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Abstract 

 Owing to the high demand for molecular testing, the reporting of tumor cellularity in cancer 
samples has become a mandatory task for pathologists. However, the pathological estimation of 
tumor cellularity is often inaccurate.  
 We developed a collaborative workflow between pathologists and artificial intelligence (AI) 
models to evaluate tumor cellularity in lung cancer samples and prospectively applied it to routine 
practice. We also developed a quantitative model that we validated and tested on retrospectively 
analyzed cases and ran the model prospectively in a collaborative workflow where pathologists 
could access the AI results and apply adjustments (Adjusted-Score). The Adjusted-Scores were 
validated by comparing them with the ground truth established by manual annotation of 
hematoxylin-eosin slides with reference to immunostains with thyroid transcription factor-1 and 
napsin A. For training, validation, retrospective testing, and prospective application of the model, 
we used 40, 10, 50, and 151 whole slide images, respectively.  
 The sensitivity and specificity of tumor segmentation were 97% and 87%, and the accuracy 
of nuclei recognition was 99%. Pathologists altered the initial scores in 87% of the cases after 
referring to the AI results and found that the scores became more precise after collaborating with 
AI. For validation of Adjusted-Score, we found the Adjusted-Score was significantly closer to the 
ground truth than non-AI-aided estimates (p<0.05). Thus, an AI-based model was successfully 
implemented into the routine practice of pathological investigations. The proposed model for tumor 
cell counting efficiently supported the pathologists to improve the prediction of tumor cellularity 
for genetic tests. 
 
Keywords: artificial intelligence; digital pathology; deep learning; lung adenocarcinoma; tumor 
cellularity.
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1. Introduction 
 The rapid growth of artificial intelligence 
(AI) in recent years, especially deep learning (DL), 
has provided significant advancements in 
numerous fields including medicine. Among 
several machine learning methods, the 
convolutional neural network (CNN) has 
emerged as the most suitable method for 
medical image analysis1-4. Trials using CNNs to 
assist physicians with diagnosis, treatment, or 
even prognosis have produced extremely 
promising results5-9 that represent a veritable 
explosion in the field of digital medicine. 
 In pathology, CNNs have been used to 
analyze various tissues and detect tumor regions 
to support histopathological diagnosis10-15. 
Several studies have demonstrated that CNNs 
can provide judgments equivalent to those of 
pathologists, or even exceed them in certain 
special tasks12,14 However, the implementation 
of AI in pathology still faces challenges such as 
the high rate of false positives and false 
negatives, and the training procedure of the 
algorithms for optimizing the balance between 
these two kinds of results16. Thus, collaboration 
between the pathologists and DL may be the 
most suitable approach to overcome these 
obstacles as we still do not completely 
understand the nature of the “black box” inside 
the DL training process17. The implementation of 
DL in clinical workflow including evidence of its 
safety for patient healthcare is an important 
issue that needs to be addressed18,19. 
 For decades, lung cancer has had the 
lowest survival rate among all types of cancers in 
humans20. Recent years have experienced 
revolutionary developments in cancer 
treatment, such as “personalized” molecular 
therapies and the introduction of checkpoint 
inhibitors, with several studies presenting 
encouraging evidence to their efficacy21,22. The 
increased prevalence of molecular testing, e.g., 
evaluation of the mutation status of EGFR and 
RAS, has yielded the percentage of tumor cells in 
the test sample being identified as a statistic of 
prime importance for ensuring the success of 
the test23-25. The minimum required percentage 

of tumor cells in a sample is dependent on the 
analytical sensitivity of the platform conducting 
the tests and considerably varies between the 
platforms25,26. Thus, the evaluation of tumor 
cellularity by pathologists, i.e., the percentage of 
tumor cells in the sample, is considered critical. 
However, recent studies have reported that a 
high variability and low reproducibility exist 
across individual pathologists27-30. Precise tumor 
cellularity is required to glean essential 
information from molecular testing, which can 
assist pathologists to evaluate whether the 
mutations arise entirely from the tumor 
cells, from a minor component of tumor cells, or 
nearby “benign-looking” cells. The development 
of an effective and objective method is 
imminently required to precisely estimate tumor 
cellularity. 
 Several studies have been conducted to 
detect, discriminate subtypes of, and predict the 
mutations of lung cancers using histological 
features of tumor cells9,18,31-36. However, to the 
best of our knowledge, no study has focused on 
measuring tumor cellularity using DL—which is 
expected to aid pathologists in accurately 
determining the tumor cellularity value for 
molecular testing. In this report, we describe our 
experience with AI implementation in a clinical 
lung cancer workflow, in which a DL algorithm 
was developed and applied both retrospectively 
and prospectively to assess its impact on the 
quality of molecular testing. 
 

2. Materials and Methods 
2.1. Study cohorts 
 The current study protocol was approved 
by the Institutional Review Board of Nagasaki 
University Hospital (#190218282). We designed 
the study in three phases: an algorithm 
development phase, a retrospective phase, and 
a prospective phase (Figure 1). In the algorithm 
development phase, a CNN model was 
constructed and validated to measure tumor 
cellularity. In the retrospective phase, the model 
was retrospectively tested on cases, and in the 
prospective phase, its efficacy was evaluated in 
prospective cases. For the algorithm 
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development and retrospective phases, a total 
of 100 hematoxylin and eosin (H&E)-stained 
transbronchial lung biopsy (TBLB) slides (one 
slide per case) diagnosed with lung 
adenocarcinoma were collected from Nagasaki 
University Hospital, Nagasaki, Japan. Of these, 
50 whole slide images (WSIs) from 2014 to 2017 
were used as a dataset for model development, 
and 50 slides from 2017 to 2018 were used in the 
retrospective testing study (retrospective phase). 
For the prospective phase, 151 slides from 2019 
to 2020 were used for the review. These 151 

slides comprised five distinct types of sampling 
methods: transbronchial biopsy/transbronchial 
lung biopsy (TBB/TBLB), core needle biopsy 
(CNB), surgical resection, transbronchial needle 
aspiration/transbronchial aspiration cytology 
(TBNA/TBAC), and cell block. These slides were 
scanned using an Aperio Scanscope CS2 digital 
slide scanner (Leica Biosystems, Buffalo Grove, 
IL) with a 40x objective lens (0.25 µm/pixel) for 
the retrospective phase. Similarly, 151 slides for 
the prospective phase were scanned using an 
Ultra Fast Scanner (Philips, Amsterdam) with a 

Figure 1. Flowchart of study dataset. The study dataset was designed in three phases: algorithm development phase 
(training and validation), retrospective phase, and prospective phase. This flowchart includes the number of each 
dataset, types of sampling, name of scanners, year, and the institution’s name. WSI: whole slide image; TBB/TBLB: 
transbronchial biopsy/transbronchial lung biopsy; CNB: core needle biopsy; Surgical: surgical resection; TBNA/TBAC: 
transbronchial needle aspiration/transbronchial aspiration cytology; Nagasaki Univ.: Nagasaki University Hospital; 
Kameda Med. Ctr.: Kameda Medical Center; Awaji Med. Ctr.: Awaji Medical Center; IHC: immunohistochemical. 
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40x objective lens (0.25 µm/pixel). Thereafter, 
digital slides were imported into HALO version 
2.2 (Indica Labs, Corrales, CA), which included 
HALO AI (CNN VGG network) and the HALO 
Image Analysis program. 

 
2.2. Algorithm Development Phase: 
Model development and verification. 
 We enrolled 50 TBLB slides as a dataset 
for DL model development. Among the 50 cases, 
40 were used for training, and the remaining 10 
cases were used for validation. The tumor region 
and nontumor region annotations for the 
training data were comprehensively identified at 
the region level by a trainee and reviewed by 
two expert pulmonary pathologists (J.F. and K.T.). 
In total, 10,644 annotations (5625 tumor regions, 
5019 nontumor regions) were made. As the 
resolution was set at 0.2517 µm/pixel, 0.01 mm2 
patches were randomly and automatically 
generated, resulting in 3,085,569 patches, to be 
used as a training dataset for the DL model. 
 Subsequently, the model was validated 
on the 10 cases of the validation dataset. The 
annotations were made in the same manner as 
those for the slides, which were used as the 
ground truth for comparison with the 
predictions of the DL model. All the annotations 
were made based on the consensus of three 
pathologists (J.F., K.K., and K.T.), and additional 
immunohistochemical staining of thyroid 
transcription factor-1 (TTF-1), napsin A, p40, and 
CK14 was employed to highlight cell populations. 
The 10 validation case images were divided into 
0.01 mm2 patches, producing 14,611 clipped 
patches. Each patch was evaluated by overlaying 
the annotations made by the pathologists on 
those generated by the DL model, after which 
the areas of true positive, true negative, false 
positive, and false negative were evaluated. 
Based on this overlay data, the sensitivity, 
specificity, and accuracy of the tumor-region 
detection by the model were calculated. 
 We used HALO Image Analysis to detect 
all nuclei in the tissue for measuring the tumor 
cellularity (i.e., tumor cell percentage). The 
parameters for nuclei detection were selected 

by executing a nuclei detection algorithm on 10 
randomly selected cases from the training 
dataset, including 5 patches of both tumor and 
nontumor regions. We compared the nuclear 
counting performance obtained from HALO with 
the manually conducted counts and selected the 
parameters with the highest accuracy in 
comparison to the manually counted results. 
 

2.3. Retrospective Phase: Testing study 
of DL model in retrospective cases. 
 An alternative set of 50 TBLB WSIs was 
used to retrospectively test the model by 
comparing pathologist- and AI-generated 
predictions. First, a representative fragment of 
each case was selected. Four pathologists, J.F., 
A.B., Y.K., and H.P., manually estimated the 
tumor cellularity by reviewing the virtual slides. 
The tumor regions determined by the DL model 
constructed in the algorithm development 
phase were subsequently combined with the 
data obtained from the HALO Image Analysis 
software to calculate the percentage of nuclei 
detected within the highlighted tumor areas, 
thus evaluating the overall tumor cellularity 
(Figure 2). 

Based on the perceived level of accuracy 
by a group of pathologists, these DL model-
generated tumor cellularity estimates were 
sorted into three groups: good (≥ 90%), fair (70–
90%), and poor (< 70%) following the consensus 
of attending pathologists. Thereafter, the 
ground truth was established using a 
combination of the pathologists’ annotations for 
tumor regions and the HALO Image Analysis 
detection of nuclei for tumor cellularity. A 
statistical comparison between the results of the 
DL model and pathologists was performed based 
on the deviation (absolute value of difference) 
between these results and the ground truth.  
 

2.4. Architecture of VGG-16 model 
 Upon analyzing the tissue using the 
developed DL model and detecting the tumor 
regions, the HALO Image Analysis detected the 
nuclei within the labeled tumor region as well as 
in the entire specimen. It used the Caffe engine 
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and a fully convolutional version of the VGG 
architecture with all padding removed. The 
training was conducted on 435 × 435 patches at 
the defined resolution, which were generated by 
selecting a random class (with equal probability 
for each class), a random image containing 
annotations for the selected class (with equal 
probability), and a random point inside a region 
of the selected class and image. The patches 
were cropped surrounding the selected point 
and were further augmented with random 
rotations and shifts in hue, saturation, contrast, 
and brightness. The model was pre-trained on 
ImageNet, and thereafter, trained for the 
defined number of iterations using RMSProp 
(delta of 0.9) with a learning rate of 1e-3, which 
was reduced by 10% every 10,000 iterations 
along with an L2 regularization of 5e-4. As there 
was no padding in the model during analysis, the 
tile size was increased to 1867 x 1867 without 
altering the output or increasing the 
performance. NVIDIA GTX TITAN X graphics card 
was used as the GPU required for HALO AI. 
 

2.5. Prospective Phase: Routine 
application of DL model in prospective 
cases 
2.5.1. Creation of workflow  
 From April 2019 to September 2020, 
biopsies and surgical resections of pulmonary 
adenocarcinoma cases from three institutes 
(Nagasaki University Hospital, Kameda Medical 
Center, and Awaji Medical Center) within our 
network18 were prospectively enrolled in this 
study. All the institutions are fully digitized, i.e., 
glass slides were scanned before assigning the 
cases to the pathologist. The designed workflow 
is presented in Figure 3. Initially, the WSIs of the 
suspected adenocarcinoma cases were 
immediately examined by the assigned 
pathologists, and the WSIs containing the 
highest number of tumor cells were selected as 
per the pathologists’ assessment. These selected 
images were downloaded by a member of the 
analysis team and converted to the pyramid TIFF 
format following anonymization. For certain 
cases, the images were cropped. The tumor cells 
were annotated to enclose the region of interest 
(ROI) (Figure 3). The WSIs were evaluated using 
the trained algorithm, and the results were 
shared at the sign-out sessions of the following 
day. At the sign-out sessions, the pathologists 
were blinded to the results of the AI analysis and 
were asked to estimate the tumor cellularity of 
the specimens; their answers were averaged to 
produce the Path-Score. Subsequently, the 
pathologists visually reviewed the results of the 
AI analysis represented by the automated tumor 
detection map and nuclear detection overlay 
(AI-Score). The pathologists determined the final 
tumor cellularity (Adjusted-Score) by adjusting 
the AI-Score as they deemed fit. As described 
earlier, the quality of AI analysis was categorized 
into three levels; the representative images for 
each level are presented in the supplementary 
data (Supplementary figure 1). 
 
2.5.2. Adjustment to numbers indicated by AI 
(Adjusted-Score) 
 The cases requiring further major or 
minor adjustment of the AI-Score were 

Figure 2. Calculation of tumor cellularity using two 
algorithms. Original H&E image (a) was analyzed using 
two distinct algorithms. Nuclei on H&E image were 
masked as blue markers (b), and tumor clusters were 
segmented as red masking (c). Combining (b) with (c), 
the total number of nuclei (number of blue markers) 
and the number of tumor nuclei (number of blue 
markers within red mask) could be obtained (d), so we 
can calculate the tumor cellularity of samples. 
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mathematically processed. For instance, in 
Supplementary figure 2, the recognition of 
tumor cells by AI was considered as 30% less 
than the actual value. Therefore, based on the 
consensus of the pathologists, we added 30% to 
the AI-Score to obtain the Adjusted-Score.  
 
2.5.3. Validation of Adjusted-Score using 
immunohistochemical staining 
 Twenty adjusted cases were randomly 
selected, and the tumor cells were manually 
annotated. The original H&E slides were de-
stained with hydrochloric acid/ethanol solution 
and immunohistochemically re-stained with a 
cocktail of antibodies for TTF-1 and napsin A 
(ADC cocktail, Pathology Institute Corp., Toyama, 
Japan)37 which are widely used markers for 
pulmonary adenocarcinoma. The stained slides 
were further scanned using the Ultra Fast 
Scanner. Annotations for individual tumor cells 
were applied based on simultaneous 

observations of the immunostained slides and 
the original H&E images (Supplementary figure 
3). All the annotation data were verified by the 
expert pulmonary pathologist (J.F.). Ultimately, 
the cell count algorithm was applied to the 
annotated area, and the tumor cellularity values 
from those twenty cases were used as the 
ground truth. These numbers were compared to 
the original Path-Scores and Adjusted-Scores. 
 

2.6. Statistical analysis 
The chronological variation in the scores 

assigned by the individual pathologist through 
the prospective phase was examined using 
logistic regression analysis. Moreover, we 
examined whether the tendency of 
overestimation by more than 20% was 
ameliorated after observing 20 cases. We also 
employed the generalized Wilcoxon test to 
compare variations in the individual 
pathologist’s tendency to overestimate scores 

Figure 3. Synergistic workflow between pathologists and AI model. The proposed approach significantly improved 
the pathologists’ workflow by enabling them to diagnose using digital images. The approach comprised routine 
operation of AI model and evaluation of AI analysis results by pathologists. Starting with tissue sampling, specimen 
preparation, and digitization, the cases diagnosed as adenocarcinoma by pathologists were assigned with ROIs as 
necessary and subjected to analysis of tumor cellularity by AI. After the analysis, the cases were evaluated and 
modified by pathologists in a sign-out session and Adjusted-Scores were recorded in path report and forwarded to 
genetic testing lab. 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 12, 2022. ; https://doi.org/10.1101/2022.01.11.475587doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.11.475587
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 

between retrospective and prospective analysis. 
A Wilcoxon signed-rank test was conducted to 
assess the adjustments to the AI-Score 
(Adjusted-Score) in 20 out of 151 cases in the 
prospective phase, wherein a two-sided p-value 
< 0.05 was considered statistically significant.  
 

3. Results 
3.1. Algorithm Development and 
Retrospective Phase  
 To validate the proposed DL software in 
the algorithm development phase, a model with 
a cross entropy of 0.16 was adopted as the test 
model. The validation set contained 10 whole 
slide images that were divided into 14,611 
patches of 0.01 mm2 to match the size of the 
training patches. Among these 14,611 patches, 
7771 were classified by the DL model as positive 
for the tumor regions, and 7630 regions 
corresponded with the pathologists’ positive 
annotation, i.e., true positives. Conversely, 6024 
out of 6840 patches were true negatives that 
were classified as negative by the DL model as 
well. The overall sensitivity, specificity, and 
accuracy were 97.1%, 87.0%, and 93.5%, 
respectively. To evaluate the nuclear recognition, 
the HALO Image Analysis results were compared 
with the pathologists’ exact manual count in 10 
ROIs, which revealed an accuracy of 98.5%.  
 In evaluating tumor cellularity in 50 
randomly selected cases, the mean deviation 
from the ground truth among the four 
participating pathologists was 15%, whereas the 
mean deviation of the results obtained by the 
proposed DL model from ground truth was 6%. 
Among these 50 cases, 29 were categorized as 
good, 12 were categorized as fair, and 9 were 
categorized as poor. In 19 of the 29 cases 
categorized as “good,” the DL model 
outperformed all the participating pathologists 
(Figure 4, Supplementary table 1). The mean 
deviation of the DL model in these “good” cases 
was 3%, whereas the mean deviation for the 
pathologist estimations was 16%. For the 12 
“fair” cases, the DL model deviated 4% on 
average from the ground truth, whereas the 

pathologists differed from the ground truth by 
14% on average. For the 9 “poor” cases, the 
mean deviations were 15% and 14% for the DL 
model and pathologists, respectively. The results 
show that the consensus judgment of 
pathologists generally deviated from ground 
truth by approximately 15%.  
 

3.2. False positives and false negatives 
 False positives mainly arise from 
erroneous detection of bronchial epithelium, 
macrophages, lymphocytic aggregates, 
bronchial cartilages, and anthracotic pigments 
as tumor cells (Supplementary figure 4). In 
certain instances, the proposed segmentation 
model could not appropriately identify mildly 
atypical cells and low nuclear-cytoplasmic ratio 
lesions such as lepidic growths or invasive 
mucinous adenocarcinomas (Supplementary 
figure 4). Such false negatives were observed in 
the lesion, wherein the tumor cells were spindle-
shaped and had infiltrated the stroma in 
necrotizing carcinoma tissue areas or in out-of-
focus areas missed by the scanner. 
 

3.3. Assessing level of classification in 
Prospective Phase 
 A total of 151 samples were 
prospectively analyzed in the prospective phase 
of this study. Among these samples, 26 were 
acquired from Nagasaki University Hospital, 111 
from Kameda General Hospital, and 14 from 
Awaji Medical Center (Figure 1). Following the 
consensus of the participating pathologists, the 
AI segmentation of the samples was labeled by 
pathologists as follows: 80 good (53%), 38 fair 
(25%), and 33 poor (22%). The pre-test data 
collected in the retrospective analysis during the 
initiation of the routine usage of AI displayed a 
tendency for overestimation (i.e., ≥ 1% 
increments) by an individual pathologist 
(overestimation in 21/37). The prospective data 
displayed a similar frequency of overestimation 
and underestimation: overestimation in 67/151 
cases (44.3%) and underestimation in 65/151 
cases (43%), as depicted in Supplementary figure 
5. Based on the generalized Wilcoxon test, the 
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pathologist tended to significantly overestimate 
the tumor cellularity to a greater extent in the 37 
retrospective pre-test samples than the 151 
prospective samples (p < 0.005).  
 The pathologist who led this study was 
involved in the sign-out of all the 151 cases 
enrolled herein. Before reaching 20 cases, the 
pathologist tended to overestimate the tumor 
cellularity by more than 20%, resulting in a large 
deviation between the individual Path-Score and 
Adjusted-Score. However, once the pathologist 
was able to refer to the AI segmentation data 
from the 20 cases, the pathologist realized that 
he tended to overestimate (Figure 5). Based on 
logistic regression analysis, the pathologist's 
score did not tend to deviate from the Adjusted-
Score by more than ±20% onward case no. 20 (p 
= 0.019). This pathologist’s Path-Score deviated 
from the Adjusted-Score in 132 out of 151 
samples, which signified that the AI 
segmentation data caused the pathologist to 

reconsider their first estimate of the tumor 
cellularity in 87% of the samples. 
 

3.4. Comparison with ground truth 
 The total number of individual tumor 
cluster level annotations in the 20 randomly 
selected ground truth cases was 4527. This 
ground truth was established by manually 
counting the tumor nuclei on H&E stained slides 
while referencing the same slide re-stained with 
TTF-1/napsin A. The average number of 
annotations was 226.35 per sample (range, 33–
526). The mean deviation between the ground 
truth and Adjusted-Score was 3.08%. The 
Adjusted-Score was within 5% of the ground 
truth in 80% of the test cases (16/20), and within 
10% in all the cases. The mean deviation of the 
pathologist’s Path-Score to ground truth was 
7.12%, confirming that the Adjusted-Score was 
generally closer to the ground truth (p = 0.009, 

Figure 4. Inter-observer variability and inconsistency of pathologist’s tumor cellularity estimates in 29 cases 
assessed as “good” in retrospective phase. A line plot displaying Ground Truth (solid line), AI-Score (dotted line), 
and individual Path-Scores (vertical line). In 19 out of 29 cases, AI-Score outperformed all participating pathologists’ 
assigned Path-Scores. 
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Wilcoxon signed-rank test) (Figure 6, 
Supplementary figure 6). The Adjusted-Score 
was also superior to the scores obtained by the 
consensus of pathologists (p = 0.032, Wilcoxon 
signed-rank test). Among the 20 test cases, the 
AI segmentation data were categorized as “good” 
in 4 cases, “fair” in 12 cases, and “poor” in 4 
cases. The median deviation from the ground 
truth in each level was 3.2%, 2.1%, and 4.0%, 
respectively (Supplementary figure 7).  
 

3.5. Assessment of level of classification 
per sampling modality and among 
institutions 
 The proportion of samples categorized 

by the model as “good” for each sampling 
method was 53% for TBB/TBLB, 39% for CNB, 
57% for surgical, 93% for TBNA/TBAC, and 33% 
for cell block (Table 1). The proposed model 
performed especially well with the TBNA/TBAC 
samples. The mean adjustment from AI-Score to 
Adjusted-Score for each modality was –19.33% 
for the cell block, +2.53% for CNB, –0.29% for 
surgical, +1.41% for TBB/TBLB, and +2.33% for 
TBNA/TBAC (Supplementary table 2). The false 
positives were highly prominent in the cell block 
samples (standard deviation of 31%), and the 
individual cells contained in the cell block 
samples could not be easily identified, especially 
mesothelial cells and macrophages floating in 
the pleural fluid in the thoracic cavity. 

Figure 5. Improvement of cellularity estimation. Chronological variation of deviation between Adjusted-Score and 
Path-Score for an individual pathologist. In the early stage, overestimation exceeding 20% deviation from Adjusted-
Score appeared in certain cases, but the Path-Scores stabilized. Although the pathologists supervised the AI, they 
could likewise learn from it. These data not only implied that the human-in-the loop workflow effectively improved 
the pathologist’s assessment, but also highlighted the requirement of AI aid (despite increased trials of cellularity 
estimates, the pathologist’s score varied). Red lines: average difference between individually-assigned cellularity 
and Adjusted-Score. Separate averages are shown for case numbers 1 to 19 (average: 10.95), and from 20 on 
(average: -0.598). Blue lines: ±20% is shown as a cut-off range in percent difference. Green line: case number 20. 
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Sampling n Good Fair Poor 

TBB/TBLB 85 52.9% (45) 24.7% (21) 22.4% (19) 

CNB 38 39.5% (15) 34.2% (13) 26.3% (10) 

Surgical 7 57.1% (4) 42.9% (3) – 

TBNA/TBAC 15 93.3% (14) 6.7% (1) – 

Cell Block 6 33.3% (2) – 66.7% (4) 

Total 151 53% (80) 25% (38) 22% (33) 

 
The percentage of samples rated as 

“good” from each institution were as follows: 
73% from Nagasaki University Hospital (19/26), 
48% from Kameda Medical Center (53/111), and 
57% from Awaji Medical Center (8/14) 
(Supplementary table 3). Upon including the 
samples rated as “fair,” the percentages from 
each institution were 88% from Nagasaki 

University Hospital (23/26), 76% from Kameda 
Medical Center (84/111), and 79% from Awaji 
Medical Center (11/14) (Supplementary table 3). 
 

4. Discussion 

 We developed a DL image analysis model 
that yielded tumor cellularity values by 
integrating a tumor region segmentation model 
and a nuclear counting algorithm. In addition, 
we developed a prospective trial workflow and 
conducted a prospective study to compare the 
pathologists’ estimates before and after 
referring to the AI segmentation data.  
 In our study, pathologists were able to 
refer to the AI-Scores and adjust them to provide 
more accurate estimations than the original 
pathologists’ consensus estimates (Path-Score). 
In particular, 87% of the 151 test samples 
involved a pathologist altering the earlier 
estimation after referring to AI data. Thus, this is 
a concrete example of incorporating AI in daily 
practice to provide a more accurate pathological 

Figure 6. Deviation from ground truth. The box plot displaying Adjusted-Score was significantly closer to the 
ground truth than both the Path-Score and Individual Path-Score for a pathologist. The proposed AI-based tumor 
cellularity adjustment attained less than 10% deviation in all the cases, and less than 5% deviation in three quarters 
of the cases. 

Table 1. Classification level per sampling method. 
TBB/TBLB: transbronchial biopsy/transbronchial lung 
biopsy; CNB: core needle biopsy; Surgical: surgical 
resection; TBNA/TBAC: transbronchial needle 
aspiration/transbronchial aspiration cytology 
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diagnosis. We demonstrated that AI-aided 
diagnosis improved the pathologists' judgment. 
This primarily materialized in the form of 
improving large overestimations in the early 
stages and increased the proportion of 
underestimations, which did not exhibit 
significant improvement afterwards, regardless 
of the enhanced case experience (Figure 5). As 
the human judgment is limited in this context, 
this may be a rationale for recommending AI-
aided diagnosis. It proved that even for 
suboptimal accuracy of the AI, the pathologists 
could visually assess the results of the 
segmentation model and adjust the calculation 
of the tumor percentage to obtain a more 
accurate prediction of the ground truth. Upon 
referring to the AI data, the human could extract 
more accurate data, indicating that the 
collaboration was significant. AI may or may not 
be able to accurately recognize the cancer cells, 
and in certain instances, it did not function 
appropriately in the analysis of diverse images 
with a variety of histological reactions which is a 
common occurrence in pathological 
investigations. Decisions are ultimately taken by 
the pathologists, but this collaboration between 
the AI and pathologists—alternatively expressed 
as a type of human-in-the-loop17,38,39—is a 
promising direction for the future of 
pathological diagnosis and related tasks.  
 A large inter-observer variability was 
present in the estimates between the 
pathologists (Figure 4, Supplementary table 1), 
similar to that reported in several prior studies27-

30 which challenged consensus-building. In this 
study, we adopted the average scores marked by 
the pathologists as the consensus. Although this 
averaged score was an improvement over 
individual pathologists’ scores, the collaborative 
method between the physician and the AI was 
ultimately the most accurate method. In clinical 
applications of AI, pathologists must be able to 
interpret the results and provide input. We 
overlaid the segmentation data on the WSI, 
reviewed the tumor cellularity percentages, 
verified the level of nuclear recognition, and 
modified the AI-Scores. Pathologists could 

enhance their practice by utilizing the AI model. 
Moreover, differences in staining and specimen 
preparation techniques between laboratories 
are some of the major barriers to the adoption 
of AI40,41. This was confirmed as the model 
yielded the best results on samples acquired 
from the institution at which training was 
conducted (Supplementary table 3), as well as a 
higher frequency of errors than on samples from 
other institutions. However, the input from a 
pathologist was able to compensate for these 
minor errors. We examined whether the 
accuracy of the Adjusted-Score varied with the 
decreasing classification level, but no clear 
deterioration was observed (Supplementary 
figure 7). This indicated that the specimen 
preparation and staining procedures conducted 
at various institutions did not significantly 
impact the tumor nuclei count obtained using 
the proposed model, and the AI model can be 
used at any institution.  
 There are certain limitations in this study. 
Although the annotations of the training data 
were highly accurate at the regional level, the 
number of cases was small. Second, in the 
prospective phase, the WSI scanner was altered, 
but the AI model was not adjusted to match the 
scanner. 
 

5. Conclusion 
 We developed an AI model and a human-
in-the-loop workflow to evaluate tumor 
cellularity. This study demonstrated that the 
proposed model could more accurately 
determine tumor cellularity than pathologists’ 
consensus, and additionally, implied that the 
pathologists can learn from the AI 
implementation. The collaboration between the 
AI and pathologists can result in a synergistic, 
positive feedback loop in which each side 
improves the other.  
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