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Abstract

Sketching methods offer computational biologists scalable techniques to analyze data sets
that continue to grow in size. MinHash is one such technique that has enjoyed recent broad
application. However, traditional MinHash has previously been shown to perform poorly when
applied to sets of very dissimilar sizes. FracMinHash was recently introduced as a modification
of MinHash to compensate for this lack of performance when set sizes differ. While experimen-
tal evidence has been encouraging, FracMinHash has not yet been analyzed from a theoretical
perspective. In this paper, we perform such an analysis and prove that while FracMinHash
is not unbiased, this bias is easily corrected. Next, we detail how a simple mutation model
interacts with FracMinHash and are able to derive confidence intervals for evolutionary mu-
tation distances between pairs of sequences as well as hypothesis tests for FracMinHash. We
find that FracMinHash estimates the containment of a genome in a large metagenome more
accurately and more precisely when compared to traditional MinHash, and the confidence in-
terval performs significantly better in estimating mutation distances. A python-based imple-
mentation of the theorems we derive is freely available at https://github.com/KoslickiLab/
mutation-rate-ci-calculator. The results presented in this paper can be reproduced using
the code at https://github.com/KoslickiLab/ScaledMinHash-reproducibles.
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1 Introduction

Sketching-based approaches in recent years have been successfully applied to a variety of genomic
and metagenomic analysis tasks, due in large part to such methods incurring low computational
burden when applied to large data sets. For example, Mash [24], is a MinHash [7]-based approach
that was used to characterize the similarity between all pairs of RefSeq genomes in less than 30
CPU hours. Such efficiency gains are due primarily to sketching-based approaches recording a
small subsample (or modification thereof) of the data in such a fashion that some distance metric
is approximately preserved, a process called a locality sensitive hashing scheme. In bioinformatics,
this has resulted in improvements to error correction [27, 23], assembly [9, 3, 14, 12], alignment
[17, 22], clustering [30, 10, 26, 18], classification [20, 19, 6], and so on. Importantly, the accuracy and
efficiency of sketching approaches can frequently be characterized explicitly, allowing practitioners
to balance between efficiency improvements and accuracy. Often, these theoretical guarantees dic-
tate that certain sketching approaches are well suited only to certain kinds of data. For example,
MinHash, which is used in many of the aforementioned applications, has been shown to be par-
ticularly well-suited to quantify the similarity of sets of roughly the same size, but falters when
sets of very different sizes are compared [18]. This motivated the introduction of the containment
MinHash which utilized a MinHash sketch of the smaller set, with an additional probabilistic data
structure (a Bloom filter [5]) to store the larger set. While this improved speed and accuracy,
this approach can become quite inconvenient for large sets due to requiring a bloom filter to be
created for the larger of the two sets. To ameliorate this, an approach called the “FracMinHash”
was recently introduced [15, 16] that modifies the MinHash sketch size to scale naturally with
the size of the underlying data. This has been implemented into a software package called Sour-
mash [8] that uses these FracMinHash sketches to facilitate genomic and metagenomic similarity
assessment (sourmash compare), metagenomic taxonomic classification (sourmash gather), and
database searches (sourmash search) [26]. Independently, and more recently, the same concept of
FracMinHash was introduced by Ekim et al. (2021) but there with the name universe minimizer.

While there is ample computational evidence for the superiority of FracMinHash when com-
pared to the classic MinHash, particularly when comparing sets of different sizes, no theoretical
characterization about the accuracy and efficiency of the FracMinHash approach has yet been given.
In this manuscript, we address this missing characterization of accuracy and efficiency by deriving
a number of theoretical guarantees. In particular, we demonstrate that the FracMinHash approach,
as originally introduced, requires a slight modification in order to become an unbiased estimator
of the containment index. After this, we characterize the statistics of this unbiased estimator and
derive an asymptotic normality result for FracMinHash. This in turn allows us to derive confi-
dence intervals and hypothesis tests for this estimator when considering a simple mutation model
(which is related to the commonly used Average Nucleotide Identity score). We also characterize
the likelihood of experiencing an edge case when analyzing real data which allows us to provide a
level of confidence along with the estimated containment index. Finally, we support the theoretical
results with additional experimental evidence and compare our approach to the frequently used
Mash distance [24].

A python-based implementation of the theorems we derive is freely available at https://

github.com/KoslickiLab/mutation-rate-ci-calculator.

A note on naming As Phil Karlton is reported to have said [1]: “There are only two hard
things in Computer Science: cache invalidation and naming things.” The latter certainly holds
true in computational biology as well. As noted above, the concept discussed herein has been
defined similarly and independantly by different authors. Ekim et al. [12] referred to the concept
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as universe minimizers, Irber et al. [16, 26, 8] called it scaled MinHash, and Edgar [11] called
them min code syncmers. A recent twitter thread [29] involving these authors and others coalesced
on the following definitions: FracHash is any sketching technique that takes a defined fraction
of the hashed elements. As such, Broder’s [7] ModHash is one such example of a FracHash. A
FracMinHash is then a sketch that takes a fraction of the hashed elements, specifically those that
hash to a value below some threshold (hence the “min”).

2 FracMinHash and its statistics

We begin first by introducing the definition of FracMinHash using a slight modification of the
definition contained in [16]. We compute the expectation of FracMinHash, find that it is nearly,
but not exactly, an unbiased estimator of the containment index, and then compute the variance of
the unbiased version. We conclude this section by showing asymptotic normality of FracMinHash,
a result that will be used in a subsequent section to derive confidence intervals and hypothesis tests
for FracMinHash under a simple mutation model.

2.1 Definitions and preliminaries

We recall the definition of FracMinHash given in [15] and reiterate its expected value before extend-
ing the statistical analysis of this quantity. Given two arbitrary sets A and B which are subsets of a
domain Ω, the containment index C(A,B) is defined as C(A,B) := |A∩B|

|A| . Let h be a perfect hash

function h : Ω → [0, H] for some H ∈ R. For a scale factor s where 0 ≤ s ≤ 1, a FracMinHash
sketch of a set A is defined as follows:

FRACs(A) = {h(a) | ∀a ∈ A s.t. h(a) ≤ Hs} . (1)

The scale factor s is a tunable parameter that can modify the size of the sketch. Using this
FracMinHash sketch, we define the FracMinHash estimate of the containment index Ĉfrac(A,B) as
follows:

Ĉfrac(A,B) :=
|FRACs(A) ∩ FRACs(B)|

|FRACs(A)|
. (2)

For notational simplicity, we define XA := |FRACs(A)|. Observe that if one views h as a uniformly
distributed random variable, we have that XA is distributed as a binomial random variable: XA ∼
Binom(|A|, s). Furthermore, if A∩B ̸= ∅ where both A and B are non-empty sets, then XA and XB

are independent when the probability of success is strictly smaller than 1. Using these notations,
we compute the expectation of eq. (2), recapitulated from [15] for completeness.

Theorem 1. For 0 < s < 1, if A and B are two non-empty sets such that A \ B and A ∩ B are
non-empty,

E
[
Ĉfrac(A,B)1|FRACs(A)|>0

]
=

|A ∩B|
|A|

(
1− (1− s)|A|

)
.

Proof. Using the notation introduced previously, observe that

Ĉfrac(A,B)1|FRACs(A)|>0 =
XA∩B

XA∩B +XA\B
1XA∩B+XA\B>0,
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and that the random variables XA∩B and XA\B are independent (which follows directly from the
fact that A∩B and A\B are non-empty, distinct sets). We will use the following fact from standard
calculus: ∫ 1

0
xtx+y−1 dt =

x

x+ y
1x+y>0. (3)

Then using the moment generating function of the binomial distribution, we have

E
[
tXA∩B

]
= (1− s+ st)|A∩B| (4)

E
[
tXA\B

]
= (1− s+ st)|A\B|. (5)

We also know by continuity that

E
[
XA∩B tXA∩B−1

]
=

d

dt
(1− s+ st)|A∩B| (6)

= |A ∩B|s(1− s+ st)|A∩B|−1. (7)

Using these observations, we can then finally calculate that

E

[
XA∩B

XA∩B +XA\B
1XA∩B+XA\B>0,

]
= E

[∫ 1

0
XA∩B tXA∩B+XA\B−1 dt

]
(8)

=

∫ 1

0
E
[
XA∩B tXA∩B+XA\B−1 dt

]
(9)

=

∫ 1

0
E
[
XA∩B tXA∩B−1

]
E
[
tXA\B

]
dt (10)

= |A ∩B|
∫ 1

0
(1− s+ st)|A∩B|+|A\B|−1 dt (11)

=
|A ∩B|(1− s+ st)|A|

|A|

∣∣∣∣t=1

t=0

(12)

=
|A ∩B|
|A|

(
1− (1− s)|A|

)
, (13)

where Fubini’s theorem is used in Equation (9) and independence in Equation (10).

In light of Theorem 1, we note that eq. (2) is not an unbiased estimate of C(A,B). This may
explain the observations in [16] that showed the uncorrected version in eq. (2) leads to suboptimal
performance for shorts sequences (e.g viruses). However, for sufficiently large |A| and s, the bias
factor

(
1− (1− s)|A|) is sufficiently close to 1. Alternatively, if |A| is known (or estimated, eg. by

using HyperLogLog [13]), then

Cfrac(A,B) :=
|FRACs(A) ∩ FRACs(B)|
|FRACs(A)|

(
1− (1− s)|A|

)1|FRACs(A)|>0 (14)

is an unbiased estimate of the containment index C(A,B). Throughout the rest of the paper,
we will refer to the debiased Cfrac(A,B) as the fractional containment index. We now turn to
calculating the expectation and variance of the fractional containment index Cfrac(A,B).
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2.2 Mean and variance of Cfrac(A,B)

The expectation of Cfrac(A,B) follows directly from Equation (14) and Theorem 1.

Theorem 2. For 0 < s < 1, if A and B are two distinct sets such that A ∩ B is non-empty, the
expectation of Cfrac(A,B) is given by

E[Cfrac(A,B)] =
|A ∩B|
|A|

. (15)

We now turn to determining the variance of Cfrac(A,B). Observing the independence of XA∩B
and XA\B given that the intersection of A and B is non-empty, ideally we can determine the
variance of Cfrac(A,B) using the associated multivariate probability mass function. However, doing
so does not result in a closed-form formula. Therefore, we use Taylor expansions to approximate
the variance.

Theorem 3. For n = |A ∩ B| and m = |A \ B| where both m and n are non-zero, a first order
Taylor series approximation gives

Var
[
Ĉfrac(A,B)

]
≈ mn(1− s)

s(m+ n)3
.

Using the results of Theorem 3, we have the variance of Cfrac(A,B) as follows.

Corollary 4. For n = |A ∩ B| and m = |A \ B| where both m and n are non-zero, a first order
Taylor series approximation gives

Var [Cfrac(A,B)] ≈ mn(1− s)

s(m+ n)3
(
1− (1− s)|A|

)2 .
Proceeding in the same fashion, we can obtain second and third order approximations to the

variance. Indeed, series approximations can be had to arbitrarily high order due to the binomial
distribution having finite central moments of arbitrary order. However, we found that the higher
order expansion derivations are tedious and long, whereas the results obtained using first order
approximation are both simple and accurate enough in practice, as our numerical experiments
below demonstrate.

2.3 Asymptotic normality of Cfrac(A,B)

In order to derive confidence intervals and hypothesis tests for Cfrac(A,B) in the next section, in
this section we prove this quantity’s asymptotic normality. We utilize the delta method [2, section
14.1.3] combined with the De Moivre-Laplace theorem. Indeed, the De Moivre-Laplace theorem
guarantees asymptotic normality of XA∩B and XA\B, and since g(x, y) = x

x+y is twice differentiable,
we can apply the delta method to obtain:

Theorem 5. For g(x, y) = x
x+y , n = |A ∩B| and m = |A \B| where both m and n are non-zero,

√
n+m

(
g(XA∩B, XA\B)− g(n,m)

) D−−−−−→
n,m→∞

N

(
0,

mn(1− s)

(m+ n)3s

)
.
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3 Statistics of Cfrac(A,B) under simple mutation model

In this section, we turn our attention to analyzing how a simple mutation model affects Cfrac(A,B).
The model under consideration is a simple mutation process where each nucleotide of some sequence
S is independently mutated at a fixed rate. This model was recently introduced in [4] where it was
quantified statistically how this mutation process affects the k-mers in S. We extend the results of
[4] to the case where A is the set of k-mers of S, B is the set of k-mers of S′ (that is, the sequence
S after the mutation process) and where the quantity under consideration is Cfrac(A,B). We first
recall a few important definitions.

3.1 Preliminaries

We follow closely the exposition contained in [4]. Let L > 0 be a natural number that denotes the
number of k-mers in some string S. A k-span Ki is the range of integers [i, i+k− 1] which denotes
the set of indices of the sequence S where a k-mer resides. Fix a mutation rate p where 0 < p < 1.
The simple mutation model considers each position in i = 0, . . . , L+ k − 1 and with probability p,
marks it as mutated. A mutation at location i affects the k-spans Kmax(0,i−k+1), . . . ,Ki. Let Nmut

be a random variable defined to be the number of affected/mutated k-spans. We use q = 1−(1−p)k

to express the probability that a k-span is mutated. Note that 1 − p corresponds precisely to the
expected average nucleotide identity (ANI) between a sequence S and its mutated counterpart S′.

In addition to the number of affected or unaffected k-spans, we shall need to define the sets
of k-mers before and after the mutation process. Given a nonempty sequence S on the alphabet
{A,C, T,G} and a k-mer size such that each k-mer in S is unique, let A represent the set of all k-
mers in S and let L = |S|−k+1. Now, we apply the simple mutation model to S via the following:
if for any i ∈ [0, . . . , L + k − 1], this index is marked as mutated, let S′

i be some nucleotide in
{A,C, T,G} \ {Si}, and otherwise let S′

i = Si if the index i is not marked as mutated. Let B
represent the set of k-mers of S′, and we assume that S′ does not contain repeated k-mers either.
In summary, A denotes the set of k-mers of a sequence S, and B denotes the set of k-mers of a
sequence S′ derived from S using the simple mutation model with no spurious matches.

3.2 Expectation and variance

We immediately notice that |A \ B| = Nmut, and |A ∩ B| = L − Nmut. We note that the results
in Theorem 3, Corollary 4 and Theorem 5 above still hold for a fixed Nmut (since m = Nmut and
n = L−Nmut). However, assuming a simple mutation model, Nmut is not a fixed quantity, rather
a random variable that depends primarily on the mutation rate p (among other parameters of the
mutation model). Therefore, the analyses so far only connects Cfrac(A,B) to a fixed Nmut, as we
have only considered the randomness from the FracMinHash sketching process so far. To quantify
the impact of the mutation rate p on Cfrac(A,B), we consider now the randomness introduced by
both the FracMinHash sketching process and the mutation process simultaneously.

Let P = (Σ1, µ1, β1) and S = (Σ2, µ2, β2) be the probability tuples corresponding to the muta-
tion and FracMinHash sketching random processes, respectively. We will use the subscript P,S to
indicate the product space, e.g. EP,S [·] and VarP,S [·]. Hence we assume that the mutation process
and the process of taking a FracMinHash sketch are independent. Indeed, the hash functions have
no relation to the point mutations introduced by the simple mutation model. Before proceeding
with the analysis, we make a note that the expectation and variance of Nmut under the simple
mutation model with no spurious matches have been investigated in [4]. As such, we already know
EP [Nmut], VarP [Nmut] and EP [Nmut

2], and will use these results directly (see [4, Table 1]).
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Theorem 6. For 0 < s < 1, if A and B are respectively distinct sets of k-mers of a sequence S
and a sequence S′ derived from S under the simple mutation model with mutation probability p such
that A ∩B is non-empty, then the expectation of Cfrac(A,B) in the product space P, S is given by

EP,S [Cfrac(A,B)] = (1− p)k, (16)

where P = (Σ1, µ1, β1) and S = (Σ2, µ2, β2) are the probability tuples corresponding to the mutation
and FracMinHash sketching random processes, respectively.

Proof.

EP,S [Cfrac(A,B)] =

∫
P,S

Cfrac(A,B) dµ1×µ2 =

∫
P

∫
S
Cfrac(A,B) dµ2 dµ1

= EP [ES [Cfrac(A,B)]] = EP

[
1− Nmut

L

]
= 1− Lq

L
= 1− (1− (1− p)k)

= (1− p)k

Here, we used Fubini’s theorem in the second step. We also used the expectation of Nmut from
[4], where q = 1− (1− p)k.

Next, we turn to the more challenging task of calculating the variance of Cfrac(A,B) in the
product space P,S. In the following, note that VarP(Nmut) is already known (see [4, Theorem 2]).

Theorem 7. For 0 < s < 1, if A and B are respectively distinct sets of k-mers of a sequence S
and a sequence S′ derived from S under the simple mutation model with mutation probability p such
that A ∩B is non-empty, then the variance of Cfrac(A,B) in the product space P, S is given by

Var
P,S

[Cfrac(A,B)] =
(1− s)

sL3 (1− (1− s)L)2
(LEP [N ]− EP [N

2]) +
1

L2
Var
P

(Nmut) (17)

where P = (Σ1, µ1, β1) and S = (Σ2, µ2, β2) are the probability tuples corresponding to the mutation
and FracMinHash sketching random processes, respectively.

With these quantities in hand, we are now in a position to derive hypothesis tests and confidence
intervals for Cfrac(A,B).

4 Hypothesis test and confidence interval

Observe that the marginal of Cfrac(A,B) with respect to the mutation process is simply C(A,B) =
1− Nmut

L . Using the results in [4], we note that Nmut is asymptotically normally distributed when
the mutation rate p and k-mer length k are independent of L, and L is sufficiently large. In Theo-
rem 5, we showed that Cfrac(A,B) is normally distributed for a fixed Nmut. Therefore, considering
the randomness from both the FracMinHash sketching and the mutation model independently,
Cfrac(A,B) is asymptotically normal when all conditions are met. Using the statistics derived in
Section 3, we obtain the following hypothesis test for Cfrac(A,B).

Theorem 8. Let 0 < s < 1, let A and B be two distinct sets of k-mers, respectively of a sequence
S and a sequence S′ derived from S under the simple mutation model with mutation probability p,
such that A ∩B is non-empty.
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Also, let 0 < α < 1, Clow = (1−p)k−zα

√
(1−s)

sL3(1−(1−s)2)
(LEP [Nmut]− EP [Nmut

2]) + 1
L2 VarP (Nmut),

and Chigh = (1− p)k + zα

√
(1−s)

sL3(1−(1−s)2)
(LEP [Nmut]− EP [Nmut

2]) + 1
L2 VarP (Nmut). Then, the fol-

lowing holds as L → ∞ and p and k are independent of L.

Pr[Clow ≤ Cfrac(A,B) ≤ Chigh] = 1− α.

We can turn this hypothesis test into a confidence interval for the mutation rate p as follows.

Theorem 9. Let A and B be two distinct sets of k-mers, respectively of a sequence S and a
sequence S′ derived from S under the simple mutation model with mutation probability p, such that
A∩B is non-empty. Let Epfixed [X] and Varpfixed [X] denote the expectation and variance of X under
the randomness from the mutation process with fixed mutation rate pfixed. Then, for fixed α, s, k
and an observed fractional containment index Cfrac(A,B), there exists an L large enough such that
there exists a unique solution p = plow to the equation

Cfrac(A,B) = (1− plow)
k + zα

√
(1− s)

sL3 (1− (1− s)L)2
(LEplow [Nmut]− Eplow [Nmut

2]) +
1

L2
Var
plow

(Nmut),

and a unique solution p = phigh to the equation

Cfrac(A,B) = (1−phigh)
k−zα

√
(1− s)

sL3 (1− (1− s)L)2
(LEphigh [Nmut]− Ephigh [Nmut

2]) +
1

L2
Var
phigh

(Nmut),

such that the following holds:

lim
L→∞

Pr[plow ≤ p ≤ phigh] = 1− α.

5 Likelihood of corner cases

In practice, one disadvantage of sketching techniques is that the size of the sketch (here controlled
via the scale factor s) may be too small (respectively, too large) to distinguish between highly
similar (respectively, dissimilar) sequences. For example, given a small mutation rate p, one may
need a very large scale factor, and so sketch, to be able to distinguish between a sequence and
the mutated version. These “corner cases” are precisely the ones where the confidence interval
given by Theorem 9 will likely fail. One of these pathological cases shows up when there is nothing
common between the two FracMinHash sketches FRACs(A) and FRACs(B). We observe that
this occurs when XA∩B = 0. Now XA∩B is distributed as a binomial distribution Binom(n, s) where
n = |A ∩ B| = L − Nmut, so the probability of the intersection being empty with respect to the
sketching process is:

PrS [XA∩B = 0] = (1− s)L−Nmut .

Ideally, we would be able to directly calculate EP [PrS [XA∩B = 0]], the expected probability of
this corner case happening. Unfortunately, we do not have a closed form representation ofNmut, and
therefore instead take a Taylor series of PrS [XA∩B = 0] with respect to Nmut about E[Nmut] = qL:

EP
[
(1− s)L−Nmut

]
= EP

[
(1− s)L−qL

∞∑
i=0

(
(−1)i

[(Nmut − c) ln(1− s)]i

i!

)]
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= (1− s)L(1−q)
∞∑
i=0

(
(−1)i

lni(1− s)

i!
EP
[
(Nmut − EP [Nmut])

i
])

.

Hence, if we calculate the first i central moments of Nmut, we can approximate the expected
probability of this corner case happening. In practice, we have found even the second central
moment to suffice.

The remaining pathological case occurs when p ̸= 0 and yet FRACs(A) = FRACs(B) (i.e.
the sketches are not large enough to distinguish between A and B). Similar to before, we have

PrS [XA∩B = n] = sL−Nmut ,

and hence the first order Taylor series expansion gives

EP [s
L−Nmut ] = sL(1−q)

∞∑
i=0

(
(−1)i

lni s

i!
EP
[
(Nmut − EP [Nmut])

i
])

, (18)

and the expected probability of the sketches of A and B not differing at all can similarly be
estimated when given access to central moments of Nmut.

In both cases, these formulas help practitioners assess if containment estimates of 0 or 1 are
due to parameter settings (eg. scale value to high/low), or else are biologically meaningful.

6 Experiments and results

6.1 FracMinHash accurately estimates the containment index for sets of very
different sizes

We first show that FracMinHash can estimate the true containment index better when the sizes of
two sets are dissimilar. For this experiment, we compared FracMinHash with the popular MinHash
implementation tool Mash [25]. We took a Staphylococcus genome from the GAGE dataset [28]
and selected a subsequence that covers C% of the whole genome in terms of number of bases, added
this sequence to a metagenome, and calculated the containment of Staphylococcus in this “super
metagenome.” The metagenome we used is a WGS metagenome sample from a pharmaceutical
degrading enrichment culture (NCBI accession PRJNA782474), consisting of approximately 1.3G
bases. We used a scale factor of 0.005 for FracMinHash, and we set the number of hash functions for
Mash the same as the size of the FracMinHash sketch of the Staphylococcus genome (approximately
1500 in average).

We repeated this setup for different values of C, and compared the containment index calculated
by Mash and FracMinHash in Figure 1. The points shown in the figure are the mean values for
multiple runs with different seeds, whereas the error bars show the standard deviation. Mash
primarily reports MinHash Jaccard index, so we converted the Jaccard index into containment by
counting the number of distinct kmers using brute force.

Figure 1 illustrates that while Mash and FracMinHash both faithfully estimate the true con-
tainment index, the FracMinHash approach more accurately estimates the containment index as
this index increases in value. In addition, the estimate is more precise as demonstrated by the size
of the error bars on the estimates. This is likely due to the fact that while Mash and FracMinHash
both use a sketch of size 4,000 for the Staphylococcus genome, Mash uses the same fixed value
of 4,000 when forming a sketch for the metagenome, while FracMinHash selects a sketch size that
scales with the size of the metagenome. This can be seen most starkly when the metagenome is
significantly larger than the query genome when estimating containment indices.
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Figure 1: True versus estimated containment index for both Mash and the FracMinHash approach For two sets with
dissimilar sizes. The containment index of a Staphylococcus genome was computed when C% of this genome is
inserted into an assembled metagenome. Error bars indicate standard deviation over hash seed values.

6.2 FracMinHash gives accurate confidence intervals around mutation rates

Next, we show that the confidence interval from Theorem 9 for the mutation rate p works well in
practice. To do so, we performed 10,000 simulations of sequences of length L = 10k, 100k and
1M that underwent the simple mutation model with p = 0.001, 0.1 and 0.2. We then used a scale
factor of s = 0.1 when calculating plow and phigh for a 95% confidence interval and repeated this
for k-mer sizes of 21, 51 and 100. Table 1 records the percentage of experiments that resulted in
plow ≤ p ≤ phigh and demonstrates that the confidence intervals indeed are approximately 95%.
We also performed the same experiment for other scale factors. The results are similar, but for the
sake of brevity these tables are included in the appendix.

L = 10 K L = 100 K L = 1 M

p= 0.001 0.1 0.2 0.001 0.1 0.2 0.001 0.1 0.2

k = 21 95.7 94.9 95.0 95.2 95.0 95.3 95.0 94.8 95.1

k = 51 95.2 94.6 N/A 95.2 95.5 N/A 95.0 94.8 N/A

k = 100 95.1 N/A N/A 95.2 N/A N/A 95.1 94.7 N/A

Table 1: The percentage of experiments that resulted in the true mutation rate falling within the 95% confidence
interval given in Theorem 9 when using various mutation rates across multiple k-mer sizes and L values. A scale
factor of s = 0.1 was used. The results show an average over 10,000 simulations for each setting. N/A entries indicate
that the parameters are not particularly interesting, either because E[Nmut] ≈ L in these cases, or because the scale
factor is too small to differentiate between the two FracMinHash sketches.
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6.3 FracMinHash more accurately estimates mutation distance

6.3.1 On simulated data

We now compare the Mash estimate and FracMinHash estimate (given as a confidence interval) of
mutation rates. For this experiment, we simulated point mutations in the aforementioned Staphylo-
coccus genome at a mutation rate p, and then calculated the distance of the original Staphylococcus
genome with this mutated genome using both Mash and the interval given by Theorem 9. The
results are shown in Figure 2a. This plot shows that Mash overestimates the mutation rate by a
noticeable degree, with increasing inaccuracy as the mutation distance increases. This is likely due
to the Mash distance assuming a Poisson model for how mutations affect k-mer occurrences, which
has been shown to be violated when considering a point mutation model. In contrast, the point
estimate given by Theorem 9 is fairly close to the true mutation rate, and the confidence interval
accurately entails the true mutation rate.

6.3.2 On real data
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(a) Estimates of evolutionary distances between
original and mutated Staphylococcus genome
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(b) Estimates of evolutionary distances between
pairs of real bacterial genomes

Figure 2: Mash distances and FracMinHash estimates of evolutionary distance (given in terms of one minus the
average nucleotide identity: ANI) when (a) introducing point mutations to a Staphylococcus genome at a known
rate, and (b) between pairs of real bacterial genomes. Error bars indicate the confidence intervals surrounding the
FracMinHash estimate calculated using Theorem 9.

Finally, we conclude this section by presenting pairwise mutation distances between a collection
of real genomes using both Mash and the interval in Theorem 9. To make a meaningful comparison,
it is important to compute the true mutation distance (or equivalently, the average nucleotide
identity) between a pair of genomes. For this purpose, we used OrthoANI [21], a fast ANI calculation
tool. From amongst 199K bacterial genomes downloaded from NCBI, we randomly filtered out pairs
of genomes so that the pairwise ANI ranges from 0.5 to 1. For visual clarity, we kept at most 3
pairs of genomes for any ANI interval of width 5%. We used 4000 hash functions to run Mash,
and set L = (|A|+ |B|)/2 for the confidence intervals in Theorem 9, where |A| and |B| denote the
numbers of distinct kmers in the two genomes in a pair. The results are presented in Figure 2b.
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Clearly, Mash keeps overestimating the mutation distance, particularly for moderate to high
distances. In contrast, the confidence intervals given by Theorem 9 perform significantly better.
It is noticeable that the confidence intervals are not as accurate as in case of a simulated genome
(presented in Figure 2a). This is natural because when we introduce point mutations, the resulting
pair of genomes do not vary in length. On the other hand, in this real setup, the sizes of the
genomes are very dissimilar, have repeats, and very easily violate the simplifying assumptions of
the simple mutation model.

7 Conclusions

In contrast to classic MinHash, which uses a fixed sketch size, FracMinHash automatically scales
the size of the sketch based on the size of the input data. This has its advantages of facilitating
accurate comparison of sets of very different sizes, but also possesses the possibility that sketch
sizes become quite large. However, given that a user has control over what percentage of the data
to keep in the sketch (in terms of s), reasonable estimates can be made about sketch sizes a priori.
In addition, one particularly attractive feature of FracMinHash is its analytical tractability: as we
have demonstrated, it is relatively straightforward to characterize the performance of FracMinHash,
derive its statistics, and study how it interacts with a simple mutation model. Given these advan-
tages, it seems reasonable to favor FracMinHash in situations where sets of differing sizes are being
compared, or else when fast and accurate estimates of mutation rates are desired (particularly for
moderate to high mutation rates).

Acknowledgements: This material is based upon work supported by the National Science
Foundation under grant No. DMS-1664803. The authors would like to acknowledge the helpful
inputs from Luiz Irber and Paul Medvedev.
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[3] Inanç Birol, Shaun D Jackman, Cydney B Nielsen, Jenny Q Qian, Richard Varhol, Greg
Stazyk, Ryan D Morin, Yongjun Zhao, Martin Hirst, Jacqueline E Schein, et al. De novo
transcriptome assembly with abyss. Bioinformatics, 25(21):2872–2877, 2009.

[4] Antonio Blanca, Robert S Harris, David Koslicki, and Paul Medvedev. The statistics of k-
mers from a sequence undergoing a simple mutation process without spurious matches. bioRxiv,
2021.

[5] Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors. Communications
of the ACM, 13(7):422–426, 1970.

[6] Florian P Breitwieser, DN Baker, and Steven L Salzberg. Krakenuniq: confident and fast
metagenomics classification using unique k-mer counts. Genome biology, 19(1):1–10, 2018.

[7] Andrei Z Broder. On the resemblance and containment of documents. In Proceedings. Com-
pression and Complexity of SEQUENCES 1997 (Cat. No. 97TB100171), pages 21–29. IEEE,
1997.

[8] C Titus Brown and Luiz Irber. sourmash: a library for minhash sketching of dna. Journal of
Open Source Software, 1(5):27, 2016.

[9] Chen-Shan Chin and Asif Khalak. Human genome assembly in 100 minutes. bioRxiv, page
705616, 2019.

[10] Michael R Crusoe, Hussien F Alameldin, Sherine Awad, Elmar Boucher, Adam Caldwell, Reed
Cartwright, Amanda Charbonneau, Bede Constantinides, Greg Edvenson, Scott Fay, et al.
The khmer software package: enabling efficient nucleotide sequence analysis. F1000Research,
4, 2015.

[11] Robert Edgar. Syncmers are more sensitive than minimizers for selecting conserved k-mers in
biological sequences. PeerJ, 9:e10805, 2021.
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A Appendix

A.1 Verification of Theorem 9 using simulations

Similar to Table 1, we repeated the experiment for the same settings except with two different scale
factors. The results are shown in this section.

L = 10 K L = 100 K L = 1 M

p = 0.001 0.1 0.2 0.001 0.1 0.2 0.001 0.1 0.2

k = 21 95.4 95.3 94.7 95.0 95.2 95.06 95.0 95.0 94.6

k = 51 95.4 94.8 N/A 94.8 94.6 N/A 94.9 95.1 94.4

k = 100 94.7 N/A N/A 94.6 N/A N/A 95.4 93.7 N/A

Table S1: The percentage of experiments that resulted in the true mutation rate falling within the 95% confidence
interval given in Theorem 9 when using various mutation rates across multiple k-mer sizes and L values. A scale
factor of 0.2 was used. The results show an average over 10,000 simulations for each setting. N/A entries indicate
that the parameters are not particularly interesting, either because E[Nmut] ≈ L in these cases, or because the scale
factor is too small to differentiate the two FracMinHash sketches.

L = 10 K L = 100 K L = 1 M

p = 0.001 0.1 0.2 0.001 0.1 0.2 0.001 0.1 0.2

k = 21 96.3 95.0 96.0 95.1 95.0 95.3 95.0 95.2 94.9

k = 51 94.9 94.5 N/A 94.7 95.3 N/A 94.7 95.0 N/A

k = 100 95.2 N/A N/A 95.2 N/A N/A 94.5 N/A N/A

Table S2: The percentage of experiments that resulted in the true mutation rate falling within the 95% confidence
interval given in Theorem 9 when using various mutation rates across multiple k-mer sizes and L values. A scale
factor of 0.05 was used. The results show an average over 10,000 simulations for each setting. N/A entries indicate
that the parameters are not particularly interesting, either because E[Nmut] ≈ L in these cases, or because the scale
factor is too small to differentiate the two FracMinHash sketches.

A.2 Missing theorems and proofs

Theorem 3. For n = |A ∩ B| and m = |A \ B| where both m and n are non-zero, a first order
Taylor series approximation gives

Var
[
Ĉfrac(A,B)

]
≈ mn(1− s)

s(m+ n)3
.

Proof. Let g(x, y) = x
x+y , µx = ns, µy = ms and use subscripts to denote partial derivatives:

gx(x, y) =
y

(x+ y)2

gy(x, y) =
−x

(x+ y)2

We then have the first order Taylor series:

Var
(
g
(
XA∩B, XA\B

))
= g2x(µx, µy)Var(XA∩B) + 2gx(µx, µy)gy(µx, µy)E[XA∩B − µx]E[XA\B − µy]

+ g2y(µx, µy)Var(XA\B) (19)
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=
m2

s2(m+ n)4
ns(1− s) +

n2

s2(m+ n)4
ms(1− s)

=
mn(1− s)

(m+ n)3s
,

with the middle term of eq. (19) factoring due to independence.

Theorem 5. For g(x, y) = x
x+y , n = |A ∩B| and m = |A \B| where both m and n are non-zero,

√
n+m

(
g(XA∩B, XA\B)− g(n,m)

) D−−−−−→
n,m→∞

N

(
0,

mn(1− s)

(m+ n)3s

)
.

Proof. The covariance matrix is calculated as

Σ =

[
ns(1− s) 0

0 ms(1− s)

]
.

Using the same notation as in Theorem 3, let

ϕ =

[
gx(µx, µy)
gy(µx, µy)

]
=

[
m

s(n+m)2
−n

s(n+m)2

]
.

The delta method then uses the first order Taylor series from Theorem 3 to obtain that√
n+m

(
g(XA∩B, XA\B)− g(n,m)

)
converges in distribution to a centered normal with variance

ϕ′Σϕ =
mn(1− s)

(m+ n)3s
.

Theorem 7. For 0 < s < 1, if A and B are respectively distinct sets of k-mers of a sequence S
and a sequence S′ derived from S under the simple mutation model with mutation probability p such
that A ∩B is non-empty, then the variance of Cfrac(A,B) in the product space P, S is given by

Var
P,S

[Cfrac(A,B)] =
(1− s)

sL3 (1− (1− s)L)2
(LEP [N ]− EP [N

2]) +
1

L2
Var
P

(Nmut) (17)

where P = (Σ1, µ1, β1) and S = (Σ2, µ2, β2) are the probability tuples corresponding to the mutation
and FracMinHash sketching random processes, respectively.

Proof. First, we calculate the second moment of Cfrac(A,B) in the product space as follows:

EP,S [Cfrac(A,B)2] =

∫
P,S

Cfrac(A,B)2 dµ1×µ2 =

∫
P

∫
S
Cfrac(A,B)2 dµ2 dµ1

=

∫
P

[
mn(1− s)

s(m+ n)3 (1− (1− s)L)2
+

(
L−Nmut

L

)2
]
dµ1

= EP

[
N(L−N)(1− s)

sL3 (1− (1− s)L)2
+

1

L2
(L2 − 2LN +N2)

]

=
(1− s)

sL3 (1− (1− s)L)2
(LEP [N ]− EP [N

2]) +
1

L2
(L2 − 2LEP [N ] + EP [N

2])
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Therefore, we calculate the variance in the product space as follows.

Var
P,S

(Cfrac(A,B)) = EP,S [Cfrac(A,B)2]− EP,S [Cfrac(A,B)]2

=
(1− s)

sL3 (1− (1− s)L)2
(LEP [N ]− EP [N

2]) +
1

L2
(L2 − 2LEP [N ] + EP [N

2])

− 1

L2
(L− EP [N ])2

=
(1− s)

sL3 (1− (1− s)L)2
(LEP [N ]− EP [N

2]) +
1

L2
(L2 − 2LEP [N ] + EP [N

2])

− 1

L2
(L2 − 2LEP [N ] + EP [N ]2)

=
(1− s)

sL3 (1− (1− s)L)2
(LEP [N ]− EP [N

2]) +
1

L2
Var
P

(Nmut)

Theorem 9. Let A and B be two distinct sets of k-mers, respectively of a sequence S and a
sequence S′ derived from S under the simple mutation model with mutation probability p, such that
A∩B is non-empty. Let Epfixed [X] and Varpfixed [X] denote the expectation and variance of X under
the randomness from the mutation process with fixed mutation rate pfixed. Then, for fixed α, s, k
and an observed fractional containment index Cfrac(A,B), there exists an L large enough such that
there exists a unique solution p = plow to the equation

Cfrac(A,B) = (1− plow)
k + zα

√
(1− s)

sL3 (1− (1− s)L)2
(LEplow [Nmut]− Eplow [Nmut

2]) +
1

L2
Var
plow

(Nmut),

and a unique solution p = phigh to the equation

Cfrac(A,B) = (1−phigh)
k−zα

√
(1− s)

sL3 (1− (1− s)L)2
(LEphigh [Nmut]− Ephigh [Nmut

2]) +
1

L2
Var
phigh

(Nmut),

such that the following holds:

lim
L→∞

Pr[plow ≤ p ≤ phigh] = 1− α.

Proof. Given the results in Theorem 8, we only need to prove that plow and phigh are well defined. It

suffices to show that (1−plow)
k+zα

√
(1−s)

sL3(1−(1−s)L)2
(LEplow [Nmut]− Eplow [Nmut

2]) + 1
L2 Varplow(Nmut)

and (1− phigh)
k − zα

√
(1−s)

sL3(1−(1−s)2)
(LEphigh [Nmut]− Ephigh [Nmut

2]) + 1
L2 Varphigh(Nmut) are strictly

monotonic in plow and phigh, respectively under the stated conditions.
Let us first investigate the function of plow. For simplicity, we will write p instead of plow, z

instead of zα and N instead of Nmut. We observe the following:

∂

∂p

[
(1− p)k + zα

√
(1− s)

sL3
(
1− (1− s)L

)2 (LEp[N ]− Ep[N2]) +
1

L2
Var
p
(N)

]
= −k(1− p)−1+k −

(( 1

L2

(
− kL

(
− 2k +

(
1− (1− p)k

)(
− 1 + 2k +

2

p

))
(1− p)−1+k+
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L
(
k
(
− 1 + 2k +

2

p

)
(1− p)−1+k −

2
(
1− (1− p)k

)
p2

)
(1− p)k − 2(−1 + k)k2(1− p)−1+2k−

4(1− p)k
(
− 1 + (1− p)k +

(
1 + (−1 + k)(1− p)k

)
p
)

p3
−

2k(1− p)−1+k
(
− 1 + (1− p)k +

(
1 + (−1 + k)(1− p)k

)
p
)

p2
+

2(1− p)k
(
1− k(1− p)−1+k + (−1 + k)(1− p)k − (−1 + k)k(1− p)−1+kp

)
p2

)
+

1

L3
(
1− (1− s)L

)2
s

(
kL2(1− p)−1+k + kL

(
− 2k +

(
1− (1− p)k

)(
− 1 + 2k +

2

p

))
(1− p)−1+k−

2kL2
(
1− (1− p)k

)
(1− p)−1+k − L

(
k
(
− 1 + 2k +

2

p

)
(1− p)−1+k −

2
(
1− (1− p)k

)
p2

)
(1− p)k+

2(−1 + k)k2(1− p)−1+2k +
4(1− p)k

(
− 1 + (1− p)k +

(
1 + (−1 + k)(1− p)k

)
p
)

p3
+

2k(1− p)−1+k
(
− 1 + (1− p)k +

(
1 + (−1 + k)(1− p)k

)
p
)

p2
−

2(1− p)k
(
1− k(1− p)−1+k + (−1 + k)(1− p)k − (−1 + k)k(1− p)−1+kp

)
p2

)
(1− s)

)
z
)
/2
√
f,

where

f =
L
(
− 2k +

(
1− (1− p)k

)(
− 1 + 2k + 2

p

))
(1− p)k + (−1 + k)k(1− p)2k

L2
+

2(1− p)k
(
− 1 + (1− p)k +

(
1 + (−1 + k)(1− p)k

)
p
)

L2p2
+

1

L3
(
1− (1− s)L

)2
s

(
L2
(
1− (1− p)k

)
− L2

(
1− (1− p)k

)2 − L
(
− 2k +

(
1− (1− p)k

)(
− 1 + 2k +

2

p

))
(1− p)k−

(−1 + k)k(1− p)2k −
2(1− p)k

(
− 1 + (1− p)k +

(
1 + (−1 + k)(1− p)k

)
p
)

p2
)
(1− s).

After a very long and tedious series expansion of the derivative about L = ∞, we obtain that
the derivative is

−k(1− p)k−1 +O(L−1/2)

Therefore, as L approaches∞, the derivative is always negative, which gives us that the function

(1−plow)
k+zα

√
(1−s)

sL3(1−(1−s)2)
(LEplow [N ]− Eplow [N

2]) + 1
L2 Varplow(Nmut) is monotonically decreas-

ing in plow in the asymptotic case.

The proof that (1− phigh)
k − zα

√
(1−s)

sL3(1−(1−s)2)
(LEphigh [N ]− Ephigh [N

2]) + 1
L2 Varphigh(Nmut) is

monotonically decreasing in phigh proceeds in an entirely analogous manner.

A.3 Theoretical guarantees to accurately estimate containment index

In this section, we present theoretical evidence that Cfrac(A,B) is able to estimate the true con-
tainment index C(A,B) with high accuracy. Let the elements in A ∪ B be ei for i = 1 to N . We
define an indicator variable Yi associated with an element ei as follows:
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Yi =

{
1 if ei ∈ FRACs(A) ∩ FRACs(B)

0 otherwise
.

Let Y be the number of elements in FRACs(A) ∩ FRACs(B). Naturally, Y =
∑N

i=1 Yi. The

probability of Yi being 1 is |A∩B|s
|A∪B| . Therefore, we have:

E[Y ] =

N∑
i=1

Pr[Yi = 1] = |A ∩B|s.

Let us make a simplifying assumption that the exact cardinality of the set A is known. Let us
define Y ′ as Y ′ = Y

|A|s . Therefore, E[Y ′] = |A∩B|/|A| = C(A,B). If we use Y ′ as the estimator to

measure C(A,B), then we have

Pr
[∣∣∣Y ′ − C(A,B)

C(A,B)

∣∣∣ ≥ δ
]
= Pr

[∣∣∣Y − |A ∩B|s
|A ∩B|s

∣∣∣ ≥ δ
]
= 2e−δ2|A∩B|s/3,

where we used Chernoff bound for a sum of Bernoulli random variables in the last step. The results
are trivial, stating that when the two sets have more in common, or when we work with a larger
scale factor, the estimate Y ′ performs better. This is expected, and conforms to the concept of using
a scale factor. Cfrac(A,B) estimates C(A,B) slightly differently than Y ′, and further investigations
are required to narrow down the theoretical guarantees of Cfrac(A,B) estimating C(A,B).
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