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Abstract 

Tailoring the best treatments to cancer patients is an important open challenge. Here, we build a 

precision oncology data science and software framework for PERsonalized single-Cell 

Expression-based Planning for Treatments In Oncology (PERCEPTION). Our approach 

capitalizes on recently published matched bulk and single-cell transcriptome profiles of large-

scale cell-line drug screens to build treatment response models from patients' single-cell (SC) 

tumor transcriptomics. First, we show that PERCEPTION successfully predicts the response to 

monotherapy and combination treatments in screens performed in cancer and patient-tumor-

derived primary cells based on SC-expression profiles. Second, it successfully stratifies 

responders to combination therapy based on the patients’ tumor’s SC-expression in two very 

recent multiple myeloma and breast cancer clinical trials. Thirdly, it captures the development of 

clinical resistance to five standard tyrosine kinase inhibitors using tumor SC-expression profiles 

obtained during treatment in a lung cancer patients’ cohort. Notably, PERCEPTION outperforms 

state-of-the-art bulk expression-based predictors in all three clinical cohorts. In sum, this study 

provides a first-of-its-kind conceptual and computational method that is predictive of response to 

therapy in patients, based on the clonal SC gene expression of their tumors. 
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Introduction 

Precision oncology has made important strides in advancing cancer patient treatment in recent 

years, as reviewed in (Tsimberidou et al. 2020a; Huang et al. 2021; Bhinder et al. 2021; Singla 

and Singla 2020; Senft et al. 2017; Tsimberidou et al. 2020b). Much of the focus in the field has 

been on efforts to use recent FDA-approved NGS panels to identify “actionable” mutations in 

cancer driver genes, to match patients to treatments (Tsimberidou et al. 2020a). These efforts 

have been further boosted by the recent progress made in DNA-based liquid biopsies, which 

further can help guide and monitor treatment (Siravegna et al. 2017; Heitzer et al. 2019; 

Sawabata 2020). However, a large fraction of cancer patients still do not benefit from such 

targeted therapies, and efforts are hence much needed to find ways to analyze other molecular 

omics data types to benefit more patients. Addressing this challenge, recent studies have begun 

to explore the benefit of collecting and analyzing bulk tumor transcriptomics data to guide cancer 

patient treatment (Beaubier et al., 2019; Hayashi et al., 2020; Rodon et al., 2019; Tanioka et al., 

2018; Vaske et al., 2019; Wong et al., 2020, Lee et al., 2021). These studies have demonstrated 

the potential of such approaches to complement DNA sequencing approaches in increasing the 

benefit from omics-guided precision treatments to patients.  

One key limitation of current genomic and transcriptomic treatment approaches is that 

they are mostly based on bulk tumor data. Tumors are typically heterogeneous and composed of 

numerous clones, making treatments targeting multiple clones more likely to diminish the 

likelihood of resistance emerging due to clonal selection, and hence potentially enhancing the 

overall patient’s response (Castro et al. 2021). This fundamental challenge has been driving two 

major developments in recent years, the search for effective treatment combinations and the 

advent of single-cell profiling of the tumor and its microenvironment.  

 

Briefly, large-scale combinatorial pharmacological screens have been performed in 

patient-derived primary cells, xenografts, and organoids and have already given rise to numerous 

combination treatment candidates (e.g., Wensink, et al. 2021, Yao et al. 2020, de Witte et al. 

2020). Concomitantly, the characterization of the tumor microenvironment via single-cell omics 

has already led to important insights regarding the complex network of tumor-microenvironment 

interactions involving both stromal and immune cell types (Castro et al. 2021). It also offers a 
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promising way to learn and predict drug response at a single-cell resolution. The latter, if 

successful, could guide the design of drug treatments that target multiple tumor clones disjointly 

(Shalek et al 2017, Adam et al 2020, Zhu et al 2017) and help us understand the ensuing 

resistance to better overcome it. However, building such predictors of drug response at a single 

cell (SC) resolution is currently challenging due to the paucity of large-scale preclinical or 

clinical training datasets. Previous efforts, including a recent computational method - Beyondcell, 

that identifies tumor cell subpopulations with distinct drug responses from single-cell RNA-seq 

data for proposing cancer-specific treatments, have focused on preclinical models and lacks 

validation in patients at the clinical level (Kim et al 2016, Suphavilai et al 2020, Fustero-Torre et 

al. 2021). Additional efforts to identify biomarkers of response and resistance at the patient level 

using single-cell expression are rapidly emerging for both targeted- and immuno- therapies, with 

remarkable results (Cohen et al 2021, Ledergor et al 2018, Sade-Feldman et al 2018). However, 

to date, the feasibility of harnessing SC patients’ tumor transcriptomics for tailoring patients’ 

treatment in a direct, systematic manner has yet to be described. 

 

Aiming to address this challenge systematically, here we present a precision oncology 

framework for PERsonalized single-Cell Expression-based Planning for Treatments In 

ONcology (PERCEPTION). This approach builds upon the recent availability of large-scale 

pharmacological screens and SC expression data in cancer cell lines to build machine learning-

based predictors of drug response based on the gene expression of single cells. We first show 

that the predicted viability for drugs with known mechanisms of action strongly correlates with 

the pathway activity it is targeting at single-cell resolution, visualizing our ability to predict at 

this resolution. Second, we show that the PERCEPTION can successfully predict the response to 

single and combination treatments in three independent screens performed in cancer and patient-

tumor-derived primary cells based on their SC-expression profiles. Thirdly, we show that 

PERCEPTION successfully stratifies responders vs. non-responders to combination therapies in 

two recently published multiple myeloma and breast cancer clinical trials using their tumor SC-

expression profile. Finally, we show that it also successfully captures the development of 

resistance and cross-resistance to four different kinase inhibitors in a recently published cohort of 

lung cancer patients with tumor SC-expression profiles during treatment. Notably, 
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PERCEPTION outperforms state-of-the-art bulk-based predictors in all three SC clinical cohorts 

considered. 

Results 

Overview of PERCEPTION 

To predict patient response to a therapy using their tumor’s SC-expression profile, we built a 

machine learning pipeline called PERCEPTION (Figure 1A, a detailed description is provided 

in Methods). PERCEPTION builds drug response models from large-scale pharmacological 

screens performed in cancer cell lines where both bulk and SC-expression are available. As there 

is currently a paucity of large-scale matched response and single-cell data either in pre-clinical 

studies or in patients, we designed a stepwise prediction pipeline: first, the prediction models are 

trained on large-scale bulk-expression profiles of cancer cell lines and then, in a second step, the 

models’ performance is further optimized by training on SC-expression profiles of cancer cell 

lines. To this end, we mined bulk-expression (Ghandi et al 2020) and drug response profiles 

(PRISM) of 488 cancer cell lines (Table S1) from the DepMap database (Tsherniak. et al 2017). 

The SC-expression profiles of these cell lines (N=205, Table S1) have been obtained from 

Kinker et al. 2020. Drug efficacy is measured via area under the curve (AUC) viability-dosage 

curve, where lower AUC values indicate increased sensitivity to treatment (Table S1). We note 

that, due to a lack of large-scale screens in normal and immune cells for training, we could only 

train our drug response models on cancer cells in this study.  

 

To build a predictor of response for a given drug, PERCEPTION performs the following 

two steps: 1. It first builds a regularized linear model of drug response using the bulk expression 

and drug response data available for ~300 cancer cell lines. 2. In the second step, we determine      

the number of genes used as predictive features (hyperparameter tuning) that maximize its ability 

to predict the response from the SC-expression data, analyzing the ~160 cancer cell lines for 

which there is also additional SC-expression data. The goal of this step is to enable 

PERCEPTION models to take SC-expression as input to predict drug response. To evaluate the 

performance of an SC model in a given cell line, PERCEPTION predicts the response to a given 

drug for each of its individual cells, and the mean response over all those individual cells is taken 
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as the predicted SC-based response of that cell line to that specific drug. The output of this 

machine learning pipeline is hence a drug-specific response model and a quantification of its 

predictive accuracy from SC-expression, which importantly is evaluated in unseen test fraction 

of the cells, employing a standard leave-one-out (one cell line) cross-validation procedure 

(Methods).  

 

Building PERCEPTION models for FDA approved cancer drugs based on the PRISM 

screen 

We applied PERCEPTION aiming to build response models for 133 U.S FDA-approved 

oncology drugs available in the drug screen PRISM (Table S2). The predictive performances for 

these drugs are provided in Figure 1B. We denoted models as predictive at a single-cell 

resolution, if the Pearson correlation between their predicted (mean SC-response per cell line) vs. 

observed viability on the leave-one-out test data was greater than 0.3. This threshold was chosen 

as it corresponds to the mean cross-screen replicate correlation observed among three major 

pharmacological screens (average cross-platform correlation across GDSC, CTD & PRISM ~ 

0.30), as reported previously in the literature (Corsello et al. 2020). We were able to build such 

predictive models for 33% (44 out of 133 drugs, Table S2) of the drugs (Figure 1B). Studying 

the predictive accuracy of these 44 predictive models in a cross-validation manner for different 

transcriptomics inputs, including SC, bulk, and pseudo-bulk-expression (generated by summing 

up the gene-mapped reads across single cells, Methods), we reassuringly find that the predictive 

performance of PERCEPTION for SC-expression as inputs is comparable to that performance 

obtained using bulk-expression or pseudo-bulk as inputs (Figure 1C).      

 

Visualization of PERCEPTION’s ability to predict viability at single-cell resolution in two 

case studies 

To visualize PERCEPTION’s ability to predict cell killing at single-cell resolution, we examined 

its predicted killing for two drugs, where the pathway involved in the mechanism of action of the 

drug is well characterized (nutlin-3 and erlotinib). We applied the PERCEPTION pipeline 
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described above to build SC-based predictors for these two drugs and studied them further, as 

follows. 

 

The first case involves the canonical antagonist, nutlin-3, whose mechanism of killing 

involves the inhibition of the interaction between MDM2 and the tumor suppressor p53; thus, 

MDM2 high activity is a known response biomarker to nutlin-3 treatment (Arya et al. 2010). Via 

PERCEPTION, we built a response model for nutlin-3, where the correlation between the 

predicted and observed response on the test set was: R = 0.598, P=1.2E-16, (with MDM2 

expression being one of the top-ranked predictive features). Using this model, we predicted the 

post-nutlin-3 treatment killing for each of 3566 single cells across nine p53 wild-type lung 

cancer cell lines. Across these single-cells, the predicted killing and MDM2 expression are 

strongly correlated across the individual cells screened (Pearson R= 0.50, P<2E-16, as visualized 

in Figure 1D), as expected. The figure also shows a few sub-clones that have predicted pre-

existing nutlin-3 resistance (Figure 1D-arrow highlight). 

 

In the second case, we performed a similar analysis to study and visualize 

PERCEPTION’s ability to predict the response to erlotinib (with model’s test performance of 

Pearson’s R= 0.50, P<1E-05).  Erlotinib targets oncogenic, activating mutations of epidermal 

growth factor receptor (EGFR) and has been used to treat non-small cell lung cancer. We 

reassuringly find that the predicted killing of erlotinib and EGFR pathway activity (estimated via 

the mean expression of a published EGFR signature (Cheng et al. 2020)) are significantly 

correlated across individual cells (Pearson R= 0.34, P<2E-16), as visualized in Figure 1E. 

Similar findings with other EGFR inhibitors developed more recently (afatinib, icotinib, 

lapatinib, osimertinib) with even stronger correlations strength and other FDA-approved drugs 

with well-characterized mechanisms of action are provided in Extended Figure 1. 
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Figure 1. Overview of PERCEPTION framework. (A) Building PERCEPTION prediction 

models is performed in two steps: (i) Build response models based on drug response data 

measured in large-scale drug screens performed on cancer cell lines and their matched bulk 

expression. (ii) Tune these models by determining the optimal number of genes used as 

predictive features that maximize its prediction performance based on SC-expression of cancer 

cell lines. The mean predicted response over all those individual cells from a given cell line is 

taken as the predicted SC-based response of that cell line (Methods). (B) The number of 

predictive models (defined by Pearson R>0.3) for FDA-approved drugs for cancer generated by 
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PERCEPTION, as tested via cross-validation (y-axis) when SC-expression (blue), bulk-

expression (red), and pseudo-bulk are used for a Pearson correlation threshold (x-axis, 

Predictability). (C) The distribution of predictive performance (x-axis) of the predictive models. 

In the boxplots, the center line, box edges, and whiskers denote the median, interquartile range, 

and the rest of the distribution, respectively, except for points that were determined to be outliers 

using a method that is a function of the interquartile range, as in standard box plots. (D) In the 

left-most panel, visualizing the predicted killing by Nutlin-3, a canonical MDM2 antagonist, the 

predicted killing and the expression of MDM2 are provided for every single cell (each point) in 

the top and bottom tSNE plot, respectively. The intensity of the color denotes the extent of 

predicted killing in the left panel and measured MDM2 expression in the right pane, where the 

respective legends are provided. In this panel, we provide 3566 single-cells from nine p53 WT 

lung cancer cell lines. The tSNE clustering is performed using the expression profile of all the 

genes. (E) A similar display visualizes the predicted killing and the activity level of an EGFR 

pathway signature across 12482 individual lung cancer cells. 

Evaluation of PERCEPTION models built on PRISM in the GDSC and a large lung cancer 

drug screen 

We next aimed to evaluate the performance of PERCEPTION models that are built using 

the PRISM screen and other large-scale cell-line screens, for which we have matching SC 

cell-lines data (Garnett et al. 2012, Nair et al. 2021). To this end, we first identified the 

drugs that are shared between the PRISM and GDSC screens (N=191, Table S3, quality 

control and model building steps in Methods). We were able to build PRISM-based 

PERCEPTION predictive models for 16 drugs that have been screened in both PRISM 

and GDSC, and that have a substantial positive correlation between their AUC values 

(Pearson R > 0.3 and p-value < 0.05 in all cell lines). In building these models we have 

left out 80 randomly selected test cell lines (with SC-expression) that were used to test 

the performance of the resulting PERCEPTION models in each of the two screens. As a 

starting point for this comparison, we note that the mean correlation between the 

experimental viabilities reported in GDSC vs. PRISM (screen concordance) across the 80 

shared test cell lines was 0.44 (Figure 2A, green, Methods). For the same testing set, the 
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mean correlations between the predicted vs. observed viabilities, using the SC-based 

models generated by PERCEPTION, are 0.38 in the PRISM dataset (on which they were 

built, Figure 2A, blue) but is still considerable in the GDSC screen, attaining a 

correlation of 0.28 there (Figure 2A, orange). As expected, the prediction performance of 

the PRISM-based models in the GDSC test set is correlated with the concordance 

between the experimentally measured drug’s viability profiles in the two screens 

(Pearson R=0.49, P=5.89E-02; Figure 2B, Table S4). Of note, as the range of predicted 

values is typically smaller than those observed in the screens (Extended Figure 2), we 

use scaled predicted AUC scores (z-score) in the further analyses reported below.  

 

Finally, we tested and validated the predictive power of PERCEPTION in another 

independent, yet unpublished drug screen in lung cancer cell lines (Nair et al. 2021), 

which includes monotherapies and combinations of 14 cancer drugs across 21 lung 

cancer cell lines in five dosages. As above, the PERCEPTION predictions are based on 

the SC data of the pertaining cell lines (shown in Figure 2C-F). For brevity, and since 

the main emphasis of our study is on building response predictors in patients, these 

validations and their results are described in more detail in the Supplementary material 

(Extended Figure 3A-F, Table S5, Methods, Supplementary Note 1). In sum, these 

analyses demonstrate PERCEPTION’s ability to predict drug monotherapy and 

combination response in independent cancer cell lines screens based on their SC-

expression. 
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Figure 2: PERCEPTION’s performance in multiple cancer cell lines screens. (A) The 

correlations (Pearson Rho (y-axis)) comparing “GDSC vs. PRISM”, “PRISM vs. 

PERCEPTION” (cross-validation performance), and “GDSC vs. PERCEPTION”. Drug 

response predictions were performed at a single-cell resolution and the cell line level response 

(mean response across single cells) was used as the output prediction. (B) Relationship between 

the correlation between “GDSC vs. PRISM” experimental results (green) and the prediction 

accuracy of PRISM-based PERCEPTION models in prediction of the response in the GDSC 

screen (orange) across the 16 predictable drugs. The size of the dots represents the Pearson 

correlation-based p-value in -log10 scale. The drugs are ordered on the x-axis from left to right 

in the decreasing order of their correlation between GDSC and PERCEPTION responses. C) 

PERCEPTION predicted viability of monotherapies based on the cell lines SC-expression (x-

axis) for resistant (N=72) vs. sensitive (N=84) cell lines, plotted via a standard boxplot. 

Significance is computed using a one-tailed Wilcoxon rank-sum test. D) A receiving operator 

curve is plotted showing the relationship between sensitivity and specificity, where the area 

under the curve denotes the power of stratification of sensitive vs resistant cell lines. The area 

under this curve is provided at the right corner. The area under the dashed diagonal line denotes 
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a random-model performance. Panels E) and F), respectively shows PERCEPTION’s ability to 

predict the response to drug combinations in that screens (28 resistant vs 24 sensitive cell lines). 

 

SC-based PERCEPTION predictions in patient-derived Head and Neck cancer primary 

cells  

Moving from cancer cell-line cells to patient tumor cells, we next tested the ability of 

PERCEPTION to predict response in patient-derived primary cells (PDC). We used SC-

expression of head and neck cancer primary cells derived from five different patients treated with 

eight different drugs at two concentrations (Table S6), including both monotherapy and 

combination therapies (Suphavilai et al. 2020). We were able to build predictive PERCEPTION 

response models for 4 out of the 8 drugs tested (docetaxel, epothilone-b, gefitinib, and 

vorinostat; Pearson R threshold > 0.25, Methods) and focused our analysis on these drugs. For 

monotherapy treatments, the predicted viability is significantly higher in resistant vs. sensitive 

cell lines (top 40% vs. bottom 40% cell lines ranked by viability, N=8 each, Figure 3A), with an 

ROC-AUC of 0.64 (Figure 3B). The predicted viability over the 20 monotherapy-cell-lines 

combinations (4 monotherapies x 5 cell-lines) is correlated with the observed viability (Pearson 

R=0.46; P<0.03, Extended Figure 4), and individual drug-level correlations are provided in 

Extended Figure 5. Higher predicted viability in resistant cell lines is also observed for 

combination treatments (Figure 3C), with a ROC-AUC of 0.86 (Figure 3D). The predicted 

viability of combination treatment across 15 combination therapy-cell-line pairs (3 combinations 

x 5 cell lines) is highly correlated with the observed viability (Pearson R=0.73; P<0.002, 

Extended Figure 4). The predicted vs. experimental correlations obtained for all data points and 

drug levels are provided in Extended Figures 4-5. These results demonstrate the ability of 

PERCEPTION models to predict response in patient-derived single cells. 
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Figure 3: Prediction monotherapy and combination response in patient-derived primary cells.  

(A) PERCEPTION predicted viability in resistant (n=8) vs. sensitive (n=8) cell lines. (B) ROC 

curves depicting the prediction power (sensitivity and specificity) of the predicted viability to 

stratify resistant vs. sensitive cell lines. The area under this curve is provided at the right corner 

and denotes overall model prediction power. The area under the dashed diagonal line denotes a 

random-model performance. In (C) and (D), we repeated the analysis for combination treatment 

(Number of resistant vs. sensitive cell lines=6 vs. 6). The boxplots provided are standard and the 

significances are computed using the one-tailed Wilcoxon rank-sum test.  

PERCEPTION predicts DARA-KRD based combination treatment response in a multiple 

myeloma clinical trial 

We next turned to test the ability of PERCEPTION models to predict patient responses based on 

pre-treatment SC transcriptomics from their tumors, which is our main goal. Very few such 

datasets exist with considerable coverage of sequenced cancer cells and treatments involving 

drugs that PERCEPTION can currently predict. We began with the largest such dataset published 
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to date, including data for 41 multiple myeloma patients. The patients were treated with a 

DARA–KRD combination of four drugs - daratumumab (monoclonal antibody targeting CD38), 

carfilzomib (proteasome inhibitor), lenalidomide (immunomodulator), and dexamethasone (anti-

inflammatory corticosteroid) (Cohen et al. 2021). The cells were clustered based on their 

scRNA-seq profiles by (Cohen et al. 2021). The SC-expression and clonal (cluster) composition 

and treatment response labels were available for 28 tumor samples of these patients, whose 

pretreatment clonal composition as originally determined by (Cohen et al. 2021) is shown in 

Figure 4C. Patient response was measured via tumor size estimates in radiological images. 

 

We succeeded in building predictive PERCEPTION response models for two out of four 

of these drugs (carfilzomib and lenalidomide). Using these models, we predicted the combination 

response for a given patient via the following two steps (Figure 4A-B): (1) Predicting the 

combination response of each clone in that tumor: We first predicted the combination response 

for each clone (one of three transcriptional clusters originally identified in (Cohen et al. 2021) 

based on its mean expression profile across all the cells composing it. To this end, we first 

predict the response for each of the two drugs in the combination separately based on their 

respective PERCEPTION models. Second, we then take the maximal killing by one of these two 

drugs as the predicted killing of the combination for that specific clone, following the 

Independent Drug Action (IDA, Ling et al. 2020) (Figure 4B). (2) Second, having predicted the 

combination effect on each of the clones present in the tumor, we use these predictions to predict 

the overall patient’s response (Figure 4A): This prediction is taken as the predicted response of 

the least responsive clone, assuming that it is likely to be selected by the treatment and dominate 

the overall tumor’s response. This notion is further motivated by observing that the predicted 

response of the most resistant clone indeed best stratifies the responders vs. non-responder 

patients among four different strategies that we devised and tested on this dataset using SC-

expression (Supplementary Note 2, Methods). This strategy is then fixed and used in all other 

patients’ analyses shown herein. 

 

Based on this approach, we have applied PERCEPTION to predict the response of all 28 

patients in the trial to the combination treatment. Figure 4D shows the predicted viability of the 

combination at a clonal level for each patient (in a layout corresponding to Figure 4A). As 
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evident, the resulting predicted response scores (1- predicted viability) are significantly higher in 

responders vs. non-responders (Figure 4E) and can successfully predict treatment response with 

fairly high accuracy (ROC-AUC of 0.827, Figure 4F). 

 

We compared PERCEPTION stratification performance to four different kinds of control 

modes (Supplementary Notes 2 and 3). First, we repeated the analysis using pseudo-bulk 

expression (mean expression over all the cells in the tumor) yielding a poor ROC-AUC of 0.56, 

which testifies to the marked benefit of harnessing SC data from patient tumors to predict their 

response. Second, we computed this response using the strategy we used for cell lines and PDCs, 

taking the mean viability across all single cells in a tumor sample, yielding a predictive signal 

with ROC-AUC of 0.64, which is considerably inferior to prediction accuracy obtained via the 

clonal based approach.  (Supplementary Note 2). Third, as further controls, we built and tested 

three different types of random models, built by (1) Shuffling the viability labels in the cell lines, 

by (2) randomly selected gene signatures, and finally (3) using non-predictive models of other 

drugs (Methods). These models yielded significantly lower stratification power than that 

obtained by PERCEPTION (empirical P-values over 1000 instances of P=0.002, P<0.001, and 

P<0.001, respectively). Finally, we compared the PERCEPTION stratification performance with 

published state-of-the-art machine learning response models for cell lines and are trained only on 

bulk-expression (Tsherniak et al. 2017) and PERCEPTION models that are not tuned on SC-

expression. We found that repeating the analysis with the above two models yields quite inferior 

performance, with AUCs of 0.62 ± 0.001 and 0.52 ± 0.001, respectively (Extended Figure 6, 

Supplementary Note 2). 
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Figure 4: PERCEPTION stratifies responders vs. non-responders of the combination DACA-

KRD therapy regime in multiple myeloma patients (A): Using PERCEPTION models to predict 

patient response based on the clonal (transcriptional clusters) architecture of every tumor: (i) 

First, we generate PERCEPTION models for the drug A. (ii) Second, the scRNAseq of tumor 

cells in a patient is analyzed to identify the transcriptional clusters (or transcription-based 

clones) composition of each tumor. (iii) Third, we predict the response of the drug A separately 

for each cluster (the smiley faces represent the spectrum of drug response; sad - more viability 

or less killing to happy - less viability or more killing) – this prediction is done based on its mean 

expression. (iv) Finally, we consider the most resistant clone (clone with the highest viability) as 

the overall patient response. (B) In case of combination treatments, in the third step of panel A, 
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we predict the response of each drug in a given combination separately for each cluster (the 

smiley faces represent the spectrum of drug response; sad - more viability or less killing to 

happy - less viability or more killing) – this prediction is done by taking the maximal killing 

effect observed for any of the drugs on that clone, based on its mean expression, as the overall 

response for that clone. This is motivated by the Independent Drug Action (IDA) principle, where 

it was shown that the predicted response of a combination of drugs is well represented by the 

effect of the single most effective drug in the combination (Ling et al. 2020). (C)Distribution of 

abundance of malignant sub-clones (y-axis) in each multiple myeloma patient (x-axis) in the trial 

identified using SC-expression, where the color code for the sub-clones is provided at the top. 

(D) Predicted viability of the combination at a clonal level for each patient where response 

status is provided at the bottom-strip of each facet. The left to right order of patients is the same 

as in panel A. (E) The predicted combination response in 28 multiple myeloma patients stratified 

by responder vs. non-responder status. (F) Receiver Operating Characteristic curve displaying 

the predicted combination response. The area under this curve, provided at the right bottom 

corner, denotes the overall stratification power in distinguishing responders vs. non-responders. 

 

PERCEPTION predicts CDK inhibitor treatment response in a breast cancer clinical trial 

Using the prediction approach described in the previous section, we next tested PERCEPTION’s 

ability to predict patient response in the FELINE breast cancer clinical trial with SC-expression 

profiles of 34 patient tumors (Griffiths et al. 2021). This clinical trial includes three treatment 

arms: endocrine therapy with letrozole (Arm A), an intermittent high-dose combination of 

letrozole and CDK inhibitor ribociclib (Arm B), and a continuous lower dose combination of the 

latter (Arm C). SC-expression and treatment response labels were available for 33 patients (Arm 

A=11 samples, Arm B= 11 and Arm C=11; Table S7). Patient response was determined via 

tumor growth measurements from mammogram, MRI, and ultrasound of the breast. 

 

PERCEPTION was able to build a predictive response model only for ribociclib (with a 

Pearson R=0.26, P=1.5E-03, which is a bit lower than the threshold we used in the overall 

analysis), and thus we focused our analysis on the combination arms B and C that include it 

(Figure 5A). We processed the SC-expression profiles of the tumor cells as described in 
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(Griffiths et al. 2021) and identified 36 transcriptional clusters/clones that are shared across the 

patients (Extended Figure 7A-C, Supplementary Note 3, Methods).  Patient response was 

predicted in a precisely similar manner to that described above in the case of the multiple 

myeloma trial. As the number of patients is quite small we collated together and predicted the 

response of the patient pre-treatment samples in Arm B and C in aggregate. The resulting 

predicted viability of the non-responders is higher than that of the responders (Wilcoxon rank-

sum test, one-sided P=0.05, Figure 5B), as expected. The PERCEPTION predictor successfully 

stratified the responders vs. non-responders with a quite high ROC-AUC of 0.776 (Figure 5C). 

As in the multiple myeloma case, PERCEPTION’s stratification performance is higher than three 

random control models, including (1) 1000 PERCEPTION models generated by shuffling the 

viability labels (P-value=0.039), (2) 1000 randomly generated gene signatures (P=0.043), and (3) 

200 non-predictive PERCEPTION models (P=0.02). It also outperforms two bulk expression-

based prediction models, including (1) published drug response models (Tsherniak et al. 2017) 

(AUC=0.60 ± 0.009) and (2) PERCEPTION bulk expression-based models that have not been 

tuned on SC-expression (AUC=0.63 ± 0.012) (Methods, Extended Figure 7D). Notably, 

computing the response using the strategy used for cell lines and PDCs that is based on 

computing the mean viability across all single cells yields a decent AUC of 0.735, which while 

being a bit lower than that achieved by the clonal response in this case, still markedly 

outperformed that numerous control models (Extended Figure 7E, Supplementary Note 3). 

 

Along with the pre-treatments samples collected at the time of screening (S), the clinical 

trial included the SC-expression of samples collected at two post-treatment time points, on day 

14 (M) and on day 180 at the end of the trial (E). Of the patients we analyzed, eight (6 

responders and 3 non-responders) patients had paired SC-expression at day 0 and day 180. Of 

note, within the responders, there is an overall trend (non-significant, given the very small 

sample size), predicted viability increases from day 0 to day 180 (Wilcoxon Signed Rank test, 

two-sided P=0.30; Mean fold change between S and E, FC=0.35 Figure 5D) where in contrast, 

no trend was observed within non-responders (P=0.5, FC=1.17, Figure 5D, regression 

interaction P=0.11). The reduced response trend observed specifically among the responders 

after 180 days could possibly indicate a selection pressure for resistant tumor clones. However, 
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we obviously note the limited samples in our cohort and thus this observation needs to be 

replicated in a larger cohort.  
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Figure 5: PERCEPTION stratifies responders vs. non-responders of the combination therapy 

arms in the FELINE clinical trial. (A) Distribution of abundance of malignant sub-clones (y-
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axis) in each breast cancer patient from the combination arms B and C (x-axis) in the trial 

identified using SC-expression, where the color code for the sub-clones is provided at the top. In 

the x-axis, the labels are a combination of the patient id and the time point at which the sample 

was collected (“_S” - day 0 and “_E” - day 180). (B) The predicted combination response in 14 

breast cancer patients (samples collected at day 0), stratified by responder vs. non-responder 

status. (C) Receiver Operating curve displaying the predicted combination response. The area 

under this curve, provided at the right bottom corner, denotes the overall stratification power in 

distinguishing responders vs. non-responders. (D) One-to-one comparison of predicted viability 

(y-axis) in response to ribociclib treatment at time points S (0 days) and E(180 days) (x-axis) in 

non-responders (N=3) and responders (N=6) separately.  

PERCEPTION quantifies the development of resistance to multiple tyrosine kinase 

inhibitors trial in lung cancer patients 

We next tested if PERCEPTION can capture the development of clinical resistance during 

targeted therapy treatment in patients. To this end, we analyzed a recently published cohort with 

a scRNA-seq profile of 24 lung cancer patients with 14 pre- and 25 post-treated biopsies 

(Maynard et al. 2020) (Extended Figure 8A-F, Table S8). In total, patients in this cohort were 

treated with four different tyrosine kinases including erlotinib (a 1st generation EGFR inhibitor), 

dabrafenib (a BRAF inhibitor), osimertinib (3rd generation EGFR inhibitor), and trametinib (a 

MEK inhibitor). Based on the notion that the resistance to these target therapies usually increases 

as the treatment prolongs, we hypothesized that the resistance predicted in a given post-treatment 

biopsy would increase as elapsed treatment time (the number of days from the start of the 

treatment to the day biopsy was collected) increases.  

 

We first analyzed all samples available, comparing the pre and post-treatment cohorts as 

a whole (as the majority of the samples were not matched). To this end, for each such post-

treatment biopsy, we defined the estimated “Extent of Resistance'' to a given treatment as the 

difference between its predicted viability vs. the baseline predicted viability, where the latter is 

computed as the mean predicted viability across all pre-treatment biopsies. Aligned with our 

hypothesis, we find that the extent of resistance to treatment is strongly positively correlated with 

the elapsed treatment time, but notably, only in the patients that have been reported to acquire 
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resistance in the original trial (Progressive Disease, Spearman Rho=0.634, P=0.026, Figure 6A, 

N=17).  We also found that this positive correlation between the elapsed treatment time and the 

estimated extent of resistance holds true when patients receiving different drugs are analyzed 

separately (Extended Figure 9A), controlling for prior treatments (Extended Figure 9B), when 

individual patients are analyzed separately (Extended Figure 9C) and the stage (Extended 

Figure 9D). We also note that the extent of resistance is significantly higher in post-treatment 

biopsies collected from the patients with Progressive Disease vs Residual disease (Wilcoxon 

Rank sum P<0.002, Stratification ROC-AUC=0.88, Figure 6B). Notably, we do not observe this 

strong positive correlation but rather a negative trend in patients that have responded well to the 

treatment (Residual Disease, N=7, Spearman Rho= -0.67, P=0.11, Figure 6A). This increase in 

the extent of resistance to treatment with elapsed treatment time specifically in patients that 

acquire resistance is not significant when considering only bulk-expression from tumors 

(Extended Figure 9B, Supplementary Note 4). 

 

We next analyzed the subset of patients with matched biopsies, including five patients 

with two biopsies each and one patient with four biopsies. We find that the correlation pattern 

between treatment elapsed time and estimated extent of resistance holds in the matched cases, 

specifically in patients that acquire resistance (Regression Interaction P=0.003). Of particular 

interest is a case of a single patient (TH179), treated with dabrafenib, that had four biopsies at 

two different time points and developed progressive disease. The predicted viability to 

dabrafenib of the four tumor biopsies taken after 331 and 463 days of start of treatment is 

significantly higher than pre-treatment biopsies (Figure 6C). Furthermore, the predicted viability 

of all three biopsies from day 463 is significantly higher than the biopsy from day 331. Taken 

together, these results quantify the emergence of treatment resistance as the disease progresses 

and testify to the ability of PERCEPTION analysis to capture it.  

 

To prioritize candidate drugs available in this cohort whose treatment may overcome the 

acquired resistance, we next asked if the development of resistance to a drug can induce either 

cross-sensitivity or cross-resistance to the other drugs (Plucino et al. 2012) in the cohort. To this 

end, we focused on the patients (Table S8) that eventually acquired resistance and computed the 

correlation among each drug’s extent of predicted resistance across these patients (Figure 6D, 
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Methods). In the patients we analyzed, PERCEPTION predictions suggest that the development 

of resistance to erlotinib would induce a cross-sensitivity to gemcitabine (Figure 6E, Top-Left 

panel, Pearson’s R= -0.94, P=0.06) and cross-resistance to dabrafenib (Figure 6E, Top-Left 

panel, Pearson’s R=0.91, P=0.09). A literature survey (Methods) revealed that gemcitabine 

treatment can overcome erlotinib resistance in cancer cell lines through downregulation of Akt 

(Bartholomeusz et al. 2011). In patients, a combination of gemcitabine+erlotinib in pancreatic 

cancer in phase III trial has shown a higher overall and progression-free survival (Moore et al. 

2016, Shin et al. 2016). In contrast, the addition of trametinib to erlotinib did not significantly 

improve survival in a phase I/II clinical trial (Luo et al. 2021). In sum, our analysis supports the 

possibility that erlotinib resistance may induce cross-sensitivity to gemcitabine, suggesting its 

further future testing. 
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Figure 6: Predicting the development of resistance to tyrosine kinase inhibitors (TKIs) during 

treatment in NSCLC patients. (A) The extent of resistance to a treatment from the baseline (X-

axis) is correlated with the treatment elapsed time (Number of days from the start of the 

treatment before the biopsy was taken) (Y-axis). The points and line colors denote whether the 
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biopsy is from patients with progressive disease or responders. (B) Receiver Operating curve 

depicting the stratification power in distinguishing the biopsies from the patients that acquire 

resistance vs biopsies from the patients that responded based on their extent of resistance. (C) 

The case of Patient TH179 with multiple biopsies is presented where the predicted viability in 14 

pre (day 0) and 4 post-resistant tumors at day 331 (N=1) and day 463 (N=3) to dabrafenib are 

shown. (D) Correlation matrix of the extent to resistance among drugs available in the trial 

across all the patients that have acquired resistance to this treatment. The strength of the 

correlation (Pearson R) is provided in the respective box and has been represented by the size of 

the circle, where the color represents whether the correlation coefficient is negative or positive 

(red and blue, respectively). We have computed this for drugs with at least three resistant 

patients (# of patients=4, 4, and 3, respectively). The drugs with correlations significance 

threshold before FDR correction <0.1 are indicated by a “*”. (E) Correlation plot of drug pairs 

with cross-resistance or cross-sensitivity with a significance threshold before FDR correction 

<0.2. 

 

Discussion 

We present a first of its kind computational framework and pipeline for predicting patient 

response to cancer drugs at single-cell resolution. We demonstrate its application for predicting 

response to monotherapy and combination treatment at the level of cell lines, patient-derived 

primary cells, and in predicting patient response in three recent clinical cohorts, spanning 

multiple myeloma, breast cancer, and lung cancer. Applying the PERCEPTION models to 

patients' tumor data, we observed that incorporating the transcriptional clonal information of the 

tumor into the prediction process improves the overall accuracy. For a given patient, the 

transcriptional clone with the worst response, that is the most resistant pre-treatment clone, best 

represents their overall response to treatment. 

 

We note that computing response cell lines using the strategy we used for predicting the 

response in clinical trials (most-resistant-clone strategy) can also quite successfully stratify 

resistant vs sensitive cell-lines, however, with markedly lower performance (Extended Figure 

10-11, Supplementary Note 5) than the mean-response strategy that we used for predicting cell-
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lines response (mean predicted response computed over all the individual single cells from a cell 

line). One possible explanation for the difference in the performance of mean vs most-resistant-

clone based prediction strategies observed in the cell-lines vs patient’s data could be that the 

clinical responses are measured at much longer time-scales in the patients (months) than in the 

cell lines (within days), thus providing time for the selection of the most resistant clone and 

making the clonal based strategy much better fit to predict patients response than the mean-based 

one.   

 

The scope and power of our analysis are currently considerably limited by the scarce 

availability of pre-treatment SC-expression patient datasets with treatment response labels. One 

can quite confidently estimate that the accuracy and breadth of SC-based drug response 

predictors will markedly increase in the foreseen future with the growing availability of such 

data. In essence, it is another incarnation of the chicken and egg scenario – these relatively costly 

datasets will only be generated on a large scale when their clinical utility becomes more 

apparent, and the current paucity of these datasets yet impedes further progress. Hence, the 

current demonstration of their potential value, coupled with the basic intuition that one needs to 

target multiple clones in tumors to achieve long-enduring responses, will hopefully serve to drive 

the generation of relevant datasets in clinical settings moving forward. Considering that the 

average annual cost of treating a cancer patient in the US is currently around $150K, the current 

cost of about $15K for sequencing a tumor to optimize treatment is one order of magnitude 

smaller, and at least in our minds, a well-justified expense that is ought to be carefully studied 

and considered moving forward. 

 

Consequently, one can further expect that SC-based drug response predictive models 

would further improve when such datasets would become more available. But beyond that, they 

could be further improved by considering cancer type-specific cell lines, whenever a large 

number of such models become available for each cancer type. We note that the quality of our 

response models would also depend on the quality of the SC-expression profiles available e.g., 

their depth, drop-out rates, etc. Of note, we deliberately have chosen not to impute the SC data 

given the recent reports that dropouts are limited to non-UMI-based SC-expression methods and 

otherwise likely reflect true biological variation (Svensson et al. 2020, Cao et al. 2021). A key 
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limitation of our pipeline is a lack of ability to predict drug effects on immune and normal cells 

in the tumor microenvironment, which is obviously needed to estimate the toxicity and side 

effects of different combinations. A major push to future SC-based precision oncology 

development will come from large-scale drug screens of drugs in noncancerous cell lines, 

currently very scarcely available, which will then enable the construction of predictors of drug 

effects on non-tumor cells, using an analogous pipeline to the one presented here for tumor cells. 

Finally, our results demonstrate that tracking the drug response expression in post-treatment 

biopsies could help follow the evolution of drug resistance at a single-cell resolution and help 

guide the design of future personalized combination treatments that could significantly diminish 

the likelihood of resistance emergence.  

 

In summary, this study is the first to demonstrate that the high resolution of information 

from scRNA-seq could indeed be harnessed to build drug response models that can predict 

effective targeted therapies for individual cancer patients in a data-driven manner. 

 

Methods 

Data collection 

  We first collected the bulk-expression and drug response profiles generated in cancer cell 

lines curated in the DepMap (Tsherniak et al. 2017) consortium from Broad Institute (version 

20Q1, https://depmap.org/portal/download/). The drug response is measured via area under the 

viability curve (AUC) across eight dosages and measures via a sequencing technique called 

PRISM (Corsello et al. 2020). In total, we mined 488 cancer cell lines with both bulk-

transcriptomics and drug response profiles. We next mined SC-expression of 205 cancer cell 

lines (280 cells per cell line) generated in (Kinker et al. 2020) and distributed via the Broad 

Single-cell Portal. The metadata, identification, and clustering information were also mined from 

the same portal (https://singlecell.broadinstitute.org/single_cell/study/SCP542/pan-cancer-cell-

line-heterogeneity#study-download). 
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The PERCEPTION pipeline 

A response model for a drug is built via the following two steps: 1. Learn from bulk and 

2. optimize using SC expression. We first divided all the cancer cell lines into two sets - 1. Cell 

lines where bulk-expression is available, and SC-expression is not available (N=318) 2. Cell 

lines where SC-expression is available (N=170). The first set is used during learning from bulk 

(Step 1, expanded below) and the second in optimizing using SC expression (Step 2).  

Step 1: Learn from bulk: As a feature selection step, we first identified genes whose 

bulk-expression is correlated with drug viability profile (using the Pearson correlation). We 

considered the Pearson correlation Pc(d, g) between drug d and gene g  as a measure of 

information in a gene expression profile and ranked each gene based on the strength of the 

correlation. While considering the top X genes, where X is a hyperparameter optimized in the 

next step, we built a linear regression model regularized using elastic net to predict the response 

to d in five-fold cross-validation, as implemented in R’s glmnet (Friedman et al. 2010). 

Step 2: Optimize using SC-expression: We built the above model using a Bayesian-like 

grid search of various possible values for X (range 10-500), where the model with the best 

performance using SC-expression input of 169 cell lines (left one out for testing) was chosen. 

We finally performed measured the model performance in a leave one our cross-validation using 

the left-out cell line, which was not used in either model building or hyperparameter 

optimization. Performance was measured using Pearson’s correlation between the predicted 

response and the actual response. 

Cross-platform comparison of PERCEPTION performance 

The pharmacological drug screens performed by the PRISM and GDSC studies are based on two 

independent platforms. The GDSC data were downloaded from the DepMap portal 

(Downloaded: April 15, 2020, https://depmap.org/portal/download/). To compare the 

performance of PERCEPTION across two independent screening platforms and test if the 

expression signature captured by our drug response models can be translated across the domains, 

we tested according to the following multi-step procedure: 

1. Of the 347 cell lines in common with drug response in both GDSC and PRISM, there are 120 

cell lines with SC-expression data in (Kinker et al. 2020). We selected at random 80 cancer cell 

lines with SC-expression data and pharmacological screens in GDSC and PRISM, 
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2. We considered all the drugs (N=191) that were screened in both PRISM and GDSC, from 

which we selected a subset of drugs (N=28) with a concordant response between PRISM and 

GDSC (Pearson rho > 0.3 and p-value < 0.05; at least 20 cell lines with responses per drug in 

both GDSC and PRISM) in the 267 cell lines in common between the two screens excluding the 

cell lines in the testing set.  

3. For each of the drugs selected in step 2, we ran the PERCEPTION pipeline with one necessary 

change in the set of cell lines used. Specifically, in Step 2, the parameters were optimized on SC-

expression of 90 cell lines (excluding the 80 test cell lines) instead of the default 170 cell lines 

which have response data in PRISM.  

4. Finally, we applied the resulting response models to the testing dataset and compared the 

predicted AUC values to the experimental responses from GDSC and PRISM. We used the 

Pearson correlation coefficient as the measure to compare the performance between the screens 

and predicted responses. 

PERCEPTION prediction of monotherapy and combination response in a lung cancer cell 

lines screen 

We first performed a qualitative test of the drug screen mined from (Nair et al. 2021), where the 

response is measured via the AUC of the dosage-viability curve across eight dosages. To this 

end, we compared this screen to a previous high-quality screen from Broad and Sanger Institute, 

PRISM (Corsello et al. 2020). Specifically, we leveraged the fact that the two screens have 

common drugs and share some cell lines. Focusing on this set of cell lines and drugs, for each 

drug, we computed a correlation between the viability profile in the screen from Nair et al. and 

PRISM (Extended Figure 3A). We reasoned that the drugs with correlated profiles in the two 

screens (Pearson Rho>0.3, defined as concordance score) are consistent across the two screens, 

suggesting that they are high quality. Independently, we also note that the concordance score of 

drugs’ response profile across screens is correlated with our predictive performance (Pearson 

Rho>0.39; P<0.019, Extended Figure 2A), suggesting that our model is capturing the robust 

signal across screens of these drugs. In this screen, we defined AUC data points <1 as high-

confidence and we filtered out the other data points as typically an AUC larger than 1 is due to 

noise in the data as we see higher variability in doses that do not inhibit. 
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We focused on data points for 14 FDA-approved drugs in 21 cell lines that passed the 

above filter for which we could build predictive PERCEPTION models (Pearson’s R>0.3, 

P<0.05). We assessed their predictive performance vs. drug screen data measured for 

monotherapy and two-drug combinations of these drugs across 21 lung cancer cell lines in five 

dosages (Table S5). Using SC-expression for these lung cancer cell lines profiles in (Kinker et 

al. 2020) (300 cells per cell line), we used the PERCEPTION models to predict the response to 

each drug in each cell line by computing the mean predicted viability across all the single cells of 

that cell line. We next tested PERCEPTION’s ability to predict the response to combinations of 

these 14 drugs studied in this screen (Table S5). A combination response in a given cell line was 

predicted by adopting the independent drug action (IDA) model across all the single cells from 

that cell line (Ling et al. 2020); i.e., the predicted combination response of N drugs is the effect 

of the single most effective drug in the combination. Performance was measured using ROC-

AUC. Throughout our work, combination response is predicted using the IDA principle. 

PERCEPTION’s prediction in patient-derived head and neck cancer cell lines 

The single-cell expression of the five head and neck squamous cell cancer (HNSC) patient-

derived cell lines and their treatment response for eight drugs and combination therapy at two 

different dosages were obtained from (Suphavilai et al. 2020). For these drugs, PERCEPTION 

was unable to build drug response models with Spearman correlation between their predicted vs. 

experimental viability greater than 0.3 using PRISM screens. Therefore, we incorporated two 

main changes to the PERCEPTION pipeline: 

1. Drug response from GDSC screens (response from > ~800 cell lines for these drugs) were 

used to build models, 

2. Only the top 3000 highly expressed genes (with fewer dropouts in HNSC dataset) in common 

between the bulk expression and PDC datasets were considered in the pipeline. For the drugs for 

which PERCEPTION was able to build models, we applied the models on the PDC cell lines and 

obtained the predictions for each individual cell. The patient-level monotherapy response for a 

given drug is represented by the mean response of all the cells included in a patient’s PDC 

sample. In the case of drug combinations, for a given cell, its combination response is computed 

using IDA, i.e., the predicted combination response of N drugs is the effect of the single most 

effective drug in the combination (Ling et al. 2020, IDA). The patient-level combination 
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response was represented by the mean of the combined response of all the cells in a patient's 

PDC sample. 

Predicting combinations response in multiple myeloma patients 

Response labels, SC-expression of patients’ tumors (MARS-seq), clustering annotation and mean 

cluster expression were mined from the original publication (Cohen et al. 2021). We only used 

and focused on the cells annotated as malignant. The steps to predict the combination response of 

a patient can be divided into a two-step process: Step 1. Predict the combination response of 

each clone in that tumor, Step 2. Predict patient’s response from the clone-level combination 

response. To this end, we first tried to build PERCEPTION response models for the four 

treatments used in the combination therapy. However, we were able to build predictive response 

models for only carfilzomib and lenalidomide. We first predicted the combination response for 

each transcriptional cluster (or simply referred to here as a “clone”). To this end, we predicted 

the response for each of the two drugs separately and computed the killing using the Independent 

Drug Action (IDA) principle i.e., the predicted combination response of N drugs is simply the 

effect of the single most effective drug in the combination (Ling et al. 2020). To overcome the 

challenge of the discrepancy of dosage used in the clinic vs. pre-clinical testing where our 

models are built, we z-scale our predicted response profile of a drug across clone, where this z-

score predicted response represents the relative response of a clone compared to all the other 

available in the cohort. 

 

In Step 2, we use this clone-level combination killing profile in a patient to predict the overall 

patient’s response. We considered the predicted response of the least responsive clone found in 

each patient as that overall patient’s response. This is based on the notion that it would be 

selected by the treatment and dominate the overall tumor. Performance was measured using 

ROC-AUC. For our model building control, we built random models using either shuffled labels, 

randomized features in the regression model, or an unpredictive model of another drug in the 

screen for 1000 times and computed the number of times that the stratification power denoted by 

AUC is higher than our original model. This proportion is provided as an empirical P-value. 
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Predicting combinations response in breast cancer clinical trial analysis 

The pre-filtered 10X based single-cell RNAseq count data and the cell type annotations of the 65 

breast cancer samples (34 patients) were downloaded from GEO (GSE158724). We considered 

only the cells annotated as tumor cells in our analysis. As defined in the primary publication of 

the dataset (Griffiths et al. 2021), we applied Seurat (v.4.0.5). We filtered out samples with fewer 

than 100 cells. We used the reciprocal principal-component analysis integration workflow to 

integrate the tumor cells from the remaining samples (Hao et al. 2021). The data were 

normalized using the SCTransform function and the top 5000 variably expressed genes and the 

first 50 PCs were used in the anchor-based integration step. The first fifty PCs and a k.param 

value of 20 were used to identify neighbors and the resolution was set to 0.8 to find distinct 

clusters. We identified 36 different clones, of which only 16 clones were found in the pretreated 

samples from patients in Arms B and C. The SC-expression of 16 clones was considered in the 

drug response prediction analysis. The patient response information was obtained from Table 

S12 in (Griffiths et al. 2021). 

 

The default PERCEPTION pipeline was used to build drug response models except for a single 

change. The top ~2500 highly expressed genes (ranked by total number of non-zeroes across all 

the cancer cells) in the breast cancer dataset that are in common with the cancer cell line bulk 

expression data were used in the pipeline. The resulting models were used to predict response at 

the patient level in a similar manner to what we did for the multiple myeloma data. The controls 

for model building were also tested for the breast cancer data similarly to the testing we did for 

the multiple myeloma data.  

 

Building bulk-based drug response models to distinguish responders from non-responders 

We built bulk-based drug response models to compare their performance vs PERCEPTION 

models in stratifying responders from non-responders in the two clinical trials. To build drug 

response models based on bulk expression data, we considered all ~500 cell lines with bulk 

expression and PRISM-based drug response. For each drug, we randomly divided the data in 

training (1/3rd of the cell lines) and test set (2/3rd of the cell lines). As a feature selection step, 

we first identified genes whose bulk-expression is correlated with drug viability profile (Pearson 
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R) in the training set. We considered Pc(d, g) as a measure of information in a gene expression 

profile and ranked each gene based on the strength of the correlation. While considering the top 

100 genes, we built a linear regression model regularized using elastic net to predict the response 

to in leave one out cross-validation, as implemented in R’s glmnet (Friedman et al. 2010). The 

resulting model performance was validated on the testing dataset. 

 

To build state-of-the-art drug response models as defined in (Tsherniak et al. 2017), we 

generated random-forest-based models in a similar framework as defined above. To make sure 

that the gene features used in the resulting model predictors are actually detected to be expressed 

in the patient SC-dataset, we consider genes that overlap in both the cell line bulk expression 

data and patient SC-dataset to build the models. For each drug, we repeated the above model-

building steps 100 times and presented the mean and standard error of their performances in 

stratifying responders from non-responders in their respective clinical trials.  

Predicting the development of resistance to multiple tyrosine kinase inhibitors trial in lung 

cancer patients 

The SC-expression profiles of 39 biopsies from 25 patients were provided by the authors of 

(Maynard et al. 2020). The clinical annotations were mined from the original publication, 

specifically Supplementary Table 2. Similar to previous sections, we focused only on the subset 

of single cells labeled in the publication as malignant. Seurat clustering was performed with the 

resolution = 0.8, dims = 10, number of features = 2000, scale.factor = 10000, log normalization 

method with minimum cells in a cluster required to be > 3 and minimum features required to be 

> 200, to identify a total of 16 clones. The expression of each transcriptional cluster/clone in a 

patient is the averaged expression across all the single cells associated with that cluster in that 

given patient. We successfully built drug response models for dabrafenib, erlotinib, gemcitabine, 

osimertinib and trametinib. The response observed in the most resistant clone of a patient is 

considered as the PERCEPTION’s predicted response. We primarily studied the development of 

drug resistance in the trial. To this end, we defined a term called “Extent of Resistance” of a 

drug, which is a difference between a drug's predicted viability from PERCEPTION and the 

predicted baseline viability. The predicted baseline viability is defined as the average predicted 

viability of the respective treatments in all treatment-naive samples. This difference in response 
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from the naive state denotes the extent of resistance and is thus named accordingly. We 

computed correlations using both Spearman and Pearson to test and identify robust correlations. 

Literature survey of cross-resistance and cross-sensitivity 

To search for evidence available in published papers for a cross-resistant or cross-sensitive drug 

pair, we used the search term “drug X AND drug Y” e.g., erlotinib AND gemcitabine, in the 

PubMed search portal https://pubmed.ncbi.nlm.nih.gov/ on December 26, 2021. The resulting 

clinical trials in the first fifty matches, sorted by best match, were manually surveyed for 

outcomes. For pre-clinical evidence for or against, non-clinical studies testing the combinations 

were manually surveyed. 

Data availability 

The entire collection of the processed datasets used in this manuscript, including pre-clinical 

models of cancer cell lines and PDCs, can be accessed via a Zenodo repository that will be 

provided upon request or upon publication. 

Code and data availability 

The study’s scripts to replicate each step of results and plots will be provided upon publication. 

We used open-source R version 4.0 to generate the figures. Wherever required, commercially 

available Adobe Illustrator 23.0.3 (2019) was used to create the figure grids. 
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