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Abstract: Though it has been 2 years since the start of the Coronavirus Disease 19 (COVID-19) 
pandemic, COVID-19 continues to be a worldwide health crisis. Despite the development of 
preventive vaccines, very little progress has been made to identify curative therapies to treat 
COVID-19 and other inflammatory diseases which remain a major unmet need in medicine. Our 
study sought to identify drivers of disease severity and death to develop tailored immunotherapy 
strategies to halt disease progression. Here we assembled the Mount Sinai COVID-19 Biobank 
which was comprised of ~600 hospitalized patients followed longitudinally during the peak of the 
pandemic. Moderate disease and survival were associated with a stronger antigen (Ag) 
presentation and effector T cell signature, while severe disease and death were associated with 
an altered Ag presentation signature, increased numbers of circulating inflammatory, immature 
myeloid cells, and extrafollicular activated B cells associated with autoantibody formation. 
Strikingly, we found that in severe COVID-19 patients, lung tissue resident alveolar macrophages 
(AM) were not only severely depleted, but also had an altered Ag presentation signature, and 
were replaced by inflammatory monocytes and monocyte-derived macrophages (MoMΦ). 
Notably, the size of the AM pool correlated with recovery or death, while AM loss and functionality 
were restored in patients that recovered. These data therefore suggest that local and systemic 
myeloid cell dysregulation is a driver of COVID-19 severity and that modulation of AM numbers 
and functionality in the lung may be a viable therapeutic strategy for the treatment of critical lung 
inflammatory illnesses.     
 
Main Text 
INTRODUCTION 
 
Though there has been unprecedented success with the concurrent development of multiple 
highly effective preventive vaccines against SARS-CoV-2, there remains a critical need to develop 
novel, targeted immune therapies for vulnerable populations and critically ill patients as vaccine 
rollout continues worldwide and potential breakthrough variants continue to arise. In addition to 
COVID-19, there is a critical need to develop novel therapies to recognize, modulate, and treat 
pathogenic inflammation associated with critical inflammatory illnesses, especially in the elderly 
population.  
 
Here we assembled the Mount Sinai COVID-19 Biobank, which collected longitudinal blood and 
tissue samples from patients and healthy controls, and investigated local immune dynamics in 
the lungs of infected patients (1). 583 COVID-19 patients, who were hospitalized at the Mount 
Sinai Hospital, were enrolled into the Mount Sinai COVID-19 Biobank (Table S1). Serum and 
peripheral blood mononuclear cells (PBMC) were collected from patients on timepoint 1 (T1), on 
average 14.8±10.6 days self-reported post-symptom onset (PSO). Samples were assigned 
timepoint numbers according to approximately how many days post-hospitalization the sample 
was collected (e.g. 4 days after hospitalization= T4). Severely ill patients, who were hospitalized 
>2 weeks, had an additional sample collected 7 days later (T13). Severity scoring for each patient 
sample was assigned using clinical criteria designated by Mount Sinai Hospital (Table S2)  
 
RESULTS 
Proteomic characterization of COVID-19 sera reveals distinct immune patterns.   
 
To characterize the diversity of immune patterns in COVID-19 patients, we measured 92 different 
cytokines on 1956 COVID+  and 45 healthy donor (HD) COVID- serum samples using the Olink 
inflammation panel. Instead of solely relying on clinical severity to group patients, we performed 
unsupervised clustering to unbiasedly sort sera into 15 different cytokine patterns (Fig. 1A-C, Fig. 
S1A-B). The majority of patients had 1-4 timepoints which were distributed across all cytokine 
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patterns (Fig. S2A-D). Strikingly, we found that the immune patterns were associated with clinical 
severity and final patient outcome, leading us to group them. Group 1 consisted of patterns 12-
15 and was enriched in samples from HD and Moderate COVID-19 patients; Group 2, which 
included patterns 6-9, was our largest and most heterogeneous group, but was enriched in Severe 
COVID-19 samples. Immune patterns 8-9 had increased levels of Interferon γ (IFNγ) responsive 
and T helper type 1 (Th1) activation cytokines [e.g. IFNγ, C-X-C Motif Chemokine ligand 9, 10, 
11 (CXCL9, CXCL10, CXCL11), IL-2)] compared to clusters 6-7(2). Group 3, patterns 1-5, was 
enriched in Severe COVID-19 with end organ damage (EOD) samples, as well as samples from 
patients that died.  
 
Our unbiased clustering was not driven by sex, body mass index (BMI), or smoking status, but 
age and days PSO at time of sampling were higher in Group 3 samples (Fig. S2E-I). Group 2 
(patterns 6-9) and 3 (patterns 1-5) patients had higher concentrations of C-reactive protein and 
D-Dimer, indicating increased inflammation and hypercoagulability (Fig. S2J-K). Hypertension 
(HTN) and Diabetes (DM) were common comorbidities within our cohort, especially in Group 3 
(Fig. S2L). Immune patterns 10-11 were highly enriched in patients with chronic kidney disease 
(CKD), HTN, DM, and heart failure, leading us to group them into a distinct CKD group. Almost 
all patients within our cohort received anticoagulation, and patients in Group 2 and 3 were more 
likely to receive steroids (Fig. S2M). Notably, while this unbiased clustering showed that immune 
patterns could be grouped based on enrichment of samples from clinical severity classification, 
patient samples with similar clinical parameters were assigned to diverse cytokine-based 
patterns, indicating that clinical scoring was unable to fully capture the diversity of immune 
patterns in COVID-19.  
 
Based on the covariance patterns of the Olink cytokines (Fig. S3), we identified 4 protein modules 
and calculated module scores for each Olink group. The antigen presenting cell (APC) module, 
which included proteins associated with Ag presentation, dendritic cells (DC), and T cell activation 
[Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), TNF-related activation-
induced cytokine (TRANCE), IL-12β, FMS-like tyrosine kinase 3 ligand (FLT3L), TNF beta 
(TNFβ)], scored higher in patients with moderate disease and healthy controls (Fig. 1D-E)(3–6). 
Next, we identified a core group of 4 cytokines released by activated monocytes and neutrophils, 
[Transforming growth factor alpha (TGFα), Hepatocyte growth factor (HGF), Oncostatin M (OSM), 
S100 calcium-binding protein A12 (EN-RAGE/S100A12)] which were enriched in patients with 
Severe or EOD COVID-19 and grouped them into a myeloid activation module. Signaling by these 
cytokines have been associated with proinflammatory cytokine secretion, fibroblast activation, 
and fibrosis(7–19). The mucosal module, which included T helper 17 (Th17) and barrier defense 
cytokines [IL-17A, IL-17C, C-C Motif Chemokine Ligand 20, 28 (CCL20, CCL28), IL-33], and the 
hyperinflammation module which included inflammatory cytokines [TNF, IL-6, IL-8, IL-10, IL-18, 
CXCL10, Monocyte chemoattractant protein-3 (MCP-3)] were more enriched in patients with 
severe or EOD disease(20–22). We grouped these analytes into a Mucosal Module and a 
Hyperinflammation Module, respectively.  
 
APC module scores were higher in healthy controls and Group 1 and reduced in Group 2 and 3, 
while Myeloid Activation, Mucosal, and Hyperinflammation module scores were higher in Groups 
2 and 3(Fig. 1D). Comparison of module scores by final clinical outcome showed that patients 
who survived had a higher APC module score, while patients that died had higher Myeloid 
Activation, Mucosal, and Hyperinflammation module scores (Fig. 1E). These trends held even 
when we compared only the first timepoints for each patient, suggesting that module scores could 
be used early on during a patient’s hospitalization to predict clinical outcome (Fig S4A-B).  
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To determine the stability of these immune patterns, we performed a discrete time Markov chain 
analysis to measure the probability of transition between cytokine patterns across successive 
samples, irrespective of past or future states (Fig. S4C)(23). Between timepoints, Group 1 
patients had a higher probability of transitioning to other Group 1 immune patterns and a higher 
probability of survival compared to other groups. Group 2 patients also had a high probability of 
transitioning to Group 1 patterns 13-15. However, compared to Group 1 patients, Group 2 patients 
had a higher probability of death between timepoints. CKD patients had ~50% probability of 
survival or death between timepoints and a low probability of transitioning to either Group 1 or 
Group 2 immune patterns. Finally Group 3 patients had a high probability of remaining within 
Group 3 immune patterns between timepoints and the highest probability of dying.  
 
This proteomic analysis highlights the heterogeneity of immune states in COVID-19 that remained 
stable over time, despite medical intervention, and the potential value of using Olink module 
scores to predict outcome and response to treatment. The heterogeneity revealed by our 
clustering underscores the limitations of solely using clinical severity parameters to stratify 
patients for treatment. For example, while CKD patients and Group 3 patients may benefit from 
broad immune suppression and targeted therapies like IL-6 blockade, these same treatments are 
unlikely to show the same effect in patients with Group 2 cytokine patterns, and may instead 
hinder protective adaptive immune responses. On the other hand, all patients would likely benefit 
from therapies to boost their APC response, such as administration of Flt3L, to increase the 
number of DC for T cell priming and activation.  
  
Myeloid Cell Dysregulation underlies COVID-19 Severity.  
 
We performed cytometry by time of flight (CyTOF) on whole blood samples to measure circulating 
immune cell composition and its association with Olink group immune patterns, Consistent with 
prior studies, we found that neutrophils, classical monocytes, and intermediate monocytes were 
significantly increased while all DC populations trended down in more severe disease. (Fig. 2A-
B). Grouping patient samples by final clinical outcome showed that patients who died from 
COVID-19 had increased numbers of neutrophils (Fig. 2C). Classical and Intermediate 
monocytes were significantly increased  in all COVID-19 patients while DC populations trended 
down relative to HD (Fig. 2D). CyTOF also confirmed lymphopenia of both CD4 and CD8 T cells 
in Group 2 and 3 patients (Fig. S5A-B)(24, 25). Naïve, central memory (CM), and effector memory 
(EM) and effector memory re-expressing CD45RA (EMRA) CD4 and CD8 T cells also trended 
downwards in more severely ill COVID-19 patients.  
 
To unbiasedly dissect the heterogeneity of immune cells, we performed single cell RNA 
sequencing (scRNAseq) on 81 PBMC samples from 39 COVID-19 patients and 6 healthy controls. 
After down-sampling, integration and batch correction, and removal of doublet cells, unsupervised 
clustering revealed discrete subsets of mononuclear phagocytes (MNP), T cells, and B cells (Fig. 
2E). We identified a cluster of classical monocytes that highly expressed S100A12 (EN-RAGE), 
S100A8, and S100A9, but lowly expressed human leukocyte antigen (HLA) molecules. Low 
expression of HLA molecules, CSF1R and concurrent high expression of granulocyte/monocyte 
precursor genes (i.e. CSF3R, CEBPB, CEBPD) suggested that this cluster was a group of 
immature cells arising from granulocyte-monocyte progenitors (GMP)(26–29). This cluster, which 
we named S100A12hi HLA-DRlo Classical Monocytes, was found at significantly higher levels in 
Group 3 patients (Fig. 2F). Using this criteria for immature myeloid cells, we next identified 3 
clusters of inflammatory immature monocytes expressing high levels of S100A12, inflammasome 
protein NLRP3, and oxidative stress marker NAMPT(30, 31). These 3 monocyte clusters also 
expressed high levels of urokinase receptor, PLAUR, a marker of inflammation and 
fibrinolysis(32). We distinguished these 3 clusters by levels of C-X-C Chemokine Motif Ligand 8 
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(CXCL8) and HLA-DR expression, naming them CXCL8+ HLA-DRlo Classical Monocytes, 
S100A12hi HLA-DRint Classical Monocytes and CXCL8+ HLA-DRint  Classical Monocytes. CXCL8+ 
HLA-DRint Classical Monocytes were specific to COVID-19 patients but were also found at higher 
levels in Group 1 patients compared to Group 2 and 3 patients. Taken together, our data supports 
previous work that immature, inflammatory myeloid cells that are likely arising from emergency 
myelopoiesis, is associated with increased COVID-19 severity(27, 28).  
 
We also identified a cluster  of classical monocytes expressing high levels of type I IFN stimulated 
genes (ISG) (i.e. ISG15, ISG20, IFITM1-3) which was found at significantly higher numbers in 
Group 2 patients compared to Group.1 and 3 (Fig. 2G). Given the differences we saw in T cell 
activation cytokines by Olink, we stratified this cluster of ISG-enriched Classical monocytes by 
Olink patterns 6-7 vs 8-9. This group of monocytes was only found in patterns 8-9, but this could 
due to transient or delayed IFN signaling captured by earlier sampling of these patients days PSO 
(Fig. 2H)(29, 33).  
 
Next, we performed unbiased clustering to identify T cell clusters. Naïve/CM CD4 and CD8 T cells 
expressed CCR7, IL7R, LDHB, LTB, LEF1 and TCF7 and were found at higher levels in healthy 
controls (Fig. S5C-E)(34, 35). We identified a cluster of Early Effector CD4 T cells that expressed 
low levels of KLRB1, CCL5, and GZMM, a cluster of T regulatory cells (Tregs), and mucosal 
associated invariant T (MAIT) cells that expressed high levels of KLRB1, NKG7, GZMK, GZMA, 
and CCL5. Effector memory (EM) CD4 and CD8 T cells expressed intermediate levels of IL7R 
and LTB and low levels of LEF1, CCR7, TCF7 (34, 35). We also identified GZMK+, GZMK- 

Cytotoxic CD8 T cells, and Cytotoxic CD4 T cells, as well as Cytotoxic and Effector γδ T cells 
based on granzyme and GNLY expression. Among circulating B cells, we identified Plasmablasts 
and Plasma cells by high CD38, CD27, MZB1 expression; plasma cells were further distinguished 
by increased PRDM1 expression (Fig. S5F) (36, 37). IGHD+ and IGHM+ Naïve B cells were 
decreased in all COVID-19 patients. We also identified CD11c+ IgD- CD27lo B cells which are 
thought to be extrafollicular or polyreactive B cells that produce pathogenic autoantibodies (auto-
Abs) (Fig. S5G)(36, 38–40).  
 
Integration of circulating Immune cell phenotypes and serum proteomics.  

To probe how these different immune cell populations might be interacting, we performed a 
Spearman correlation analysis on the scRNAseq cell frequencies. Strikingly, we found that the 
frequencies of S100A12hi HLA-DRlo classical monocytes and other HLA-DRlo immature monocyte 
clusters were negatively correlated with the ISG-enriched Classical Monocytes, DC, and cytotoxic 
T cell clusters, but were positively correlated with CD11c+ IgD- CD27lo B cells (Fig. 2I). In contrast, 
DC were positively correlated with Naïve/CM CD4, CD8, Early Effector CD4 T cells, and Effector 
γδ T cells.  
 
Next, we correlated scRNAseq cell composition and Olink proteomic profiles and hierarchically 
clustered cell subpopulations to group cell types with similar cytokine correlations (Fig. 3).  
Immature HLA-DRlo myeloid cells, CD11c+ IgD- CD27lo B cells, and Non-switched Memory B cell 
frequencies were positively correlated with circulating levels of Myeloid Activation, Mucosal, and 
Hyperinflammatory module cytokines, and strongly negatively correlated with APC module 
cytokines. This immune program corresponded most closely with Group 3 patients who had 
increased numbers of circulating immature myeloid cells and higher concentrations of 
inflammatory cytokines.  In contrast, DC clustered together with Naïve/CM CD4 and CD8 T cells, 
GZMK+ Cytotoxic CD8 T cells, Cytotoxic γδ T cells, MAIT cells, and Naïve B cells. This group of 
cell populations were positively correlated with APC module cytokines and negatively correlated 
with Myeloid Activation, Mucosal, and Hyperinflammation Module Cytokines. This pattern most 
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closely corresponded to Group 1 patients who had higher levels of APC-T cell activation cytokines 
and effector T-cell populations.  
 
We also identified two other patterns of cell populations which clustered together and were 
correlated with distinct cytokine profiles. HLA-DRint monocyte populations clustered together with 
Nonclassical Monocytes, Plasmablasts, and IgA/IgG memory B cells. These cell types were 
negatively correlated with IFNγ, IL-12β and weakly negatively correlated with CXCL10 and 
CXCL11. In contrast, ISG-enriched Classical Monocytes clustered with EM CD4 T cells, GZMK- 

Cytotoxic CD8 T cells, and Effector γδ T cells. These cell populations were positively correlated 
with IFNγ, IL-12β, CD8a, IL-2, and Flt3L concentrations, and negatively correlated with Myeloid 
Activation and Mucosal Module cytokines.  
 
This integrated analysis showed 4 distinct types of immune response to COVID-19. First, Group 
1 patients, who had higher numbers of more mature, HLA-DRhi myeloid cell populations had 
correspondingly higher numbers of effector and cytotoxic T-cell populations, higher serum 
concentrations of APC and T cell activating cytokines, and reduced levels of inflammatory, tissue-
damaging cytokines. These patients tended to have a milder course of COVID-19 and were more 
likely to recover. On the other end of the spectrum, Group 3 patients, who had high numbers of 
immature, HLA-DRlo myeloid cells with limited Ag presentation capability, were likely unable to 
mount a strong T-cell response, and were instead more reliant on humoral control of infection. 
Immature myeloid cells in these patients may have predominated due to high levels of 
inflammatory cytokines that drive emergency myelopoiesis(41, 42). These immature myeloid cells 
may have further contributed to hyperinflammation by the production of tissue-damaging 
cytokines and reactive oxygen species (ROS), leading to a vicious cycle of lymphopenia, a 
suppressed or delayed adaptive immune response, poor control of virus infection, and increased 
inflammation(41, 42). Inflammation in these patients may also have been exacerbated by 
extrafollicular CD11c+ IgD- CD27lo B-cells secretion of auto-Abs that activated autoimmune 
inflammation(39, 43, 44). Consequently, these patients had the lowest rates of survival. Patients 
with an earlier type I IFN response, as well as those who had higher numbers of mature HLA-
DRint/hi Monocytes and DC, may have been better protected against COVID-19 disease 
progression and morbidity because they were able to mount an earlier, more productive adaptive 
T cell response.  
 
Loss of Alveolar Macrophages and phenotypic changes in COVID-19 lung 
microenvironment.  
 
To characterize immune cell dynamics in the local lung microenvironment, we obtained 
bronchoalveolar lavage (BAL) samples from 7 Severe COVID-19 with EOD, intubated COVID+ 
patients, 6 COVID- controls, and 5 convalescent patients (i.e. patients who recovered from 
COVID-19) and performed scRNAseq (Table S4). Similar to what we found in circulation, we 
identified a cluster of S100A12hi Monocytes and a cluster of inflammatory IL-1β+ Monocytes that 
also expressed high levels of inflammatory cytokines IL1B, CCL3 and CCL4 (Fig. 4A-B). Early 
phase MoMΦ, expressed higher levels of MoMΦ associated genes SGK1, MAFB, TREM2, and 
GPNMB relative to late phase MoMΦ, and were found at significantly increased levels in COVID+ 

patients compared to COVID-  and convalescent patients. Late phase MoMΦ  expressed higher 
levels of AM associated genes (e.g. MARCO, FABP4), indicating further differentiation toward a 
resident tissue macrophage (RTM) phenotype. Importantly, we found that AM, the RTM of the 
lung, were significantly decreased in COVID+ patients compared to COVID- patients, but restored 
to homeostatic levels in convalescent patients. When stratified by age, single cell analysis of 
normal lung tissue from a cohort of untreated early stage non-small cell lung cancer patients 
showed a significant decrease of AM in older (>70 years old) patients and an increase in 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 12, 2022. ; https://doi.org/10.1101/2022.01.11.475918doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.11.475918
http://creativecommons.org/licenses/by-nc/4.0/


inflammatory MoMΦ, therefore indicating baseline differences in lung MNP composition in elderly 
populations (Fig. S6A)(45).  
 
In addition to decreased numbers, AM from COVID+ patients also expressed higher levels of 
receptor for advanced glycation end products (RAGE) ligands [S100A12 (EN-RAGE), S100A8] 
and monocyte chemokines CCL2 and CCL4, while AM from COVID- patients expressed higher 
levels of Ag presentation genes (e.g. HLA-DRA, HLA-DRB1, CD74) and canonical AM markers 
(MARCO, MSR1, and FABP4) (Fig. 4C). These data suggested that AM from COVID+ patients 
contributed to increased inflammation, recruited monocytes from circulation, and were less 
proficient at Ag presentation. Further comparison showed that AM from deceased COVID+ 
patients had higher expression of neutrophil chemokines (e.g. CXCL5, CXCL8), monocyte 
chemokine CCL2, and inflammatory cytokines (e.g. IL1B, CCL22) compared to AM from COVID+ 
patients who survived (Fig. 4D). Previous reports have also shown a decline in AM phagocytosis, 
Ag presentation, and wound healing ability in macrophages with increased age(46, 47). 
Comparison of AM from convalescent and COVID+ patients showed higher expression of class I 
and II Ag presentation genes after recovery from COVID, thereby suggesting that AM numbers 
and functionality were restored to baseline in patients who recover from SARS-CoV-2 infection 
(Fig. 4E). In support of this, we did not find any gene expression differences between COVID- and 
convalescent AM (data not shown).  
 
Spearman correlation analysis of BAL scRNAseq populations showed that the number of 
inflammatory myeloid cells, the S100A12hi monocytes, IL-1β+ Monocytes, MoMΦ, and IL-1β+ AM 
were positively correlated with each other, and negatively correlated with the numbers of AM, 
Cytotoxic T cells, and Tregs found in BAL (Fig. S6B-C). We also observed trending decreases in 
Tregs in COVID+ patients compared to COVID- and convalescent patients, suggesting that 
hyperinflammation in COVID-19 may be in part due to loss of immunosuppressive activity by 
Tregs (Fig. S6D). All together, these data suggest that the loss of AM, either due to excess 
inflammation or direct SARS-CoV-2 infection, and their decreased ability to present Ag and recruit 
and prime T cells may contribute to uncontrolled viral replication and tissue damage(48). 
Furthermore, elderly patients may be predisposed to more severe disease due to both decreased 
AM numbers and functionality, and increased inflammatory MoMΦ in the lung.  
 
We confirmed these findings on autopsy lung samples from COVID+ patients obtained 10.1±6.2 
hours post-mortem using multiplexed immunohistochemical consecutive staining on single slide 
(MICSSS) (Table S5)(49). We observed significant depletion of AM and significant  accumulation 
of  CD14+ monocytes, CD14+ CD68+ MoMΦ, and CD66b+ granulocyte-like cell infiltration in 
COVID+ lungs compared to a COVID- lung autopsy control obtained from an organ donor (Fig. 
4F-G, S6E). Comparison between COVID- and COVID+ patients also showed increased 
frequencies of EN-RAGE/S100A12+ cells. These changes were not due to ventilation, as similar 
results were found in ventilated and non-ventilated patients. We also observed a shift in the 
production of S100A12 from AM in the alveolar air spaces of COVID- lungs, to monocytes, MoMΦ, 
and granulocyte-like cells in the lung interstitium (Fig. 4I). In line with our scRNAseq findings, 
COVID+ lungs from both nonventilated and ventilated patients had decreased Tregs compared to 
control (Fig. S6F). Thus, the loss of AM and Tregs in COVID-19 lungs may lead to an inability to 
resolve inflammation and initiate tissue repair even after virus is cleared, leading to autonomous 
inflammation that contributes to morbidity.   
 
DISCUSSION 
 
In this work, we present systemic and lung high dimensional immunophenotyping on one of the 
largest single center COVID-19 cohorts to date which was collected during the height of the 
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COVID-19 pandemic in New York City. Here we show that patients with moderate disease had 
increased numbers of circulating DC, effector and cytotoxic T cells, increased levels of cytokines 
associated with APC function, and reduced levels of cytokines associated with monocyte and 
neutrophil activation, mucosal damage, and hyperinflammation. On the other end of the spectrum, 
severely ill patients had reduced DC, effector and cytotoxic T cells, lower levels of cytokines 
associated with APC function, and were enriched in immature inflammatory monocytes producing 
S100A12. Severely ill patients also had high levels of cytokines associated with monocyte and 
neutrophil activation, mucosal damage, and hyperinflammation.   
 
Notably, we found that lung tissue resident AM were profoundly altered in numbers and 
functionality in severe COVID-19. AM from COVID+ patients expressed higher levels of 
inflammatory cytokines and decreased levels of HLA class I/II genes compared to AM from 
COVID- patients, indicating not only a decrease in AM numbers, but also a potential change in 
their Ag presentation function. AM from deceased COVID+ patients were also more inflammatory 
and expressed higher levels of neutrophil and monocyte attracting chemokines compared to AM 
from surviving patients, thereby implicating a role for AM in tissue damaging inflammation and 
recruitment of immature inflammatory myeloid cells from the periphery. All together, these data 
may suggest that a defect in antigen presentation by altered AM and reduced DC along with 
mobilization and recruitment of inflammatory monocytes as drivers of disease severity.  
 
The depletion and alteration of the AM pool may be a consequence of direct infection by severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and subsequent activation of 
inflammatory pathways (48). However, alveolar type II cells, the primary angiotensin converting 
enzyme 2 expressing cells in the lung and target of SARS-CoV-2, also produce granulocyte-
macrophage colony stimulating factor (GM-CSF) and have a nonredundant role in maintaining 
AM in the lung(50). Thus, AM depletion may be multifactorial due not only to inflammation or 
SARS-CoV-2 infection, but also from decreased GM-CSF in the alveolar milieu. In addition to their 
role as the first responders to pathogens in the lung, AM play a key role in lung homeostasis, 
resolution of inflammation, and tissue repair(51). This may explain why elderly patients, who at 
baseline have decreased AM and increased numbers of inflammatory MoMΦ, are predisposed to 
increased disease severity.  
 
During development and in homeostatic conditions, RAGE signaling in type I alveolar cells helps 
maintain alveolar architecture and lung compliance, but is also a known activator of NF-κB 
signaling(52). Loss of AM derived RAGE ligands such as S100A8/A9 and S100A12 in alveoli may 
contribute to an inability to maintain proper gas exchange within alveoli. Furthermore, the shift of 
RAGE ligand production to infiltrating monocytes and Mo-Macs in the lung interstitium we 
observed in autopsy lungs may exacerbate lung injury, vascular leakage, and lead to increased 
immature myeloid cell recruitment and infiltration. Increased inflammation has also been 
implicated in defective transdifferentiation of AT2 cells to AT1 cells, leading to an inability to re-
epithelialize and maintain alveolar barrier integrity(53). Our data suggest that maintaining and 
restoring AM numbers early during infection may be a valid therapeutic strategy that may protect 
airway integrity and initiate an early innate and adaptive immune response, while limiting the 
expansion and recruitment of immature inflammatory myeloid cells from the periphery(54).  
 
MATERIALS AND METHODS 
 
Study Design  
 
The goal of our study was to identify drivers of COVID-19 severity and death in order to support 
the identification and development of tailored immunotherapy strategies to halt disease 
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progression. To do so, we performed high dimensional immunophenotyping on hospitalized 
COVID-19 patients at the Mount Sinai Hospital from March 2020- December 2020. We 
characterized inflammation patterns using the Olink platform which allowed us to detect 92 
different proteins from patient sera. To understand the diversity of immune patterns, we performed 
unbiased clustering analysis and noted immune patterns that correlated with disease severity, 
comorbidities, and patient outcome. We grouped immune patterns based on these clinical 
parameters and calculated protein module scores based on the covariance patterns of different 
cytokines. Next, we characterized circulating immune cells using CyTOF on whole blood samples 
and scRNAseq on PBMC. Here, we used unbiased clustering on the PBMC scRNAseq to identify 
immune cell populations and compared the frequencies across Olink groups. Following this, we 
integrated our seromics data with scRNAseq to identify 4 distinct immune responses to COVID-
19. To characterize local changes to the lung immune microenvironment, we obtained BAL 
samples from COVID+, COVID-, and convalescent patients and performed scRNAseq. We further 
expanded our characterization of the lung using MICSSS on lung autopsy samples and quantified 
changes in myeloid cell infiltration.  
 
Mount Sinai COVID-19 Biobank  
 
Electronic medical records (EMR) from patients admitted to the Mount Sinai Hospital for 
suspected or confirmed COVID-19 were screened each morning by a team of volunteers and 
team physicians for enrollment into the Mount Sinai COVID-19 Biobank. Due to the difficulty of 
obtaining direct informed consent during the pandemic, the Institutional Review Board (IRB) 
approved sample collection from patients before consent was obtained. Patients were made 
aware of planned sample collection with documents provided during hospital registration and 
provided instructions for opting out. Patient consent was subsequently obtained by contacting 
patients via hospital-room phone, phone call after discharge, or through legally authorized 
representatives after death of patients. All patient samples used and presented in these analyses 
were from consented patients. This study was approved by the Institutional Review Board of the 
Mount Sinai School of Medicine under IRB-20-03276. EMR and deidentified clinical data for each 
patient was pulled from Epic electronic health record using Epic Hyperspace, Epic Clarity, and 
the Mount Sinai Data Warehouse, and summarized per 24 hour period measures throughout 
length of hospital stay. Period window was defined as 12 PM to 12 PM to match blood draw time.  

 
Clinical Blood Sample Collection and Processing 
 
At each collection timepoint, patient serum was collected in a Vacutainer® Plus Plastic SST™ 
Blood Collection Tubes with Polymer Gel for Serum Separation tube. 2x BD Vacutainer® CPT™ 
Cell Preparation Tube with Sodium Heparin were collected for Plasma and PBMC collection. 
Samples were obtained by nurses or phlebotomists as part of clinical care, collected from hospital 
floors by “Running Team” volunteers, and delivered to the laboratory for processing. Blood 
samples were kept on gentle agitation at room temperature (RT) and processed by Blood 
Processing Team volunteers of the Mount Sinai COVID-19 Biobank in Biosafety level 2 plus (BSL-
2+) facilities on the day of collection.  
 
SST tubes were centrifuged at RT at 1300 relative centrifugal force (rcf) for 10 minutes (mins) 
and serum was banked into cryovials for storage in liquid nitrogen (LN). Whole blood samples for 
CyTOF were taken from CPT tubes and directly stained with a lyophilized antibody panel using 
Fluidigm MaxPar Direct Immune Profiling Assay (MDIPA) tubes for 30 mins at RT. Stained whole 
blood samples were then stabilized and fixed with Prot1 Proteomic Stabilizer for 10 mins at RT 
before storage at -80°C as previously described(55). CPT tubes were then centrifuged at 1800 
rcf for 15 mins to separate plasma and PBMC. Plasma was aspirated and banked into cryo-vials 
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for storage in LN. The PBMC cell layer was collected, washed with phosphate buffered saline 
(PBS) and collected by centrifugation at 300 rcf for 15 mins. Cell viability and counts were 
assessed by acridine orange and propidium iodide (AOPI) staining in automated Nexcelom 
Cellometer Cell Counters. PBMC were resuspended at a concentration of ~10x106 cells/mL in 
Human Serum Ab and 10% dimethyl sulfoxide (DMSO) and stored at -80°C for 24 hours before 
transfer to LN storage.   

 
Olink measurements of COVID-19 serum, data normalization, and clustering analysis 
 
Olink was performed on COVID-19 patient serum samples in BSL2+ according to manufacturer 
instructions. Count (Ct) values were generated by Olink NPX manager software. To control for 
technical variability between plates, we included in each plate 2 technical control replicates from 
a single mixture of pooled blood from healthy donors and estimated a control value per plate, 
defined as:  

𝐶𝑡𝑟𝑙!(𝑝𝑙𝑎𝑡𝑒") =
1

|𝑗 ∈ 𝑇|	𝑝𝑙𝑎𝑡𝑒# = 𝑝𝑙𝑎𝑡𝑒"|
1 𝑙𝑜𝑔	4𝐶𝑡#!5	

#∈%|	()!*+!,()!*+"

 

Where: a is a given analyte, i is a given sample, T is the set of technical control replicates, platei 
is the plate of sample i, and 𝐶𝑡!" is the raw Olink Ct value of analyte a in sample s.  
Normalized Ct values 𝑍(𝐶𝑡′!") were definied as the z-scores of the plate-adjusted, log transformed 
Ct values 𝐶𝑡′-!:  

𝐶𝑡.-
! = 𝑙𝑜𝑔	(𝐶𝑡"!) 	− 𝐶𝑡𝑟𝑙()!*+(")! 	

Samples with similar normalized Ct profiles 𝑍(𝐶𝑡′!" were clustered using Kmeans++ 
(https://github.com/tanaylab/tglkmeans) with k=15.  
Olink protein module scores were calculated by averaging the normalized z-scores of each 
module analyte.  
 
CyTOF Data acquisition and analysis 
 
MDIPA stained whole blood samples were thawed using the SmartTube Prot 1 Thaw/Erythrocyte 
Lysis protocol. Samples were subsequently barcoded and pooled utilizing the Fluidigm Cell-ID 
20-Plex Pd Barcoding Kit and stained with an antibody cocktail against fixation stable markers for 
more in depth immune profiling. Following sample barcoding and staining, samples were fixed 
with 2.4% paraformaldehyde in PBS with 0.08% saponin and 125 nM Iridium (Ir) for 30 mins at 
RT and stored in Cell Staining Buffer until acquisition. Immediately prior to data acquisition, 
samples were washed once in Cell Acquisition Solution and resuspended at a concentration of 
1*10^6 cells/mL for acquisition (including 10% Fluidigm EQ Normalization Beads). The 
resuspended cells were then acquired on the Helios Mass Cytometer supplemented with a wide 
bore injector at an event rate <400 events/second. After data acquisition, samples were 
debarcoded using the Astrolabe Diagnostics platform. Cell populations were identified by a 
combination of an automated approach using the Astrolabe Diagnostics Platform and manual 
gating as previously described(55).   

 
PBMC preparation for scRNAseq 
 
PBMC samples were selected based on manual EMR chart review taking into account, and 
controlling for patient demographics and treatments. Frozen PBMC were thawed at 37°C and 
resuspended in RPMI media+ 10% fetal bovine serum (FBS) with 25 U/mL Benzonase before 
centrifugation at 350 rcf for 5 mins. Cells were resuspended in media and viable cells were 
counted by AOPI staining in Nexcelom Cellometer Cell Counters. Combinatorial hashes were 
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prepared in wash buffer (PBS + 0.5% bovine serum albumin (BSA)). 500,000 live cells were 
stained with hashes for 20 mins on ice before 3 washes in wash buffer. Cells were filtered through 
a 70 μm filter and then a 40 μm filter twice. Filtered cells were counted and loaded with a targeted 
cell recover of 35,000 cells/lane across 8 lanes of 5’ v1.1 NextGEM assay.  
 
Patient selection for BAL  
 
Respiratory samples for research were allocated from BAL obtained from patients ≧	18 years of 
age undergoing bronchoscopy with BAL fluid collection for clinical reasons.  Patient groups 
included the following: (1) positive SARS-CoV-2 PCR with COVID-19 related acute respiratory 
failure requiring intubation and mechanical ventilation; and (2) negative SARS-CoV-2 PCR with 
suspected lung cancer.  Patients in Group 2 who had previous positive SARS-CoV-2 PCR or 
SARS-CoV-2 Ab were designated as COVID-19 convalescent. Informed consent for 
bronchoscopy with BAL fluid collection was obtained separately from consent for research. 
 
Group 1.  Patients were identified by the attending critical care physician providing clinical care.  
Patients were intubated at the discretion of the critical care team for progressive respiratory 
failure, as evident by worsening hypoxemia, hypercapnia, or work of breathing despite support by 
high-flow nasal cannula oxygen or non-invasive ventilation. Bronchoscopy with BAL fluid 
collection was performed within 72 hours of first intubation if clinically indicated.  At our center, all 
patients with COVID-19, including those with COVID-19-related respiratory failure, were managed 
according to guidelines developed and updated by the Mount Sinai Health System as new data 
regarding care of patients with COVID-19 became available(56). Patients requiring intubation and 
mechanical ventilation for COVID-19-related respiratory failure were additionally managed with a 
low tidal volume ventilation strategy(57).  
 
Group 2.  Patients were identified by the pulmonologist and physician assistant who performed 
the bronchoscopy with BAL fluid collection, which was carried out for suspected lung cancer 
requiring a diagnostic and staging procedure.  Negative SARS-CoV-2 PCR was obtained 2-5 days 
prior to bronchoscopy.  Patients were selected on the basis of suspected lung cancer not greater 
than 5 cm in greatest dimension.  Patients with known history of, or clinical suspicion for, active 
infectious or inflammatory lung diseases were excluded. 
 
BAL fluid collection 
 
All respiratory specimens were collected using sterile, flexible, fiberoptic bronchoscopes.  
Bronchoscopes were flushed prior to the procedure with 5 mL sterile saline, which was collected 
for research. For Group 1, a single-use bronchoscope (Ambu) was inserted through the 
endotracheal tube.  For Group 2, a reusable bronchoscope was inserted through a laryngeal mask 
airway or endotracheal tube placed for the procedure.  After airway inspection, the bronchoscope 
was wedged in a distal airway of interest selected by pre-procedure imaging.  Sterile saline was 
instilled in 30 mL aliquots (up to 90 and 210 mL for Groups 1 and 2, respectively) and aspirated.  
Aspirated BAL fluid was split into parts for clinical use, which included fluid sent for clinical 
microbiological analysis, and research use, which was transported immediately to the research 
laboratory on ice and processed as below. 

 
BAL fluid processing 
 
BAL samples were processed within 30 mins of sample collection. Collected BAL was filtered 
twice through 70 μM filters and centrifuged at 350 rcf for 5 mins at 4°C. BAL supernatant was 
collected and treated with 0.1% Triton X-100 for 1 hour to inactivate virus before aliquoting into 
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cryovials for storage at -80°C. BAL cells were incubated with Red Blood Cell Lysis buffer (Fisher 
Scientific) for 5 mins at RT before washing with PBS+ 0.5% BSA and centrifugation at 350 rcf for 
5 mins at 4°C. Viable cells were counted by AOPI staining in Nexcelom Cellometer Cell Counters. 
2 lanes of 8000 cells from each sample were loaded onto the 10x Chromium Controller for 
scRNAseq, 5’ v1.1 NextGEM assay.  

 
PBMC and BAL scRNAseq data processing 
 
For all scRNAseq datasets, debris/empty droplets were identified with cells that had gene 
expression (GEX) UMI counts<22. Cells were identified by finding local minimum in the GEX UMI 
distribution, keeping only cells ≧ the local minimum UMI count. On average, this was 371 UMI 
counts. For PBMC scRNAseq, hashtag oligo (HTO) UMI counts <22 and excluded from further 
analysis. For HTO transformation, each feature in the HTO matrix (linear space) was subtracted 
from its 5th quantile and divided by its 95th quantile. Each cell was subsequently divided by its UMI 
sum. Because hashing reads were not consistently detected, we underwent additional processing 
to dehash cells.  
 
Initial mapping of cells to samples using only HTOs: A “key” matrix with biological samples as 
rows and HTO features as columns was created. Each unit in the matrix was populated with a 
value of “1” if the sample was supposed to be positive for the hashtag and “0” if it was not. For 
each cell, pairwise distances with a cosine similarity metric were computed from the key matrix to 
generate a cosine similarity matrix. Samples with the highest cosine similarity could then be 
assigned to the cell. Initially assigned mappings were called "hto-ini". 
 
Additionally, a signal to noise ratio (SN) was for each cell was calculated by subtracting the 
highest cosine similarity from the second highest cosine similarity. The SN ratios for each initially 
assigned sample usually followed a bimodal distribution. The relative minima of the parametric 
density of SN ratios was used in order identify the local minimum of this distribution. Only cells 
with SN ≧ the local minimum were kept as the final cells belonging to that sample. We call these 
final mappings "sample-hto"  
 
Initial mapping of cells to samples using only HTOs and Souporcell: We used Souporcell to cluster 
the cells based on the polymorphisms detected from the RNA-Seq alignment(58). We also 
inputted the genotypes inferred from whole genome DNA-Seq data as a reference in Souporcell 
in order to map the clusters to  respective patients. Next, we leveraged the Souporcell subject 
mappings along with the initially assigned HTO mappings (hto-ini) in order to deconvolute the 
patient to the various timepoints. For patients with single timepoints, we assigned the entire 
Souporcell cluster to the sample. For patients with multiple timepoints, we performed the hashtag 
de-multiplexing strategy described above to map the cells from the cluster to the patient's 
timepoints. We called these mapped cells "sample-soc-hto". 
 
Final mappings: We intersect the output from both strategies above ("sample-hto" and "sample-
soc-hto") in order to get a consensus cell-sample mapping. Only these consensus cells were used 
for further downstream analysis. 
 
scRNAseq Analysis 
 
Briefly, mRNA reads were tagged with a cell barcode and UMI. These reads were aligned, and 
count matrices were built. Cell barcodes with at least 500 UMIs were extracted, and cells that 
were comprised of more than 25% of reads from the mitochondrial genome were filtered from 
subsequent analysis. The variability in cell counts or UMI counts across samples were not 
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confounding variables in downstream analyses. The R package Seurat was then used for data 
scaling, clustering, dimensionality reduction, and downstream differential gene expression 
analyses(59–62). The function SCTransform was used to scale and identify variable genes that 
constituted principal components for principal component analysis (PCA). The first 15 principal 
components were used to perform UMAP reduction, once a shared nearest-neighbor graph had 
been generated and clustering had been performed based on the Louvain method for community 
detection. Cells were down-sampled to 2000 UMIs per cell and variable genes were selected. 
Gene module analysis was performed by computing a Pearson correlation matrix between genes 
for each sample using the R package scDissector(63). Highly correlated genes were grouped into 
gene modules by hierarchical clustering. These modules were used to determine cellular identity 
for each cluster that was present across samples.   
 
scRNAseq immune cell cluster frequency correlations, and integrated scRNAseq cell frequencies 
and Olink proteomics were calculated using the corrplot package (v0.88) and visualized using the 
pheatmap package (v1.0.12) in R.  
 
Lung Autopsy Tissue Section Preparation 
 
Lung autopsy samples were collected within 24 hours of death (average 10.1±6.2 hours) and 
fixed in 10% neutral-buffered formalin for 24 hours before transfer to 70% Ethanol (EtOH). 
Samples were then embedded in paraffin and 4 μM tissue sections formalin fixed paraffin 
embedded (FFPE) sections were cut onto glass slides and baked at 37ºC overnight.  
 
Autostainer (Bond Rx, Leica Biosystems): Slides were covered with covertiles (Bond Universal 
Covertiles, Leica biosystems) and baked for 10 mins at 57ºC. Slides were deparaffinizied in dewax 
solution and rehydrated in decreasing concentrations of EtOH. Tissue sections were then 
incubated in Ag retrieval solution (pH 6 or 9) at 95ºC for 20 mins. Tissue sections were incubated 
in 3% hydrogen peroxide (Bond Polymer Refine Detection Kit DS9800, Leica Biosystems) for 15 
mins to block endogenous peroxidases. Next, tissue sections were incubated in serum-free 
protein block solution (Dako X0909) for 30 mins to block nonspecific antibody binding. After the 
first staining cycle, Fab fragments (AffiniPure Fab Fragment Donkey anti-mouse (715-007-003) 
or anti-rabbit IgG (711-007-003)) against that primary antibody species were used to block carry-
over staining whenever there was a repeat of same primary antibody species. Primary antibody 
staining was performed for 1 hour at room temperature followed by secondary antibody staining. 
Polymer detection system (Bond Polymer Refine Detection Kit #DS9800, Leica Biosystems) was 
used for horseradish peroxidase signal amplification. Chromogenic revelation was performed 
using ImmPact AEC (3-amiino99-ethylcarbazole) substrate (Vector Laboratories, SK4205) for 
preset incubation times. Slides were counterstained with hematoxylin (Bond Polymer Refine 
Detection Kit, DS9800, Leica Biosystems.  
 
Manual staining: Slides were mounted with a glycerol-based mounting medium (Dako, C0563) 
and scanned for digital imaging (Hamamatsu NanoZoomer S60 Whole Slide Scanner). Same 
slides were successively stained, as per MICSSS protocol(49). Coverslips were removed by 
placing slides in a rack and immersing in hot tap water at 56ºC until mounting media dissolved. 
Chemical destaining between stains was performed by immersing slides in gradually diluted EtOH 
solutions.  
 
MICSSS coexpression analysis 
 
To analyze marker coexpression, a pseudofluorescence composite image of all chromogenic 
markers was created. The same region of interest (ROI) were selected from images of each 
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marker in QuPath (https://qupath.github.io/, Bankhead et al. 2017) and exported as PNG 
formatted images without downsampling. Images of different immunostains belonging to the same 
ROI were transferred to Fiji-ImageJ and co-registered using the TrakEM2 plug-in(64, 65). Color 
deconvolution was performed using H-AEC vectors for each image to split the RGB images into 
three 8-bit channels including hematoxylin (blue), AEC (red chromogen color), and residual 
(green) channel. The best hematoxylin channel was selected as the nuclear channel. AEC 
channels representing staining of each marker were assigned to different colors by using the 
lookup tables (LUTs) function of Fiji while hematoxylin channel was assigned to blue color to 
mimic fluorescent DAPI staining. Next, color inversion was done on all channels and then merged 
to achieve a multiplexed pseudofluorescent image. We optimized brightness and contrast settings 
to facilitate visualization for each immunostain channel by comparison with original chromogen 
images but did not change underlying image pixel values for quantification.  
 
MICSSS quantification 
 
Stained images were scanned at 40x resolution into the .ndpi format and uploaded to Amazon 
Web Services super computer clusters for high-speed analysis on a Python-based Anaconda 
Jupyter Notebook. Raw red-green-blue (RGB) thumbnail 1.25x resolution images were analyzed 
using an in-house tissue recognition algorithm that enhanced tissue contours and used optical 
densities of pooled pixels across the image to determine a tissue mask. The image was then 
rigidly registered with the corresponding images across all markers for the same tissue within the 
MICSSS panel. This registration used a third party SimpleElastic package for Python 
(https://simpleelastix.readthedocs.io/RigidRegistration.html). Following linear registration, the 
highest resolution image for each marker (40x) was spliced into multiple tiles that spanned 
approximately 2000 μm in each dimension with 20% surface area overlap in each direction. Each 
tile was then denoted with an X,Y pooled pixel coordinate value so that the appropriate 
corresponding tiles across all the markers in the panel for the same tissue would be analyzed 
together. Each set of tiles was deconvoluted to extract the hemoxylin channel, which remained 
consistent across all markers. The hematoxylin channel was then registered with an affine 
registration (which accounts for shear, scale, rotation, and translational dislocation) and a “b-
spline” elastic warping to account for any local tissue warping or tissue damage 
(https://simpleelastix.readthedocs.io/NonRigidRegistration.html) 
 
The vector field transformation matrix produced from the high-resolution affine and b-spline 
registrations was then applied to the raw RGB tile. Registered RGB tiles were analyzed in parallel 
across the multiple cores of the AWS supercomputer, trimmed to eliminate overlap, and 
concatenated to produce one final elastically registered RGB image per marker. 100 ROIs of 
about 500x500 μm were randomly chosen in the image based on where tissue resided. These 
were chosen from the last tissue mask in the panel to account for any tissue damage or warping. 
Each of these ROI was processed in parallel across the multiple cores in the AWS supercomputer. 
Next, we used the Stardist package for Python (https://github.com/stardist/stardist) that was 
trained with hematoxylin and eosin staining, to segment each ROI, and to determine the centroids 
and morphological properties of each determined cell. We previously optimized the sensitivity of 
this algorithm with these tissues and therefore used an overall sensitivity value of 0.1 for the 
algorithm. This algorithm provides information for the nucleus of each cell in the ROI, which we 
then artificially expanded by 5 microns to simulate the cell’s cytoplasm. Overlapping cytoplasm 
from adjacent cells in dense regions were condensed to prevent overcounting surface area.  
 
Each cell per ROI was then analyzed for marker positivity. ROI were deconvoluted for its AEC 
detection channel and each cell was translated to a median AEC value from pixels that resided 
in its nucleus and artificially expanded cytoplasm. If the median AEC value for the cell was above 
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the threshold value for positivity deemed for that marker, the cell was considered positive. 
Threshold values per marker were determined with a pathologist. % positive cells was determined 
by the number of cells above the threshold for that marker over the total number of cells in that 
ROI. Co-expression analysis was performed by determining if a cell was positive for the multiple 
markers of interest over the total number of cells in that ROI. We plotted each value per ROI.  
 
Statistical analysis 
 
Data analysis was performed using Prism version 9.2.0 (GraphPad software) or in R version 3.6.3 
and presented as stated in figure legends. 2-way ANOVA with Tukey’s multiple comparisons 
correction was used for Olink comparisons while 2-way ANOVA with Holm-Sidak multiple 
comparisons correction was used to calculate cell frequency changes for CyTOF and scRNAseq. 
For spearman correlation coefficients, p<0.05 was considered statistically significant p-values in 
correlation matrices indicated as *p<0.05, **p<0.005, ***p<0.0005. 
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Figure 1. Proteomic characterization of COVID-19 serum reveals distinct immune patterns 
associated with disease severity and clinical outcome. (A) Histogram of patient samples 
across Olink clusters denoted by clinical severity classification. (B) Histogram of first available 
patient samples across Olink clusters denoted by patient projected clinical outcome. (C) Averaged 
z-scored heatmap of Olink inflammation panel analytes across Olink clusters. Olink clusters were 
grouped based on clinical severity, projected outcome, and comorbidity distribution. (D) Boxplots 
showing Olink module score comparisons of all Olink samples by Olink group. (E) Boxplots 
showing Olink module score comparisons of all Olink samples by final clinical outcome. For box 
plots, each dot represents a patient sample; center line, median; box limits, 25th and 75th 
percentile; whiskers, 1.5x interquartile range (IQR). Statistical significance (D-E) determined by 
2-way ANOVA with Tukey’s Multiple Comparisons correction. Adjusted p-values shown.  
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Figure 2. Immature inflammatory myeloid cells associated with increased COVID-19 
severity. (A) Neutrophils (% cells), Classical Monocytes and Intermediate Monocyte 
frequencies (% non-granulocytes) in whole blood by Olink group measured by CyTOF. (B) DC 
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population frequencies (% non-granulocytes) in whole blood by Olink group measured by 
CyTOF. (C) Neutrophils (% cells), Classical Monocytes and Intermediate Monocyte frequencies 
(%non-granulocytes) in whole blood by final clinical outcome measured by CyTOF. (D) DC 
population frequencies (% non-granulocytes) in whole blood by final clinical outcome measured 
by CyTOF. Conventional DC (cDC), conventional type 1 DC (DC1), conventional type 2 DC 
(DC2), and plasmacytoid DC (pDC) shown. (E) Heatmap showing unique molecular identifier 
(UMI) counts of selected genes from myeloid cell scRNAseq clusters from PBMC. (F) 
scRNAseq cluster cell frequencies as % of cells by Olink group (G) % of cells frequencies of 
ISG enriched Classical Monocytes cluster by Olink group. (H) % of cells frequencies and days 
PSO for ISG enriched Classical Monocytes by clusters 6-7 vs clusters 8-9. (I) Matrix of 
spearman correlation coefficients between identified scRNAseq PBMC clusters. *p<0.05, 
**p<0.005, ***p<0.0005. For bar graphs, each dot (A-D, F-H) represents a patient sample. 
Statistical significance (A-D, F-G) determined by 2-way ANOVA with Holm-Sidak multiple 
comparisons correction. Adjusted p-values shown. Statistical significance (H) determined by 
Mann-Whitney test.  
 

 
Figure 3: Integrated analysis of scRNAseq cluster frequencies and Olink analyte 
abundance in serum reveals distinct immune responses to COVID-19. Matrix of spearman 
correlation coefficients between identified scRNAseq PBMC clusters and Olink analyte 
normalized concentrations in serum. Axes ordered by hierarchical clustering.  
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Figure 4: Alveolar Macrophage loss and phenotypic changes in the COVID-19 lung 
microenvironment. (A) Heatmap showing UMI counts of selected genes from myeloid cell 
scRNAseq clusters from BAL. (B) scRNAseq cluster cell frequencies as % mononuclear 
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phagocytes (MNP) in COVID-, COVID+, or convalescent patient BAL. Differential gene 
expression between (C) AM from COVID+ and COVID- patients , (D) AM from patients that 
survived vs deceased, (E) AM from convalescent and COVID+ patients. (F) Overlaid, 
pseudocolored MICSSS image of COVID+ and COVID- lungs, staining for S100A12, CD68, 
CD14, FABP4, and Hematoxylin. (G) Quantification of myeloid cells in MICSSS images, shown 
as % of cells. AM defined as FABP4+CD68+ cells; Monocytes defined as CD14+ cells; MoMΦ 
defined as CD14+CD68+ cells; Granulocyte-like cells defined as CD66b+ cells or by 
hematoxylin staining and morphology. (H) Quantification of S100A12+ cells in MICSSS images, 
shown as % cells in COVID- patient (n=1), nonventilated COVID+ patients (n=2), or ventilated 
COVID+ patients (n=2). (I) Distribution of S100A12+ cells by cell type in COVID-, nonventilated, 
or ventilated COVID+ lungs. For bar graphs, each dot represents patient sample (B) or 
quantification of single MICSSS region of interest (ROI) (G-H). Statistical significance (B) 
determined by 2-way ANOVA with Holm-Sidak multiple comparisons correction. Adjusted p-
values shown. 
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