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Abstract

The  presence,  abundance  and  distribution  of  Aedes  (Stegomyia)  aegypti  (Linnaeus

1762) and Aedes (Stegomyia) albopictus (Skuse 1894) could be conditioned by different

data obtained from satellite remote sensors. In this paper, we aim to estimate the effect

of landscape coverage and spectral  indices on the abundance of  Ae. aegypti and  Ae.

albopictus from the use of satellite remote sensors in Eldorado, Misiones, Argentina.

Larvae of Aedes aegypti and Ae. albopictus were collected monthly from June 2016 to

April  2018,  in  four  outdoor  environments:  tire  repair  shops,  cemeteries,  family

dwellings,  and an urban natural  park.  The proportion  of  each land cover  class  was

determined  by  Sentinel-2  image  classification.  Furthermore  spectral  indices  were

calculated. Generalized Linear Mixed Models were developed to analyze the possible

effects of landscape coverage and vegetation indices on the abundance of mosquitoes.

The model's results showed the abundance of  Ae. aegypti was better modeled by the

minimum values of the NDVI index, the maximum values of the NDBI index and the

interaction between both variables. In contrast, the abundance of Ae. albopictus has to

be better explained by the model that includes the variables bare soil, low vegetation

and the interaction between both variables.

Corresponding author: Mía Elisa Martín; mia.elisamartin@mi.unc.edu.ar
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urban environment; dengue; Eldorado city.
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Introduction

In the world, the most important mosquito species in terms of disease transmission to

humans  are:  Aedes (Stegomyia)  aegypti (Linnaeus  1762)  and  Aedes (Stegomyia)

albopictus (Skuse 1894). The arboviruses transmitted by these mosquitoes cause some

of the most important diseases in the world (dengue, yellow fever, Zika, chikungunya

and others), representing one of the greatest concerns for public health due to the great

global interconnection mainly due to human population migrations, tourism, the growth

of the transport of food and products, environmental changes related to urbanization,

deforestation and climate change, among others (Juliano & Lounibos, 2005; Rúa-Uribe

et  al.,  2012).  These  mosquito  species  are  present  in  urban,  suburban,  and  rural

settlements in tropical, subtropical and temperate regions due to their ability to inhabit

both natural (e.g.,  tree holes) and artificial  (e.g.,  manholes, water storage containers,

flower pots, used tires) breeding sites (Hawley, 1998; Vezzani & Carbajo, 2008). In

particular,  the distribution of  Ae.  aegypti include tropical,  subtropical  and temperate

regions of the world, where it is considered an anthropophilic mosquito and is present

mainly  inside  homes  in  urban  areas.  Aedes  albopictus is  distributed  in  the  tropics

worldwide, but also in temperate regions in the northern hemisphere, and is associated

with the peri-domicile of suburban and rural environments (Lima-Camara et al., 2006,

Robert et al., 2020).

In  Argentina,  since  the  first  record  in  the  country  during  the  first  half  of  the  20th

century,  Ae. aegypti was present in several provinces of the country. Currently,  it  is

present in 19 provinces: Buenos Aires, Catamarca, Chaco, Córdoba, Corrientes, Entre

Ríos, Formosa, Jujuy, La Pampa, La Rioja, Mendoza, Misiones, Neuquén, Salta, San

Juan, San Luis, Santa Fe, Santiago del Estero and Tucumán (Grech et al., 2012; Rossi,

2015; Páez et al., 2016). The first record of Ae. albopictus in Argentina dates from 1998
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when it  was found in the cities  of San Antonio and Eldorado in Misiones province

(Rossi et al., 1999; Schweigmann et al., 2004). For 20 years, it had only been detected

in three other cities in Misiones (Puerto Iguazú, Comandante Andresito, and Colonia

Aurora) (Vezzani & Carbajo, 2008; Lizuain et al., 2019). At present, it has been found

for the first time in Corrientes province in 2019, 200 km to the south from its previous

records, representing the southernmost distribution in South America (Goenaga  et al.,

2020).

The presence, abundance and distribution of  Ae. aegypti and  Ae. albopictus could be

conditioned by the landscape coverage from the differences presented in the biology,

ecology and development  of these vectors  (Mudele & Gamba, 2019; Mudele  et al.,

2021).  Changes  in  environmental  conditions  as  a  result  of  urbanization  have  been

related (directly or indirectly) to the availability of breeding sites, and the modification

in the abundance, richness, development and survival of adult mosquitoes (Baldacchino

et al., 2017; Benitez et al., 2020). Different data obtained from satellite remote sensors

have been used to indicate and identify favorable breeding sites for mosquitoes (Hassan

et al., 2013). Some studies have linked mosquito populations to remotely detected land

cover features. Vanwambeke et al. (2007) found a high probability of finding larvae of

Ae. albopictus in the peri-urban. It has also been related to the presence of mixed areas

of  urbanization  and  vegetation  (Manica  et  al.,  2016).  While  the  abundance  and

distribution of Ae. aegypti has been related to a greater extent, with variables related to

urbanization,  such as the presence  of buildings  (Sallam  et  al.,  2017;  Benitez et  al.,

2019). 

On the other hand, vegetation is one of the most important and frequently described

environmental characteristics in the spatial analysis of these species, being repeatedly

used in research based on the calculation of satellite spectral indices (Heinisch  et al.,

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 12, 2022. ; https://doi.org/10.1101/2022.01.11.475665doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.11.475665


2019).  Numerous  indices  can  be  obtained  from algorithms  applied  on  the  original

remote sensor bands, two of these are potentially indicative of the presence of mosquito

breeding sites due to  the dependence  of the immature  stages on the aquatic  habitat

(Vanwambeke et al., 2007). The Normalized Difference Vegetation Index (NDVI) is the

spectral vegetation index most used in spatial and temporal studies (Estallo et al., 2018;

Benitez et al., 2019). Along with this, the Normalized Difference Water Index (NDWI)

have been widely used in mosquito studies for many years (Pope et al., 1994; Mudele &

Gamba, 2019), as well as applied in the study of vector-borne diseases (Estallo  et al.,

2012).

For  Argentina,  although  the  knowledge  about  the  biology  of  Ae.  aegypti is  well

documented (Carbajo  et al., 2006; Estallo  et al., 2018; Benitez  et al., 2019), there is

very little work on Ae. albopictus since its detection in 1998 (Schweigmann et al., 2004;

Lizuain  et al., 2019; Faraone  et al., 2021). In this context and due to the absence of

vaccines for most of the viruses transmitted by these two species, vector management

and control is the main current tool to prevent their spread. Therefore, the aim of this

study was  to  estimate  the  effect  of  landscape  coverage  and spectral  indices  on  the

abundance of Ae. aegypti and Ae. albopictus from the use of satellite remote sensors in

Eldorado, Misiones, Argentina.

Materials and Methods

Study site

Eldorado  city  (Fig.  1)  is  located  in  the  northwest  of  Misiones  province,  within  the

Neotropical  region (26° 24′  S,  54° 38′  W). The phytogeographical  region is  Paraná

province. The area characterized by the presence of three arboreal strata, with lianas,

epiphytes and hemiepiphytes and an undergrowth of ferns and herbaceous and shrubby
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phanerophytes, including bamboos (Oyarzabal et al., 2018). The climate is subtropical,

hot and humid, without a marked dry season. The mean annual temperature is 22 °C,

with a maximum temperature of 38.5 °C (January) and a minimum of 5.4 °C (July); the

mean annual rainfall is 2020 mm (Silva et al., 2008).

Eldorado  is  the  third-largest  city  in  the  province  with  a  population  of  100,000

inhabitants and a surface of 215 km2 where 14% corresponds to rural areas, 30.6% to

natural forests and 55.4% to other uses (Molinatti  et al., 2010). The city expands on

both sides along the National Route Nº 12. The main economic activities of the region

are forestry (sawmills, pulp and paper industry) and agriculture, oriented to industrial

crops production of (yerba mate, tea, tobacco and citrus).

Fig. 1. (A and B) Geographic location of the study area in Misiones, Argentina.

Entomological sampling
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Larvae of Aedes aegypti and Ae. albopictus were collected monthly from June 2016 to

April  2018,  in  four  outdoor  environments:  tire  repair  shops,  cemeteries,  family

dwellings, and an urban natural park (Parque Schwelm) (Fig. 2). Sampling sites with

larval presence of both species were georeferenced using the Global Position System

(GPS-Garmin eTREX 10). The number of monthly samples was N = 60, distributed as

follows: 20 natural habitats; 20 artificial habitats of cemeteries, 10 of repair shops and

10 of houses. The homes were visited according to the provisions of the Environmental

Sanitation  Direction  of  the  Municipality  of  Eldorado,  where  each  month  different

neighborhoods  were  visited.  The  larvae  were  transferred  to  the  laboratory  of  the

Institute  of  Regional  Medicine  for  their  breeding  (larvae  of  instar  I,  II  and  III),

conservation  and  determination.  For  morphological  identification  of  the  specimens

(fourth instar larvae),  dichotomous keys (Darsie 1985; Consoli  & de Oliveira 1994)

were used.

Fig. 2. Distribution of sampling sites in Eldorado, Misiones, Argentina.

Remote sensing data
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In  order  to  estimate  the  different  landscape  coverage  in  the  city,  images  from the

Sentinel-2 satellite were used. Five images from the satellite were used, which were

downloaded from the Land Viewer website (https://eos.com/landviewer/). The satellite

images correspond to the succession of stations from the three years of sampling and

were selected according to the availability of images on the website and the absence of

clouds over the area of interest.

Spectral indices 

On  each  satellite  image,  spectral  indices  were  calculated:  Normalized  Difference

Vegetation  Index  (NDVI),  Normalized  Difference  Water  Index  (NDWI)  and

Normalized  Difference  Built-up  Index  (NDBI).  The  NDVI  reflects  the  contrast  of

vegetation reflectivity between the spectral regions of Red (R) and Near Infrared (NIR)

reflectance (Eq.1). This index can be associated with the vegetation cover, in terms of

abundance and vigor, since it is strongly related to the photosynthetic activity of the

vegetation,  allowing  to  identify  the  presence  of  vegetation  on  the  surface  and

characterize its spatial distribution. The values vary from -1 to +1, where high values

correspond to areas with vigorous vegetation, negative values are associated with covers

such as  water  and values  close  to  zero  correspond to bare  soil  (Chuvieco Salinero,

2008).  On the other  hand,  the NDWI is  an index that  takes  into account  the water

content present in the mesophyll of the leaves and indirectly measures precipitation and

soil humidity (Estallo et al., 2012). It varies between -1 and +1, depending on the water

content of the leaves, but also on the type of vegetation and cover. It is based on the

contrast between the reflectances of Short-wave Infrared (SWIR) and NIR wavelengths

(Eq.2) (Gao 1996). The NDBI is an index that highlights urban areas, where there is

typically a higher reflectance in the SWIR region, compared to the NIR region (Zha et
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al., 2003). Positive NDBI values indicate built-up areas and those close to 0 indicate

vegetation, while negative values represent bodies of water (Ranagalage et  al.,  2017). 

NDVI = (NIR-R) / (NIR+R)                         (Eq.1)

NDWI = (NIR-SWIR) / (NIR+SWIR)          (Eq.2)

NDBI = (SWIR-NIR) / (SWIR+NIR)           (Eq.3)

Land cover classification

To  determine  landscape  coverage  in  Eldorado,  supervised  classification  (Minimum

Distance to Mean) was performed using QGIS 3.4.15 software (https://www.qgis.org/).

Five land cover classes were obtained: water (rivers, lakes, artificial bodies of water),

bare soil (soil without any vegetation cover, unpaved streets), urban areas (buildings,

paved streets and roads), low vegetation (herbs and grasses) and high vegetation (trees

and shrubs). The accuracy of the classification was measured by a confusion matrix and

the value of the Kappa's coefficient, where values close to 1 indicate greater accuracy of

the  classification  method.  The  areas  for  verification  were  determined  from  the

visualization of images published in Google Earth ©. A total of 100 control points were

defined  by  landscape  coverage  following  the  criteria  recommended  by  Chuvieco

Salinero (2008). Regarding the classification of Sentinel-2 images, the global precision

of the classifications ranged from 91% to 99.6%, with Kappa's coefficients from 0.887

to 0.995. One of the final classified images can be seen in Figure 3.
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Fig. 3. Supervised classified image for Eldorado from November 12, 2016.

Buffer areas

Around each sampling site, circular influence areas of 100m were generated, avoiding

the overlapping of the areas and taking into account the biology of the vector. Once

these areas were constituted in each classified image, the proportions of each class of

landscape coverage were extracted, as well as the mean, minimum and maximum values

of NDVI, NDWI and NDBI.

Data analysis

To analyze the possible effects  of landscape coverage and vegetation indices on the

abundance of larvae, generalized linear mixed models (GLMM) were constructed for

each species  separately  with  a  Negative  Binomial  distribution.  To control  for  over-

scattering, a logarithmic link function was used (Zuur et al., 2009). In our analyzes, the

response variable used was the number of larvae collected at each site per month. The

sites  were  incorporated  as  a  random  effect  to  include  spatial  dependence.  The
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explanatory variables used are shown in Table 1. Water coverage was not incorporated

into the models because it was not found in any buffer area.

Table  1.  Explanatory  variables  used  to  explain  the  variation  in  the  abundances  of  Ae.  aegypti and  Ae.

albopictus in Eldorado, Misiones.

Variable Description

highV Proportion of high vegetation cover extracted from a 100m buffer around
each sampling site

lowV Proportion of low vegetation cover extracted from a 100m buffer around
each sampling site

soil Proportion of bare soil cover extracted from a 100m buffer around each
sampling site

urban Proportion of urban areas cover extracted from a 100m buffer around each
sampling site

ndvi Mean value of NDVI extracted from a 100m buffer around each sampling
site

ndvimin Minimum value of NDVI extracted from a 100m buffer around each
sampling site

ndvimax Maximum value of NDVI extracted from a 100m buffer around each
sampling site

ndwi Mean value of NDWI extracted from a 100m buffer around each sampling
site

ndwimin Minimum value of NDWI extracted from a 100m buffer around each
sampling site

ndwimax Maximum value of NDWI extracted from a 100m buffer around each
sampling site

ndbi Mean value of NDBI extracted from a 100m buffer around each sampling
site

ndbimin Minimum value of NDBI extracted from a 100m buffer around each
sampling site

ndbimax Maximum value of NDBI extracted from a 100m buffer around each
sampling site

First, data exploration was implemented following the protocol described in Zuur et al.

(2010). The explanatory variables were standardized to balance their weight and also to

avoid introducing errors in the model produced by the different measurement units of
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each variable. Then, a Spearman’s test was performed to analyze the correlation of the

explanatory variables.

The models were built using a manual step-by-step forward procedure. We began by

evaluating  the  significance  of  each  response  variable  from univariate  GLMM.  The

variables that were significant for each species were in turn used as starting points in the

different branches of the modeling. Subsequent variables were added one at a time as

long as they did not have a correlation coefficient >0.7 with some variables already

included. Interactions between them were also tested. In each step, the significance of

each  addition  was  evaluated  with  a  significant  reduction  (2  points)  in  the  Akaike

Information Criterion corrected for low sample sizes (AICc) (Zuur  et al., 2009). The

GLMMs were classified according to the AICc and the model with the lowest value was

selected as the best model. The multicollinearity between variables was evaluated in the

final models using the Variance Inflation Factor, considering a threshold value equal to

5. Finally, the ggResidpanel package was used to verify the normality of the residual

distribution and evaluate the residual plot.

The free software R, version 4.0.3 (https://www.r-project.org/) and the packages lme4

(glmer.nb function),  MuMin (model.sel function) and car (vif function) were used to

perform the statistical analyzes.

Results

A total of 23,658 mosquitoes of the species under study were collected during the entire

sampling period. Of that total, Ae. aegypti presented a relative abundance of 86.70% (n

= 20,511), while Ae. albopictus of 13.30% (n = 3147).

Based on the exploratory analysis of the variables and considering those with statistical

significance  in  the  univariate  GLMMs,  5  model  branches  were  constructed  for  Ae.
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aegypti and 1 branch for Ae. albopictus. For the first species, the univariate GLMMs of:

highV,  soil,  ndvimin,  ndbi  and  ndbimax  were  started,  and  after  considering  the

correlations between the independent variables, 66 models were made that evaluated the

addition  of  more variables  and interactions.  In  contrast,  for  Ae.  albopictus GLMMs

were modeled from the variable: soil, making 14 models (see Tables A-G in Supporting

Information). In Table 2, the selected models within each branch are displayed from the

comparison of the goodness of fit indicators (AICc) for the species under study.

Table 2. GLMM selected for Ae. aegypti and Ae. albopictus.

Specie Model Variable AICc

Ae. aegypti Ma3 highV+ndvimin 7683.7

Ms11 soil*ndvimin 7643.2

Mv16 ndvimin*ndbimax 7633.7

Mb5 ndbi*ndvimin 7648.1

Mm16 ndbimax*ndvimin 7633.7

Ae. albopictus Ms11 soil*lowV 3440.9

The GLMM results showed that the larvae abundance of Ae. aegypti was better modeled

by the minimum values of the NDVI index,  the maximum values of the NDBI index

and the interaction between both variables (Table 3). In contrast, the abundance of Ae.

albopictus has to be better explained by the model that includes the variables soil, lowV

and the interaction between both variables (Table 4). The other GLMM with the same

AICc (soil*ndbimax) was not selected for presenting a vif >5 in the interaction between

the variables.

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted January 12, 2022. ; https://doi.org/10.1101/2022.01.11.475665doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.11.475665


Table 3. Coefficients of the final GLMM selected for Ae. aegypti.

Variable Estimate Std. Error Z value Pr(>|z|)

Intercept 5.18544 0.01475 351.6 <2e-16**

ndvimin -14.48629 0.01481 -977.8 <2e-16**

ndbimax -6.94077 0.01481 -468.6 <2e-16**

ndvimin*ndbimax 17.40568 0.01482 1174.7 <2e-16**

An asterisk means p <0.05, two asterisks mean p <0.01.

Table 4. Coefficients of the final GLMM selected for Ae. albopictus.

Variable Estimate Std. Error Z value Pr(>|z|)

Intercept 0.2294 0.5501 0.417 0.6766

soil 0.3630 1.1394 0.319 0.7500

lowV -2.9152 1.3444 -2.168 0.0301*

soil*lowV 10.5393 4.4811 2.352 0.0187*

An asterisk means p <0.05, two asterisks mean p <0.01.

Discussion

The present study allowed us to identify the effect of landscape covers and vegetation

indices on the spatio-temporal larvae abundance of Ae. aegypti and Ae. albopictus from

the use of Sentinel-2 images in a subtropical city of Misiones, Argentina. 

The  global  distribution  of  ecological  rivals,  Ae.  aegypti  and  Ae.  albopictus,  have

changed in recent decades due to differences in their  abilities to compete with each

other (Bennett  et al., 2021). Generally,  Ae. aegypti is highly adapted to the domestic

environment,  and  therefore  abundance  is  positively  correlated  with  increasing

urbanization (Higa, 2011). In this study, a negative association was found between the

abundance of  Ae. aegypti and NDVI minimun values and NDBI maximun values. In
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accordance with Bennett  et al.,  (2021) who found a negative association with lower

NDVI values for both species in Panamá. 

Urban areas provide this mosquito with food, shelter, reproduction and oviposition sites

(Flaibani  et al., 2020). Previous studies in the United States, Costa Rica, Puerto Rico,

Brazil  and  Argentina,  have  related  the  abundance  of  the  species  with  urban  areas,

buildings and high housing density (Carbajo  et al.,  2006; Vezzani & Carbajo, 2008;

Fuller  et al.,  2010; Little  et al.,  2011; Montagner et al.,  2018; Benitez  et al.,  2019,

Heinisch  et al., 2019). In turn, Chaves  et al., (2021) in Costa Rica found a negative

association  between  vegetation  index  (measured  through  the  Enhanced  Vegetation

Index-EVI-) and the abundance of Ae. aegypti, while Samson et al., (2015) found that

urban  areas  identified  by  Urban  Index  were  found  to  be  important  in  predicting

distribution of the species and that the results of their models show a high probability

for  Ae. aegypti in and around urban areas. In accordance with our findings about the

negative association of Ae. aegypti  with the maximum values of NDBI, a spatial study

carried out in Buenos Aires city, Argentina found that the proliferation of mosquitoes

Ae.  aegypti  was  highest  in  medium  urbanization  levels  (not  densely  built  on  the

suburban areas) (Carbajo et al., 2006). Due to the different population densities of both

cities, we expect that the maximum values of NDBI in Eldorado (57,323 inhabitants)

will be related to the mean values of NDBI in Buenos Aires (12,801,364 inhabitants). In

cities with a high degree of urbanization and high population density, the peripheral area

is the most conducive to the reproductive activity of the vector since urbanized areas of

the city offer few spaces with vegetation (for food and shelter), few breeding sites and

reduce the connectivity between patches of habitat that are more favorable (Carbajo et

al., 2006, Benitez et al., 2019)
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Our study found a positive association between the abundance of  Ae. aegypti  and the

interaction between both indices in accordance with previous studies for Costa Rica

(Troyo  et  al.,  2009)  and  temperate  Argentina  area  (Benitez  et  al.,  2019)  where

moderately built-up residential areas with moderate tree cover likely contain a relatively

high number of positive habitats for this species, therefore heterogeneity in urban areas

can be linked to the distribution of this species. 

On the other hand, the distribution of  Ae. albopictus is associated with vegetation in

rural,  suburban  and  urban  areas  and  its  abundance  is  negatively  affected  by

urbanization. This difference in distribution along the urban-rural gradient is associated

with behavior related to blood feeding, host preference, and preference for vegetation,

offering ideal conditions for resting and egg laying (Heinisch et al., 2019; Higa, 2011;

Manica et al., 2016). We observed a negative association between the abundance of the

species and low vegetation coverage, and a positive association between the interaction

of  soil  and low vegetation.  In  this  work,  the land cover  class soil  has  been related

around  the  sampling  sites  with  sandy  streets  (unpaved  road)  more  characteristic  of

suburban areas (see Fig. A-C in Supporting Information). Our results are according to

Myer et al. (2019), who found an important relationship between the abundance of Ae.

albopictus and grass cover (negative) and the interaction between impervious and grass

cover (positive). 

In agreement with Rey et al. (2006), Honorio et al. (2009) and Cianci et al. (2015) low

vegetation coverage that includes grasses was negatively associated with the abundance

of Ae. albopictus larvae, indicating that open areas are less attractive for this mosquito

species.  In  Porto  Alegre,  Brazil,  Ae.  albopictus was  dominant  in  urban  areas  with

vegetation,  relating  its  adaptation  to  transition  zones  between  urban  and

non-urban/natural habitats (Montagner et al., 2018). According to Forattini (2002), the
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adaptation of the species to transition zones results from being able to use larval habitats

or  breeding  sites  and  sources  of  blood  food  from both  environments.  Likewise,  in

Florida,  United  States,  Rey  et  al.  (2006)  found a  positive  relationship  between  the

abundance of immature  Ae.  albopictus and land covers:  ground vegetation,  unpaved

road and bare ground. 

This is the first work carried out in the country to relate the abundance of Ae. albopictus

with products derived from remote sensors, and the results obtained provide important

knowledge about the biology of this species in Argentina. The Pan American Health

Organization  (PAHO,  2016)  has  recommended  the  following  in  areas  of  recent

infestation by  Ae. albopictus the immediate responsibility to contain and control it if

possible, to prevent further spread. For this, knowledge is required on numerous aspects

of the ecology of the species, areas of distribution, periods of greater activity, among

others that generate baselines to understand the dynamics of pathogen transmission and

therefore implement effective programs of control.
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