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Abstract
Background: Reference-based phasing and genotype imputation algorithms have been developed with sublinear
theoretical runtime behaviour, but runtimes are still high in practice when large genome-wide reference datasets are
used. Methods: We developed EagleImp, a software with algorithmic and technical improvements and new features for
accurate and accelerated phasing and imputation in a single tool. Results: We compared accuracy and runtime of
EagleImp with Eagle2, PBWT and prominent imputation servers using whole-genome sequencing data from the 1000
Genomes Project, the Haplotype Reference Consortium and simulated data with more than 1 million reference genomes.
EagleImp is 2 to 10 times faster (depending on the single or multiprocessor configuration selected) than Eagle2/PBWT,
with the same or better phasing and imputation quality in all tested scenarios. For common variants investigated in
typical GWAS studies, EagleImp provides same or higher imputation accuracy than the Sanger Imputation Service, Michigan
Imputation Server and the newly developed TOPMed Imputation Server, despite larger (not publicly available) reference
panels. It has many new features, including automated chromosome splitting and memory management at runtime to
avoid job aborts, fast reading and writing of large files, and various user-configurable algorithm and output options.
Conclusions: Due to the technical optimisations, EagleImp can perform fast and accurate reference-based phasing and
imputation for future very large reference panels with more than 1 million genomes. EagleImp is freely available for
download from https://github.com/ikmb/eagleimp.
Key words: Reference-based genotype phasing and imputation; Eagle2; PBWT; GWAS; acceleration; fine- and coarse-
grained multi-processing; parallel processing.

Introduction

Genotype phasing and imputation has become a standard tool
in genome-wide association studies (GWAS), and the accuracy of
phasing and imputation generally increases with the number
of haplotypes from a reference panel of sequenced genomes [1],
with the algorithmic complexity (and thus the runtime) of the
imputation process depending on the number of unique haplo-
types in each genomic segment of the target samples (GWAS in-
put dataset) and the total number of these segments in the ref-
erence panel. State-of-the-art reference-based phasing and
imputation algorithms such as Eagle2 [2], PBWT [3] and min-
imac4 [4, 5, 6] have been efficiently developed with runtimes
better than linear scaling over the size of the reference panel.
For example, Das et al. [5] showed that increasing the ref-
erence panel size from 1,092 (1000 Genomes Project Phase 1,
27 million variants) to 33,000 individuals (Haplotype Reference
Consortium (HRC), 40 million variants) (>40-fold increase in
the number of reference genotypes) only increases the phas-
ing and imputation runtime by a factor of 10 (5.3 h vs. 51.3 h)
to impute 100 GWAS samples in one single-threaded process.
However, this would still result in a runtime of weeks for a
new reference panel with more than one million reference sam-
ples. The UK Biobank (UKB) has recently made whole-genome
sequencing (WGS) data from 200,000 individuals available [7],
and the newly established European ’1+ Million Genomes’ Initia-
tive (1+MG) [8] project is underway, generating WGS data of

over one million genomes. The 1+MG project will lead to a fur-
ther increase in the number of reference genotypes by more
than >30-fold compared to the HRC panel benchmarked by Das
et al. [5]. Currently, the best solution to perform phasing and
imputation for large datasets is to perform parallel process-
ing on large multi-core systems or high-performance computing
(HPC) clusters with hundreds of CPU-cores, to distribute the
computational load as much as possible. Therefore, algorith-
mic and technical improvements together with existing imple-
mentations are needed to ensure that phasing and imputation
remain feasible for reference panels with more than one mil-
lion samples.

To allow phasing and imputation for very large reference
panels, while ensuring at least the same phasing and imputa-
tion accuracy, we developed EagleImp, a software tool for ac-
celerated phasing and imputation. EagleImp introduces algo-
rithmic and implementation improvements to the established
tools Eagle2 [2] (phasing) and PBWT [3] (imputation) in a single
convenient application. By making changes to the algorithm,
parameters, and implementation, we were able to speed up the
classical 2-step imputation process with Eagle2 and subsequent
PBWT by more than a factor of ten for single chromosome analy-
sis and (depending on the parallelisation strategy) at least more
than a factor of two for the entire human genome while main-
taining or even improving phasing and imputation quality.

EagleImp also provides many new convenient features
via simple command line parameters, such as a continuous
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progress report to a file, user pre-selection of per genotype
imputation information (genotypes, allele dosage, genotype
dosage and/or probabilities), phasing confidences and usage
information of input variants in a separate file, variant IDs
from the reference in imputation output, automated chromo-
some chunking (if main memory requirements are too high),
lock file support (to enable two or more processes to share
CPU resources), detection and handling of ref/alt swaps and/or
strand flips, the ability to skip certain parts of the algorithm
(e.g. pre-phasing, reverse phasing or entire phasing or imputa-
tion) and more. In addition, EagleImp supports imputation of
chromosome X and Y with automatic partitioning by pseudo-
autosomal regions (PAR).

Background

Since early studies have shown that the accuracy of impu-
tation increases significantly when the genotype data con-
tains information on the haplotype phase of heterozygous vari-
ants [9], it is common practice to apply a haplotype phasing al-
gorithm to a target input dataset prior to genotype imputation.
Among others, the best known phasing tools are SHAPEIT2 [10]
(phasing without reference) and Eagle2, whereby the latter is
currently used on all prominent imputation servers, such as
the Sanger Imputation Service (SIS) [11, 1], Michigan Imputation
Server (MIS) [12, 13] and the newly developed TOPMed Imputa-
tion Server (TOPMed) [14, 15]. Prominent imputation tools are
IMPUTE v2 [16], minimac4 [13] and PBWT [3].

In developing EagleImp, we focused on improving and merg-
ing Eagle2 and PBWT into a single tool. Both tools use the
equally named Position-based Burrows-Wheeler Transform (PBWT)
data structure introduced by Durbin [3] as their basis. Its main
advantages are the compact representation of binary data and
the ability to quickly look up any binary sequence at any posi-
tion in the data. The runtime complexity is linear to the length
of the query sequence, independent of the size of the database.
To create a PBWT, the algorithm determines permutations of
the input sequences for each genomic site such that the subse-
quences ending at that site are sorted when read backwards. In
our work, we propose further algorithmic and implementation
improvements that allow a more efficient use of the PBWT data
structure and thus increase the speed of phasing and imputa-
tion, while maintaining at least the same accuracy of phasing
and imputation.
Improvements in EagleImp
For algorithmic and computational details of the original phas-
ing in Eagle2 and imputation in PBWT, we refer to our Supple-
mentary 1 and the original publications by Loh et al. [2] and
Durbin [3]. Full details of EagleImp improvements summarised
below can be found in the Supplementary 2.

First, the following points summarise the EagleImp im-
provements to the data structure and further technical im-
provements: (i) We have developed a new .qref format for ref-
erence data, which significantly improves the reading time of
the reference data (Supplementary 2.1). (ii) The PBWT data
structure of the condensed reference (Supplementary 1.1) re-
quired for each target sample is now stored in a compressed
format (Supplementary Figure 1 in Supplementary 2.2), i.e.
a binary format (in permuted form) corresponding to the
calculated permutation arrays with an index similar to the
FM-index used for a Burrows-Wheeler transformation (BWT) [17]
(Supplementary Listing 1), to ensure fast generation, compact
storage and fast access to the reference data. (iii) Haplotype
probabilities are no longer stored in a log-based format and a
non-normalised scaling factor is used for the haplotype path
probabilities (Supplementary 2.2), which only needs to be up-

variants
divided in

chunks
0 4 8 12 1 5 9 13 2 6 1014 3 7 1115

block0 block1 block2 block3

0 1 2 3 4 5 6 7 8
chunk

processing
order

0
4
8

1
5
9

2
6
10

3
7
11parallel

output
queues

tmpfile0 tmpfile1 tmpfile2 tmpfile3

concatenation

final imputation output

temporary
files

Figure 1. Newly implemented multi-processing scheme for imputation with
EagleImp. Variants are distributed over blocks with a separate output file.
Chunks in a block are processed repetitively iterating over the blocks. Out-
put files are concatenated at the end. The example shows a distribution over
four blocks. The numbers in the chunk indicate the order in which they are
processed. See Supplementary 2.3.5 for details.
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Figure 2. Improved path extension step in EagleImp. Illustration of mapping
a PBWT interval [i, j]m–1 from position m – 1 to m, resulting in two intervals
[i0, j0]m and [i1, j1]m. The interval [i, j]m–1 exemplary represents the sequences
in the PBWT that end with 010 at position m–1. By stepping forward to position
m these sequences are extended either with 0 or 1 and thus are located in one
of the mapped intervals [i0, j0]m or [i1, j1]m respectively. It is easy to see, that
i = i0 + (i1 – c0) and j + 1 = (j0 + 1) + ((j1 + 1) – c0) (as j is inclusive in the interval)
which directly leads to the mapping equations (6)-(7) in Supplementary 2.1.

dated in case of a predictable loss of precision after several
path extension operations. In this way, probability calcula-
tions remain precise, especially for heavily needed summations
of floating point numbers without an otherwise required ap-
proximation (as in Eagle2) or back-transformation. (iv) The
imputation of missing genotypes during phasing is obsolete
since the subsequent imputation step imputes missing geno-
types for shared variants (between target and reference) in the
same way as variants that only occur in the reference. To im-
plement this, we used a tree structure to calculate set-maximal
matches (Supplementary 2.3). (v) Unlike the original PBWT
tool, EagleImp uses multiple threads for genotype imputation,
including the use of multiple temporary output files to reduce
the input/output (IO) file bottleneck (Figure 1 and Supplemen-
tary 2.3). (vi) We introduced a conversion of genotypes and
haplotypes into a compact representation with integer regis-
ters and made extensive use of Boolean and bit masking opera-
tions as well as processor directives for bit operations (such as
popcount for counting the set bits in a register) throughout the
application which accelerated the computing time significantly
(Supplementary Figure 1 and Supplementary Listing 2).
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Second, the following points summarise further algorith-
mic improvements in EagleImp: (i) Due to the properties of
the PBWT data structure, sequences that end with equal sub-
sequences at a certain position are located next to each other
in the PBWT and can thus be addressed as an interval. For the
path extension step now only the interval boundaries have to
be mapped to the next position to get the corresponding in-
tervals for both possible extensions of the sequence (Figure 2
and Supplementary Listing 2). Since the frequency of a subse-
quence is equal to the (normalised) size of the corresponding
interval, the frequency calculation could thus be accelerated.
(ii) We increased the default beam width parameter (number
of possible paths) from 50 (fixed value in Eagle2) to 128 and
the ∆ parameter from 20 (fixed value in Eagle2) to 24 in favor
of further increasing the phasing quality with minimal loss of
computing time (Supplementary 1.1 and 2.2). (iii) We omitted
the identical-by-descent (IBD) check performed by Eagle2 before
the phasing process, since we found no loss in phasing quality
without the IBD-check implemented. (iv) Pre-phasing is dis-
abled by default (unlike Eagle2), as benchmarks showed no im-
provement (Supplementary 3.4). If desired, pre-phasing can
be explicitly enabled with a user option in EagleImp. Likewise,
reverse phasing can be optionally disabled.

Third, we introduced new features and improvements in us-
ability, among other things: (i) EagleImp allows imputation of
X and Y chromosomes by careful handling of haploid samples.
Since pseudo-autosomal regions (PAR) are usually encoded with
reference to chromosome X in the target data, we often face
the problem of diploid data in the PAR regions and haploid
data in the non-PAR region of chromosome X target (input)
files. Existing tools and imputation servers sometimes crash
with an error message if diploid and haploid data is mixed in
a single input file. We provide a script together with the Ea-
gleImp source code that takes care of these regions by auto-
matically splitting the input data with respect to the chromo-
some X and Y PAR regions before imputation and then merg-
ing the imputation results back into one file afterwards. (ii)
EagleImp allows reference and alternative alleles in the tar-
get to be swapped compared to the reference (with the option
--allowRefAltSwap), e.g. an A/C variant is considered as C/A, and
it allows strands to be flipped, e.g. an A/C variant is consid-
ered a T/G variant at the same chromosomal position (with the
option --allowStrandFlip). (iii) EagleImp computes the impu-
tation accuracy r2 (as described in Das et al. [18] and used in
minimac4) and provides the value together with the allele fre-
quency, the minor allele frequency, the allele count and num-
ber as well as the reference panel allele frequency (if available)
in the imputation output. An optional r2 filter can be applied
to filter out variants with low imputation quality. (iv) Phas-
ing confidences and information about how the target variants
are used for imputation are provided in separate output files.
(v) To save disc space for the output files, the user can decide
which information is provided along with the imputed (hard
called) genotypes, i.e. any combination of allele dosages (ADS
tag), genotype dosages (DS tag), genotype probabilities (GP tag)
or no information. Variant IDs in imputation output are pro-
vided exactly as they appear in the reference. (vi) EagleImp
automatically activates chromosome chunking if the memory
requirement is higher than the available main memory (pro-
vided as the runtime parameter --maxChunkMem) to eliminate the
tedious process of trying out chunk sizes on different input and
reference datasets for the user. (vii) For better workload distri-
bution on multi-core computers, we provide a locking mecha-
nism (via a lock file) such that low CPU-load tasks (e.g. reading
input files) can run multiple processes at once, while high CPU-
load tasks (e.g. the phasing and imputation processes) require
multiple-exclusion of CPU resources. We provide an optional
launch script that uses this feature for simultaneous process-

Table 1. Three different sized reference panels (A–C) were used forphasing and imputation benchmarks.
Reference #Variants #Samples Ancestry

(A) HRC1.1 40.4 million 27,165 mixed
(B) 1000G Phase 3 84.8 million 2,504 mixed
(C) synthetic HRC1.1 40.4 million 1,086,600 mixed

Table 2. 18 target datasets in total were used for phasing and impu-tation benchmarks to evaluate the runtime and impuation accuracyof EagleImp compared to the original tools Eagle2 and PBWT. Targetdatasets (1–6) were sampled from the HRC1.1 panel (A) and targetdatasets (7–16) were sampled from the 1000G Phase 3 panel (B). Foreach of the target datasets (1–16), the selected samples were re-moved from the corresponding reference panels (A) and (B) in thebenchmarks to avoid a biased result. The real-world datasets (17–18) (from [19]) did not show an overlap of samples with any of thereference panels.
Target #Variants #Samples Ancestry

(1) HRC.EUR 619,872 494 European
(2–6) HRC.v1–5 619,872 500 mixed
(7–11) 1kG.EUR.v1–5 647,963 50 European
(12–16) 1kG.v1–5 647,963 50 mixed
(17) COVID.Italy 559,519 2,113 Italian
(18) COVID.Spain 549,696 1,792 Spanish

ing of multiple input files. (viii) A progress indicator shows
the progress in percentage (giving the user a hint how long the
analysis will take). Optionally, constantly updated status and
info files display summarised information about the running
process.

Data Description

To quantify phasing and imputation quality and runtime im-
provements of EagleImp compared to the original tools Eagle2
and PBWT, first, we conducted quality benchmarks with dif-
ferent parameters on three different sized reference panels
(Table 1) and 18 target datasets (Table 2) including two real-
world target GWAS datasets (from [19]) to further compare im-
putation accuracy of EagleImp with the accuracy of current im-
putation servers (SIS, MIS and TOPMed). Then, we ran all run-
time benchmarks using the HRC.EUR target dataset (Table 2)
and the parameters used for the quality benchmarks. Full de-
scriptions about reference and target datasets from Tables 1
and 2 and details about the setup for quality and runtime
comparisons (in particular the preparation of various multi-
processor configurations) can be found in Supplementary 3.
Choice of phasing and imputation parameters

The exact input parameters for the program call of EagleImp,
Eagle2 and PBWT are listed in Supplementary 3.3. For perfor-
mance comparison, we focused on testing different values of
the parameter K (to select the K-best haplotypes from the ref-
erence for phasing). For example, we ran a benchmark on each
HRC.* dataset (Table 2 (1–6)) with four different values of K
for EagleImp as well as for Eagle2: 10,000 (default setting in
Eagle2), 16,384, 32,768, and “max” (where max means using
all available haplotypes for phasing, which is 54,330 minus the
number of removed haplotypes (988 for target (1) and 1000 for
targets (2–6)) in the case of the reduced HRC1.1 panel (A)). All
runs used one phasing iteration (reflecting the default setting
of Eagle2 if the number of target samples is less than half of
the number of reference samples).
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Figure 3. HRC1.1 reference panel (mostly European ancestry; Table 1 (A)) based phasing and imputation performed better for EagleImp (green) compared to the
original Eagle2/PBWT (blue) with increasing K in all six test datasets: (a–d) Average (genome-wide) switch error rates (after phasing) and (e–h) genotype error
rates (after imputation) using different values of K ∈ {10, 000 (default setting in Eagle2); 16, 384; 32, 768; max} for six target datasets named HRC.EUR (European
ancestry; Table 2 (1)) and HRC.v1–5 (Mixed ancestry; Table 2 (2–6)). The parameter K selects the K-best haplotypes from the reference for phasing, resulting in
better quality but longer runtimes.

Benchmark system and program versions

The computing system we used consists of two Intel Xeon E5-
2667 v4 CPUs, each with 8 cores running at 3.2 GHz, resulting
in 32 available system threads. The system is equipped with
256 GB of DDR4 RAM and uses a ZFS file system that combines
six HDDs, each with a capacity of 2 TB in a raidz2 pool (lead-
ing to a total capacity of about 7 TB). The operating system is
Ubuntu Linux 21.04 with kernel 5.11.0.

EagleImp is written in C++ and compiled with GCC v10.3.0.
For Eagle2 and PBWT we used the to date most recent builds
on Github: Eagle2 v2.4.1 [20] and PBWT 3.1-v3.1-7-gf09141f [21].
Both tools were also compiled with GCC v10.3.0 together with
the required HTSlib v1.12 and bcftools v1.12. For runtime bench-
marks, we measured the wall-clock runtime by marking the
start and end points of the benchmark with the command date
and calculated the difference in runtime.
Metrics for phasing and imputation accuracy

We counted a phase switch whenever the current phase at a call
site differs the phase at the previous call site, and we counted a
switch error whenever a phase switch occurs at a calling site in
the target but not in the reference when comparing a phased
haplotype pair from the target to the original haplotype pair in
the reference, or vice versa. The switch error rate per sample is
then computed by dividing the switch errors by the number of
target variants. In our benchmarks, we showed switch error
rate for each benchmark set averaged over all samples.

Genotype errors are determined in a similar way by compar-
ing the genotypes of an imputed haplotype pair with the cor-
responding genotypes in the reference panel and counting the
number of differences. The number of genotype errors in a
sample divided by the number of total variants gives the geno-
type error rate. As with the switch error rate, we calculated the
genotype error rate for each benchmark set averaged over all
samples.

Another way to determine the imputation quality is the im-
putation accuracy r2, which is a valuable means of interpreta-
tion with regard to sample size and statistical power in a GWAS
study and which can basically be considered independent of
minor allele frequency (MAF) (although the precision of the r2
estimate decreases with low MAF) [18]. r2 can be estimated for
each imputed variant from posterior allele probabilities with-
out knowing the true allele on each chromosome.
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Figure 4. For the 1000G Phase 3 reference panel (23 global populations; Table
1 (B)), phasing and imputation with EagleImp (green) outperformed the original
Eagle2/PBWT (blue) in all ten test datasets: (a–b) Average genome-wide switch
error rates (after phasing) and (c–d) genotype error rates (after imputation)
for the target datasets named 1kG.EUR.v1–5 (European ancestry; Table 2 (7–11))
and 1kG.v1–v5 (different worldwide populations; Table 2 (12–16)). Parameter K
was chosen to be maximum in all test runs (here, K = 5, 008), thus including
the entire 1000G Phase 3 reference panel.

Phasing and Imputation Quality

Effect of pre-phasing and reverse phasing on EagleImp

Contrary to our expectations, pre-phasing in EagleImp resulted
in a slight loss of quality for all values of K for the HRC1.1 refer-
ence panel (an increased switch error and genotype error rate of
about 0.06% and 0.1% , respectively, (Supplementary Tables 1–
2, Supplementary Figure 2) and at the same time increased the
runtime (Supplementary Table 3), we disabled pre-phasing in
EagleImp by default. (However, the user can explicitly switch
it on again by using the --doPrePhasing switch). In contrast,
disabling reverse phasing results in a significant loss of qual-
ity for all K (between 3.2% and 3.7% increased switch error
rate and a genotype error rate increased by approximately 1.0%
to 1.2% (Supplementary Tables 1–2, Supplementary Figure 2),
and should therefore be retained in EagleImp.
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Figure 5. Imputation accuracy r2 was higher for EagleImp (green; K = 54, 330 (max)) compared to Eagle2/PBWT (blue; K = 54, 330 (max)) for two real-world GWAS
datasets (a) COVID.Italy and (b) COVID.Spain (Table 2 (17–18)), with further comparison to imputation r2 from imputation servers SIS (purple), MIS (orange) and
TOPMed (grey). EagleImp showed a quality gain compared to TOPMed for minor allele frequency (MAF) greater than 0.004 (COVID. Italy) and 0.01 (COVID.Spain) and
achieved at least equivalent results compared to MIS across the entire MAF spectrum, although MIS/SIS and TOPMed use their own reference panels, which are
approximately 1.2 times (32,470 samples) and 3.5 times (97,256 samples) larger than the publicly available HRC1.1 panel (27,165 samples; Table 1 (A)) used for
EagleImp and Eagle2/PBWT.

Switch and genotype error rates

For both EagleImp and Eagle2/PBWT, average (genome-wide)
switch error rates and genotype error rates decreased (as ex-
pected) with higher values of K using the HRC1.1 reference panel
(Figure 3; Supplementary Tables 4–5). For K = 10, 000 the
phasing and imputation quality of EagleImp is nearly equal to
Eagle2/PBWT (ranging from an increase of 0.5% and a reduction
of 0.2% in the switch error rate (Figure 3 (a)), and an increase
of 0.5% and a reduction of 0.5% in the genotype error rate
Figure 3 (e))). As the value of K increases, the EagleImp runs
performed better compared to the corresponding Eagle2/PBWT
runs with the same value of K (Figures 3 (b–d) and Figures
3 (f–h)). For example, for K = 16, 384 the switch error rate
is lowered between 0.4% and 0.9%, while for K = max, the
switch error rate is lowered between 2.2% and 2.4%. For the
genotype error rate we measure a reduction from 0% to 0.8%
for K = 16, 384 and from 1.1% to 1.8% for K = max. In our 1000G
Phase 3 reference benchmark analysis (Figure 4, Supplemen-
tary Tables 6–9), EagleImp performed better than Eagle2/PBWT
for all 10 target datasets from the 1000G Phase 3 panel.

Our benchmarks with the HRC1.1 and the 1000G Phase 3 ref-
erence panel showed that switch error and genotype error rates
were generally lower in the European input target datasets. As
expected, due to the smaller reference panel, the 1000G Phase 3
benchmarks reveal higher error rates than in the HRC1.1 bench-
marks. The target datasets with mixed populations showed an
increased switch error rate of about 25% while the genotype
error rate is increased by around 40% to 50%. When compared
to Eagle2/PBWT, EagleImp clearly performed better with a reduc-
tion of the switch error rate between 4%-5% and the genotype
error rate between 0.5%-1%.
Imputation accuracy r2
For the real-world GWAS datasets COVID.Italy and COVID.Spain,
we determined r2 values stratified by MAF (including all vari-
ants above this threshold) using the four different K param-
eters from above (Supplementary Figures 3 and 4). The
COVID.Spain dataset showed a generally slightly better impu-
tation performance than the COVID.Italy dataset in all runs,
possibly due to a slightly similar genetic background com-
pared to the HRC1.1 reference panel. Already for K = 10, 000
(Supplementary Figure 3a and 4a), phasing and imputation
with EagleImp consistently produced higher r2 values than the
Eagle2/PBWT combination across the entire MAF spectrum, and

also higher r2 values than the SIS, despite its larger (not freely
available) HRC1.1 reference panel as compared to our HRC1.1
benchmark panel. With K = 10, 000 and a MAF greater than
0.001 (and especially at higher MAF), EagleImp also showed a
quality advantage in contrast to the MIS, which we attribute to
our algorithmic changes. Below a MAF of 0.001, the MIS still
seems to show its higher imputation quality due to the larger
HRC1.1 reference panel. Especially in this low frequency range,
TOPMed imputation (as a reference model) shows that a much
larger reference panel plays a another key role in increasing
imputation accuracy for rare variants, in addition to algorith-
mic improvements. Interestingly, for K = 10, 000 and com-
mon variants such as in GWAS studies, EagleImp was shown
to even achieve a higher quality over TOPMed (here for MAF
greater than 0.02 for COVID.Spain and greater than 0.006 for
COVID.Italy) probably due to EagleImp’s algorithmic improve-
ments, although EagleImp’s reference panel is more than three
times smaller than that of TOPMed, despite the smaller refer-
ence panel in both comparisons.

For higher K parameters, the graphs for EagleImp and Ea-
gle2/PBWT showed (as expected) better r2 values but the dis-
tance between both tools remained the same (Supplementary
Figures 3 (b–d), 4 (b–d)). Figure 5 depicts the average
genome-wide r2 values for the COVID.Italy and COVID.Spain
datasets as a function of different MAF thresholds (on loga-
rithmic scale), with K = max for Eagle2 and EagleImp (which is
effectively K = 54, 330 as we used the public HRC1.1 panel). Here
EagleImp achieved at least equivalent or better results compared
to the MIS across the entire MAF spectrum and showed same
quality or a quality gain compared to TOPMed for MAF greater
than 0.01 (COVID.Spain) and 0.004 (COVID.Italy).

Phasing and Imputation Runtime

For the sake of simplicity, we ran all runtime benchmarks us-
ing the HRC.EUR target dataset and the parameters used for the
HRC1.1 reference benchmarks above, but with different multi-
processing configurations with up to 32 concurrent system
threads for EagleImp and Eagle2/PBWT. Details of the various
multiprocessor configurations tested can be found in Supple-
mentary 3.7. In addition, we examined runtimes of individ-
uals chromosomes processed with all 32 system threads (re-
ferred to as 1x32 runs) (Supplementary 3.8) and single-thread
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Figure 6. Faster runtimes of EagleImp compared to Eagle2/PBWT (with at least the same accuracy, Figure 3), demonstrated for the processing of 494 GWAS target
samples using the HRC1.1 reference panel (Table 1(A)) and different K parameters (K=54,330 denotes the maximum value including all haplotypes from the HRC1.1
panel). The naive multi-processor configuration (1x32 with 32 phasing threads and each chromosome processed sequentially) and the best individual multi-
processor configuration (i.e. fastest individual configuration determined from 6 different runs of Eagle2/PBWT and 8 different runs of EagleImp, see Supplementary
Table 10) were compared. The numbers in brackets give the acceleration factor of EagleImp compared to the corresponding Eagle2/PBWT run.
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Figure 7. Phasing and imputation runtimes for the synthetic HRC1.1 reference
panel (Table 1 (C)) containing >1 million samples (2,173,200 haplotypes) and
the real-world COVID.Italy dataset (2,113 samples; Table 2 (17)). The numbers
in brackets give the acceleration factor of EagleImp compared to the correspond-
ing Eagle2/PBWT run. For K = max Eagle2 could not complete the analysis in
8x4 configuration due to insufficient main memory (marked with “failed”),
hence, no runtime or speedup could be measured in this configuration. For the
1x32 configuration phasing with Eagle2 crashed for chromosomes 1–4 and 6
(“partially failed”) and the stated runtime includes the incomplete runs.

runtimes with multi-processing disabled (Supplementary 3.9),
since multi-processing strategies can behave differently on dif-
ferent computing systems. We also measured the runtimes
of our real-world GWAS datasets COVID.Italy and COVID.Spain
which can be found in Supplementary 3.10. Note, that the run-
time benchmarks do not include the preparation of the refer-
ence files (Supplementary 3.11), which is required for PBWT
and is optional for EagleImp. (PBWT requires a .pbwt file for
each reference file; for EagleImp we used our newly developed
.qref format instead of .vcf.gz or .bcf.)
Multi-processing runtimes
We observed that for any value of K, the Eagle2.8x4 con-
figuration performed best for the Eagle2/PBWT runs and
the EagleImp.2x4x8 configuration performed best for EagleImp
(Supplementary Table 10), which is why we only compared
these two configurations in the following.

For K = 10, 000 (Figure 6 (a)), Eagle2.1x32 took 1 hour and
46 minutes: The Eagle2.8x4 configuration accelerated this by
a factor of 2.30 to 46 minutes. In contrast, the EagleImp.1x32
configuration required 40 minutes, which we could speed up
by a factor of 1.85 to 22 minutes in the EagleImp.2x4x8 configu-
ration. This corresponds to a speedup factor of 2.66 when com-
paring the 1x32 configurations of Eagle2/PBWT and EagleImp or
a factor of 2.14 when comparing the fastest multi-processing

configurations of the two tools. The total runtime increased
with higher values of K (Figure 6 (b–d)), but the speedup fac-
tors between both tools only varied slightly. For K = max, the
Eagle2/PBWT runtime was 2 hours and 27 minutes for the 1x32
configuration and 1 hour and 25 minutes for 8x4. EagleImp anal-
ysed the same data in 54 minutes (1x32) and 35 minutes (2x4x8),
resulting in speedup factors of 2.71 and 2.41, respectively.

When comparing runtimes for individual chromosomes, we
additionally measured runtimes for phasing-only, imputation-
only and combined runs. For the phasing-only runs, we ob-
served that EagleImp is between 2.93 and 4.81 times faster
than Eagle2 for all chromosomes and different values of K
(Supplementary Table 11). The imputation-only runs of Ea-
gleImp with 32 threads when compared to PBWT showed the ad-
vantages of the multi-threading capability of EagleImp (which
PBWT does not offer), with a speedup between 7.77 and 12.94
(Supplementary Table 12). The combination of phasing and
imputation offers the advantage for EagleImp that the reference
panel does not have to be read twice (as is the case with Eagle2
and PBWT), resulting in a combined speedup between 5.82 to
10.81 for single chromosomes (Supplementary Table 13).
Single-thread runtimes
We measured the runtimes of the HRC.EUR dataset from above
with the four values of K exemplary for chromosome 2 and
chromosome 21 (largest and smallest number of input vari-
ants) with only one thread for Eagle2 and EagleImp (by using
the corresponding --numThreads parameters for both tools). We
found that EagleImp is faster than Eagle2/PBWT with measured
speedups between 1.59 and 2.48 for phasing only and between
1.40 and 1.51 for imputation only, and a combined speedup be-
tween 1.58 and 2.25 (Supplementary Tables 14–15).

Phasing and Imputation using One Million Reference
Genomes

To our knowledge, the TOPMed imputation server uses the
largest reference panel currently available for phasing and im-
putation, with 97,256 reference samples (TOPMed r2) [15]. To
explore EagleImp’s capabilities in handling a future reference
panel with more than one million samples, we created a syn-
thesised panel synthetic HRC1.1 (1,086,600 samples and 40.4
million variants, Table 1 (C)) by multiplying the sample data
of the public HRC1.1 panel (Table 1 (A)) 40 times (see section
Data Description). We measured EagleImp’s and Eagle2/PBWT’s
runtimes for the real-world GWAS dataset COVID.Italy (2,113
samples) using K = 10, 000 and K = 2, 173, 200 (maximum K
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from the synthetic HRC1.1 panel) and the naive (Eagle2.1x32, Ea-
gleImp.1x32) and respectively fastest multi-processor configu-
rations (Eagle2.8x4, EagleImp.2x4x8) from the previous runtime
benchmark (Supplementary Table 18).

EagleImp outperformed Eagle2/PBWT with a speedup factor
of at least 2.80 (K = 10, 000) and 3.50 (K = max) (Figure 7). Ea-
gleImp took about 24 hours for K = 10, 000 in 2x4x8 configura-
tion, while, in contrast, the original Eagle2/PBWT took almost
three days (68 hours) in 8x4 configuration respectively. The
runs with K = max, i.e. K = 2, 173, 200 in this case, resulted in
a runtime of 4 days for EagleImp in 2x4x8 configuration, while
Eagle2 could not complete the run due to insufficient memory
and missing automatic chunking ability (requirement of more
than 256GB of RAM) on our benchmark system in 8x4 config-
uration. In the 1x32 configuration Eagle2 crashed only for the
larger chromosomes 1–4 and 6 with a total runtime (including
the crashes) of more than 15 days.

Discussion

We have introduced EagleImp, a fast and accurate tool for
phasing and imputation. Due to technical improvements and
changes in the data structure, EagleImp is 2 to 10 times faster
(depending on the multi-processor configuration) than Ea-
gle2/PBWT, with same or better phasing and imputation qual-
ity in all tested scenarios. For common variants investigated
in typical GWAS studies, EagleImp also yielded equal or higher
imputation accuracy than the imputation servers MIS, SIS and
TOPMed that use larger (not freely available) reference panels,
which we attribute to our algorithmic improvements. Because
of the technical optimisation and the improvement of the sta-
bility of the software, EagleImp can perform phasing and im-
putation for upcoming very large reference panels with more
than 1 million genomes.

For phasing, we accelerated the search for the K best haplo-
types, the generation of the condensed reference and the entire
phasing process by using an alternative haplotype encoding,
Boolean comparison operations and processor directives for bit
operations. We improved the accuracy of the phase probabil-
ity calculation by using a scaled floating point representation
instead of a logarithm-based representation, and we improved
the frequency lookups in the PBWT data structure by introduc-
ing our interval mapping procedure and omitting duplicate cal-
culations of frequencies in the beam search. We investigated
the effects of pre-phasing and reverse phasing procedures with
the conclusion that pre-phasing is unnecessary. By introduc-
ing multi-threading and writing multiple temporary files dur-
ing imputation, and by using a tree-structure and the same
interval mapping technique as for the phasing part to search
for set-maximal matches, we were able to speed up the imputa-
tion process considerably compared to PBWT. Furthermore, the
correct treatment of missing genotypes from the input dataset
became possible with the tree-structure.

An additional reduction in computing time was made pos-
sible by the introduction of the Qref-format (producible from
standard .vcf or .bcf files) for fast reference loading, by com-
bining phasing and imputation in a single tool, and by an
helper script that introduces multi-processing with several
worker processes and a balanced distribution of a complete
genome-wide input dataset. We further enhanced the us-
ability of phasing and imputation by adding several conve-
nience features, such as chromosome X and Y handling, im-
putation r2 and MAF calculation for output files, user selec-
tion of desired imputation information (allele dosages, geno-
type dosages, genotype probabilities), automated optimisation
of chromosome partitioning (chunking) and memory manage-
ment during runtime, preserving variant IDs from reference,

r2 filtering and other things.
Unfortunately, we were not able to sufficiently investigate

the quality of the imputation of rare variants, as we did not
have the larger reference panels of the MIS, SIS and the TOPMed
imputation servers at our disposal. We noticed that in the im-
putation of common variants, the MIS (uses minimac4 for impu-
tation) fell behind the SIS (uses PBWT for imputation) in terms
of quality, despite the same larger HRC reference panel, but
the MIS performed better than the SIS in the imputation of rare
variants. We have not investigated this further. However, since
new, even larger reference panels will be available soon, this
difference should not matter too much. We already designed
EagleImp to use more than one million reference genomes (>2
million haplotypes) for reference-based phasing and imputa-
tion. In this case, EagleImp will be able to show its full strength
in terms of runtime and quality compared to other tools, al-
though again an optimisation of the K parameter (selection of
the K best reference genomes where a higher K increases the
runtime but produces better results) will be required. Imputa-
tion in combination with new methods such as study-specific
pre-selection of reference samples using deep learning impu-
tation reconstruction methods for reference panels [22] could
provide a higher accuracy for rare variants.

As an improvement, in the future we plan to replace the
slow HTSlib with our own library in order to speed up the writ-
ing process since this is still a bottleneck in EagleImp. A re-
duction of the runtime by using Field Programmable Gate Arrays
(FPGAs) is another possibility to reduce the runtime even fur-
ther (Wienbrandt et al. [23]). Furthermore, we plan to offer
a free web service for EagleImp, so that the advantages of Ea-
gleImp can also be used by the community even without special
hardware equipment.

Methods

We give detailed information about the original concepts of Ea-
gle2 [2] and PBWT [3] in Supplementary 1 and describe our
changes to the algorithm and implementation in Supplemen-
tary 2, with additional details about the performed benchmarks
in Supplementary 3.

Availability of source code and requirements

• Project name: EagleImp
• Project home page: https://github.com/ikmb/eagleimp
• Operating system: Linux
• Programming language: C++ (bash, awk)
• Other requirements: HTSlib, Zlib, BOOST, TBB, Cmake
• License: GNU GPL v3.0

Availability of supporting data and materials

All quality and runtime measures from our benchmarks are
listed in the Supplementary Material. The 1000 Genomes Phase
3 reference panel can be downloaded at ftp://ftp.1000genomes.
ebi.ac.uk/vol1/ftp/release/20130502/. Data access to the
EGAD00001002729 dataset for the HRC1.1 panel is restricted
and was granted under request ID 11699. The benchmark
datasets HRC.EUR, HRC.v1–5, 1kG.EUR.v1–5 and 1kG.v1–5 are sub-
sets of the previously mentioned reference panels.
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