional/ontological
differences, rather than pathology. Also associated with vessels, pericytes (NDUF4LA2+) were visualized as a cell layer adjacent to the endothelium around arteries and veins (Fig. S8C-E).

The most common cells isolated from the 5-15 pcw lungs were fibroblasts (Fig. 1C). At 5-6 pcw, early fibroblasts (SFRP2+, WNT2+) predominated, although multiple smaller fibroblast populations were also detected (Fig. 4A,B) including an SEMA3E+ population that is transcriptomically similar to chondrocytes and vSMC2. A SEMA3E+ mid-fibroblast was also detected and their high integrin alpha 8 (ITGA8) expression coincides with the marker of an adult lung fibroblast population in elastic fiber-rich connective tissues (Matsushima et al., 2020); however, we did not detect these cells beyond 11 pcw. In 9,11 pcw lungs, early fibroblasts had matured into mid-fibroblasts (WNT2+, FGFR4LO) which have recently been shown to promote epithelial tip cell fate (Reversade et al., 2021). In the most mature lungs sequenced, there were three distinct fibroblast populations: adventitial (SFRP2+, PI16+), airway (S100A4+) and alveolar (WNT2+, FGFR4+) fibroblasts with distinct spatial locations (Fig. 4A,B,E-H). In addition, an intermediate fibroblast population connected the advential and alveolar fibroblasts on the UMAP and showed graded gene expression (Fig. 4A,B), possibly representing a transitional state. Pseudotime trajectory analysis suggested a distinct differentiation hierarchy from the early and mid fibroblasts to adventitial fibroblasts; with alveolar and airway fibroblasts forming separate differentiation trajectories (Fig. 4I-K). Alternatively, the presence of the intermediate fibroblast population may indicate plasticity in the fibroblast lineage in normal development as previously suggested (Kumar et al., 2014).

The three major fibroblast cell types in 15-22 pcw lungs all expressed high levels of genes associated with ECM organisation, but also had distinct gene expression patterns and spatial localisations. The adventitial fibroblasts (SFRP2+, PI16+) were localised around the larger blood vessels in the Visium analysis (Fig 4D). This was confirmed by HCR where they formed diffusely arranged layers of cells surrounding the tightly packed concentric rings of endothelial cells, pericytes and smooth muscle (Fig 4E, S8C). Adventitial fibroblasts were highly enriched in gene expression associated with ECM organisation and signalling, including BMP, TGFβ, WNT (Fig. 4J,K; S8F,G) consistent with described roles providing structural support to the perivascular region of blood vessels (Dahlgren and Molofsky, 2019). By contrast, the alveolar fibroblasts (WNT2+, FGFR4+) were observed throughout the lung, particularly surrounding the tip cells and close to the microvasculature (Fig 4F). They were enriched in genes associated with actin organisation, focal adhesions and morphogenesis, as well as signalling molecules (Fig. 4J,K; S8F,G). The advential and alveolar fibroblasts shared key markers such as collagens, but also expressed unique genes (adventitial: SERPINF1, SFRP2, PI16; alveolar: FGFR4, VEGFD; Fig. 4K), with similar populations described in the adult lung (Travaglini et al., 2020). By contrast, the airway fibroblasts (S100A4+, note that S100A4 is expressed in various immune and airway epithelial cells) formed a distinct cell layer adjacent to the airway smooth muscle and were highly enriched in signalling molecules associated with morphogenesis (Fig. 4G,J,K; S8F,G). Airway fibroblasts currently do
not have a mature counterpart in any of the published adult lung single cell atlases and may be a development-specific cell with a role in a local signalling niche. They are likely analogous to the injury-induced airway fibroblasts observed in mice which also express high levels of Tnc and Fgf ligands and promote airway regeneration following injury (Moiseenko et al., 2020), again suggesting that the airways reuse developmental mechanisms during regeneration. We did not detect lipofibroblasts, which have been described in the adult lung (Travaglini et al., 2020), meaning that they are either exceptionally rare or formed later than 22 pcw.

Myofibroblasts formed three distinct groups in our single cell data. Myofibroblast 1 (CXCL14⁺, KCNK17⁺, CT45A3⁺) appeared at 9 pcw and persisted to 20 pcw. Myofibroblast 2 (CXCL14⁺, KCNK17⁺, CT45A3⁺, THBD⁺) and myofibroblast 3 (CXCL14⁺, KCNK17⁺, CT45A3⁻, THBD⁻) were predominantly identified at 22 pcw (Fig. 4A,B). Throughout development, myofibroblasts (CXCL14⁺, KCNK17⁺) were visualized surrounding the developing stalk region of the epithelium, suggesting a close signalling relationship (Fig. 4H, S8H). Although not detected in significant numbers in the scRNAseq data until 22 pcw, we see myofibroblast 2 (PDGFRA⁺, THBD⁺, NOTUM⁺) around the stalk epithelium from 15 pcw (Fig. S8I,J,L), coincident with the acquisition of AT2 markers by the late tip cells, and suggesting that it is a more mature state of myofibroblast 1. Myofibroblast 2 was enriched in the expression of genes associated with cell contractility and focal adhesions, as well as WNT signalling (Fig. S8K,L). Contractility gene expression may reflect a role in branching morphogenesis, as suggested for mouse lungs (Goodwin et al., 2019). Co-expression of the Wnt-responsive genes LEF1, NOTUM and NKD1 suggests that myofibroblast 2 is responding to local Wnt expression (WNT2 is high in alveolar fibroblasts) and producing the secreted Wnt inhibitor NOTUM; potentially to regulate local cell patterning. We tested this hypothesis using co-culture experiments where myofibroblast 2 was shown to both respond to WNT and to modulate the Wnt-response of co-cultured epithelial cells (Lim et al., 2021). In vivo, myofibroblast 2 modulates the WNT2 signal from the alveolar fibroblasts mediating spatial patterning of epithelial AT2 and AT1 fate in normal human lung development. By contrast, myofibroblast 3 has higher expression of genes associated with ECM organisation and a variety of signalling molecules, including C7, RSPO2 and BMPER (Fig. S8K,L). Myofibroblast 3 was detected in lung sections from 21 pcw and always localised to the developing air sacs (Fig. S8J), rather than the stalk epithelium. These cells are likely to be precursors of the alveolar myofibroblasts which organise the alveolar niche during morphogenesis (Li et al., 2020; Zepp et al., 2021).

Signalling niches in lung development
We used CellPhoneDB (Efremova et al., 2020) to analyse cell-cell communication in the developing lung with the aim of predicting signalling interactions controlling cell fate allocation. We focused on 15-22 pcw cells and, based on the spatial localisation of the three major fibroblast populations (Fig. 4E-G), analysed signalling within three local niches, defined as follows - Airway niche: airway fibroblasts; late airway SMCs; airway epithelial cells. Alveolar niche: alveolar
fibroblasts, aerocytes, late Cap cells, late tip cells, AT1, AT2. Adventitial niche: adventitial fibroblasts, arterial endothelium, OMD⁺ endothelium, vascular smooth muscle cells. CellPhoneDB predicts numerous signalling interactions (Sup. Table 2) which we curated by plotting the expression of ligand-receptor pairs representing major signalling pathways (Fig. 5A,B; S9A). We observed expected interactions, including high levels of Notch ligands and receptors, and RSPO3-LGR6 and CXCL12-CXCR4 signalling in the advential niche (Fig. S9A) (Herbert and Stainier, 2011). Similarly, expected signalling interactions predicted in the alveolar niche included aerocytes to late cap cells (ALPN-ALPNR) and alveolar epithelial cells to microvascular endothelial cells, particularly AT1 to aerocyte, (VEGFA-FLT1/FLT4/KDR) (Fig. S9B) (Gillich et al., 2020; Vila Ellis et al., 2020).

Airway fibroblasts were predicted to signal via TGFβ3 and BMP4 to the developing airway epithelium, consistent with observed roles in human basal cell specification and differentiation (Miller et al., 2020; Mou et al., 2016). The airway fibroblasts and smooth muscle were also predicted to signal to the epithelium via FGF7/18 to FGFR2/3 and non-canonical WNT5A to FZD/ROR (Fig. 5A). By contrast, although FGF and WNT signalling interactions were also predicted in the alveolar niche, interactions were based on lower levels of FGF expression, but higher levels of canonical WNT2 and its cognate receptor expressed on epithelial cells (Fig. 5B). The predicted FGF and WNT signalling interactions in the alveolar niche/late tip cells are consistent with the requirement of these factors for long-term self-renewal of human distal tip organoids (Lim et al., 2021; Nikolić et al., 2017). Tissue staining showed that although FGF7 is expressed fairly ubiquitously throughout the lung, the airway fibroblasts and smooth muscle cells form a distinct barrier between the airway epithelium and the canonical WNT2 expression (Fig. 5C-E). Based on these data, we predicted that removing canonical WNT signalling, but retaining FGF signalling would promote airway differentiation in the human distal tip organoids (Fig. 5F). Indeed, we observed robust basal, secretory and ciliated cell differentiation in response to FGF-containing medium (Fig. 5G,H).

scATACseq analysis identifies putative cell fate regulators

Single cell ATACseq provides an independent method of assessing cell type based on open chromatin regions and also allows cell type-specific TFs to be predicted using motif analysis. After tissue dissociation, the single cell suspensions were split and half of the cells processed for nuclear isolation and scATACseq (Fig. 1A). Following quality control and doublet removal, 67 scATACseq clusters comprising a total of ~100K cells were obtained and a label transfer process was used to annotate scATACseq clusters based on our scRNAseq data (Fig. 6A; Methods). Not every cell state detected by scRNAseq was distinguishable by scATACseq, consistent with previous work (Cao et al., 2020; Domcke et al., 2020). For example, separate tip, stalk and airway progenitor clusters were discerned by scRNAseq (Fig. 2A), but a combined cluster with strong similarity to all three cell types was detected by scATACseq (Fig. 6A). Similarly, the resolution of scATACseq allowed us to identify a combined AT1/AT2 cluster and single arterial endothelial,
vascular smooth muscle, myofibroblast and basal cell clusters (Fig. 6A). Nevertheless, there was broad agreement between the scRNAseq and ATACseq data in terms of capturing cell types, including many of the novel/lesser-known cell types we identified by scRNAseq (mid and late tip, mid and late airway progenitors, GHRL+ NE, MUC16+ ciliated, dueterosomal, airway fibroblasts, aerocytes, SCG3+ lymphatic endothelium).

We analysed TF binding motifs in the unique/enriched open chromatin regions in each cluster and plotted the top 5 TF motifs per cell type (Fig. S10). This revealed some expected TF signatures, for example TCF21 in the alveolar, adventitial and airway fibroblasts (Quaggin et al., 1999), GHRL and FOXA1/2 in epithelial cells (Gao et al., 2013; Wan et al., 2005), and SOX17 in arterial endothelium (Corada et al., 2013). Focusing in more detail on the epithelial cells and filtering on TF expression in the corresponding cell type in the scRNAseq data (Fig. 6B), we noticed that TEAD motifs were enriched in mid stalk cells consistent with a key role for Yap (van Soldt et al., 2019), NKX2.1 in AT1/AT2 cells (Kimura et al., 2019), and TP63 in basal cells (Rock et al., 2009). Unexpected TF signatures included KLF factors in the secretory and AT1/AT2 cells, HNF1B in late tip cells, and ZBTB7A in early tip/stalk/airway progenitors. We focused on the pulmonary and GHRL+ NE cells which cluster closely in both the scRNAseq and scATACseq data (Fig. 2A, 6A). ASCL1 is required for mouse NE cell differentiation (Borges et al., 1997; Ito et al., 2000) and this motif is strongly associated with both pulmonary and GHRL+ NE cells (Fig. 6B). However, both cell types also have specific TF motifs including NEUROD1 and RFX6 in the GHRL+ NEs, and TCF4 and ID in the pulmonary NEs (Fig. 6B). Consistent with this, the two cell types have distinct, unique regions of open chromatin. especially in the neighborhood of cell-type specific genes such as GRP and GHRL (Fig. 6C, D).

In summary, we have produced a high-resolution scATACseq data set for the developing human lungs which is highly consistent with our scRNAseq data. Mining this data set provides hypotheses for lineage-determining TFs in lung development, many of which have been reported to be dysregulated in lung disease (Apostolopoulou et al., 2007; Koczulla et al., 2012; Shen et al., 2020). As further scATAC datasets become available for control and diseased adult lungs, our data will provide a resource for comparing normal and aberrant TFs and chromatin regulation.

Transcriptional control of neuroendocrine cell subtype formation

Pulmonary NE cells and GHRL+ NE cells share the expression of many TFs and open chromatin regions, but are transcriptionally distinct. In our scRNAseq data, they were both observed along a maturation trajectory (labelled as precursors), shared classical NE markers (CHGA, SYP), but differed in TF and hormone expression (Fig. 7A,B). A third NE population (intermediate NE) clustered between pulmonary and GHRL+ NE cells and was intermediate in gene expression (Fig. 7A,B), although it did contain a small number of cells expressing the unique marker NEUROG3. Pseudotime trajectory analysis suggested that pulmonary NE and GHRL+ NE cells were derived from airway progenitors/stalk cells and that the intermediate NEs are an additional transition
population (Fig. S11A,B). The transition states between pulmonary NE and GHRL+ NE were confirmed in fetal lung samples (Fig. S11C). We therefore postulated that Pulmonary NE precursors could acquire NEUROG3 and convert to GHRL+ NE fate (Fig. 7C), or vice-versa - GHRL+ precursors converting to pulmonary NE fate. We confirmed our cell type designations by analysis of the tissue. ASCL1 was co-expressed with GRP, but rarely with GHRL. We also observed ASCL1 single positive cells, likely representing the pulmonary NE precursors (Fig. 7D). NEUROD1 was co-expressed with GHRL, but also observed with GRP (Fig. 7E). Whereas NEUROG3 was co-expressed with ASCL1 and/or NEUROD1, supporting a role in a transition population (Fig. S11D).

Differential expression of ASCL1 and NEUROD1 defines A-type and N-type human small cell lung cancer (SCLC), which are considered to derive from NE cells (Gay et al., 2021). Interestingly, these two transcription factors coincide with the scRNA-seq marker genes and scATAC-seq TF motif enrichment of our fetal NE cells (Fig. 6B,7B). Therefore, we generated SCLC feature gene lists (Borromeo et al., 2016) and performed gene signature scoring, showing that the A-type signature resembles pulmonary NEs, whereas the N-type resembles GHRL+ NEs (Fig. 7F). These data suggest that either there are two different NE cells of origin for human SCLCs, or that SCLCs reuse developmental mechanisms as suggested by some mouse models (Ireland et al., 2020). Given their relevance to human disease states, we sought to use our single cell atlas to identify the lineage-defining TFs controlling NE cell differentiation and test these predictions using our organoid system. We reasoned that overexpression of lineage-defining transcription factors in lung tip organoids (Nikolić et al., 2017; Sun et al., 2021a) would promote cell type-specific differentiation.

Multiple TFs were differentially expressed between pulmonary NE and GHRL+ NE cells (Fig. 7B). We used SCENIC analysis of gene regulatory networks (GRNs) (Aibar et al., 2017) along the airway progenitor to GHRL+ NE trajectory (Fig. S11A,B) to predict lineage-defining TFs (Fig. 7G). ASCL1, NEUROD1 and NEUROG3 all emerged as potential key nodes and are required for endocrine cell differentiation in various organs (Borges et al., 1997; Ito et al., 2000; Mellitzer et al., 2010; Naya et al., 1997). We also selected the GHRL+ NE-specific RFX6 (Fig. S11E) and NKX2.2, the pan-NE PROXI (Fig. 7B) and, as controls, the basal cell-specific TFs DeltaNTP63, TFAP2A, PAX9, and mNeonGreen-3xNLS. Overexpression of PROXI or NKX2-2 did not result in NE gene upregulation based on qRT-PCR (not shown) and these factors were not followed up. The other factors resulted in increased expression of basal or NE markers compared to mNeonGreen-3xNLS controls and the experiments were repeated using scRNAseq. Individual TFs were overexpressed from a doxycycline- inducible construct for 3 days and organoids were maintained in the self-renewing (tip cell state-promoting) medium throughout to rigorously assay the lineage-determining competence of the TF (Fig. 7H; S12A), followed by scRNA-seq.

When mapped to epithelial cells of our fetal lung atlas, the majority of the mNeonGreen-3xNLS expressing organoid cells were projected towards mid tip progenitors or mid stalk cells as
expected, further validating the organoid model (Fig. 7I). Whereas overexpression of DeltaNTP63 resulted in basal cell-like lineages (S12B) consistent with a previous report (Warner et al., 2013), indicating that this simple in vitro assay could capture TF function accurately. Overexpression of RFX6, TFAP2A or PAX9 did not result in the predicted lineage progression at a transcriptome level (S12B); possibly due to the weak effects of these TFs, or the low sensitivity of scRNAseq. However, ASCL1-overexpression organoids progressed into pulmonary NE precursors (Fig. 7I). By contrast, NEUROD1 overexpression promoted tip progenitor cell differentiation into GHRL+ NE precursors (Fig. 7I). Intriguingly, NEUROG3 overexpression also led to GHRL+ NE precursor formation (Fig. S12B). This indicated that the GHRL+ NE lineage is the destination of the intermediate NE population (Fig. 7C).

The 5’ differences between the transgenes and endogenous TFs allowed us to distinguish these transcripts and infer gene regulation hierarchy. We observed autoregulation of ASCL1, NEUROD1, NEUROG3 and RFX6 (Fig. S12C). By contrast, NKX2-2 and PROX1 were upregulated by other TFs, indicating they are relatively low in the hierarchy (Fig. S12C). NKX2-2 and PROX1 expression in the organoid assay matched their expression patterns in NE cells in vivo (Fig. S12C), showing that this assay recapitulated key features of the TF network. These experiments have allowed us to test gene regulatory network (GRN) predictions from the single cell atlas, confirm the predicted lineage trajectory and provide a foundation for studying human SCLC. This is particularly significant given that there is no evidence that GHRL+ NE cells are present in mice (Borromeo et al., 2016), making the use of mouse models difficult.

Discussion

Using a combination of single cell and spatial approaches we have identified 147 cell types, or states, in the developing human lungs across the 5-22 pcw period. We take advantage of a known proximal-distal gradient in epithelial differentiation to identify progenitor states in the developing airway hierarchy with unprecedented resolution, including a new neuroendocrine cell subtype related to SCLC. We show that human alveolar epithelial differentiation follows a tip-stalk-AT2/1 fate decision pattern that is different to the prevailing cellular models of mouse alveolar development. Moreover, analysis of the mesenchymal compartment identified three niche regions with distinct signalling interactions, allowing us to identify signalling conditions that are sufficient for airway differentiation of human embryonic lung organoids. We tested the GRN predictions for NE cell differentiation in an organoid system, allowing us to identify lineage-defining TFs and provide directionality to the inferred differentiation trajectory. This study provides a paradigm for combining single cell datasets with spatial analysis of the tissue and functional analyses in a human organoid system to provide mechanistic insights into human development.

Our data show that lung maturation occurs in concert across cell compartments, for example with epithelial AT1 cells and endothelial aerocytes differentiating in parallel at 20-22 pcw. Moreover, we have observed many aspects of cellular differentiation in utero for the first time showing that
they are controlled by prenatal factors, rather than the transition to air breathing with its associated mechanical and hormonal changes. For example, pulmonary venous endothelial cells, two distinct types of vSMCs and two types of lymphatic endothelial cells are established prior to major alterations in blood flow that occur postnatally.

We characterize in detail the proximal-distal differentiation trajectory in the airway epithelium: descendants of tip cells enter the stalk region and lose tip markers, before acquiring airway progenitor fate and entering into neuroendocrine or secretory lineages (Fig. 2). We define a new late tip cell state in which tip epithelial cells upregulate markers of AT2 cells, but retain canonical tip markers, from ~15 pcw (Fig. 3). This late tip cell has not been observed in mice and our further analyses have shown that it is a functionally distinct tip cell state with high propensity to produce alveolar epithelium (Lim et al., 2021). These data show that human distal tip cells are sequentially potent, rather than multipotent, with distinct tip cell states generating airway and alveolar descendants. In addition, we show that the spatial patterning of human alveolar epithelial lineages is analogous to the process for airway cells: cells exit the late tip and turn-off both tip and AT2 markers, prior to initiating differentiation into either AT1 or AT2 cell states (Fig. 3I). This is different to reports in the developing mouse lung of early commitment (even during the airway branching phase) to AT2 and AT1 lineages (Frank et al., 2019; Zepp et al., 2021). We speculate that the difference may originate from the compressed timing of mouse embryonic development.

The mesenchymal compartment contains multiple fibroblast and myofibroblast cell states and we focus on those present during the later stages of lung development. We show that airway, adventitial and alveolar fibroblasts are all localized in distinct niche regions and participate in different signalling interactions. Airway and adventitial fibroblasts both express unique combinations of signalling molecules and also form physical barriers between the neighbouring airway epithelium, or vascular endothelium, and the widespread alveolar fibroblasts (Fig. 4,5). Similarly, we characterize a population of myofibroblasts which contacts the developing epithelial stalk region and expresses high levels of the secreted Wnt-inhibitor, NOTUM; whereas alveolar fibroblasts express high levels of the canonical \(WNT2 \) ligand (Fig. 4). In a separate study, using surface markers identified from this single cell atlas, we were able to specifically isolate alveolar fibroblasts and myofibroblast 2 cells and perform co-culture experiments with late tip organoids (Lim et al., 2021). Those experiments confirmed that a three-way signaling interaction between alveolar fibroblasts, myofibroblast 2 cells and late tip cells can control human AT2 spatial patterning.

Recent mouse studies show that fetal transcriptional and chromatin cell states are accessed during the normal process of tissue regeneration and may contribute to neoplasm in chronic inflammation (Jadhav et al., 2017; Larsen and Jensen, 2021). Our atlas confirms transcriptional similarities between human lung development and disease: developmental secretory progenitors express high levels of secretoglobins previously reported only in secretory cells from end-stage fibrosis lungs.
(Carraro et al., 2020; Habermann et al., 2020); airway fibroblasts are highly reminiscent of a cell state observed in mouse lung regeneration (Moiseenko et al., 2020); GHRL+ NE cells are transcriptionally similar to a NEUROD1+ subtype of SCLC (Fig. 7). GHRL+ NE cells have not yet been identified in adult lungs and our data may indicate either that they are a cancer cell of origin, or that NEUROD1+ SCLCs reuse developmental transcriptional networks. Our functional analyses of NE cell differentiation in organoids will provide tools to test these hypotheses. Detailed ATACseq datasets are not yet available for human lung disease. Our ATACseq atlas has three times the median number of fragments per cell and more than seven times the number of lung cell types than published multi-organ atlases. It will provide a baseline for analyses when adult lung atlases are published. In summary, our multi-component atlas is a community resource for future analyses of human development, regeneration and disease.

Acknowledgements
We would like to acknowledge the Gurdon Institute Imaging Facility, and the Cellular Generation and Phenotyping group, New Pipeline Group and DNA pipelines of Sanger Institute. Menna Clatworthy and Muzz Haniffa and RE, CS, ED, IG, MH, CD, WS for discussions on cell-type annotations; MP and CT for informatics support. KL is supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2018R1A6A3A03012122). DS is supported by a Wellcome Trust PhD studentship (109146/Z/15/Z) and the Department of Pathology, University of Cambridge. PH holds a non-stipendiary research fellowship at St Edmund’s college, University of Cambridge. EM is supported by ESPOD fellowship of EMBL-EBI and Sanger Institute. JPP is supported by the MSCA Postdoctoral Fellowship. ELR is supported by the MRC (MR/P009581/1; MR/S035907/1). ZD is supported by a Wellcome Trust PhD studentship (222275/Z/20/Z). RAB is supported by the NIHR Cambridge Biomedical Research Centre (BRC-1215-20014) and was an NIHR senior investigator. Gurdon Institute Core support from the Wellcome Trust (203144/Z/16/Z) and Cancer Research UK (C6946/A24843). KBM, JCM and SAT acknowledge funding from the MRC (MR/S035907/1) and from Wellcome (WT211276/Z/18/Z and Sanger core grant WT206194).
REFERENCES

FIGURE LEGENDS

Figure 1. Experimental overview.
(A) Overview of sample collection for scRNAseq (circles) and scATACseq (squares) experiments from whole lung (purple), distal (red) and proximal (blue) lung section, followed by cell processing and clustering, with cluster number referring to those used in the data portal (https://fetal-lung.cellgeni.sanger.ac.uk).
(B) UMAP representation of approximately 80,000 good quality cells obtained, indicating epithelial, endothelial, fibroblasts and leukocyte/erythroid compartments.
(C) Cell type proportions of the whole lung over developmental time.

Figure 2. Epithelial cell types, states and location over developmental time
(A, B) UMAP visualization of epithelial cells, coloured by cell types (A), stage (B, left), and dissection (B, right).
(C) Dot plot describing differential marker gene expression level for all identified cell types.
(D) UMAP visualising the predicted epithelial cell lineage trajectory using scvelo, developmental age is plotted in the inset.
(E, F) UMAP (E) and associated gene expression heatmap (F) delineating a lineage trajectory from Mid tip to Secretory cells using Monocle 3.
(G, H) In situ HCR analysis of distal fetal lungs at 11 (H) and 12 (G) pcw. (G) Airway progenitors and secretory progenitors are marked by SOX9/CYTL1^low/+\texttt{SCGB3A2}^{low/} and SOX9^-\texttt{CYTL1}^{high/+}/\texttt{SCGB3A2}^{high/+}, respectively. SOX9 (tip epithelial cell, white), CYTL1 (red), and \texttt{SCGB3A2} (green). (H) Two subtypes of neuroendocrine cells are marked as \texttt{GHRL}^+ (\texttt{GHRL}^+ neuroendocrine, red) or \texttt{GRP}^+ (pulmonary neuroendocrine, green).
(I) In situ HCR analysis of proximal cartilaginous airway regions of fetal lungs at 19 pcw. Four subtypes of secretory cells were observed: Secretory 1, \texttt{SCGB3A2}/\texttt{SCGB3A1}^{+}/\texttt{SCGB1A1}^{low/-} (arrowhead); Secretory 2, \texttt{SCGB3A2}/\texttt{SCGB3A1}^{+}/\texttt{SCGB1A1}^{+} (asterisk); Secretory 3, \texttt{SCGB3A2}^{low/-}/\texttt{SCGB3A1}^{+}/\texttt{SCGB1A1}^{+} (arrow); Secretory 4, submucosal gland cells (SMGs), \texttt{SCGB3A1}^{+}. DAPI, nuclei. Scale bars, 50 µm.

Figure 3. Late epithelial tip cells acquire an alveolar progenitor identity
(A, B) In situ HCR analysis of distal lung regions at 10 (A, B), 15 (B), and 20 (A) pcw. (A) The early tip progenitor marker, \texttt{TPPP3} (red) at the pseudoglandular stage, 10 pcw, and at the canalicular stage, 20 pcw. \texttt{SOX9} (white, upper panel) at 10 pcw and \texttt{SFTPC} (green, lower panel) at 20 pcw indicate tip regions (arrows). (B) A late tip marker, \texttt{SFTPA1}, was rarely observed in 10
pcw fetal lungs (red, upper panel), clearly appeared in the tip regions of 15 pcw fetal lungs, with *STC1* (white), a Mid/Late tip progenitor marker. *SFTPC* (green).

(C) UMAP visualization of Mid/Late tip, AT1 and AT2 cells, coloured by stage.

(D) Lineage trajectory from Mid tip, Late tip, AT2, to AT1 (right) derived using Monocle 3.

(E) Heatmap showing gene expression along the lineage trajectory in D.

(F) *In situ* HCR analysis of distal fetal lung regions at 16, 19, and 21 pcw, *SFTPC* (green) and *SOX9* (white). Arrows, *SFTPC*+/*SOX9*+ tip cells; arrowheads, differentiating AT2 cells in stalk/air sac regions, *SFTPC*+/*SOX9*low−; asterisk (*), air sacs.

(G) Quantification of AT2 cells, *SFTPC*+/*SOX9*low−, in stalk/air sac regions at 14, 15, 17, 19, and 21 pcw fetal lungs. Mean ± SD, n >7. Significance evaluated by 1-way ANOVA with Tukey multiple comparison post-test; ns: not significant, *P*<0.05, **P**<0.01, ***P***<0.001, ****P***<0.0001.

(H, I) *In situ* HCR analysis of 21 pcw fetal lung, visualizing the localization of AT2 (H) and AT1 (I) cells, each marked by *SFTPC*+ and *NAPSA*+ (arrowheads; H, I) and *SFTPC*−/MMP28+/SPOCK2+ (arrows; I).

(J) Diagram describing the differentiation process of late epithelial tip cells to acquire an alveolar progenitor identity, followed by alveolar epithelial differentiation to AT2 and AT1 cell lineages.

Figure 4. Diverse mesenchymal cell types localize to distinct niches in the developing human lung.

(A) UMAP visualization of mesenchymal cells, coloured by cell types.

(B) Dot plot describing differential marker gene expression within a cluster by cell type.

(C) UMAP visualization of mesenchymal cells, coloured by stages.

(D) Visium spatial feature plots visualizing adventitial fibroblasts, vascular SMC 1 and 2 on a 17 pcw lung section.

(E-H) *In situ* HCR assay (E, F, H) and immunostaining (G) for fetal lung tissues at 19 (E), 18 (F), 15 (G), and 17 (H) pcw. (E) Adventitial fibroblasts (*SFRP2*+, white/*PI16*+, red; arrowheads). Endothelial cell (*PECAM1*, green). (F) Alveolar fibroblasts (*WNT2*+, white/*FGFR4*+, red), tip cells (*SFTPC*, green). Asterisks (*; myofibroblasts). (G) Airway fibroblasts (*S100A4*+, red; dashed lines), tip cells (*CD44*, green), smooth muscle (*ACTA2*, white, arrowheads). (H) Myofibroblasts (*KCNK17*+, white/*CXCL14*+, red; arrowheads), tip cells (*SFTPC*, green). DAPI, nuclei. Scale bars, 50 µm.

(I) UMAP visualization of fibroblast differentiation trajectories, coloured by cell types and stage.

(J, K) UMAPs (J) and the relevant gene expression heatmaps (K) displaying potential lineage trajectories from Mid tip to adventitial fibroblasts (top), alveolar fibroblasts (middle), or airway fibroblasts (bottom) derived using Monocle 3.
Figure 5. Signalling ligand-receptor interactions in alveolar and airway niches.

(A, B) Overview of predicted ligand–receptor interactions from CellPhoneDB in alveolar (A) and airway (B) niches. Dot plots visualize gene expression by cell type and dashed arrows indicate a predicted direction of signaling from ligands to receptors.

(C-E) Immunofluorescence of fetal lung tissues at 15 (C) and 19 (D, E) pcw. S100A4/S100A4, airway fibroblasts; ACTA2, airway SMCs; CD44, tip epithelium in alveolar region; PECAM1, endothelial cells. S100A4+ airway fibroblasts form a boundary (dashed lines) between alveolar and airway regions. Lines indicate a boundary between airway fibroblasts/airway SMCs and airway epithelial cells. DAPI, nuclei. Scale bars, 50 µm.

(F) Experimental outline for airway differentiation of lung tip organoids. Organoids were cultured in FGF7/10-containing medium, in the presence (self-renewal medium; SNM) or absence (differentiation medium; DM) of CHIR99021, a Wnt agonist, for 30 days.

(G) Changes in relative mRNA levels of maker genes of the tip progenitors (SOX9, SOX2), basal cells (TP63, KRT5), secretory cells (SCGB3A2, SCGB1A1), and ciliated cells (FOXJ1) by qRT-PCR. Data was normalized to the organoids cultured in SNM. Significance evaluated by 2-way ANOVA with Tukey multiple comparison post-test; *P<0.05, **P<0.01, ***P<0.001; n = 6 organoid lines.

(H) Whole mount immunofluorescence of lung organoids cultured in self-renewal medium (upper) and differentiation medium (lower) for 30 days. DAPI, nuclei. Scale bar, 25 µm.

Figure 6. DNA accessibility and motif enrichment revealed by scATAC-seq.

(A) Single-cell DNA accessibility profiles mapped onto 2D UMAP plane. Colors represent cell types/states.

(B) Top 10 enriched motifs in the marker peaks among epithelial cell types/states. Statistical significance is visualized as a heatmap according to the color bar below. Transcription factors concordantly expressed based on scRNA-seq data are marked with asterisks.

(C-D) Read coverage tracks of in silico aggregated “pseudo-bulk” epithelial clusters over the GRP locus (C) and GHRL locus (D).

Figure 7. ASCL1 and NEUROD1 regulate the formation of two subtypes of neuroendocrine cells.

(A) Zoom-in UMAP plot of NE lineages: GHRL+ NE, Pulmonary NE, precursor cells, and a transition population (intermediate NE).

(B) Dot plot showing selected gene expression in GHRL+ NE, Pulmonary NE and NEUROD1+ pulmonary NE. Intermediate NE presented a transition signature and some cells expressed NEUROG3.

(C) A schematic model of NE lineage formation based on trajectory analysis. Airway progenitor cells give rise to pulmonary NE and GHRL+ NE, via ASCL1 or NEUROD1 expression respectively.
A second route to \textit{GHRL}+ NE is for differentiating pulmonary NE cells to turn on \textit{NEUROG3} expression and transition to the \textit{GHRL}+ state.
(D) \textit{ASCL1} enrichment in \textit{GRP}+ pulmonary NE cells. Left: Representative HCR images showing \textit{ASCL1} enriched in \textit{GRP}+ pulmonary NE cells. \textit{GRP} (green), \textit{GHRL} (red), \textit{ASCL1} (white). Yellow line indicates the \textit{GRP}+\textit{ASCL1}+ pulmonary NE cells. Dashed yellow line marks \textit{GRP}+\textit{ASCL1}+ pulmonary NE precursor cells. White dashed line indicates the \textit{GHRL}+\textit{ASCL1}+ \textit{GHRL}+ NE cells. Right panel: Mean ± SEM of \textit{ASCL1}+ cell types, \(N = 3\) human fetal lungs, \(n = 243\) \textit{ASCL1}+ cells.
(E) \textit{NEUROD1} enrichment in \textit{GHRL}+ NE cells. Left: Representative HCR images showing \textit{NEUROD1} expression in \textit{GHRL}+ NE cells. \textit{GRP} (green), \textit{NEUROD1} (red), \textit{GHRL} (white). Yellow line indicates the \textit{NEUROD1}+\textit{GHRL}+ pulmonary NE cells. Dashed yellow line marks \textit{NEUROD1}+\textit{GHRL}+ low \textit{GHRL}+ NE precursor cells. Right panel: Mean ± SEM of \textit{NEUROD1}+ cell types: \(N = 2\), 11 pcw human fetal lungs, \(n = 129\); \(N = 3\), 12 pcw human fetal lungs, \(n = 132\). Scale bars = 25 µm in all panels.
(F) Pulmonary NE and \textit{GHRL}+ NE ressemble A-type (\textit{ASCL1}+) and N-type (\textit{NEUROD1}+) SCLC, respectively. Gene signature scoring of A-type and N-type SCLC features in the epithelial compartment.
(G) Scenic analysis of transcription factor network governing Mid tip progenitor cells to pulmonary NE transition. Trajectory and colour coding match Fig. S9B.
(H) Schematic of TF overexpression experiments. Organoids from 8 pcw human fetal lungs were transduced with Doxycycline (Dox) inducible TF, or mNeonGreen-NLS, lentivirus. Transduced organoids were isolated by flow cytometry based on TagRFP expression, seeded in Matrigel and given 10-13 days to recover before Dox treatment. Organoid cells were harvested 3 days post-Dox for scRNA-Seq. \(N=3\) organoid lines used.
(I) scRNA-Seq analysis revealed \textit{ASCL1} and \textit{NEUROD1} overexpression differentiated tip organoids into pulmonary NE precursors and \textit{GHRL}+ NE precursors, respectively. Left: reference UMAP of primary human fetal lung epithelium. AT1, alveolar type I cells; AT2, alveolar type 2 cells; GNE Pre, \textit{GHRL}+ NE precursors; GNE, \textit{GHRL}+ NE cells; INE, intermediate transition NE cells; PNE Pre, pulmonary NE precursors; PNE, pulmonary NE cells. Mid and right panels: scRNA-Seq of organoids overexpressing \textit{mNeonGreen-NLS}, \textit{ASCL1} or \textit{NEUROD1} projected onto the primary data.

Figure S1. Quality control for scRNA-seq and scATAC-seq data
(A) Distributions of the number of genes detected per cell, grouped by 10X libraries.
(B) Proportions of broad cell types in samples treated with Trypsin, and Trypsin plus EPCAM enrichment following colour codes in Figure 1C.
(C) Initial clusters of data separating compartments, before subclustering.
(D-F) Workflows of the recursive subclustering method (D), the Doublet Cluster Labeling (DouCLing) method to identify doublet-driven clusters (E), and inference of maternal cells using Souporcell (F).
(G) Doublet scores calculated by Scrublet.
(H) Inferred doublet clusters using DouCLing.
(I) Number of genes detected projected on UMAP.
(J) Percentage of mitochondrial reads.
(K) Cells in curated doublet clusters.
(L) Cells in clusters of cells coming from other organs. Marker genes in parentheses.
(M) Inferred maternal cells.
(N) Cells in curated low-quality cell clusters.
(O, P) scATAC-seq quality metrics of fragment detection per cell (O) and reads mapped in transcription-start sites (P).

Figure S2. Overview of 147 cell types or cell states

(A-E) All of the curated 147 clusters of single cells projected on UMAP space of transcriptomes, colored by cell type/state (A), developmental stage (B), inferred cell-cycle phase (C), dissection region (D) and dissociation/enrichment strategy (E).
(F) Cells from the initial PNS cluster (C7) projected on UMAP space of transcriptomes, colored by cell type/state.
(G) Selected feature genes of cell types/states in the initial PNS cluster.
(H) Proximal-distal biases of cell types. Cell types are shown as dots with x representing p values of Fisher’s exact test and y values representing fold of proximal enrichment.

Figure S3. Comparing fetal lung scRNA-seq with adult scRNA-seq using logistic regression models.

(A-E) Fractions of fetal cells in each cluster in row labels predicted to be each adult cell cluster (Madissoon et al. 2021 biorxiv) in column labels visualized using heatmaps, grouped into epithelial (A), PNS (B), fibroblast and SMC (C), erythrocyte and endothelial (D), and leukocyte compartments (E).
(F) Fractions of fetal cell clusters in each cluster in row labels predicted to be each adult cell cluster (Carraro et al. 2021) in column labels visualized using heatmaps.

Figure S4. Spatial analysis of airway epithelial cells in the developing human lungs by *in situ* HCR.

(A) Tip and stalk epithelial cells in distal regions of fetal lungs at 17 pcw, immunostained using antibodies against CD36 (tip epithelial cells, red), PDPN (stalk epithelial cells, white), and E-cadherin (epithelium, cyan).
(B, B') Airway progenitor and secretory progenitor cells in distal fetal lungs at 10 (B) and 16 (B') pcw. The secretory progenitor cells marked by $SOX9/^+/CYTL1^{high+}/SCGB3A2^{high+}$ are proximally
located down to the airway progenitors marked by $\text{CYTL1}^{\text{low+/+}}/\text{SCGB3A2}^{\text{low/-}}/\text{SCGB1A1}^{-}$. SCGB1A1 indicates club cells (B, white). SFTPC is mainly expressed in the tip and partly located in stalk regions (B’, green).

(C) GHRL$^+$ neuroendocrine (dashed line, red) and GRP$^+$ pulmonary neuroendocrine cells (arrow, green) in fetal lungs at 22 pcw. SFTPC indicates tip epithelial cells (white).

(D) Secretory progenitor (arrowhead) and club cells (arrow) in non-cartilaginous airway regions of fetal lungs at 12 pcw are marked by $\text{SCGB3A2}^{+}/\text{SCGB1A1}^{-}$ and $\text{SCGB3A2}^{+}/\text{SCGB1A1}^{+}$, respectively. Tip, stalk, airway progenitor, secretory progenitor, and club cells are lined from the distal tip regions to the proximal non-cartilaginous airway regions. SCGB3A2 (green), SCGB1A1 (red).

(E) Secretory 1 (arrowhead) and Secretory 2 (arrow) are distinguishable by the presence or absence of SCGB1A1 expression, each marked by $\text{SCGB3A1}^{+}/\text{SCGB1A1}^{\text{low/-}}/\text{MUC16}^{\text{low/-}}$ and $\text{SCGB3A1}^{+}/\text{SCGB1A1}^{+}/\text{MUC16}^{\text{low/+}}$, respectively, in the proximal cartilaginous airway in 15 pcw fetal lungs. MUC16^{+} only cells are MUC16^{+} ciliated cells. SCGB3A2 (green), SCGB1A1 (red), MUC16 (white).

(F) Secretory 2 (arrowhead) and Secretory 3 (arrow) are distinguishable by the presence or absence of SCGB3A2 and MUC16 expression, marked by $\text{SCGB3A2}^{+}/\text{SCGB1A1}^{+}/\text{MUC16}^{\text{low/+}}$ and $\text{SCGB3A2}^{\text{low/-}}/\text{SCGB1A1}^{+}/\text{MUC16}^{+}$, respectively, in the proximal cartilaginous airway of fetal lungs at 15 pcw. SCGB3A2 (green), SCGB1A1 (red), MUC16 (white).

(G) Secretory 4 (arrow) located in SMGs are marked by strong LTF expression with $\text{SCGB3A1}^{+}/\text{SCGB3A2}^{-}$ in the proximal cartilaginous airway regions of fetal lungs at 15 pcw. SCGB3A2 (green), LTF (red), SCGB3A1 (white).

(H) Ciliated cells and secretory cells are distinguishable by expression of FOXJ1 (red) or SCGB3A2 (green) in the non-cartilaginous airway regions at 19 pcw lungs. Ciliated cells (arrowhead), $\text{FOXJ1}^{+}/\text{SCGB3A2}^{2}$; secretory cells (arrow), $\text{FOXJ1}^{-}/\text{SCGB3A2}^{+}$.

(I) MUC16^{+} ciliated cells (dashed line), ciliated cells (dashed circle), and secretory cells (arrow) located in the proximal cartilaginous airway regions of fetal lungs at 19 pcw. The MUC16^{+} ciliated cells express MUC16 (white) with a weak level of FOXJ1 (red), whereas the ciliated cells only express strong FOXJ1 without MUC16 expression. SCGB3A2 (green)

(J, J’) Proximal basal cells (J, dashed line) line the basal layer of the proximal cartilaginous pseudostratified airway in fetal lungs at 19 pcw and are marked by TP63 (red), F3 (white), and IGFBP3 (green). In contrast, only a few TP63^{+} basal cells (J’, red, arrowheads) are observed in the non-cartilaginous, non-pseudostratified airway regions.

(K) ASCL1^{+} pulmonary neuroendocrine (arrow) and $\text{MUC5AC}^{+}/\text{ASCL1}^{+}$ progenitors (arrowhead) in the non-cartilaginous airway regions of fetal lung at 12 pcw. MUC5AC (green), ASCL1 (red), SCGB3A2 (white).

(L) Diagram describing spatial location of epithelial cell types observed in the developing human lungs.

DAPI, nuclei. Scale bars, 50 µm.
Figure S5. Late epithelial tip cells differentiate to AT2 and AT1 cells.

(A) Trajectory UMAP visualization of a lineage trajectory derived using scvelo from Mid tip to AT1 cells.
(B) Immunostaining of 21 pcw fetal lung using antibodies against SOX9 (red), PDPN (yellow), and E-cadherin (cyan). Arrows indicate the late tip cell population, which does not co-express the stalk marker PDPN.
(C-E) In situ HCR analysis of 21 pcw fetal lung, showing the SFTPC⁺ AT2 cell population (arrowheads) lining the developing air sacs. Arrows indicate SFTPC⁺ late tip cells. (C) SFTPC (red). (D, E) NAPSA (white; D) and ET5 (red; E) overlap with SFTPC (green) in the AT2 cells.
(F-H) In situ HCR analysis of distal lung regions at 17 (F), 20 (G), and 21 (H) pcw, visualizing SFTPC⁺ AT1 cells (arrows). SFTPC/SPOCK2⁺ stalk cells at 17 pcw (F) began to express SPOCK2 (red) at 20 pcw (G) and further developed to future AT1 cells (SFTPC/SPOCK2⁺) at 21 pcw (H). Dashed circles (G) and arrowhead (H) indicate AT2 cells. Dashed line (H) shows AT1 cells lining the developing air sacs.
DAPI, nuclei. Scale bars, 50 µm.

Figure S6. Endothelial cell types in the developing human lung.

(A) UMAP visualization of endothelial cells, coloured by cell types and stages.
(B) Dot plot describing differential marker gene expression level by cell type.
(C-E) In situ HCR analysis of distal lung regions at 20 (D), and 21 (C, E) pcw, visualizing aerocytes (S100A3⁺ red/CA4⁺ white; C), arterial endothelial cells (GJA5⁺ red; D), venous endothelial cells (ACKR3⁺ white; D), and lymphatic endothelial cells (PROX1⁺ white; E). PECAM1 (green) indicates all endothelial cell types. DAPI, nuclei. Scale bars, 50 µm.
(F) Trajectory UMAP visualizing potential endothelial cell lineage hierarchy from Mid/Late capillary endothelial cells to arterial endothelial cells, aerocytes, or pulmonary venous endothelial cells coloured by cell types and stages.
(G, H) Individual trajectory UMAPs (G) and the relevant gene expression heatmaps (H) displaying potential lineage trajectories derived by Monocle 3 from Mid/Late capillary endothelial cells to arterial endothelial cells (top), aerocytes (middle), or pulmonary venous endothelial cells (bottom).

Figure S7. Clustering and cell type markers for immune cell types and comparison to other fetal data sets.

(A,C,G) UMAP embeddings of different immune compartments showing myeloid cell types/states (A), T, NK and ILC lymphoid cells (C) and B lymphoid cells (G).
(B,F,K) Dot plots showing expression of selected marker genes of cell types/states in the three immune compartments.
(D, E, H, I, J) Enrichment of each class of immune receptors based on abTCR, gdTCR and BCR-enriched scRNA-seq.
(L) Predicted organ-of-source with highest scores for cells shown in Figure 1, based on the reference atlas in (Cao et al., 2020).

Figure S8. Spatial analysis of mesenchymal cell types in the developing human lungs by in situ HCR assay and immunostaining.

(A) Vascular SMC-1 and -2 are surrounding arterial endothelial cells (PECAM1+, dashed line), each marked by NTN4+/PLN−/low (VSM-1, arrows) and NTN4+/PLN−/high (VSM-2, lines).
(B) Dot plot describing differential gene expression between vascular SMC-1 and -2.
(C) Pericytes and adventitial fibroblasts in 17 pcw fetal lung. NDUF4AL2+, red/NTRK3+, white pericytes (arrows) are surrounded by NDUF4AL2+/NTRK3+ adventitial fibroblasts (arrowheads). PECAM1 (green) indicates an endothelial cell tube.
(D) Arterial endothelial cells and pericytes/vascular SMCs in 16 pcw fetal lung. PECAM1+, green/GJA5+, red arterial endothelial cells are surrounded by NTRK3+, white pericytes/vascular SMCs.
(E) NTRK3low+/+ pericytes are surrounding PECAM1+/GJA5− venous endothelial cells. Red dashed lines indicate boundaries between the pericytes and venous endothelial cells.
(F) Dot plot describing differential marker gene expression level between alveolar, adventitial and airway fibroblasts.
(G) Concept network visualization of gene ontology (GO) analysis using clusterProfiler for differentially expressed genes in alveolar, adventitial and airway fibroblasts.
(H-J) Immunostaining of fetal lung tissues at 11 (H), 15 (I), and 21 (J) pcw, to visualise myofibroblast populations, Myofibroblast-1 (H) and -2 (I) surrounding the developing stalk epithelial tubes, and Myofibroblast-3 (J) surrounding the developing air sacs. ACTA2+/PDGFRA+ Myofibroblast-1 (THBDweak; H) and -2 (THBDhigh, arrows; I). PDGFRA+ Myofibroblast-3 at 21 pcw, does not express ACTA2 (arrows; J).
(K) Dot plot describing differential gene expression level between myofibroblast-2 and -3. The myofibroblast-2 population showed enriched expression of Wnt signaling associated genes, e.g. NOTUM, LEF1, and DACH2.
(L) In situ HCR assay of 17 pcw fetal lung tissues. Myofibroblast-2 expresses NOTUM (red), a Wnt antagonist, to block local Wnt signals from alveolar fibroblasts (white, WNT2) to the stalk epithelium.
DAPI, nuclei. Scale bars, 50 µm.

Figure S9. Signalling ligand-receptor interactions in the adventitial niche.

(A) Overview of predicted ligand–receptor interactions using CellPhoneDB in the adventitial niche. Dot plots visualize gene expression by cell type and dashed arrows indicate a predicted direction of signaling from ligands to receptors.
(B) Visium spot transcriptome cluster map visualizing signalling ligands expressed in the fetal lung tissues at 19 (upper) and 17 (lower) pcw. Scale bars denote 2.5 mm (upper) and 2 mm (lower), respectively.

Figure S10. Global landscape of motif enrichment.

Top 5 enriched motifs in the marker peaks among all the cell types/states. Statistical significance is visualized as a heatmap according to the color bar below.

Figure S11. Transcription factor regulatory network controlling NE subtypes.

(A) Selected trajectory from Mid tip cells to GHRL$^+$ NE cells via Intermediate NEs, a transition cell population.
(B) Heatmap of genes differentially expressed along the trajectory.
(C) Representative HCR images showing the transition between two types of NE cells. GRP (green), NEUROD1 (red), GHRL (white). #1 labelled GRP$^+$NEUROD1lowGHRL$^+$ cells, which have just started the transition from GRP$^+$ pulmonary NE/precursor cells. #2 labelled GRPlowNEUROD1$^+$GHRLlow cells, in transition to GHRL$^+$ NE cells. #3 labelled GRP$^+$NEUROD1$^+$GHRL$^+$, GHRL$^+$ NE cells. Right: Mean ± SEM of NEUROD1$^+$ cell types. 11 pcw: N=2 fetal lungs, n = 129 NEUROD1$^+$ cells; 12 pcw N=3 fetal lungs, n=132 NEUROD1$^+$ cells. Scale bars = 25 µm in all panels.
(D) Representative HCR images showing NEUROG3 co-expression with ASCL1 and NEUROD1. Dashed white lines label representative cells showing different combinations of the three transcription factors, further indicated by #1–#5 labelling. ASCL1 (cyan), NEUROG3 (red), NEUROD1 (yellow).
(E) Representative HCR images showing RFX6 expression in GHRL$^+$ NE cells. Dash yellow line labelled GRP$^+$RFX6$^+$ pulmonary NE cells. Scale bars = 25 µm in all panels.

Figure S12. Validation of NE transcription factors using human fetal lung organoid system.

(A) Representative epifluorescent microscopic images showing organoid morphology after 3 days of mNeonGreen-3xNLS (control), ASCL1, or NEUROD1 overexpression.
(B) ScRNA-seq results of organoid transcription factor overexpression overlay on human foetal lung scRNA-Seq as a reference.
(C) ScRNA-seq results of transcription factor overexpression; organoid data only in the UMAP. Selected transcription factor expression was shown in the middle panel. A regulatory network of the selected transcription factors were drawn based on the organoid OE data at the bottom of the panel.
STAR METHODS

RESOURCE AVAILABILITY

Lead contact
Lead contact Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contacts, Emma L. Rawlins (e.rawlins@gurdon.cam.ac.uk) and Kerstin B. Meyer (km16@sanger.ac.uk).

Materials Availability
Human lung organoid lines used in this study are available from the lead contact, Emma L. Rawlins (e.rawlins@gurdon.cam.ac.uk), with a completed Materials Transfer Agreement.

Data and code availability
- Sequencing data have been deposited at ENA and are publicly available as of the date of publication. Accession numbers are listed in the key resources table. Microscopy data reported in this paper will be shared by the lead contacts upon request.
- All original code has been deposited at Zenodo and is publicly available as of the date of publication. DOIs are listed in the key resources table.
- Any additional information required to reanalyze the data reported in this paper is available from the lead contacts upon request.
- ATAC-seq pseudobulk coverage profiles can be browsed at https://genome.ucsc.edu/s/brianpenghe/scATAC_fetal_lung20211206

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human embryonic and foetal lung tissue
Human embryonic and foetal lung tissues were provided from terminations of pregnancy from Cambridge University Hospitals NHS Foundation Trust under permission from NHS Research Ethical Committee (96/085) and the MRC/Wellcome Trust Human Developmental Biology Resource (London and Newcastle, University College London (UCL) site REC reference: 18/LO/0822; Newcastle site REC reference: 18/NE/0290; Project 200454; www.hdbr.org). Sample age ranged from 4 to 23 weeks of gestation (post-conception weeks; pcw). Stages of the samples were determined according to their external physical appearance and measurements. Sample names and gestational ages are listed in Sup Table 3. None of the samples used for the current study had any known genetic abnormalities.
METHOD DETAILS

Cell isolation for 10X single cell RNA and ATAC seq

Proximal and distal regions for human fetal lung samples ≥15 pcw were separated as indicated in Figure 1 and minced with scissors. Whole fetal lung samples <15 pcw were directly minced with scissors. Minced tissues were transferred into a 15 ml Falcon tube and mixed with 5 ml of dissociation solution (collagenase, 0.125mg/ml, Sigma, C9891-100MG; dispase, 1U/ml, Merck, 4942078001; DNaseI, 0.1 mg/ml, Merck, D4527-10KU). The mixture was incubated in a shaker incubator at 37°C with horizontal shaking at 135 rpm for 30min (after 15min of incubation, the mixture was trituted with 10ml straight pipette). 5 ml of termination solution (2% fetal bovine serum in PBS) was added to terminate the digestion reaction. A brief spin at 100X g was performed to pellet large tissue pieces. The supernatant was passed through a 40 µm filter. Any large undigested pieces were further trypsinized with 3 ml of 5X trypsin (Trypsin EDTA X10, Thermo Fisher Scientific, 15400054) for 3-6 min in 37°C water baths to further expose epithelial cells. The reaction was stopped using 5ml of termination solution, filtered through a 40 µm cell strainer and collected. Cells were pelleted at 500X g for 5 min at 4°C. If the pellets were red, a red blood cell (RBC) removal step was performed by resuspending cells in 1X RBC lysis buffer (Thermo Fisher, 00-4300-54) for 3 min at room temperature. RBC lysis buffer was neutralised with 10 ml of termination solution. The cell suspension was passed through a 40 µm filter again. For the trypsinized cells, a CD326 (EpCAM) MACS enrichment (Miltenyi Biotec, 130-061-101) was performed to further enrich epithelial cells. Cells were counted, pelleted and resuspended in appropriate volume with PBS/0.04%BSA and single cell RNA and ATAC seq was carried out using 10X Chromium Single Cell V(D)J Kits (v1) and Chromium Next GEM Single Cell ATAC Kits (v1), respectively.

Human fetal lung organoid maintenance

Human fetal lung organoids were derived and maintained as previously described (Nikolic et al., 2017). In brief, human foetal lung tissues were treated with Dispase (8 U/ml Thermo Fisher Scientific, 17105041) at room temperature (RT) for 2 min to digest mesenchymal connections. Mesothelium and mesenchymal cells were carefully removed by needles. Branching epithelial tips were micro-dissected by needles, transferred into Matrigel (356231, Corning) and seeded in a 24 well low-attachment plate (M9312-100EA, Greiner) with 4-5 tips per 50 µl Matrigel dome per well. The plate was incubated at 37°C for 5-10 min until the Matrigel domes solidified. 600 µl of self-renewing medium containing: N2 (1: 100, Thermo Fisher Scientific, 17502001), B27 (1: 50, Thermo Fisher Scientific, 12587001), N-acetylcysteine (1.25 mM), EGF (50 ng/ml, PeproTech, AF-100-15), FGF10 (100 ng/ml, PeproTech, 100-26), FGF7 (100 ng/ml, PeproTech, 100-19), Noggin (100 ng/ml, PeproTech, 120-10C), R-spondin (5% v/v, Stem Cell Institute, University of Cambridge), CHIR99021 (3 µM, Stem Cell Institute, University of Cambridge) and SB 431542.
(10 µM, bio-techne, 1614), was added. Organoids were cultured under standard tissue culture conditions (37°C, 5% CO2), maintained in self-renewing medium and passaged by mechanically breaking using P200 pipettes every 4-7 days.

Human foetal lung organoid bronchiolar differentiation

The progenitor organoids were expanded in self-renewal medium in BME (Basement Membrane Extract, R&D Systems, 3533-010-02). For airway differentiation, the organoids were dissociated by TrypLE and cultured in the differentiation medium (AdvDMEM++, 1X B27, 1X N2, 1.25 mM N-acetylcysteine, 100 ng/mL FGF10, 100 ng/mL FGF7, 50 nM Dexamethasone, 0.1 mM cAMP, 0.1 mM IBMX, 10 µM Y-27632) for 15-30 days.

Human foetal lung organoid immunofluorescence

The differentiated organoids were released from the BME and fixed in 4% PFA at 4°C for 30 min. Then the organoids were washed in PBS, incubated in 0.3% PBTX (0.3% Triton X-100 in PBS) at 4°C for 1 hour, and blocked (1% bovine serum albumin, 5% normal donkey serum, 0.3% Triton X-100 in PBS) at 4°C overnight. The organoids were incubated with primary antibodies: SCGB3A2 (1:800, Abcam, ab181853), KRT5 (1: 500, BioLegend, 905901), E-cadherin (1: 500; Thermo Fisher Scientific, 13-1900), SOX9 (1: 400; Merck, AB5535), SCGB1A1 (1: 800, Proteintech, 10490-1-AP), FOXJ1 (1: 300, eBioscience, 14-9965-80) at 4°C overnight. The organoids were washed by PBS and further incubated with secondary antibodies (donkey anti-chicken 488, 1: 1000, Jackson Immunoresearch, 703-545-155; donkey anti-mouse 594, 1: 1000, Invitrogen, A-21203; donkey anti-rabbit 594, 1: 1000, Invitrogen, A-21207; donkey anti-rat 647, 1: 1000, Jackson Immunoresearch, 712-605-153; donkey anti-rabbit 647, 1: 1000, Invitrogen, A-31573). After DAPI staining (1 µg/mL) at 4°C for 1 hour, the organoids were processed through a thiodiethanol series (25%, 50%, 75% and 97% v/v concentration in PBS) at 4°C for imaging.

Transcription factor overexpression in human fetal lung organoids

Plasmid cloning

cDNAs for genes ASCL1, NEUROD1, NEUROG3, RFX6 and PAX9 were purchased from Genscript. cDNAs for gene TFAP2A and mNeonGreen-3XNLS were gifts from Azim Surani’s Group. cDNA for DeltaNTP63 was purchased from IDT as a gBlock fragment. cDNA sequences were cloned into a Doxycycline inducible vector pLenti-tetON-KRAB-dCas9-DHFR-EF1a-TagRFP-2A-tet3G (Addgene: #167935) (Sun et al., 2021) using Xhol and BamHI sites by Infusion cloning (Takara, 638910). Plasmids used in this study will be deposited to Addgene.
Lentivirus packaging

We packaged the lentivirus as described previously (Sun et al., 2021). In brief, HEK293T cells were grown in 10-cm dishes to 70%-80% confluence. Lentiviral vector (10 µg) was co-transfected with packaging MD2.G (3 µg, Addgene plasmid # 12259), psPAX2 (6 µg, Addgene plasmid # 12260) and pAdVAntage (3 µg, E1711, Promega) using Lipofectamine 2000 Transfection Reagent (11668019, Thermo Fisher Scientific) according to manufacturer’s protocol. Medium was refreshed the next morning. Lentivirus containing cell medium was harvested at 24 hrs and 48 hrs after medium refreshing and pooled together. Cell fragments were removed by 300X g centrifugation. Supernatant was then passed through a 0.45 µm filter. Lentivirus was concentrated using Lenti-X™ Concentrator (631232, Takara) according to the manufacturer’s instructions. Lentivirus pellets were dissolved in 400 µl PBS, aliquoted and frozen in -80°C.

Lentivirus transduction

Lentivirus transduction was performed as previously described (Sun et al., 2021). In brief, human foetal lung organoids derived from 3 independent donors were incubated with prewarmed TrypLE for 10min with trituration after 5 min. Organoid single cells and small fragments were collected, counted, pelleted and resuspended to around 100K cells/500 µl self-renewing medium with ROCKi (10 µM Y-27632). 0.5-2 µl of lentivirus was added and incubated overnight. Organoid cells were harvested the next morning, pelleted and re-seeded into Matrigel.

Overexpression of transcription factors and scRNA-Seq

After 3 days of lentivirus transduction, organoids were dissociated by incubation with prewarmed TrypLE for 10min with trituration after 5 min. TagRFP positive cells were sorted (20-40% of TagRFP positive rate), seeded back to Matrigel and allowed to recover for 10-12 days with self-renewing medium plus ROCKi (10 µM Y-27632). Organoids were treated with Doxycycline (2 µg/ml) for 3 days. Organoids were then fully dissociated into single cells by incubation with prewarmed TrypLE (Thermo Fisher Scientific, 12605028) for 15-20 min with trituration every 5 min. Organoid cells were counted, pelleted, resuspended in proper amounts of PBS/0.04%BSA and proceeded to scRNA-Seq according to 10X Chromium Single Cell V(D)J Kit manual.

In situ hybridization chain reaction and immunofluorescence

In situ HCR v3.0 was performed according to the manufacturer’s protocol (Molecular Instruments (Choi et al., 2018)). Probes were designed according to the manual, and amplifiers with buffers were supplied by Molecular Instruments. All the sequence information of the probes is listed in Sup Table 4. In brief, the frozen human tissue sections fixed in 4% PFA/DEPC-treated PBS were cut into 20 µm slices and rinsed in nuclease-free ultrapure water, followed by 10 µg/mL proteinase K solution (Thermo Fisher Scientific, AM2546) for 2 min at 37°C. Then, the tissue slices were
incubated with 2 pmol of probes at 37°C overnight. After washing, the slices were treated with 6 pmol of the amplifiers at room temperature overnight. The amplifiers, consisting of a pair of hairpins conjugated to fluorophores, Alexa 488, 546, or 647, were used at final concentration of 0.03 µM. After rinsing excess hairpins in 5X SSC (sodium chloride sodium citrate) solution containing 0.1% Triton X-100, nuclei were counterstained with DAPI.

For immunostaining, the frozen human tissue sections at 20 µm thickness were permeabilized in 0.3% Triton-X/DEPC-treated PBS for 20 min at room temperature. Then the tissues were treated with a blocking solution containing 5% NDS, 1% BSA, 0.1% Triton-X in DEPC-treated PBS at 4°C for 3 hours. After rinsing with cold PBS, treated with primary antibodies against ACTA2 (1:500; Thermo Fisher Scientific, MA1-06110), THBD (1:100; PE-conjugated; BioLegend, 344104), PDGFRA (1:200; Cell Signaling Technology, 3174), S100A4 (1:200; Proteintech, 16105-1-AP), CD44 (1:200; Thermo Fisher Scientific, 17-0441-82), SOX9 (1:200, Merck, AB5535), PDPN (1:200; R&D Systems, AF3670), or E-cadherin (1:500; Thermo Fisher Scientific, 13-1900) for 24 hr. Secondary antibodies were treated for 3 hr at room temperature. The tissue was washed three times in PBS at room temperature and counterstained with DAPI. Images were collected under Leica SP8 confocal microscope.

Library Generation and Sequencing

Chromium Single Cell 5’ V(D)J Reagent Kits (V1.0 chemistry) were used for scRNAseq library construction. Gene expression libraries (GEX) and V(D)J libraries were prepared according to the manufacturer’s protocol (10X Genomics) using individual Chromium i7 Sample Indices. Libraries for gamma/delta TCR variable regions were amplified as previously described (Mimitou et al., 2019)(Conde et al.). GEX and V(D)J were pooled in 1:0.1 ratio respectively and sequenced on a NovaSeq 6000 S4 Flowcell (paired-end (PE), 150-bp reads) aiming for a minimum of 50,000 PE reads per cell for GEX libraries and 5,000 PE reads per cell for V(D)J libraries.

Visium Spatial Transcriptomics

Foetal lung samples at 12-20 post conception week (pcw) from the HDBR, up to 0.5cm³ in size, were embedded in OCT and flash-frozen in dry-ice cooled isopentane. Twelve-micron cryosections were cut onto Visium slides, haematoxylin and eosin stained and imaged at 20X magnification on a Hamamatsu Nanozoomer 2.0 HT Brightfield. These were then further processed according to the 10X Genomics Visium protocol, using a permeabilization time of 18min for 12-17 pcw samples and 24 min for 19 pcw and older samples. Images were exported as tiled tiffs for analysis. Dual-indexed libraries were prepared as in the 10X Genomics protocol, pooled at 2.25 nM and sequenced 4 samples per Illumina Novaseq SP flow cell with read lengths 28bp R1, 10bp i7 index, 10bp i5 index, 90bp R2.
Reads mapping and quantification.

scRNA-seq data were mapped with STARsolo 2.7.3a (Kaminow et al., 2021) to the 10X distributed GRCh38 reference, version 3.0.0, derived from Ensembl 93. Cell calling was post-processed with an implementation of EmptyDrops (Lun et al., 2019) extracted from Cell Ranger 3.0.2 (distributed as empty drops on PyPi). For transduced organoid cells, exogenous genes were added to the reference as appropriate for organoids, with the transgene sequence truncated (length(R2)-1) bp after the end of the synthetic promoter to avoid reads from endogenous transcripts being mapped onto transgenes. For single-cell V(D)J data, reads were mapped with Cell Ranger 4.0.0 to the 10X distributed VDJ reference, version 4.0.0. Visium reads were mapped with Space Ranger 1.1.0 to the 10X distributed GRCh38 reference, version 3.0.0, derived from Ensembl 93 for consistency with the single cell data. scATAC reads were mapped with Cellranger-atac 1.2.0 to reference GRCh38-1.2.0.

VDJ analysis

Both TCR and BCR contigs contained in respective all_contigs.fasta and all_contig_annotations.csv files were re-annotated with igblastn (v1.17.1) using reference sequences curated from IMGT database (downloaded 01-Aug-2021) as per described with changeo (v1.0.0). For BCR contigs, heavy chain constant region calls were re-annotated using blastn (v2.12.0+) against curated sequences of CH1 regions corresponding to respective isotype classes from IMGT. BCR heavy chain V-gene alleles were corrected for individual genotypes using tigger (v1.0.0) (Gadala-Maria et al., 2015). Contigs were then filtered for basic quality control as described previously (Stephenson et al., 2021). Briefly, the following occurrences would lead to removal of contigs from further analysis: i) contigs were annotated with V, D, J or constant gene calls that are not from the same locus; ii) multiple long/heavy chain contigs present in the same cell; iii) there were only short/light chain contigs in a cell; and/or iv) there are multiple short/light chain contigs in a cell. Cells with multiple contigs were nevertheless retained if a) contigs were assessed to have identical V(D)J sequences but were assigned to a different contig by cellranger-vdj (presumably due to differences in non-V(D)J elements); b) UMI count differences were large in which case the contig with the highest UMI count is retained; and c) only IgM and IgD were both assigned to a cell. These checks were all performed using dandelion (Stephenson et al., 2021) singularity container (v0.1.10).

Single-cell RNA-seq processing and cell type annotation

Count matrices were loaded into Scanpy and concatenated. Cells expressing no more than 200 genes, and genes detected in no more than 5 cells, were removed. Cells having more than 20% of their reads mapped to mitochondria were also discarded. Counts were then divided by total counts and multiplied by a factor of 10000, followed by log transformation, all implemented in Scanpy’s default setting (Wolf et al., 2018).

\[Y_{ij} = \ln \left(\frac{X_{ij}}{\sum_{i=1}^{n} X_{ij}} \cdot 10000 + 1 \right) \], where \(X_{ij}\) is the raw count of \(i^{th}\) gene in \(j^{th}\) cell.
Feature genes were selected in three steps: For each sample, highly variable genes were calculated using Scanpy’s default settings that extract genes with highest dispersion (variance divided by mean) values of log-transformed counts. Next, highly correlated genes for each sample were extracted using the DeepTree algorithm described in (He et al., 2020), reimplemented in our python-genomics toolkit. Genes extracted in at least two samples were merged as the final feature gene list. The log-transformed counts of these genes were then scaled and cell-cycle scores were regressed out using Scanpy’s default scoring and regression functions. Using the top 50 PCs and 10 neighbors with resolution at 0.01, initial clustering was generated, yielding 10 major clusters (Figure S1C) corresponding to different compartments. These clusters were subsequently and recursively subclustered, curated and annotated manually (Figure S1D). Annotation was based on markers summarized in Table S1.

Artifact evaluation and removal for scRNA-seq data.

Doublets were evaluated using Scrublet in a batch-by-batch fashion (Figure S1G). To capture rare doublet clusters, we developed a method for Doublet Cluster Labeling (DouCLing, Figure S1E). Briefly, we calculated relative marker genes for each subcluster compared to other subclusters in the same parental large cluster. Then these marker genes were used to score all the cells in the atlas. If the top-scoring cells (above the mean score of the current subcluster) are mostly (>60%) from another large cluster, the clusters are flagged as doublet-like (Figure S1H). We then removed doublet-like clusters based on these two methods with manual curation (Figure S1K).

Maternally derived cells were evaluated based on SNP variations between the transcribed paternal genome in the fetuses and the maternal counterparts in the maternal cells. To do this, we indexed and pooled samples from the same donor into “Supersamples”. Then we applied Souporcell to compare known common variants captured in scRNA-seq reads, setting the sample number to 2. Supersamples without maternal cells would split into two equal-sized groups while other supersamples would putatively capture maternal cells as a minor genotype group (Figure S1F). Based on this analysis, maternal-like cells do not contribute to scRNA-seq clusters (Figure S1M) and were thus kept for downstream analysis. For libraries with two multiplexed donors, we only used the Souporcell workflow to demultiplex the donors without maternal genetic detection.

Low-quality cells would usually have a relatively high percentage of mitochondria reads (Figure S1I) or a low number of genes detected (Figure S1J). Based on these we manually curated and removed low-quality clusters (Figure S1N).

An additional four clusters of contaminants coming from other organs were further removed. These were cardiomyocytes ACTN2+ MYH6+ (Litviňuková et al., 2020), esophagus epithelial cells
SOX2+ TP63+ TRH+ (Madissoon et al., 2019), APOA1+ APOA2+ (Popescu et al., 2019) and cytotrophoblasts from the placenta PAGE4+ GSTA3+ (Vento-Tormo et al., 2018).

Visium Spatial Transcriptomics data analysis

Mapped Visium count matrices and scRNA-seq count matrices (after artifact removal) were both imported into Seurat 3 (Stuart et al., 2019) and transformed using SCTransform (Hafemeister and Satija, 2019), with mitochondria percentage of scRNA-seq data regressed out. Next, the scRNA-seq data were subsetted into a “pcw11,15,18” subgroup and a “pcw18,20,22” subgroup for cell-type prediction. The prediction was done for each Visium library using its corresponding scRNA-seq subgroup following the default label transfer pipeline of Seurat using the top 50 PCs.

Marker gene calculation

Ambient RNA was removed with SoupX 1.4.5 with default parameters. Using the corrected count matrices, Scanpy.tl.rank_genes_groups was applied with default settings but keeping all the genes. These ranked genes were then filtered using Scanpy.tl.filter_rank_genes_groups with max_out_group_fraction=0.25 and min_fold_change=2. To compare specific cell types, Scanpy.tl.rank_genes_groups was applied for each cell type with only the other cell types of this subset as a reference. Over-representation analysis (hypergeometric test) with gene sets from GO BP, KEGG and MSigDB was performed using the clusterProfiler R package (Yu et al., 2012).

Statistical analysis for cell-type composition biases.

Chi-squared test of independence was performed for sample gestation age, cell-cycle stage and proximal/distal dissection regions against cell type categories. For proximal/distal biases, Fisher’s exact test was used for each cell type and Benjamini-Hochberg correction was performed for multiple testing. The effect size for each cell type was defined as the odds ratio of its fraction of proximally sampled cells over that of distally sampled ones.

Differential gene expression along trajectories

The single cell transcriptomics data was preprocessed using Scanpy (Wolf et al., 2018) version 1.8.1. The cell cycle effect was regressed out using sc.pp.regress_out() and batch correction was performed using bbknn (Polański et al., 2020), before denoising the knn-graph using diffusion maps (Haghverdi et al., 2015) with sc.tl.diffmap() and applying PAGA (Wolf et al., 2019) with sc.tl.paga() to examine the connectivities between cell types. The final UMAPs were computed using the results of PAGA on Leiden (Traag et al., 2019) clusters as described in (Wolf et al., 2019). Data and UMAPs were exported into R, and monocle3 (Cao et al., 2019; Trapnell et al., 2014) was used to find a principal graph and define pseudotime. Differentially expressed genes were then computed along pseudotime using a graph-based test (morans’ I) (Cao et al., 2019; Moran, 1950) and the principal graph in monocle3, which allows identification of genes
upregulated at any point in pseudotime. The results were visualized with heatmaps using the complexHeatmap (Gu et al., 2016) and seriation (Hahsler et al., 2008) packages, after smoothing gene expression with smoothing splines in R (smooth.spline(), df=12).

CellPhoneDB analysis

Filtered single-cell RNA-seq data were partitioned into early- (5-6pcw), middle- (9-11) and late-stage (15-22) subsets. These datasets were used as input for CellPhoneDB (Vento-Tormo et al., 2018) (command: cellphonedb method statistical_analysis --database v2.0.0 --threads 20 --counts-data gene_name --project-name FetalLungBroadLate --subsampling --subsampling-num-cells=$TotalCellNumber --iterations=10000 --result-precision=4). Interaction pairs were manually curated from the outputs.

Velocity analysis

Velocity analysis (La Manno et al., 2018) was performed using scvelo (Bergen et al., 2020) version 0.2.3. The preprocessed dataset was merged with spliced and unspliced read counts computed with velocyto, before using scv.pp.moments(), scv.tl.velocity() and scv.tl.velocity_graph() to compute velocities using the stochastic mode in scvelo.

Gene regulatory network analysis

The Scenic pipeline (Aibar et al., 2017; Van de Sande et al., 2020) was used (pySCENIC version 0.11.2) to predict transcription factors and putative target genes regulated throughout neuroendocrine cell differentiation. First, gene regulatory interactions were calculated based on co-expression across the single cell dataset with GRNBoost2 (Moerman et al., 2019), followed by pruning interactions using known TF binding motifs and the construction of dataset specific regulatory modules (regulons) (Imrichová et al., 2015). Regulons were then scored in each individual cell using AUCell. Cells of the neuroendocrine differentiation trajectory computed with monocle3 (as described above) were selected. The regulon target genes were filtered for differentially expressed genes along pseudotime for this trajectory. A network of TFs and target genes was then constructed by linking individual regulons.

Comparing fetal neuroendocrine transcriptome with SCLC

A-type and N-type signatures were selected from previous data ‘ASCL1High and NEUROD1High Gene Signatures and the Stratified Primary Tumor Samples’ (Borromeo et al., 2016). Top 10 genes with the highest fold enrichment were selected to score epithelial cells, using Scanpy’s tl.score_genes function.
Compare scRNA-seq datasets of the fetal lung and other studies.

Annotated scRNA-seq adult lung datasets were acquired from (Madissoon et al., 2021) and downloaded from the study by (Carraro et al., 2021). The multi-organ scRNA-seq dataset was downloaded from the study by (Cao et al., 2020). A logistic regression model was trained based on the fine-grained cell-types for each of these datasets, using `sklearn.linear_model.LogisticRegression` (Pedregosa et al., 2011). The trained models were then used to predict the cell types of single-cell transcriptomic profiles of the fetal lung (Figure S3, S7L).

Single-cell ATAC-seq processing and annotation

Cellranger-atac outputs were loaded into and processed by ArchR (Granja et al., 2021). The top 50 dimensions were used for LSI and no batch effect was carried out to preserve weak biological features. Doublets were removed using ArchR’s default settings. Cells with TSSEnrichment score < 8 or ReadsInTSS < 1000 were discarded. Initial clustering was performed at resolution = 0.01 to be consistent with scRNA-seq, resulting in 7 large clusters corresponding to compartments. These clusters were further subclustered, similar to the workflow for scRNA-seq.

To annotate cell types and doublets, the annotated scRNA-seq h5ad object was loaded into Seurat3 by `Seurat3-plus` and integrated to scATAC-seq data using ArchR. The predicted cell type/state labels were used as a major reference for annotation. Clusters mapped to scRNA-seq doublet clusters were removed. Clusters with high fractions of blacklisted reads were also manually discarded.

Peaks were then called based on pseudo-bulk coverages by macc2. Marker peaks were calculated with default settings. Motifs from cis-bp database that are enriched in marker peaks were calculated and plotted.

Comparing organoid scRNA-seq with fetal lung scRNA-seq

Organoid scRNA-seq data were imported and filtered in the same way as described above. Organoid data were then projected onto fetal tissue data by Scanpy’s tl.ingest function. Donors were demultiplexed using Souporcell with k=3 donors, based on common variants.

Borromeo, M.D., Savage, T.K., Kollipara, R.K., He, M., Augustyn, A., Osborne, J.K., Girard, L.,

Figure 5

A Airway region

B Alveolar region

C S100A4/CD44/ACTA2/DAPI

D ACTA2/S100A4/FGF7/DAPI

E S100A4/WNT2/PECAM/DAPI

F SNM (WNT1+FGF7/10)

G Self-renewal medium

H DAPI KRT5 SCGB1A1

I DAPI FOXJ1 KRT5 SCGB3A2

J Self-renewal medium

K Differentiation medium
Figure S8

A

B

PLN^+^ flow vascular SMC 1-enriched

PLN^+^ flow vascular SMC 2-enriched

<table>
<thead>
<tr>
<th>Gene</th>
<th>Vascular SMC 1</th>
<th>Vascular SMC 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>COL1A2</td>
<td>2.5</td>
<td>0.5</td>
</tr>
<tr>
<td>COL3A1</td>
<td>3.0</td>
<td>1.5</td>
</tr>
<tr>
<td>SPARC</td>
<td>1.5</td>
<td>0.5</td>
</tr>
<tr>
<td>FAM13A</td>
<td>1.0</td>
<td>0.5</td>
</tr>
<tr>
<td>TIMP3</td>
<td>0.5</td>
<td>0.2</td>
</tr>
<tr>
<td>LOXL1</td>
<td>0.2</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Mean expression in group

C

D

E

F

Alveolar fibroblasts

Adventitial fibroblasts

Airway fibroblasts

<table>
<thead>
<tr>
<th>Gene</th>
<th>Mean expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>COL1A2</td>
<td>2.5</td>
</tr>
<tr>
<td>COL3A1</td>
<td>3.0</td>
</tr>
<tr>
<td>SPARC</td>
<td>1.5</td>
</tr>
<tr>
<td>FAM13A</td>
<td>1.0</td>
</tr>
<tr>
<td>TIMP3</td>
<td>0.5</td>
</tr>
<tr>
<td>LOXL1</td>
<td>0.2</td>
</tr>
</tbody>
</table>

H

I

J

K

L

Myofibblast 2-enriched

Myofibblast 3-enriched

Myofibblast 2

Myofibblast 3

Wnt signalling-associated

SFTPC

NOD2

IFITM2
Figure S9

A

Adventitial region

Arterial endo
OMD+ endo
Adventitial fibro
Vascular SMC

B

19 pcw human foetal lung

More distal regions

More proximal regions

17 pcw human foetal lung

VEGFA
VEGFD
WNT2

FGF7
BMP4

JAG1
DLK1
OMD
Figure S12

A

Day 3 Day 3 Day 3
mNeonGreen-3xNLS TagRFP mNeonGreen-3xNLS ASCL1 OE TagRFP NEUROD1 OE TagRFP
Ctrl

B

Organoid OE overlay on in vivo scRNA-Seq

C

Organoid OE scRNA-Seq alone

ASCL1 NEUROD1

ASCL1 OE NEUROD1 OE

mNeonGreen-3xNLS (ctrl)

NEUROG3 OE RFX6 OE

TFAP2A OE PAX9 OE

DeltaNP63 OE

Human fetal lung scRNA-Seq

Basal cell enriched TF control

High

Low

ASCL1

NEUROD1

NEUROG3

RFX6

NKX2-2

PROX1

ASCL1

RFX6

NEUROD1

NKX2-2

NEUROG3

PROX1