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Abstract 30 

Aims: To study effects on cellular innate immune responses to novel genes ORF8 and ORF10, 31 

and the more conserved Membrane protein (M protein) from the Severe acute respiratory 32 

syndrome coronavirus 2 (SARS-CoV-2) that causes COVID-19, either alone, or in combination 33 

with cannabidiol (CBD). 34 

Main Methods: HEK293 cells were transfected with a control plasmid, or plasmids expressing 35 

ORF8, ORF10, or M protein, and assayed for cell number and markers of apoptosis at 24 h, and 36 

expression of interferon and interferon-stimulated genes at 14 h. 37 

Key findings: A significant reduction in cell number, and increase in early and late apoptosis, 38 

was found after 24 h in cells where expression of viral genes was combined with 1-2 µM CBD 39 

treatment, but not in control-transfected cells treated with CBD, or in cells expressing viral genes 40 

but treated only with vehicle. CBD (2 µM) augmented expression of IFNg, IFNl1 and IFNl2/3, 41 

as well as the 2’-5’-oligoadenylate synthetase (OAS) family members OAS1, OAS2, OAS3, and 42 

OASL, in cells expressing ORF8, ORF10, and M protein. CBD also augmented expression of 43 

these genes in control cells not expressing viral genes, without enhancing apoptosis. 44 

Significance: Our results demonstrate a poor ability of HEK293 cells to respond to SARS-CoV-45 

2 genes alone, but suggest an augmented innate anti-viral response to these genes in the presence 46 

of CBD. Furthermore, our results indicate that CBD may prime components of the innate 47 

immune system, increasing readiness to respond to viral infection without activating apoptosis, 48 

and therefore could be studied for potential in prophylaxis.      49 

  50 

  51 
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1. Introduction 52 

Coronavirus disease 2019 (COVID-19) is caused by the Severe Acute Respiratory 53 

Syndrome Coronavirus 2 (SARS-CoV-2) that was first detected in humans in that year [1]. At the 54 

time of writing, the number of cases of COVID-19 is approaching 250 million globally [2], and a 55 

number of SARS-CoV-2 variants have emerged and spread between continents [3-8]. Although an 56 

effective vaccine is the ultimate goal, efforts to slow the spread, reduce transmission and 57 

infectivity, improve health outcomes, and mitigate the most serious health impacts of this disease, 58 

will require a multi-faceted approach to reduce the medical, social, and economic burdens of 59 

COVID-19. In this regard, the development of effective therapeutics and prophylactics will be key 60 

to any effective global health strategy and are urgently needed. 61 

The SARS-CoV-2 genome has been sequenced [9], and found to share significant 62 

homology with the genome of SARS-CoV-1, the virus that caused a deadly outbreak of respiratory 63 

disease shortly after the turn of the millennium [10]. This homology is fortunate, since prior 64 

genomic translational studies, and studies on the cellular function of SARS-CoV-1 viral proteins, 65 

have provided some insight into the nature of many of the proteins that function to create the SARS 66 

CoV-2 pathogen, and cause COVID-19. However, the SARS-CoV-2 genome has been found to 67 

code for an additional novel protein, open reading frame 10 (ORF10) protein, that was not encoded 68 

in the SARS-CoV-1 genome, and therefore a function for this protein cannot be inferred from prior 69 

work [10]. Studies on this protein have suggested that it is not necessary for virulence or infectivity 70 

[11], although sequence analysis indicates that it contains multiple cytotoxic T lymphocyte 71 

epitopes [12]. While it is known to be mutated in variants found in humans [13], the function of 72 

ORF10 has not yet been elucidated [14]. 73 
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In addition to ORF10, other proteins encoded by the SARS-CoV-2 genome are yet poorly 74 

understood. The ORF8 protein corresponds to two different proteins in SARS-CoV-1, ORF8a and 75 

ORF8b, with which it shares only 38.9% and 44.4% sequence identity, respectively, and which 76 

differ significantly in protein structure [15]. The role of ORF8 has been suggested to be 77 

‘involvement in host immune evasion’ [15, 16]. However, studies have variably reported that 78 

SARS-CoV-2 variants with deletions leading to a deficiency of ORF8 have no difference in 79 

infectivity versus wildtype virus [17], or cause milder infections [18], or may combine with 80 

additional spike protein mutations to increase transmissibility [19]. Experimental studies on effects 81 

of ORF8 in cells also report diverse findings, including the initiation of endoplasmic reticulum 82 

stress [20], and evidence of a role in driving the cytokine storm through activation of the 83 

interleukin (IL)-17 pathway [21]. With regards to evidence of a role in host immune evasion, 84 

studies report inhibitory effects of ORF8 on the induction of Type I interferons (IFN), particularly 85 

IFN-b [15, 22]. This is notable in the context of COVID-19, since disrupted innate intracellular 86 

anti-viral host defenses are specifically implicated in the pathogenesis of this disease [23].  87 

Unlike adaptive immunity, which is mediated by specialized cells of the immune system, 88 

essentially all cells are capable of mounting an innate immune response (although the innate 89 

immune response functions, in part, to activate adaptive immunity) [24]. The innate immune 90 

response can be initiated by cellular entry of viruses or viral components, such as viral RNA or 91 

capsid proteins, which are recognized by host pattern recognition receptors that, in turn, trigger 92 

signaling cascades leading to the production of host defense molecules including IFNs [24]. 93 

However, viruses frequently evolve strategies to disrupt IFN-mediated signaling, and this is 94 

reportedly also a function of several non-structural proteins in the SARS-CoV-2 genome [23].  95 
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Type I IFN include IFNa and IFNb, and are among the earliest cytokines produced during 96 

the innate immune response following viral infection of cells [25]. While the functions of Type I 97 

IFN are complex and can vary throughout an infection, they tend to act initially in the recruitment 98 

of immunocytes to promote activation of the acquired host immune response, inhibit proliferation 99 

of infected cells, and limit viral replication [25]. Type II IFN, or IFNg, is involved in macrophage 100 

and neutrophil activation, and an absence of this factor results in increased virus replication and 101 

decreased survival of mice infected with herpes simplex virus type 2 [26]. Type III, or  l-type IFN 102 

(IFNl) are comprised of IFNl1, and IFNl2/IFNl3, which are ~95% homologous, and IFNl4 103 

(although expression of this homologue is suppressed at the mRNA or protein level, so it is 104 

typically not detected) [27].  105 

While Type III IFN perform similar roles to Type I IFN and were initially thought to be 106 

redundant, they are now recognized to be more pro-apoptotic than Type I or Type II IFN [28]. 107 

Lambda-type IFN are of significant interest in COVID-19 as a result of evidence showing their 108 

greater efficacy at controlling SARS-CoV-2 replication and spread compared to Type I IFN [29], 109 

as well as evidence indicating an inverse correlation between Type III IFN levels and severity of 110 

COVID-19 [30]. Among the Type III IFN-stimulated genes (ISG) that act as down-stream 111 

effectors to induce apoptosis are the 2’-5’-oligoadenylate synthetase (OAS) family members [31, 112 

32]. OAS proteins act as sensors of cytosolic double-stranded RNA produced when viruses 113 

replicate, interacting with and activating RNase L after encountering this viral product [33]. RNase 114 

L halts viral replication and viral gene translation by cleaving viral protein-encoding RNAs, and 115 

also disrupts the host cell transcriptome by degrading cellular rRNAs and tRNAs [33], promoting 116 

apoptosis [34, 35]. This strategy can be highly protective in limiting the initiation and spread of an 117 

initial infection [36-38]. Although this system is activated in cells infected with SARS-CoV-2, that 118 
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activation is weak, in contrast to the activation observed in cells infected with other beta-119 

coronaviruses such as SARS-CoV-1 and Middle East Respiratory Syndrome (MERS-CoV) [39]. 120 

Pharmacological strategies to increase activation of the OAS-RNase L pathway have thus been 121 

suggested as a priority in COVID-19 [40]. This is strongly supported by findings that a 122 

polymorphism in a Neanderthal-lineage variant of the OAS1 gene inherited by some Europeans is 123 

associated with higher circulating levels of OAS1 in the non-infected state, and with significant 124 

reductions in the risk of COVID-19 susceptibility (odds ratio (OR) = 0.78), hospitalization (OR = 125 

0.61), and ventilation or death (OR = 0.54) following infection [40].         126 

In the current work, we have undertaken studies to examine the effects of expression of 127 

ORF8 and ORF10 genes, as well as the SARS-CoV-2 structural Membrane (M) protein, which is 128 

reported to inhibit Type I and III IFN responses [41], on apoptosis and expression of IFNs and 129 

down-stream effectors. In addition to examining the effects of expression of these genes alone, we 130 

have also investigated effects of combining their expression with cannabidiol (CBD). CBD is the 131 

major non-psychotropic phytocannabinoid constituent of Cannabis sativa [42], and has been 132 

hypothesized as a potential therapeutic in COVID-19 [43, 44]. Evidence from the literature 133 

supports that CBD has anti-inflammatory properties [45] and may have a role as a potential 134 

protective agent or therapeutic in cells experiencing metabolic distress, such as that associated with 135 

viral infection [42, 46]. Based on this, we hypothesized that SARS-CoV-2 genes would be pro-136 

apoptotic, and that CBD would reverse these effects. Instead, we found a potential role for CBD 137 

in augmentation of the innate anti-viral host cell response to the viral genes, with evidence of a 138 

role for enhanced IFN- and ISG-induction. While this was initially unexpected, during preparation 139 

of the manuscript, data became available demonstrating that CBD inhibits the infection of cells 140 

with SARS-CoV-2, as well as replication of the virus after entry into cells, in association with 141 
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augmented host-cell IFN responses [47]. Our work now shows evidence that CBD augments the 142 

anti-viral innate immune response to three distinct viral genes with apparently disparate functions, 143 

and also that CBD may prophylactically prime the innate anti-viral response of cells, allowing 144 

them to be better prepared to respond to viral infection.  145 

 146 

2. Materials and methods  147 

2.1 Cell culture 148 

HEK293 (human embryonic kidney) cells were grown in Dulbecco’s Modified Eagle’s Medium 149 

(DMEM) supplemented with 10% fetal bovine serum (FBS) and 100 U/mL penicillin and 100 150 

mg/mL streptomycin, at 37°C with 5% CO2. Cells were grown to 80% confluence and then 151 

routinely subdivided following trypsin digest, and were used at less than 15 passages. The use of 152 

HEK293 cells in this study was approved by the University of Waterloo Research Ethics Board 153 

(ORE#42425). 154 

 155 

2.2 Plasmids, transfections, and treatments 156 

Plasmids expressing ORF8 protein (YP_009724396.1) tagged at the C-terminus with 3 x 157 

DYKDDDK tag (Ex-NV229-M14), ORF10 protein (YP_009725255.1) tagged at the C-terminus 158 

with 3 x hemagglutinin tag (Ex-NV231-M07), and M protein (YP_009724393.1) tagged at the 159 

C-terminus with green fluorescent protein (Ex-NV225-M03) were from GeneCopoeia 160 

(Rockland, MD, U.S.A). The control plasmid was pCMV-3Tag-3A (pCMV) (Agilent 161 

Technologies, Santa Clara, CA, U.S.A.). HEK293 cells were seeded at a density of 1 × 104 cells 162 

per well in either 96- or 24-well plates and transfected 24 hours later using JetPRIME (Polyplus 163 
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Transfection, New York, NY, U.S.A.), according to the manufacturer’s instructions. Briefly, for 164 

transfection in a 96-well plate, 0.1 μg of plasmid DNA and 0.25 μL jetPRIME reagent were 165 

mixed with 5 μL buffer and incubated for 10 min at room temperature. For transfection in a 24-166 

well plate, 0.5μg of plasmid DNA and 1.25 μL jetPRIME reagent were mixed with 50 μL buffer 167 

and incubated for 10 min at room temperature. The incubated solution was diluted in culture 168 

medium to a volume of 100 μL (for 96-well plates) or 500 μL (for 24-well plates) and the 169 

mixture replaced the culture medium of the cells. Approximately 2-3 h after transfection, cells 170 

were treated with either CBD or vehicle (0.1% ethanol) for 24 h. CBD (# ISO60156-1) was 171 

purchased from Cedarlane Labs (Burlington, ON, Canada). All work was performed in 172 

accordance with a Health Canada approved Cannabis Tracking and Licencing System Research 173 

License held by the University of Waterloo (PI: Dr. Robin Duncan). 174 

 175 

2.3 Crystal violet staining  176 

Relative cell numbers were quantified using the crystal violet staining method, as previously 177 

described [48]. Briefly, HEK293 cells were seeded (1 × 104 cells) in 96-well plates and  178 

transfected with the respective plasmids after 24 h, then treated a few hours after transfection 179 

with either CBD or vehicle for 24 h. Cells were gently washed with 1x phosphate buffered saline 180 

(PBS), fixed with a mixture of 10% methanol (v/v), 10% acetic acid (v/v) and stained with 181 

crystal violet (Fisher Scientific, Mississauga, Ontario, Canada), then washed and eluted for 182 

measurement of absorbance of the samples using a BioTek Synergy H1 Hybrid Multi-Mode 183 

Microplate reader at 595 nm.  184 

 185 

2.4 Apoptosis assay 186 
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Early and late apoptotic cells were detected using a Kinetic Apoptosis Kit (#ab129817, Abcam, 187 

Toronto, Ontario, Canada), according to the manufacturer's instructions. Briefly, cells were 188 

seeded (1 × 104 cells) in 96-well plates and allowed to adhere for 24 hours, then transfected and 189 

treated with either CBD or vehicle for 24 hours, labelled with Polarity Sensitive Indicator of 190 

Viability & Apoptosis (pSIVA™), which detects early/ongoing apoptosis, and with Propidium 191 

Iodide (PI), which detects cells that are in late apoptosis. Live cells were maintained at 37o C 192 

while fluorescence was recorded at 469/525 nm for the detection of pSIVA and at 531/647 nm 193 

for the detection of PI. Results are expressed as an index, with the early apoptosis index 194 

calculated as pSIVA absorbance at 525 nm/relative cell number per well, and the late apoptosis 195 

index calculated as PI absorbance at 647 nm/relative cell number per well. 196 

 197 

2.5 IFN and ISG mRNA expression 198 

qPCR analysis was conducted as we have previously described [49]. Cells were grown in 24 well 199 

plates and transfected with either pCMV-3Tag-3A, or plasmids expressing ORF8, ORF10, or M 200 

protein, and then treated with either 2 µM CBD or vehicle overnight for 14 h, so that analyses 201 

were performed prior to measures of effects on cell number and apoptosis markers. Total RNA 202 

was isolated using TRIzol® Reagent (1 ml per well) as described by the manufacturer 203 

(Invitrogen, Waltham, MA). Quantification of RNA samples was performed using a Nanodrop 204 

2000 Spectrophotometer (Thermo Fisher, Waltham, MA) that was also used to check for 205 

A260/280 ratio as an indicator of quality, and 2 µg of RNA was used to synthesize cDNA via 206 

oligo(dT) priming using a High-Capacity cDNA Reverse Transcription kit from Applied 207 

Biosystems (Waltham, MS, USA). For the real-time PCR assays, cDNA was diluted 1:4 and 1 µl 208 

was added to a master mix with 9 µl of PerfeCTa SYBR® Green supermix (Quanta Bio, Beverly, 209 
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MA), 0.5 µl forward and reverse primers (25 µM each) for the targeted gene (please see Table 1 210 

for primer sequences), and 3 µl of ddH20. The cycling conditions for all genes were as follows: 1 211 

cycle of 95°C for 2 min, followed by 49 cycles of 95°C for 10 s, then 60°C for 20 s. Relative 212 

expression of the targeted gene was calculated using the DDCt method with the Ct values 213 

normalized to glyceraldehyde 3-phosphate dehydrogenase (GAPDH).   214 

 215 

Table 1: Primer sequences 216 

Gene primer Sequence (5' - 3') 

IFN-alpha - Forward 
GTGAGGAAATACTTCCAAAGAATCAC 

IFN-alpha - Reverse 
TCTCATGATTTCTGCTCTGACAA 

IFN-beta - Forward 
TTCAGTGTCAGAAGCTCCTGTGG 

IFN-beta - Reverse 
CTGCTTAATCTCCTCAGGGATGTCA 

IFN-gamma - Forward TGGCTTTTCAGCTCTGCATC 

IFN-gamma - Reverse CCGCTACATCTGAATGACCTG 

IFN-lambda 1 - Forward GAGGCCCCCAAAAAGGAGTC 

IFN-lambda 1 - Reverse AGGTTCCCATCGGCCACATA 

IFN lambda 2-3 - Forward CTGCCACATAGCCCAGTTCA 

IFN lambda 2-3 - Reverse AGAAGCGACTCTTCTAAGGCATCTT 

MX1 - Forward  GGCTGTTTACCAGACTCCGACA 

MX1 - Reverse CACAAAGCCTGGCAGCTCTCTA 

IFIT1 - Forward GGAATACACAACCTACTAGCC 

IFIT1 - Reverse CCAGGTCACCAGACTCCTCA  
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OAS1 - Forward GAAGGCAGCTCACGAAACC 

OAS1 - Reverse AGGCCTCAGCCTCTTGTG 

OAS2 - Forward TTCTGCCTGCACCACTCTTCACGA 

OAS2 - Reverse GCCAGTCTTCAGAGCTGTGCCTTTG 

OAS3 - Forward CCGAACTGTCCTGGGCCTGATCC 

OAS3 - Reverse CCCATTCCCCAGGTCCCATGTGG 

OASL - Forward GACGAAGGCTTCACCACTGT 

OASL - Reverse GTCAAGTGGATGTCTCGTGC 

Gapdh - Forward AGAAGGCTGGGGCTCATTTG 

Gapdh - Reverse AGGGGCCATCCACAGTCTTC 

 217 

 218 

2.6 Statistical analyses 219 

Non-linear regression was performed on data generated from the concentration-dependent effects 220 

of CBD on cell number in cells transfected with control and viral gene expression plasmids and 221 

used to determine IC50 values for CBD in combination with each viral gene. Simple linear 222 

regression was performed to determine if the slopes were significantly non-zero. Two-way 223 

analysis of variance (ANOVA) followed by Tukey's post-hoc test for multiple comparisons was 224 

performed to compare early and late apoptosis indexes, and gene expression levels, among cells 225 

transfected with control and viral gene-expression plasmids, with and without various 226 

concentrations of CBD. Analyses were performed using Prism GraphPad 9 software. Data shown 227 

are means ± S.E.M.; n-values denote the number of biological replicates derived from, at a 228 
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minimum, different passages of cells. Where technical replicates were performed within 229 

experiments, these were averaged to derive single values reported as biological replicates.   230 
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3. Results  231 

3.1 Relative cell numbers 232 

A concentration response curve was generated by treating cells transfected with the control 233 

plasmid (pCMV) or plasmids expressing viral genes with vehicle (0.1% EtOH (i.e. 0 µM CBD)), 234 

or with increasing concentrations of CBD (Fig. 1A). The range of concentrations tested was 235 

based on pharmacologically achievable blood concentrations observed in human 236 

pharmacokinetic studies [50]. The slopes of lines generated from concentration-responses to 237 

CBD in cells expressing viral genes were significantly non-zero, indicating a significant 238 

relationship between increasing dose of CBD and relative cell number, while the slope of the line 239 

for pCMV was not significantly non-zero. IC50 values for CBD concentrations were 0.89 µM 240 

for cells expressing ORF8, 0.91 µM for cells expressing ORF10, 0.99 µM for cells expressing M 241 

protein, and 7.24 µM for cells transfected with pCMV. At a treatment level of 2 µM CBD, 242 

relative cell numbers in wells transfected with viral genes were reduced by ~55-80% (P<0.0001) 243 

relative to cell numbers in wells transfected with viral genes but not treated with CBD or relative 244 

to wells transfected with control plasmid and treated with or without 2 µM CBD, among which 245 

there were no significant differences.  246 

 247 
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 248 

Fig. 1. Effect of ORF8, ORF10, or M protein expression, with and without CBD treatment, 249 

on HEK293 cell number and apoptosis indexes. (A) Dose-dependent effects of CBD on the 250 

relative number of cells per well 24 h after transfection with control plasmid (pCMV), or 251 

plasmids expressing ORF8, ORF10, or M protein (n=3-12). IC50 values for CBD concentration 252 

in combination with each group are shown. (B-D) Dose-response effect to CBD on the early 253 

apoptosis index in HEK293 cells expressing pCMV or viral genes at 24 h. (E-G) Dose-response 254 

effect to CBD on the late apoptosis index in HEK293 cells transfected with control or viral 255 

plasmids. Apoptotic indexes were calculated by dividing the relative absorption of the respective 256 

marker by the number of cells per well. Apoptosis data were analyzed by 2-way ANOVA with 257 

Tukey’s post-hoc test, n=3-9. Differences among groups are as indicated, *P<0.05, **P<0.01, 258 

***P<0.001, ****P<0.0001, where (****) denotes a significant difference (P<0.0001) between 259 

A)

Fig. 1. Effect of ORF8, ORF10, or M protein expression, with and without CBD 
treatment, on HEK293 cell number and apoptosis indexes. (A) Dose-dependent effects of 
CBD on the relative number of cells per well 24 h after transfection with control plasmid 
(pCMV), or plasmids expressing ORF8, ORF10, or M protein (n=3-9). IC50 values for CBD 
concentration in combination with each group are shown. (B-D) Dose-response effect to 
CBD on the early apoptosis index in HEK293 cells expressing pCMV or viral genes at 24 h. 
(E-G) Dose-response effect to CBD on the late apoptosis index in HEK293 cells transfected 
with control or viral plasmids. Apoptotic indexes were calculated by dividing the relative 
absorption of the respective marker by the number of cells per well. Apoptosis data were 
analyzed by 2-way ANOVA with Tukey’s post-hoc test, n=6-12. Differences are as indicated, 
*P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. (****) denotes a significant difference 
(P<0.0001) between cells treated with 2 µM CBD and transfected with a viral gene-encoding 
plasmid, and all other groups. 

CBD IC50 (µm)
7.24
0.89
0.91
0.99

C) D)B)

F) G)E)
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cells treated with 2 µM CBD and transfected with a viral gene-encoding plasmid, and all other 260 

groups.  261 

 262 

 263 

3.2 Early and late apoptosis 264 

Differences in cell number can result from changes in cell proliferation, or cell death (i.e. 265 

apoptosis or necrosis), or both. An initial assessment for changes in cell proliferation indicated 266 

no significant effect (data not shown), and therefore we focused our studies on apoptosis. A 267 

concentration-dependent effect of CBD on the activation of an early marker of apoptosis 268 

(pSIVA), and on incorporation of a late marker of apoptosis (PI), was evident in cells expressing 269 

ORF8, ORF10, and M protein, but this was not observed in cells transfected only with the 270 

control plasmid (Figs. 1B-G). Specific analyses comparing cells transfected with the control 271 

vector or plasmids expressing viral genes and treated with increasing levels of CBD demonstrate 272 

important effects. First, this analysis shows that CBD alone, even at the highest concentration 273 

tested, does not significantly increase markers of apoptosis in control cells. Additionally, it 274 

demonstrates that expression of the viral genes ORF8, 0RF10, or M protein with vehicle alone 275 

(i.e. 0 µM CBD) also does not significantly increase either early or late apoptosis relative to 276 

control cells, indicating a poor ability of cells to detect and respond to the presence of these viral 277 

transcripts or proteins in the absence of CBD. Interestingly, however, both early and late 278 

apoptosis indexes were significantly elevated in cells expressing any of the viral genes when also 279 

treated with 2 µM CBD, relative to all other groups. In cells expressing ORF8, early and late 280 

apoptosis indexes were both increased by over 6-fold in cells treated with 2 µM CBD compared 281 

to indexes in vehicle alone (Fig. 1B, E). In cells expressing ORF10 (Fig. 1C, F), early and late 282 
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apoptosis indexes were increased ~4.7- and ~4.0-fold, respectively, by 2 µM CBD versus 283 

vehicle. In cells expressing M protein (Fig. 1D, G), early and late apoptosis indexes were 284 

increased by ~5.6- and ~4.7-fold in cells expressing M protein and treated with 2 µM CBD. In 285 

addition, significant effects of 1 µM CBD were also evident on cells expressing M protein (Fig. 286 

1D, G). This concentration generated a significantly elevated late apoptosis index relative to 287 

vehicle-treated control cells, and significantly greater early apoptosis indexes relative to most 288 

other M protein-transfected cells at the same or lower levels of CBD treatment, and all other 289 

control-transfected cells treated with or without CBD (Fig. 1D, G).  290 

 291 

3.3 Expression of IFN genes  292 

Expression of IFNa and IFNb was not significantly altered by ORF8, ORF10, or M 293 

protein, either with or without 2 µM CBD (Fig. 2A-F). However, transfection of these viral 294 

genes significantly increased the expression of IFNg, and this was augmented by 2 µM CBD 295 

(Fig. 3A-C). In the absence of CBD, transfection of cells with ORF8, ORF10, or M protein 296 

caused a significant 16- to 29-fold increase in expression of IFNg  relative to vehicle-treated 297 

control cells, and this effect was augmented by treatment with 2 µM CBD, further increasing 298 

IFNg expression (Fig. 3A-C). Interestingly, however, cells transfected with ORF8 (in the absence 299 

of CBD) did not have higher expression of IFNl1 or IFNl2/3 than controls, although treatment 300 

of cells with 2 µM CBD caused a significant induction of IFNl1 and IFNl2/3 by ORF8 (Fig. 301 

3D, G). These genes were induced without CBD co-treatment when cells were transfected with 302 

ORF10 (by 9.6-fold and 2.4-fold) (Fig. 3E, H) or M protein (by 4.1-fold, for both genes) (Fig. 303 

3F, I) and 2 µM CBD strongly augmented the induction of both IFNl1 and IFNl2/3 that 304 

occurred when ORF10 or M protein were transfected, by a further 3.8- to 11.2-fold (Fig. 3 E, F, 305 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 12, 2022. ; https://doi.org/10.1101/2022.01.11.475901doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.11.475901
http://creativecommons.org/licenses/by-nd/4.0/


18 
 

H, I). Although relative cell number and apoptosis measures were not significantly affected by 2 306 

µM CBD in pCMV-transfected cells, this treatment caused an ~5-fold increase in expression of 307 

IFNg in pCMV-transfected control cells compared to pCMV-controls cells treated only with 308 

vehicle. Similarly, IFNl1 and IFNl2/3 were increased in pCMV-transfected control cells treated 309 

with 2 µM CBD by 3-fold and 7-fold, respectively.  310 

 311 

Fig. 2. Effect of ORF8, ORF10, or M protein, with and without CBD, on gene 312 

expression of Type I IFN. Expression of IFNa (A-C) and IFNb  (D-F) in cells 313 

transfected with control plasmid (pCMV), or plasmids expressing ORF8, ORF10, or M 314 

protein, and treated with vehicle control (0.1% ethanol) or 2 µm CBD for 14 h. Data are 315 

means ± SEM (n=5). 316 

 317 

Fig. 2. Effect of ORF8, ORF10, or M protein, with and without CBD, on gene expression 
of Type I IFN. Expression of IFNa (A-C) and IFNb (D-F) in cells transfected with control 
plasmid (pCMV), or plasmids expressing ORF8, ORF10, or M protein, and treated with 
vehicle control (0.1% ethanol) or 2 µm CBD for 14 h. Data are means ± SEM.

A) B) C)

D) E) F)
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 318 

Fig. 3. Effect of ORF8, ORF10, or M protein, with and without CBD, on gene 319 

expression of Type II and III IFN. Expression of IFNg (A-C), IFNl1 (D-F), and 320 

IFNl2/3 (G-I), in cells transfected with control plasmid (pCMV), ORF8, ORF10, or M 321 

protein, and treated with vehicle control (0.1% ethanol) or 2 µm CBD (n=5) for 14 hours. 322 

Data are means ± SEM, *P<0.05, **P<0.01, ***P<0.001, and ****P<0.0001. 323 

Fig. 3. Effect of ORF8, ORF10, or M protein, with and without CBD, on gene expression 
of Type II and III IFN. Expression of IFNg (A-C), IFNl1 (D-F), and IFNl2/3 (G-I), in cells 
transfected with control plasmid (pCMV), ORF8, ORF10, or M protein, and treated with 
vehicle control (0.1% ethanol) or 2 µm CBD (n=5) for 14 hours. Data are means ± SEM, 
*P<0.05, **P<0.01, ***P<0.001, and ****P<0.0001.

A) B) C)

D) E) F)

G) H) I)
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 324 

3.4 Expression of ISG  325 

 Expression of the ISGs IFIT1 and MX1 was not significantly altered by treatment with 2 326 

µM CBD, or by expression of the SARS-CoV-2 genes ORF8, ORF10, and M protein, either 327 

alone, or in combination (Fig. 4A-F). However, significant effects were observed when OAS 328 

family genes were analyzed. Surprisingly, transfection of ORF8, ORF10, and M protein did not 329 

significantly induce expression of OAS1, OAS2, or OAS3 relative to cells transfected with pCMV 330 

in the absence of CBD (Fig. 5A-I). This indicates that these cells may have a poor ability to 331 

recognize and respond to these viral genes through innate immune system activation involving 332 

the OAS family. Only OASL was significantly induced by ORF8 (by 17.9-fold), ORF10 (by 4.9-333 

fold), and M protein (by 18.8-fold), in the absence of CBD (Fig. 5J-L). When 2 µM CBD was 334 

added to cells transfected only with the control plasmid, expression of OAS2, OAS3, and OASL 335 

increased significantly (from 5.7 to 7.8-fold). Addition of 2 µM CBD to cells transfected with 336 

ORF8, ORF10, or M protein, augmented the expression of all OAS family genes relative to the 337 

corresponding vehicle-treated cells, with the additional induction caused by CBD ranging from 338 

3.1- to 22.9-fold.    339 

 340 
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 341 

Fig. 4. Effect of ORF8, ORF10, or M protein, with and without CBD, on gene 342 

expression of MX1 and IFIT1. Expression of MX1 (A-C) or IFIT1 (D-F) in cells 343 

transfected with control plasmid (pCMV), ORF8, ORF10, or M protein, and treated with 344 

vehicle control (0.1% ethanol) or 2 µm CBD for 14 h (n=5). Data are means ± SEM. 345 

 346 

A) B) C)

D) E) F)

Fig. 4. Effect of ORF8, ORF10, or M protein, with and without CBD, on gene expression 
of MX1 and IFIT1. Expression of MX1 (A-C) or IFIT1 (D-F) in cells transfected with 
control plasmid (pCMV), ORF8, ORF10, or M protein, and treated with vehicle control 
(0.1% ethanol) or 2 µm CBD for 14 h (n=5). Data are means ± SEM.
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 347 

Fig. 5. Effect of ORF8, ORF10, or M protein, with and without CBD, on gene 348 

expression of OAS family members. Expression of OAS1 (A-C), OAS2 (D-F), OAS3 349 

(G-I) and OASL (J-L) in cells transfected with control plasmid (pCMV), ORF8, ORF10, 350 

A) B) C)

D) E) F)

G) H) I)

J) K) L)
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or M protein, and treated with vehicle control (0.1% ethanol) or 2 µm CBD for 14 h 351 

(n=5). Data are means ± SEM. *P<0.05, ***P<0.001, ****P<0.0001.  352 

 353 

4. Discussion 354 

  The infectious dose of SARS-CoV-2 required to cause disease in 50% of people exposed 355 

has been estimated to be 280 virions [51]. Infection with any virus, including SARS-CoV-2, does 356 

not initially cause symptoms.  At infection, a small number of virus particles enter cells and 357 

‘hijack’ the cellular machinery to replicate, releasing more infectious particles that amplify the 358 

titre. Thus, during peak infection, an individual may have 109 to 1011 virions in their cells and 359 

bodily fluids, which can cause symptomatic disease [52, 53]. Factors that prevent viral 360 

replication are of significant interest in the COVID-19 pandemic, since they are protective both 361 

for individuals and populations. In a host, replication is needed in order for an initial infectious 362 

dose to spread within the body, producing symptomatic disease, although asymptomatic SARS-363 

CoV-2 carriers have been reported [54]. Host replication is also needed to produce a sufficient 364 

concentration of viral particles for an individual to become infectious to others in a population 365 

[54]. Within a population, widespread replication leads to mutations and the generation of novel 366 

variants, which can alter the infectivity and virulence of a virus, and potentially reduce the 367 

protective efficacy of vaccines [55]. 368 

To redirect the cell’s replicative machinery towards viral production, viruses typically 369 

encode proteins that can deregulate cell cycle checkpoints. In coronaviruses, including SARS-370 

CoV-1, the nucleocapsid protein inhibits cell cycle progression and cell proliferation by 371 

inhibiting activity of cyclin/cyclin-dependent kinase (CDK) complexes [56]. We observed a 372 

concentration-dependent decrease in the number of cells per well when cells were transfected 373 
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with plasmids expressing ORF8, ORF10, or M protein and treated with CBD, but not when cells 374 

were transfected only with the control plasmid. Although we first tested whether expression of 375 

ORF8, ORF10 or M protein in cells treated CBD would modulate cell proliferation, we did not 376 

find any significant differences among groups (data not shown). We therefore focused our 377 

investigation on a role for these viral genes in modulating apoptosis, which occurs when cells are 378 

infected with pathogenic viruses, including SARS-CoV-1 [57] and MERS-CoV [58].  379 

Apoptosis occurs as an outcome of an innate immune response of the cell to viral 380 

infection that serves to prevent viral replication and consequently virus spreading and mutation 381 

[59]. Cells undergo apoptosis to interrupt the production and release of progeny virus, resulting 382 

in early elimination of both the virus and infected cells [60, 61], which may result in the absence 383 

of disease, or a milder course of disease, as well as a situation where viral transmission is also 384 

prevented or reduced. The induction of apoptosis shortly after exogenous viral genes enter a cell 385 

prevents viral genome replication. It is therefore particularly protective against the development 386 

of new viral variants, which may potentially arise even in immunized people who can, in some 387 

cases, become infected and spread the virus despite vaccination [62]. 388 

Interestingly, we found that expression of the SARS-CoV-2 genes ORF8, ORF10, and M 389 

protein alone did not significantly induce apoptosis. This is consistent with studies of patients 390 

with COVID-19 where the induction of apoptosis was lacking in nasopharyngeal samples [63]. 391 

While CBD did not increase apoptosis in control cells, treatment of cells expressing viral genes 392 

with a pharmacological dose of CBD significantly augmented the induction of both early and late 393 

apoptosis. This finding suggests that CBD may help limit an initial infection by promoting 394 

removal of infected cells, thereby limiting the spread, and therefore also likely raising the 395 

necessary infectious titre. This is supported by evidence from users of Epidiolex®, a high-dose 396 
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pharmaceutical CBD licensed in the United States for use in the treatment of rare types of 397 

epilepsy in adults and children [47]. In that study, patients prescribed high-dose CBD had an 398 

approximate 10-fold lower risk of testing positive for SARS-CoV-2, even when matched by 399 

demographics, recorded diagnoses, and other medications. In those with use of any cannabinoid 400 

in their medical record, the positivity rate for SARS-CoV-2 was over 40% lower [47]. Taken 401 

together with our findings, this suggests that CBD may provide a prophylactic effect against the 402 

risk of contracting SARS-CoV-2 and developing COVID-19 by increasing the initial apoptotic 403 

response to viral genes.  404 

We investigated the regulation of IFN and ISG as a potential mechanism underlying this 405 

effect. Prior work has indicated that the SARS-CoV-2 virus can counteract host innate anti-viral 406 

responses, resulting in suppression of IFN-mediated responses [23]. Thus, factors that can 407 

counteract this are of particular interest. We hypothesized that augmented induction of IFN and 408 

ISG could play a role in the enhanced apoptosis observed in cells expressing viral genes and 409 

treated with CBD. Interferons are a family of inducible cytokines with pleiotropic biological 410 

effects [64], induced at different time points following infection [25], which help to regulate the 411 

innate, intracellular, anti-viral host defense [65]. Type I IFNs tend to slow down proliferation 412 

and regulate cell survival, while Type II IFNs also regulate cell survival and proliferation, and 413 

Type III IFNs induce cell apoptosis, more so than Types I or II [66]. Inadequate induction of 414 

IFNs, and especially lambda-type interferons, has been identified as a factor in SARS-CoV-2 415 

infection leading to more severe disease [67]. The IFN λ family are important inducers of the 416 

anti-viral immune response at mucosal surfaces [68], and people with a greater IFN λ induction 417 

tend to have less viral inflammation, and may not even develop disease [67]. 418 
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The lack of induction of Type I IFN by either viral gene expression or CBD, suggests that 419 

these IFN were not involved in the pro-apoptotic response observed. In all comparisons, 420 

however, Type II and Type III IFN were significantly induced by a combination of viral genes 421 

and CBD relative to cells expressing only the viral genes without CBD, and in almost all 422 

comparisons, also relative to control cells treated with or without CBD. This was similar to 423 

observed effects on early- and late-stage apoptosis, where cells expressing viral genes in 424 

combination with 2 µM CBD were many fold more effective at inducing apoptosis markers than 425 

cells expressing either the viral genes alone, or control plasmid with or without CBD. Although 426 

this association between the induction of Type II and III IFN and the induction of early- and late-427 

apoptosis is only correlative, it may suggest a possible role for these IFN in mediating observed 428 

outcomes. 429 

Analysis of downstream effectors indicated that involvement of MX1 or IFIT1 genes was 430 

unlikely, although it should be noted that the time course, involving measurements of gene 431 

expression preceding apoptosis, may not have captured changes in genes that are typically 432 

induced later in the innate immune response [25]. Conversely, OAS1, OAS2, OAS3, and OASL 433 

family members, which were all significantly elevated in cells expressing viral genes and treated 434 

with 2 µM CBD compared to vehicle, were likely factors. Surprisingly, however, expression of 435 

ORF8, ORF10, or M protein without CBD was insufficient to induce OAS1, OAS2, or OAS3 436 

relative to control-transfected cells, in agreement with reports that an inadequate innate immune 437 

response of cells to SARS-CoV-2 may be a factor in the pathology of this virus [23]. Of 438 

particular note is the finding that control-transfected cells treated with 2 µM CBD expressed 439 

significantly higher levels of IFNg, IFNl1, IFNl2/3, and OAS2, OAS3, and OASL, in 440 

comparison with control-transfected cells treated only with vehicle, since CBD did not augment 441 
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apoptosis or significantly reduce cell numbers in these groups. This raises the intriguing 442 

possibility that CBD may prime the innate immune system of cells under normal, non-443 

pathological conditions, by raising basal expression of effectors, so that they are better able to 444 

recognize and respond to the presence of viral material, upon infection.      445 

Our finding that CBD regulates OAS family gene expression is particularly interesting, 446 

given the role of these enzymes as powerful mediators of virus-associated apoptosis [69-72]. 447 

OAS1, OAS2, and OAS3 are part of the IFN-regulated double stranded RNA-activated antiviral 448 

pathway [73].  When OAS enzymes detect double stranded RNA, they synthesize 2’,5’-449 

oligoadenylates, which then activate RNase L to degrade viral RNA leading to apoptosis and 450 

inhibition of virus replication [74-77]. Notably, other coronaviruses besides SARS-CoV-2 have 451 

been shown to produce viral proteins that target the degradation of OAS-RNase L pathway 452 

proteins, in order to reduce RNase-L activity and inactivate the host defence [78, 79]. OASL has 453 

also been suggested to play a role in enhancing antiviral innate immunity [80]. Thus, therapies 454 

that can enhance the levels and action of these anti-viral mediators bear a potential for the 455 

prevention of SARS-CoV-2 transmission.   456 

Our results demonstrating increased apoptosis in cells treated with CBD and transfected 457 

with SARS-CoV-2 viral genes suggests a potential protective effect of CBD at initial infection. 458 

However, it also raises the question of whether this could be harmful in an individual who 459 

already had a high viral load. Currently, limited information is available on the use of CBD in 460 

patients with COVID-19. Based on the anti-inflammatory effects of CBD on the acquired 461 

immune system, there have been calls for the use of CBD in COVID-19 patients to treat acute 462 

respiratory distress syndrome (ARDS) [81], and to reduce the viral load [82]. In a murine model 463 

of ARDS, CBD administration downregulated levels of proinflammatory cytokines, and 464 
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ameliorated clinical symptoms [83]. There is medical interest in the use of CBD to treat 465 

advanced SARS-CoV-2 infections, with eight clinical trials currently underway [84], including 466 

one studying use of CBD treatment for severe and critical COVID-19 pulmonary infection [85]. 467 

One trial has recently reported results, indicating no significant effect of 300 mg CBD daily on 468 

the clinical evolution of COVID-19 in patients presenting with mild to moderate symptoms, 469 

although the authors suggested that future studies should evaluate higher doses, as well as the 470 

clinical efficacy of CBD in patients with more severe COVID-19 [86]. Although results have not 471 

yet been reported from most other registered clinical trials, none have been stopped prematurely 472 

by the medical oversight committees, indicating that findings of significant harm have not been 473 

detected. It is therefore possible that CBD may offer prophylaxis against initial viral infection 474 

through a pro-apoptotic mechanism that does not result in widespread cell death in highly 475 

infected patients. Additional work will be required to understand the nature of CBD effects, in 476 

this regard. 477 

 478 

5. Conclusions 479 

Taken together, our results indicate that while expression of the SARS-CoV-2 genes 480 

ORF8, ORF10, and M protein alone fails to significantly induce apoptosis, or reduce cell 481 

numbers, and while treatment of cells with up to 2 µM CBD also does not affect these 482 

parameters, combinations of 2 µM CBD with these genes dramatically upregulates apoptosis and 483 

reduces cell numbers. A poor ability of cells to sense and respond to the presence of these viral 484 

genes may therefore be a factor in the high infectivity rate of SARS-CoV-2. The induction of 485 

Type II and Type III IFN, as well as OAS family member genes, may help explain the pro-486 

apoptotic effect of CBD that was observed in cells expressing viral genes, and future work 487 
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should investigate a causal role. In addition, the induction of these IFN and ISG by CBD in 488 

control cells may indicate a ‘priming’ effect on the innate immune system, better readying cells 489 

to respond to viral infection, which could help to explain the lower rates of COVID-19 in 490 

patients receiving high-dose CBD treatment.              491 
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