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Abstract
Salmonella enterica Typhimurium is a serious pathogen that is involved in human nontyphoidal
infections. Tackling Typhimurium infections is difficult due to the species’ dynamic adaptation to
its environment, which is dictated by a complex transcriptional regulatory network (TRN). While
traditional biomolecular methods provide characterizations of specific regulators, it is laborious
to construct the global TRN structure from this bottom-up approach. Here, we used a machine
learning technique to understand the transcriptional signatures of S. enterica Typhimurium from
the top down, as a whole and in individual strains. Furthermore, we conducted cross-strain
comparison of 6 strains in serovar Typhimurium to investigate similarities and differences in their
TRNs with pan-genomic analysis. By decomposing all the publicly available RNA-Seq data of
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Typhimurium with independent component analysis (ICA), we obtained over 400 independently
modulated sets of genes, called iModulons. Through analysis of these iModulons, we 1)
discover three transport iModulons linked to antibiotic resistance, 2) describe concerted
responses to cationic antimicrobial peptides (CAMPs), 3) uncover evidence towards new
regulons, and 4) identify two iModulons linked to bile responses in strain ST4/74. We extend this
analysis across the pan-genome to show that strain-specific iModulons 5) reveal different
genetic signatures in pathogenicity islands that explain phenotypes and 6) capture the activity of
different phages in the studied strains. Using all high-quality publicly-available RNA-Seq data to
date, we present a comprehensive, data-driven Typhimurium TRN. It is conceivable that with
more high-quality datasets from more strains, the approach used in this study will continue to
guide our investigation in understanding the pan-transcriptome of Typhimurium. Interactive
dashboards for all gene modules in this project are available at https://imodulondb.org/ under
the “Salmonella Typhimurium” page to enable browsing for interested researchers.

Introduction
Salmonella enterica is one of the leading causes of foodborne illnesses globally1. Nontyphoidal
Salmonella (NTS) is highly diverse and contains more than 2,600 serovars2. Among them, S.
enterica Typhimurium is of particular interest because it has broad host specificity and poses
serious challenges to public health, especially with the rise in its antibiotic resistance and the
advent of new strains causing serious to life-threatening infections in sub-Saharan Africa3.
Infections caused by Typhimurium are difficult to combat for two primary reasons. First,
Typhimurium contains a wide variety of strains with different genetic and phenotypic signatures.
These strains vary in virulence, persistence and response to diverse conditions, thus requiring
different treatment methods. Second, Typhimurium strains use a set of intricate mechanisms to
adapt to their host, develop drug resistance and enhance virulence. These mechanisms are
activated by the transcriptional regulatory networks (TRNs) that coordinate gene expression
under a variety of different conditions, including antibiotic treatment, starvation and stress.
Well-characterized TRNs of the serovar as a whole and in individual strains would enable us to
develop a better understanding of Typhimurium’s dynamic adaptation to environmental
perturbations and make better predictions of clinical treatment outcomes. Gaining a deeper
understanding of the TRN of S. enterica Typhimurium therefore holds great importance for
public health.

However, efforts to characterize Typhimurium’s TRNs are mainly confined to understanding the
TRNs of individual strains. Prior studies comparing transcriptomic patterns across Typhimurium
strains typically focused on observing differentially expressed genes of just two strains4.
Systems-level investigations of TRNs across more strains and over the entire serovar were
hindered by inadequate analytical methods.

The increasing number of sequenced genomes has empowered pan-genomic analysis to study
the genetic diversity and composition of a species. A pan-genome contains all the genes in that
species, and a core genome is defined as the genes shared between all strains in the species.
Previous pan-genome analysis of Salmonella has identified unique genetic landscapes of
different serovars and strains and demonstrated the potential to understand strain relationships
and phenotype differences5–7.

Recently, an independent component analysis (ICA)-based method has been successful in
elucidating quantitative bacterial TRNs8–10. ICA is a signal separation algorithm that
deconvolutes mixed signals into their individual sources and determines their relative
strengths11. By applying ICA to bacterial transcriptomes, we can identify independently
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modulated sets of genes, called iModulons (individual source signals) and the activity level of
the iModulon across different conditions (relative signal strength). Unlike regulons that are
defined from the bottom up by experimental data of transcription factors and DNA binding,
iModulons are derived computationally from gene expression via a top-down approach. It has
been applied to transcriptomic datasets of E. coli, B. subtilis and S. aureus and provided
valuable insights into the global TRNs of these species8–10.

In this study, we compute and analyze the iModulons of 6 Salmonella typhimurium strains, and
compare their structure and activity across the serovar. We generate a large transcriptomic
compendium by downloading all the publicly available RNA-Seq data of this serovar from NCBI
Sequence Read Archive (SRA) and compiled expression profiles of 533 high quality samples.
The large size and diversity of conditions in this dataset make it a valuable starting point for
machine learning of the TRN. In order to understand the serovar as a whole and simultaneously
characterize individual strains, we performed a pan-genomic analysis on 500 Typhimurium
strains and defined the Typhimurium core genome with 172 strains. We performed ICA on both
the core genome and the individual strain genomes and obtained over 400 robust iModulons in
total. Many of these iModulons are highly consistent with known regulons, while others offer
guidance for new discoveries.

Results
Compiling the Salmonella Typhimurium RNA-seq Compendium
To compile the RNA-seq compendium, we scraped the NCBI Sequence Read Archive (SRA)12

for all publicly-available Salmonella enterica RNA-seq data as of August 20, 2020. The strains
and serovars were labeled using SRA metadata, when available, or linked literature
(Supplementary Figure 1). In total, the initial compendium contained 1,444 expression profiles
across 17 serovars. Within serovar Typhimurium, there were 1,174 expression profiles across
eight strains.

Each expression profile was processed using a standardized pipeline13. After low-quality
samples were discarded (See Methods), the final Typhimurium compendium contained 533
expression profiles from 46 BioProjects distributed across 6 Typhimurium strains (Figure 1a)
(Supplementary File).

Pan-genomic Analysis Reveals the Core Typhimurium Genome
To understand the genetic diversity of serovar Typhimurium, we collected 3,329 S. enterica
Typhimurium genomes from PATRIC14. After quality control (See Methods), we used CD-HIT15

to assemble the pan-genome matrix of 506 strains that includes all 8 strains we have RNA-Seq
data for. The pan-genome contains 17,243 gene families. K-means clustering and explained
variance were used to decide the optimal number of representative strains (See Methods). In
the end, we identified 177 representative strains from which we generated the phylogenetic tree
presented in Figure 1b.

Phylogenetic analysis of the pan-genome reveals the majority of the 177 strains to be ST19
strains, a major sequence type of S. enterica Typhimurium16. It is not surprising that 5 out of the
8 strains in our compendium are ST19 strains. The tree also shows that some of the RNA-Seq
strains are more closely related than the others (SL1344 and ST4/74). The ST313 strain
D23580 is a derivative from the ST19 strain ST4/74. Despite the small genetic difference of only
846 nucleotides, the two strains differ significantly in transcriptional signature and phenotypic
features4. The phylogenetic tree clearly presents the relationship between the two strains, and
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guides our subsequent ICA analysis for strain-specific datasets. The pangenome defined in this
study used 177 strains from S. enterica serovar Typhimurium. While smaller in scale and
diversity as compared to previously defined Salmonella pangenomes5–7,17, this focused study is
used to demonstrate the interoperability of pangenomic analytics and ICA. As we show later in
the results, the combination of these tools guides our understanding of strain differences.
Moreover, we want to use the phylogenetic tree to present the strains that we currently have
RNA-seq data for and the diversity they represent within serovar Typhimurium.

To eliminate the negative effect of incomplete genome on the core genome size, a sensitivity
analysis was performed on the 177 strains. With the cut off of 97.2%, 172 strains are used to
define a core genome that contains 4,209 gene families (Figure 1c). For subsequent analysis of
the core genome, we used a core compendium containing all 533 expression profiles, keeping
only the 3,886 core genes (See Methods).

Independent Component Analysis Captures Transcriptional Regulatory
Network of S. enterica Typhimurium
To infer the TRN of Salmonella Typhimurium, we applied ICA to the core Typhimurium RNA-seq
compendium, resulting in 115 robust iModulons. Together, these 115 iModulons explain 75% of
the variance in gene expression (Supplementary Figure 2). Many statistical methods use
explained variance simply to measure the quality of the reconstruction mathematically (e.g.
PCA). However, ICA results carry biological meanings and upon characterization, the
independent components can be linked to transcriptional regulations. Therefore, the explained
variance of ICA offers not only mathematical representations but also biologically-relevant
explanations of variance in gene expression.

To characterize the 115 iModulons, we first constructed a draft TRN of S. enterica Typhimurium
using a pre-defined TRN for the closely related bacteria Escherichia coli8, a model organism
which has a more well-characterized TRN. We subsequently compared each iModulon against
each known regulon and found that 60 iModulons had significant overlap with known regulons
(See Methods). These “Regulatory” iModulons recapitulate the structure of known regulons,
and demonstrate that ICA of one model species can be highly informative for characterization of
closely related species.

The relationship between Regulatory iModulons and known regulons can be measured using
two metrics: iModulon recall, which is the fraction of iModulon genes that are shared by the
regulon, and regulon recall, which is the fraction of regulon genes that are shared by the
iModulon. The scatter plot in Figure 2a shows the distribution of Regulatory iModulons in terms
of their concordance with a known regulon. The histograms on the sides show high recall rates
for many of the regulatory iModulons, demonstrating good agreement between the iModulon
TRN and the previous TRN structure.

Information from public databases such as Gene Ontology (GO) enrichments and KEGG
PATHWAY Databases were used to characterize the remaining 55 iModulons. These iModulons
represent genes with coordinated actions but no known regulon. Some of them are from related
biological pathways that are regulated together to achieve a biological function, while some less
characterized gene sets can be targets for regulon discovery. To describe these iModulons, we
define Genomic iModulons as iModulons that account for changes to the genome such as single
gene knock-outs, large deletions, and or duplications of genomic regions. Functional iModulons
are defined as iModulons that contain genes enriched for a specific function, but are not linked
to a specific transcriptional regulator18.
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To further evaluate the scope of the iModulon structure, we assigned each iModulon to a
functional category (Figure 2b,c). Many iModulons were related to metabolism (which include
carbohydrates, amino acids, nucleotides and lipids metabolism), stress response (cold/heat
response, osmotic stress response, anaerobic shock) and energy production. It is also
interesting to see iModulons that relate to virulence and resistance, which are essential
mechanisms for understanding and combating Salmonella infections. In fact, the two iModulons
that capture the highest fraction of expression variance are related to the Salmonella
pathogenicity islands (SPI-2 and SPI-1, respectively). Other iModulons that explain large
fractions of expression variance include stress response iModulons (ppGpp and RpoS), and
motility iModulons (flhD;flhC), indicating the importance of these mechanisms (Figure 2d).
Uncharacterized iModulons with high explained variances (e.g. unchar-11) can represent
important biological functions and represent good targets for further studies.

ICA extracts Salmonella pathogenicity islands
Many of the virulence genes of Salmonella are located in Salmonella pathogenicity islands
(SPIs)19. SPIs contain important genes that Salmonella needs to invade, survive and spread in
the host. There are 12 common SPIs in Salmonella Typhimurium20. ICA extracted 5 iModulons
related to 4 SPIs (SPI-1, SPI-2, SPI-9 and SPI-16) in the core genome. The SPI-1 and SPI-2
iModulons are the top 2 iModulons with the highest explained variance (Figure 2d).

SPI-1 encodes a type three secretion system (T3SS) that delivers effector proteins to help
Salmonella penetrate the intestinal epithelium. There are 46 genes located in SPI-121, which
includes genes coding for the secretion system apparatus, effector proteins, and their
regulators. ICA extracted 2 iModulons enriched for SPI-1 genes, in total accounting for 5.2% of
the global expression variance across the compendium. The largest SPI-1 iModulon contains
not only genes from SPI-1, but also four genes from SPI-4. (Figure 3a). It is known that both
SPI-1 and SPI-4 are required for Salmonella’s entry into polarized epithelial cells22, and studies
have shown that transcriptional factors encoded in SPI-1 such as hilA, hilC, hilD, and sprB have
a regulatory effect on SPI-4 genes23,24. hilD resides in SPI-1 and codes for the important
virulence regulator HilD. HilD regulates many virulence genes in SPI-1 directly and interacts with
other virulence-related regulators including HilA, HilC and RtsA (outside of SPI-1). HilD forms a
feedforward loop with HilC and RtsA to amplify the regulation on HilA, which is known to
regulate sprB and genes in SPI-423,25. Not surprisingly, in the Differential iModulon Activity
(DIMA) plot in Figure 3b, iModulons related to hilC, hilD and sprB have lower activities along
with the two SPI-1 iModulons in the hilD mutant samples (PRJNA315446). Interestingly, when
focusing on hilC, hilA, sprB or rtsA mutants, we notice that the activities of the SPI-1 iModulons
did not vary much compared to the wild type.Besides an iModulon directly related to the gene
that was knocked out, we do not see iModulons of related regulators with differential activities.
(Supplementary Figure 3). This confirms the significance of HilD in the regulation of SPI-1. It is
also consistent with the previous findings that HilD has a more dominant role compared to HilC
and rtsA25,26.

The CRP iModulon elucidates the structure of the Typhimurium CRP
network and its effect on antibiotic susceptibility
The cyclic AMP Receptor Protein (CRP) is a global regulator that orchestrates a variety of
biological pathways. In E. coli, CRP is known to control 70 genes for transcription factors,
affecting over 300 gene targets involved in metabolism and stress response27. Not surprisingly,
in S.enterica Typhimurium, CRP also carries important roles, and deletion of the crp gene
significantly affects virulence and metabolism28. The complete CRP network of Salmonella is yet
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to be defined, and the crp iModulon provides a potential structure of the Typhimurium CRP
network and offers guidance to find targets of CRP. This crp iModulon contains 43 genes, 16 of
which are known to be regulated by CRP. A large number of the genes in the iModulon are
transcription factors that subsequently regulate more biological activities (Figure 3c). Genes
crucial for metabolism are also a significant component of the iModulon, which agrees with our
predictions from the E. coli network. There are 14 uncharacterized genes in the iModulon that
make good targets for further studies.

The activity levels of each iModulon under different conditions indicate the activity of the
underlying biological signal and regulator. The activity of the crp iModulon shows that it is
strongly repressed under two conditions with antibiotic treatments (PRJNA344670) (Figure 3d).
The activity of the iModulon drastically dropped when the multidrug resistant cells are treated
with chlortetracycline and florfenicol, antibiotics that are frequently administered to animals for
disease prevention. It is known that deletion of crp increase Salmonella’s resistance of
fluoroquinolone antibiotics, possibly by affecting the drug delivery system and altering the drug
target with DNA supercoiling29, but the change in expression of the crp regulon under the
treatment of tetracyclines or florfenicol is undocumented. Unlike fluoroquinolone which inhibits
DNA topoisomerases, both chlortetracycline and florfenicol work by interacting with the bacterial
ribosome to prevent peptide synthesis. It is possible that downregulation of the crp iModulon in
MDR samples results from the regulation of drug deliveries similar to the mechanism to resist
fluoroquinolone. An alternative hypothesis is that among the targets of crp, some ribosomal
protein genes or other translation-related genes can influence the antibiotic’s interactions with
the ribosome. Thus, the repression of the crp regulon could be part of the response mechanism
of the multidrug resistant strains to reduce their susceptibility to antibiotics.

Three transport iModulons are activated by to antibiotic stress in MDR
strains
The emergence of multidrug resistant (MDR) strains poses a serious challenge in preventative
care and infection treatment. To help understand how these strains adapt to antimicrobial
agents, we investigated three iModulons (the proU iModulon, the molybdate iModulon, and the
NikR iModulon) that have high activities under antibiotic treatment of MDR strains in
PRJNA344670 (Supplementary Figure 4).

The proU iModulon (proXWV) encodes an osmoprotectant transport system activated by
osmotic stress. Unexpectedly, when the MDR strains are treated with subinhibitory
concentrations of antimicrobials agents, the activity of this iModulon drastically increases
(Supplementary Figure 4). It has not been documented that the proXWV operon is associated
with other cellular functions in Salmonella, but the results from ICA indicate that the activation of
this transporter can be triggered by antimicrobial agents.

The molybdate iModulon consists of 7 genes (modA, modB, modC, STM0770, STM0771,
STM3142 and yghW), many of which are a part of the essential molybdate transport system.
This system delivers molybdate oxyanions into the cell, where they are converted to
molybdenum (Mo) and serve as cofactors for many enzymes. While it is possible that more Mo
is required for molybdoenzymes involved in the drug resistance mechanisms, the high activity
for this iModulon in MDR strains implies that molybdate compounds affect bacterial survival
under antibiotic treatment. Evidence has shown that silver molybdate and copper molybdate can
enhance the abilities of antimicrobial agents in killing other Gram-negative bacteria such as E.
coli. The metal ions can disrupt the cell membranes while the molybdenum oxide or molybdate
oxyanion modulates the local pH to inhibit further growth30. It is still unclear why Typhimurium
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MDR strains upregulate molybdate transport genes when treated with antibiotics, but this result
strengthens the argument that molybdate has a major effect on the survival of Gram-negative
bacteria, especially when antimicrobial agents are present.

Finally, the NikR iModulon consists of five putative ABC transporter genes in the NikR regulon
(STM1255 - STM1259). Not only is this regulon important for the regulation of nickel uptake, all
5 genes are found in the quorum sensing pathways as well31. Previous studies have found that
nickel chelator reduces the virulence and survival rate of multiple enterobacteriaceae including
S. enterica Typhimurium32 by sequestration. The enhanced activity of the NikR iModulon under
antibiotic treatments reinforces the hypothesis that nickel plays an important role in the survival
of MDR Typhimurium strains and invites explorations for nickel-related methods to combat
Salmonella infections.

Uncharacterized iModulons provide future directions for investigation
Many iModulons can be characterized with existing knowledge, but some others are not
previously documented in literature, giving us new directions for future research. One iModulon
(uncharacterized-1) contains five genes that seem to relate to PTS sorbitol transporter (Figure
4a). These five genes may reveal the structure of an new operon, with STM2749 as the putative
regulatory element. The potentially new operon shows increased expression for csrA mutant
stains, suggesting that it is repressed by this global regulator. Furthermore, the low activity of
the iModulon for csgD-perturbed cells the regulatory role of csgD on these genes (Figure 4b).
The DIMA plot in Figure 4c also shows the close relationship of this iModulon and the csgD
iModulon, as they are the only two iModulons with lower activities in csgD mutant samples. csrA
regulates virulence, metabolism, and biofilm formation, while csgD is a central biofilm regulator
in Salmonella. Therefore, we hypothesize that this gene cluster may be related to biofilm
formation.

In another case, the tartrate utilization iModulon contains genes with a variety of different
functions, but are not known to be regulated together (Figure 4d). Interestingly, this iModulon is
found to have increased activity when tartrate is the only carbon source (Figure 4e) (See
Supplementary Note 2). Among the 7 genes in the iModulon, STM3356 is a putative cation
transporter whose function is still unknown, but disruption of this ORF can convert tartrate
fermenting phenotypes into tartrate non-fermenting phenotypes for S. enterica serovar
Paratyphi B dT+35. The presence of this gene in the S. enterica Typhimurium core genome ICA
results suggests that this gene is crucial for the utilization of tartrate for Typhimurium as well.
For the rest of the genes in this iModulon, STM0330 is a 3-isopropylmalate dehydratase, and
STM0331 and STM0332 are putative hydrolases. STM0333 is a putative LysR family
transcriptional regulator and ybgT is the subunit of Cytochrome bd-I oxidase. None of the genes
are documented to be directly related to the conversion of tartrate.

iModulon clusters reveals coordinated activities and illuminate CAMP
resistance mechanism
The activity fluctuation of individual iModulons under specific conditions can help us understand
the functions of one set of genes. However, biological processes often involve multiple gene
sets with coordinated functions. These genes are not necessarily regulated by the same
regulator but they all respond together to the same stimulus, forming a stimulon. These gene
sets can be reflected by iModulons that are activated together under specific conditions and
have similar activities across the entire compendium. To investigate the relationships between
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iModulons and the biological insights of these relationships, we clustered the iModulons based
on their activities. iModulons in the same cluster are likely to have related biological functions,
since their activities are correlated. This is indeed the case when we further examine clusters
with the highest correlations: one cluster with the high correlation score contains five iModulons
directly related to the SPI-1 pathogenicity island. The fur cluster consists of three iModulons
related to the ferric uptake regulator Fur.(Figure 4f).

The clear relationships between iModulons in the SPI-1 and fur clusters give us enough reason
to believe that iModulon activity clustering is a reliable way to infer iModulon relationships and
derive biological understanding. Even though in some other clusters the connection can be
harder to decipher, we believe that they do represent true biological implications. One cluster
that is worth mentioning is the cationic antimicrobial peptide (CAMP) resistance cluster that
sheds light on Typhimurium’s defense mechanism against CAMPs. CAMPs are microbicidal
peptides produced by the immune system of many organisms to combat microbial infection.
Salmonella and other gram-negative bacteria are major targets of CAMPs, so the bacteria have
developed mechanisms to protect themselves. One of the most extensively studied resistance
mechanisms is surface remodeling. Since the outer surface is the first line of defense against
CAMPs, Salmonella has developed ways to enhance resistance through modifying its surface.
These include reducing the negative charges on the surface to limit electrostatic interactions
with CAMPs, regulating O-antigen length to create a stronger barrier, decreasing membrane
fluidity to control CAMPs intake, and increasing efflux of CAMPs36.

In the CAMP resistance iModulon activity cluster, we captured 2 iModulons that potentially act in
concert to resist antimicrobial peptides. The CAMP resistance iModulon contains 36 genes, 5 of
which (pqaB, sapD, sapF, STM2300, STM2303) are in the CAMP resistance pathway from the
KEGG PATHWAY Database (stm01503). The genes in this iModulon have a variety of functions
including cell wall and membrane biosynthesis (Figure 4g). The mraZ iModulon consists of 22
genes, 7 of which are regulated by mraZ, a gene within the dcw (division and cell wall) cluster
which has a major effect on cell division and peptidoglycan synthesis (Figure 4h). Many genes
in the two iModulons are related to biosynthesis and transport of lipopolysaccharide (LPS). This
result aligns well with the LPS modification hypothesis, where Salmonella needs to redesign its
LPS to be less anionic to evade interactions with CAMPs. Genes related to O-antigen
biosynthesis are present in both iModulons, pointing to the regulation of O-antigen length. We
also found genes related to peptidoglycan (PG) synthesis in this iModulon cluster. There is little
evidence of the direct involvement of PG remodeling in Salmonella’s defense response to
CAMPs. However, PG is closely enveloped by LPS, so it is also possible that LPS remodeling
works jointly with PG to protect the inner membrane from damage. Other than genes related to
synthesis of the cell surface components, the presence of several transporters can be the
indication of flux and binding regulation at the cell membrane. Moreover, we also discovered
several genes important for DNA replication, repair, and recombination. Antimicrobial agents
such as CAMPs can induce DNA damage directly and indirectly, so these genes are likely part
of the SOS response of the bacteria to repair and synthesize more DNA for survival. The rest of
the genes with unknown functions are likely to be involved in the response of CAMPs, and this
iModulon cluster offers insights into future investigations of antimicrobial resistance.

While SPI-1 is crucial for epithelial cell invasion, SPI-2 is required for intracellular replication,
survival and persistence. The SPI-2 iModulon explains 5.5% of the compendium-wide
expression variance. It is clustered with an uncharacterized iModulon (Figure 4f). The
uncharacterized-6 iModulon contains many virulence and resistance-related genes including
pagP, utgL, the PhoP/Q two-component regulatory systems and genes this system regulates.
These genes all show close relationships with the SPI-2 island. However, the relationship
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between virulence and many other genes are less obvious, and around half of the genes are
characterized to code for putative proteins with unclear functions. These poorly characterized
genes warrant further study to explore their relationship with pathogenicity islands and
virulence.

Comparative studies guides investigation of stress response in related
strains
One of the projects that we looked at was designed to understand the global gene expression
differences between D23580 (ST313 isolate) and its ancestral strain ST4/74 (ST19 isolate)
under infection-related conditions (PRJNA490148)4. The genomes of these two strains are 95%
identical, but each strain has distinct phenotypic characteristics. Identifying the genes whose
expression profile varies in the two strains may assist in explaining the phenotypic differences.
Samples from both strains were cultured under the same infection-related conditions. This
comparative study allows us to compare iModulon activities for the same conditions in different
strains, and we discovered three uncharacterized iModulons that displayed interesting activity
patterns.

The iModulon Uncharacterized-5 consists of only two genes: yaaY, an uncharacterized gene
and yccX that codes for acylphosphatase. The Uncharacterized-12 iModulon is quite large and
contains 49 genes. While there are genes related to virulence (ssrA/ssrB two component
system) and fimbriae (fimY and safB), the majority of the genes in this iModulon code for
putative proteins spanning a variety of functional categories (Figure 5a). Although the functions
of these two iModulons still remain obscure, their activities strongly indicate that they are related
to ST4/74-specific mechanisms. In Figures 5b and 5c, the activities of the two iModulons were
shown across all 6 strains. For samples from all the other strains, this iModulon has an activity
around zero. However, for strain ST4/74, the activities for both iModulons range from -20 to 10.
The small cluster of samples with low activities in ST4/74 are in a variety of conditions, so it is
unclear what triggers the drop of iModulon activities.

However, looking at the DIMA plots of the bile shock samples from strain ST4/74 compared to
ST4/74 samples cultured in LB and bile shock samples from strain D23580 (PRJNA490148), we
speculate that these two iModulons play a role in the bile response for ST4/74. (Figures 5d, e).
It can be seen that the uncharacterized-5 and uncharacterized-12, along with iModulon
uncharacterized-3 show low activities under bile shock in strain ST4/74. Uncharacterized-3 is a
large iModulon (113 genes) with no enrichment in any previously-defined regulon or pathways,
but the functional category breakdown of the gene content can be found in Supplementary
Figure 5. The activities of these three iModulons are also found to be correlated as shown in
Figure 5f. To our knowledge, strain ST4/74 is not particularly sensitive or resistant to bile salts
compared to D23580 or other strains in this study. However, this strain was initially isolated from
the bowel of a calf with Salmonellosis, so it is possible that it utilizes a special set of genes to
interact with bile salts in the bowel. The exact mechanism remains to be determined, but the
ICA results offer guidance to further explorations of this strain-specific response. More ICA
results related to the comparisons of these two strains can be reproduced with the materials at
https://github.com/AnnieYuan21/modulome-Salmonella.

Composition of pathogenicity island iModulons differ in content across the
strains
iModulons from the core genome can inform us about the TRN of serovar Typhimurium as a
whole. However, different strains within the serovar have different properties, and these
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properties can be explored using strain iModulons. Here we examine how evolutionary
pressures shape both the genome composition and the transcriptional regulatory network of
individual strains.We generated six individual strain-specific RNA-seq datasets and ran ICA on
them, obtaining six sets of strain iModulons. The number of iModulons and their category
breakdown are presented in Figure 6a. With both the core and all the strain iModulons, we were
able to do some comparisons.

If iModulons with similar composition and function are present in more than one strain,
investigating the differences in iModulon composition for each strain can help understand
strain-specific genetic signatures that account for differences in phenotypic features. The RBH
graph in Figure 6b shows clusters of similar iModulons in the strains. Here we use the SPI
iModulons as an example. Four SPIs were identified in the core genome, with SPI-1 and SPI-2
having the highest explained variance. Both of these two islands are very important for the
virulence of Typhimurium, and showed up in the strain iModulons as well. SPI-1 were found in
all six of the strains, while SPI-2 were found in five. Note that strain UK-1 does not have an
SPI-2 iModulon. Since UK-1 does have an SPI-2 island, this observation can simply be the
result of the relatively small RNA-seq dataset that UK-1 has.

To help understand the iModulon differences, the phylogeny of the 6 strains are presented in a
simplified phylogenetic tree in Figure 6c with the phylogenetic distances labeled on the
branches. The clustermap of all the SPI-1 iModulons in Figure 6d shows that the SPI-1
iModulons across all the strains are overall correlated. Interestingly, strains such as LT2
(avirulent) and D23580 (ST313) are clustered with the two closely related ST19 strains ST4/74
and SL1344. Also, the two SPI-1 iModulons in strain 14028S have poor correlation with each
other. The larger SPI-1 iModulon codes for the majority of the SPI-1 genes with various
functions including the regulators, invasion factors and T3SS apparatus, while the smaller one
codes mostly for effectors and invasion factors. While most genes unique to the 14028S SPI-1
iModulons are uncharacterized, one effector GtgA was identified that is specific to this strain.

The differences in the SPI-1 iModulon contents are shown by the upset plot in Figure 6e. The
strains and the core share 38 genes in the SPI-1 iModulons, while many strains also have their
unique gene sets related to the SPI-1 island. The most unique strain is D23580, with 42 unique
genes in its SPI-1 iModulon. Strain D23580 is an extremely invasive ST313 strain associated
with non-typhoidal gastroenteritis and systemic disease. A multiple-antibiotic resistant regulatory
gene, marB, was identified uniquely in D23580 SPI-1 iModulon, which supports its
multidrug-resistant phenotype. The sequence of D23580 demonstrates genomic degradation, a
hallmark for host adaptation. Many pseudogenes in this strain are homologous to genes in
typhoidal serovars such as Typhi and Paratyphi, so it is hypothesized to be an intermediate
between non-typhoidal serovars and typhoidal ones37. The unique genes in its SPI-1 iModulons
are highly enriched for the KEGG flagellar assembly pathway (map02040) and the flhDC
regulon. Flagella motility is extremely important for the infection of epithelial cells. Flagellar
genes are under tight control of regulators coded in SPI-1 and they coordinate closely with the
SPI-1 T3SS during infections38,39. The flagellar genes of D23580 are previously shown to be
differentially expressed compared to ST19 strain ST4/74. It was also found that D23580 has
attenuated expression of flagellin which allows it to cause minimal inflammatory response and
reduce host cell death. This adaptation significantly enhances its survival within macrophages
and resembles Typhoidal serovars that also infect the host cells while causing minimal
inflammatory responses37. The unique genes in the D23580 SPI-1 iModulon further strengthens
the argument that flagellar genes play a crucial role in virulence and inflammation, and accounts
for the more invasive and resistant phenotype of D23580.
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Compared to SPI-1, the SPI-2 iModulons are less correlated across the strains. (Figure 6f).
Other than strains D23580 and ST4/74, the rest of the strains have low correlation scores for
this iModulon. Nonetheless, all strains and the core still share 36 genes in the SPI-2 iModulon
(Figure 6g). Strain D23580 again possesses the highest number of unique genes, five of which
are part of the Vancomycin resistance pathway (map02020). These genes point to the multidrug
resistant properties of this strain being tightly linked to virulence. Other interesting observations
include that the LT2 SPI-2 iModulon contains 6 ABC transporters genes mainly the malEGFK
operon and the proVXW operon operon. These LT2 specific SPI-2 related genes are also known
to be regulated by rpoD (10 genes) and rpoS (3 genes). An defective rpoS gene is found to be
the sole cause of avirulence of LT240. The rest of the virulence mechanisms are assumed to be
complete. It is unclear why these genes show a close relationship with the LT2 SPI-2, but
investigations of these genes might lead to deeper understanding of the genomic roots of LT2’s
unique phenotype.

Strain iModulons captures prophage presence in different strains
Prophages can contribute to bacterial virulence and affect the phenotypic features of the
bacteria. The prophage repertoire of Salmonella is diverse, and each strain tends to have its
own unique set of prophages. ICA decomposition of the individual strain datasets extracted
prophage-related iModulons that indicates the existence of certain prophages in each strain. For
example, the Fels-1 and Fels-2 prophage-related iModulons are only found in LT241. Hypothesis
exists that these two phages are lost in the virulent strains41. Genes related to the most common
prophages to Salmonella Typhimurium Gifsy-1 and Gifsy-2 prophages are found across all
strains except UK-1 and D23580 and the latter inactivates these two prophages42. We also
discovered a Gifsy-3 like iModulon in strain 14028S. This Gifsy-3 iModulon shows high
correlation with the Gifsy-1 iModulon in strain SL1344. This might account for the similar
immunity module of these two prophages43. Moreover, it was observed that the prophage
iModulons in all strains except LT2 and D23580 carry part of the ST64B prophage. This phage
is inactivated in strain D23580 but is completely absent in strain LT2. ST64B codes for the
effector SseK3 and it was proposed that the presence of this phage enhances Salmonella
survival in the blood44,45. Our ICA results are highly consistent with the documented existence of
prophages in the studied strains. Moreover, a deeper examination of the iModulons can also
reveal the difference in iModulon contents for the same prophage to help understand regulations
of prophage genes and how they affect strain virulence.

Discussion
Salmonella enterica is one of the leading causes of foodborne illnesses globally. While
Typhimurium is one of the most studied non-typhoidal serovars, the phylogenetic tree in Figure
1b shows the limited number of strains that we currently have RNA-seq data and points to the
amount of understanding we still need to develop for more strains in serovar Typhimurium. We
have little information about the transcriptional signatures of the majority of the strains in this
serovar and clades at the bottom of the tree are poorly understood. The available datasets
cover mostly the ST19 group and many strains in this group are in close relationships with each
other. Even though these strains are more common, they do not represent the transcriptomic
landscape of the entire serovar. It might be worthwhile to inspect some less common strains
from different branches. By comparing and contrasting expression profiles, we might be able to
discover traces of strain evolution or genetic signatures that account for characteristics of
different Typhimurium strains. It was demonstrated in this work that ICA and pan-genomic tools
can guide the investigation of strain differences and relationships. If we experimentally validate
the relationship between differential genetic features identified from ICA and different
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phenotypes, we can potentially predict phenotypes (such as pathogenicity, resistance and
persistence) of rare strains and new clinical isolates to design treatment methods efficiently.

Moreover, non-typhoidal Salmonella is becoming an increasingly serious threat to public health
with the rise in multidrug-resistant strains46,47. The excessive use of antibiotics in clinical settings
and agricultural practices are increasing bacteria’s tolerance to drugs and lowering Salmonella’s
susceptibility to common antibiotics, significantly reducing treatment success rates. The
development of antibiotic resistance can be genetic or phenotypic, and varies across strains and
serovars48,49. Additionally, The molecular basis of antibiotic resistance is complicated, and
various mechanisms can be involved such as biofilm formation, pathway inhibition, degradation
of antibiotics or regulation of efflux pumps50–52. In our study, we focused on serovar Typhimurium
and discovered three iModulons related to cross-membrane transport that have increased
activities for multidrug-resistant strains. It is also shown that chlortetracycline and florfenicol
treatment represses the crp iModulon activity. The mechanism behind these patterns in
response to antibiotic treatments can be further explored to assist drug and treatment designs in
the future. Additionally, pan-genomic analysis identified flagella-related gene sets unique to the
SPI-1 iModulon of the MDR strain D23580. With more data from MDR studies, it can be
foreseen that our method has the potential to elucidate transcriptional patterns associated with
drug resistance and guide experimental investigations.

In this study, ICA was demonstrated to be a great tool to understand the TRN of a bacterial
species. The iModulons offered guidance in identifying MDR-related transport systems and new
regulons related to csgD and tartrate utilization. iModulon activity clustering also elucidated
CAMP resistance mechanisms and identified gene sets that act in concert to achieve specific
biological functions. With more data, ICA has the potential to uncover the rich information still
hidden in bacterial transcriptome data and encourage generation of more datasets to help
reveal a more comprehensive TRN. Using pan-genomic analysis, we gained insights into
similarities and differences in the TRN of related Typhimurium strains. We discovered genetic
features related to differences in transcriptional and virulence signatures of the strains. This
allowed for better understanding of the serovar as a whole and in specific strain, while linking
genetic signatures to phenotypic differences in strains. As presented in this project, the
combination of the two methods shows substantial promise towards enhancing our knowledge
of the pathogen Salmonella to cope with this public health threat.

In addition to the results mentioned in this article, the complete results including ones not
detailed here can be reproduced at https://github.com/AnnieYuan21/modulome-Salmonella.
They are also available for the examination by researchers interested in Salmonella
Typhimurium at an interactive portal https://imodulondb.org/.
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Figure 1. Dataset overview, sensitivity analysis and the phylogenetic tree. a. The number of samples
for each strain before and after the quality control (QC) pipeline. This bar chart shows the distribution of
available RNA-Seq data across 6 S. enterica Typhimurium strains. While SL1344 has the most number of
strains, many failed QC because of the low number of reads mapped to coding sequences. The detailed
quality control metrics can be found in Methods. b. Phylogenetic tree of 177 representative Typhimurium
strains. Strains with names labeled in colors are strains with RNA-Seq data in our compendium. Strains
DT2 and sg_wt7 each had only 4 samples. Due to the small size of the datasets, these two strains were
used to build the core genome, but not included for individual ICA analysis. (See Methods section for
details) The multilocus sequence typing (MLST) information of each strain (gathered from PATRIC) is
presented in the bar on the right. The complete tree with uncollapsed branches can be found in
(Supplementary Figure 6). Also note that strains ATCC 14028, 14028S and 14028 are considered as the
same strain in subsequent analysis (See Supplementary Note 1). c. Sensitivity analysis for core genome
definition. Many genomes from PATRIC are incomplete. To not lose too many gene families due to
incomplete genomes, a sensitivity analysis was performed and a cutoff at 97.2% was chosen. Out of 177
genomes, 172 were used to define the core genome, resulting in a final core genome size of 4209 gene
families.
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Figure 2. Core iModulon Statistics. a. Scatter plot of all the regulatory iModulons with histograms on the
side. Each dot represents a regulatory iModulon. The size of the dot is determined by the size of the
iModulon. Regulon recall is defined as (# of shared genes between iModulons and regulon) / (# of genes
in a regulon). iModulon recall is defined as (# of shared genes between iModulons and regulon) / (# of
genes in an iModulon). High iModulon recall and regulon recall values indicate high consistency of the
iModulon with a previously characterized regulon. The regulatory iModulons are divided into four
quadrants: Regulon Subset (top left), Well-matched (Top right), Poorly-matched (bottom left) and Regulon
Discovery (bottom right). The relationship between the regulon (R) and iModulon (iM) in each quadrant is
shown by the Venn diagram in the background. b. Core iModulons and categories. The names and
functional categories of 115 core iModulons are presented in this tree map. The box sizes represent the
size of the iModulons. The number of iModulons in each category can be found in the category
breakdown pie chart in panel c. d. Ten iModulons with the highest explained variance. iModulons with
important functions such as virulence, stress response, global regulatory network and motility were
captured.
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Figure 3. iModulons validate previous results and provide insights on virulence and the crp
regulatory network. a. Relationship between the SPI-1, SPI-4 pathogenicity islands and the SPI-1-1
iModulon (the larger SPI-1 iModulon). The SPI-1-1 iModulon contains 4 genes in SPI-4, 26 genes in SPI-1
and 4 genes in neither. The four genes are STM1328, STM4312, STM4313 and STM4315. b. Differential
iModulon Activity (DIMA) plot for wildtype samples and hilD knockout samples in intermediate exponential
phase (IEP) (PRJNA315446). iModulons related to SPI-1, SPI-4 and the coordination between these two
islands are found to have differential activity levels between wildtype and hilD knockout samples
(PRJNA315446). c. Gene function category breakdown of the crp iModulon. The numbers in parentheses
give the number of genes in each category. d. The activity level of the crp iModulon under the treatments
of chlortetracycline and florfenicol. The activity of this iModulon significantly decreases under both
conditions.
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Figure 4. iModulons guide new discoveries. a. iModulon composition and gene weights graph of
iModulon uncharacterized-1. Five genes are in the iModulon, with one potential transcriptional regulator.
b. Activity of uncharacterized-1 iModulon for csrA and csgD mutant samples. It can be seen that the
iModulon has high activity when csrA is knocked out (PRJNA421560), or when csgD is disturbed
(PRJNA28000233). c. Differential iModulon activity plot (DIMA plot) of a csgD KO sample and a wildtype
sample in planktonic culture. d. iModulon composition and gene weights graph of tartrate utilization
iModulon. The activity of this iModulon is shown in panel e, where we see increased iModulon activity
when the samples are treated with the single carbon source tartrate (PRJEB498134), and when the strains
carry a mutation in the Rho factor (PRJEB34015). f. Top four iModulon activity clusters with the highest
correlations. g. Gene function category breakdown of the CAMP resistance iModulon. This pie chart
shows the number of genes in each functional category in the CAMP resistance iModulon. h. Histogram
of gene weights for the mraZ iModulon and regulon. The two dashed lines indicate the cutoff gene weight
values for defining the iModulon. Genes in the mraZ regulon are indicated in red. Seven genes in the
mraZ regulon is captured by the iModulon.
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Figure 5. Comparative studies reveal iModulons that potentially contribute to bile response in strain
ST4/74. a. Gene function category breakdown of the uncharacterized-12 iModulon. b. The activity of iModulon
uncharacterized-5 across samples from all six strains. While for five strains the activity of this iModulon is close
to zero, for strain ST4/74, several samples showed significantly decreased activity of this iModulon (these
samples are from PRJNA215033, PRJNA315446, PRJNA393682, PRJNA490148). No obvious patterns were
seen in these samples with low activities. c. The activity of iModulon uncharacterized-12 across samples from all
six strains. Samples from strain that showed significantly decreased activity are from PRJNA215033,
PRJNA315446, PRJNA393682, PRJNA490148). d. Differential iModulon Activity (DIMA) plot for strain ST4/74
samples under bile shock against samples in LB at middle exponential phase. e. Differential iModulon activity
plot for samples under bile shock in strain ST4/74 and D23580 f. iModulon activity clusters for three
uncharacterized iModulons that show low activity for samples under bile shock in strain ST4/74.
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Figure 6. iModulon comparisons in different strains. a. The number and category of iModulons
for all six strains. b. Reciprocal Best Hit (RBH) graph of iModulons from 6 strain datasets. Each node is
an iModulon and each edge is the RBH. The color of the node corresponds to the strains and the
thickness of the edge indicates gene weighting similarity. The cutoff chosen in generating this RBH graph
is a Pearson R value of 0.353. Two clusters that are circled indicate the SPI-1 and SPI-2 iModulons. The
full labeled RBH graph can be found in Supplementary Figure 7. c. Simplified phylogenetic tree with only
the 6 strains used for ICA analysis. The branch lengths are indicated by the scores. d. Cluster map for all
SPI-1 iModulons in the 6 strains. e. Upset plot to compare the gene contents of the SPI-1 iModulons
across the core genome and the strains. f. Cluster map for all SPI-2 iModulons in the 5 strains (UK-1
does not have a SPI-2 iModulon). g. Upset plot to compare the gene contents of the SPI-2 iModulons
across the core genome and 5 strains.
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Methods
The complete code to reproduce this pipeline can be found at
https://github.com/AnnieYuan21/modulome-Salmonella. The ICA part of the workflow is adapted
from Sastry, A. V. et al. 202113, which is also available at
https://github.com/avsastry/modulome-workflow/.

Pangenome Analysis and Phylogenetic Tree

We gathered the metadata of 3,329 Salmonella Typhimurium genomes from PATRIC14. To
ensure genome quality, we removed genomes with less than 10x coverage and more than 150
contigs. Then 500 genomes were selected randomly from all the 1,199 Typhimurium genomes
that passed quality control. We checked to include the strains that we had RNA-Seq data for
which results in a final 506 strains. Using CD-HIT15 with a threshold of 0.9, we assembled the
pan-genome matrix of these 506 strains. To identify the most “representative” strains, we used
k-means clustering, and identified the optimal number of clusters with both explained variance
and silhouette scores. With a silhouette score of 0.127 and explained variance of 86%, 177
clusters were chosen, giving 177 centroid strains. These 177 strains were then used to
construct the phylogenetic tree (generated with snippy54 and gubbins55 with default parameters,
using LT2 genome as a reference) and the Typhimurium core genome. Since some of the
genomes of these strains were incomplete, we performed a sensitivity analysis to identify the
size of the core genome. In the end, we used the cutoff at 4209 clusters from 172 genomes
(Figure 1b). These clusters were defined in the PATRIC locus tags. To match with the locus
tags of the expression profiles, PATRIC locus tags were mapped to the RefSeq LT2 locus tags.
Some gene families were lost due to missing mapping between the two types of identifies, and
the final core genome consists of 3,886 genes in RefSeq LT2 locus tag. The expressions of the
core genome were extracted from the datasets of each strain and concatenated together to form
the final core genome expression profile with 3,886 genes and 533 samples.

RNA Seq Data Acquisition, Metadata Curation and Preprocessing

Following the PyModulon workflow
(https://github.com/avsastry/modulome-workflow/tree/main/1_download_metadata), we
compiled all of the RNA-seq data for Salmonella Typhimurium on NCBI SRA as of August 20,
2020. We performed manual curation of experimental metadata by inspecting literature
associated with specific BioProject IDs documented in the metadata files. This is to identify
different strains in the Typhimurium serovar and experimental conditions such as number of
biological replicates, culture media, growth phase, temperature or any additional treatment that
can assist us in understanding the results. Detailed metadata also helps with subsequent quality
control steps. There were 1049 samples with detailed metadata, and in total 8 different
Typhimurium strains in the datasets. Six strains had enough samples for subsequent analysis.
Two strains (DT2 and sg_wt7) only had four samples each, so they were marked in the
phylogenetic tree in Figure 1a and were used to construct the core genome, but were not
investigated individually with ICA decomposition. The rest of the samples were then sorted into
6 separate files by strain, and processed using the RNA-Seq pipeline available at
https://github.com/avsastry/modulome-workflow/tree/main/2_process_data. The final expression
profiles were reported in units of log-transformed Transcripts per Million (log-TPM).

Quality Control and Data Normalization
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The expression datasets were then subject to five quality control steps outlined in
https://github.com/avsastry/modulome-workflow/tree/main/3_quality_control. Briefly, we checked
four statistics from the FastQC report, which are per base sequence quality, per sequence
quality scores, per base n content, and adapter content and discarded all samples that didn’t
pass these four criteria. Then, we removed samples with less than 5x105 reads mapped to
coding sequences. After that, we clustered the samples using hierarchical clustering and
removed samples that did not conform to a typical expression profile, as these samples often
use non-standard library preparation methods, such as ribosome sequencing and 3’ or 5’ end
sequencing56. Then, samples with poor replicate correlation (Pearson R score < 0.9) and no
biological replicates were discarded. However, there was an interesting project where biofilm
formation was observed over a time course (PRJNA280002), so these samples were kept with a
lower Pearson R score (0.8) to study temporal activities of iModulons. Also, PRJNA490148
contains samples from comparative studies of two Typhimurium strains. We were interested to
see the differences in iModulon activities for two strains in the same conditions, so we included
samples from this project even though some of them do not have biological replicates. After
quality control, 533 samples were kept for ICA analysis.

To obviate any batch effects resulting from combining different expression profile datasets, we
selected a reference condition in each project to normalize each dataset. This ensured that
nearly all independent components generated were due to biological variation rather than
technical variation. This normalization allows us to compare gene expression and iModulon
activities within a project to a reference condition, but not across projects.

Six individual datasets were generated using the methods described above. To obtain the core
genome expression profile, all gene locus tags were unified by using the LT2 locus tags from
refseq, then the expression profiles were combined together based on the core genome that we
defined earlier. The final core genome expression profile consists of 533 samples from 46
BioProjects distributed across 6 Typhimurium strains (Figure 1c).

Defining the Optimal Number of Independent Components

To compute the optimal independent components, an extension of ICA was performed on the
RNA-seq dataset as described in McConn et al.57.

Briefly, the scikit-learn (v0.23.2)58 implementation of FastICA59 was executed 100 times with
random seeds and a convergence tolerance of 10-5. The resulting independent components
(ICs) were clustered using DBSCAN60 to identify robust ICs, using an epsilon of 0.1 and
minimum cluster seed size of 50. To account for identical with opposite signs, the following
distance metric was used for computing the distance matrix:

𝑑
𝑥,𝑦
= 1 − ||ρ

𝑥,𝑦
||

where ρx,y is the Pearson correlation between components x and y. The final robust ICs were
defined as the centroids of the cluster.

Since the number of dimensions selected in ICA can alter the results, we applied the above
procedure to each expression profile multiple times, ranging the number of dimensions from 5 to
380. Depending on the number of dimensionalities being tested, the step size varies from 5 (for
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smaller datasets with fewer dimensions) to 10 or 20 (for large datasets). The upper limit of the
choice of dimensionality is approximately the number of samples in the dataset.

To identify the optimal dimensionality, we compared the number of ICs with single genes to the
number of ICs that were correlated (Pearson R > 0.7) with the ICs in the largest dimension
(called “final components”). We selected the number of dimensions where the number of
non-single gene ICs was equal to the number of final components in that dimension
(Supplementary Figure 8). The optimal number of dimensions for the core genome was 220.
The optimal dimensionalities of the strains are presented in (Supplementary Figure 9).

ICA produces two matrices. The M matrix contains the robust independent components, and the
A matrix contains the corresponding activities. The product of the M and A matrices
approximates the expression matrix (the X matrix), which is the curated RNA-seq compendium.
Each independent component in the M matrix is filtered to find the genes with the largest
absolute weightings, which ultimately generates gene sets that make up iModulons.
Implementing this process on the Typhimurium core genome resulted in 115 iModulons that
explained 75% of the expression variance in the core compendium (Supplementary Figure 2).
The number of iModulon from the strain expression profiles can be found in Figure 5a.

Compiling TRN and Gene Annotations

The TRN file was generated using a pre-defined TRN for the closely related bacteria
Escherichia coli18 and the bi-directional blast results of Typhimurium LT2 and E. coli genomes
https://github.com/AnnieYuan21/modulome-Salmonella. The genes are annotated following the
annotation pipeline that can be found at
https://github.com/SBRG/pymodulon/blob/master/docs/tutorials/creating_the_gene_table.ipynb.
Additionally, KEGG61 and Cluster of Orthologous Groups (COG) information were obtained
using EggNOG mapper62. Uniprot IDs were obtained using the Uniprot ID mapper63, and operon
information was obtained from Biocyc64. Gene ontology (GO) annotations were obtained from
AmiGO265.

Computing iModulon Enrichments

iModulon enrichments against known regulons were computed using two-sided Fisher’s exact
test, with the false discovery rate (FDR) controlled at 10-5 using the Benjamini-Hochberg
correction. Functional enrichment through KEGG and GO annotations were similarly computed
but with FDR < 0.01. This pipeline can be found at
https://github.com/SBRG/pymodulon/blob/master/docs/tutorials/gene_enrichment_analysis.ipyn
b.

Differential iModulon Activity Analysis

The differences in iModulon activities under relevant conditions were calculated using a log
normal probability distribution. For each comparison, the absolute difference in the mean
iModulon activities were calculated and compared to an iModulon’s log-normal distribution
(calculated between biological replicates). P-values statistics were obtained for each condition
comparison across all iModulons and a FDR score was calculated. iModulons with a difference
greater than 5 and FDR less than 0.01 are considered significant. Differential iModulon activity
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plot (DIMA plots) can be generated to visualize iModulon activity differences under one
condition against another.

Calculating iModulon Activity Clusters

The activities of iModulons were clustered using the Seaborn66 clustermap function in Python.
The default distance metric is the following:

𝑑
𝑥,𝑦
= 1 − ||ρ

𝑥,𝑦
||

where is the absolute value of the Spearman R correlation between two iModulon activity||ρ
𝑥,𝑦
||

profiles. Other available distance metric options include Pearson R, Kendall Rank and Mutual
Information. The option used for this project was Mutual Information. The threshold for optimal
clustering was determined by testing different distance thresholds to locate the maximum
silhouette score.

Generating iModulonDB Dashboards

iModulonDB dashboards were generated using the PyModulon package13,67; the
pipeline can also be found at
https://pymodulon.readthedocs.io/en/latest/tutorials/creating_an_imodulondb_dashboar
d.html.

References
1. Majowicz, S. E. et al. The Global Burden of Nontyphoidal Salmonella Gastroenteritis. Clin.

Infect. Dis. 50, 882–889 (2010).
2. Gal-Mor, O., Boyle, E. C. & Grassl, G. A. Same species, different diseases: how and why

typhoidal and non-typhoidal Salmonella enterica serovars differ. Front. Microbiol. 5, 391
(2014).

3. Van Puyvelde, S. et al. An African Salmonella Typhimurium ST313 sublineage with
extensive drug-resistance and signatures of host adaptation. Nat. Commun. 10, 4280
(2019).

4. Canals, R. et al. Adding function to the genome of African Salmonella Typhimurium ST313
strain D23580. PLoS Biol. 17, (2019).

5. Seif, Y., Monk, J. M., Machado, H., Kavvas, E. & Palsson, B. O. Systems Biology and
Pangenome of Salmonella O-Antigens. mBio 10, (2019).

6. Laing, C. R., Whiteside, M. D. & Gannon, V. P. J. Pan-genome Analyses of the Species
Salmonella enterica, and Identification of Genomic Markers Predictive for Species,
Subspecies, and Serovar. Front. Microbiol. 8, 1345 (2017).

7. Jacobsen, A., Hendriksen, R. S., Aaresturp, F. M., Ussery, D. W. & Friis, C. The Salmonella
enterica Pan-genome. Microb. Ecol. 62, 487 (2011).

8. Sastry, A. V. et al. The Escherichia coli transcriptome mostly consists of independently
regulated modules. Nat. Commun. 10, 5536 (2019).

9. Rychel, K., Sastry, A. V. & Palsson, B. O. Machine learning uncovers independently
regulated modules in the Bacillus subtilis transcriptome. bioRxiv 2020.04.26.062638 (2020)
doi:10.1101/2020.04.26.062638.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2022. ; https://doi.org/10.1101/2022.01.11.475931doi: bioRxiv preprint 

https://pymodulon.readthedocs.io/en/latest/tutorials/creating_an_imodulondb_dashboard.html
https://pymodulon.readthedocs.io/en/latest/tutorials/creating_an_imodulondb_dashboard.html
https://www.zotero.org/google-docs/?broken=DXY7WC
https://www.zotero.org/google-docs/?broken=DXY7WC
https://www.zotero.org/google-docs/?broken=GZisJ6
https://www.zotero.org/google-docs/?broken=GZisJ6
https://www.zotero.org/google-docs/?broken=GZisJ6
https://www.zotero.org/google-docs/?broken=LqlSJr
https://www.zotero.org/google-docs/?broken=LqlSJr
https://www.zotero.org/google-docs/?broken=LqlSJr
https://www.zotero.org/google-docs/?broken=0kGbG1
https://www.zotero.org/google-docs/?broken=0kGbG1
https://www.zotero.org/google-docs/?broken=eSE1zy
https://www.zotero.org/google-docs/?broken=eSE1zy
https://www.zotero.org/google-docs/?broken=bz40jW
https://www.zotero.org/google-docs/?broken=bz40jW
https://www.zotero.org/google-docs/?broken=bz40jW
https://www.zotero.org/google-docs/?broken=m8omVY
https://www.zotero.org/google-docs/?broken=m8omVY
https://www.zotero.org/google-docs/?broken=rLNHu7
https://www.zotero.org/google-docs/?broken=rLNHu7
https://www.zotero.org/google-docs/?broken=HCrPfE
https://www.zotero.org/google-docs/?broken=HCrPfE
https://www.zotero.org/google-docs/?broken=HCrPfE
https://doi.org/10.1101/2022.01.11.475931
http://creativecommons.org/licenses/by-nc/4.0/


10. Poudel, S. et al. Revealing 29 sets of independently modulated genes in Staphylococcus
aureus, their regulators, and role in key physiological response. Proc. Natl. Acad. Sci.
(2020) doi:10.1073/pnas.2008413117.

11. Comon, P. Independent component analysis, A new concept? Signal Process. 36, 287–314
(1994).

12. Home - SRA - NCBI. https://www.ncbi.nlm.nih.gov/sra.
13. Sastry, A. V. et al. Mining all publicly available expression data to compute dynamic

microbial transcriptional regulatory networks. bioRxiv 2021.07.01.450581 (2021)
doi:10.1101/2021.07.01.450581.

14. PATRIC. https://www.patricbrc.org/.
15. Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of protein

or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006).
16. Ranjbar, R., Elhaghi, P. & Shokoohizadeh, L. Multilocus Sequence Typing of the Clinical

Isolates of Salmonella Enterica Serovar Typhimurium in Tehran Hospitals. Iran. J. Med. Sci.
42, 443–448 (2017).

17. Seif, Y. et al. Genome-scale metabolic reconstructions of multiple Salmonella strains reveal
serovar-specific metabolic traits. Nat. Commun. 9, 3771 (2018).

18. The Escherichia coli transcriptome mostly consists of independently regulated modules |
Nature Communications. https://www.nature.com/articles/s41467-019-13483-w (2020).

19. Amavisit, P., Lightfoot, D., Browning, G. F. & Markham, P. F. Variation between Pathogenic
Serovars within Salmonella Pathogenicity Islands. J. Bacteriol. 185, 3624–3635 (2003).

20. Sabbagh, S. C., Forest, C. G., Lepage, C., Leclerc, J.-M. & Daigle, F. So similar, yet so
different: uncovering distinctive features in the genomes of Salmonella enterica serovars
Typhimurium and Typhi. FEMS Microbiol. Lett. 305, 1–13 (2010).

21. Powers, T. R. et al. Niche-specific profiling reveals transcriptional adaptations required for
the cytosolic lifestyle of Salmonella enterica. bioRxiv 2021.01.11.426201 (2021)
doi:10.1101/2021.01.11.426201.

22. Gerlach, R. G. et al. Cooperation of Salmonella pathogenicity islands 1 and 4 is required to
breach epithelial barriers. Cell. Microbiol. 10, 2364–2376 (2008).

23. Main-Hester, K. L., Colpitts, K. M., Thomas, G. A., Fang, F. C. & Libby, S. J. Coordinate
Regulation of Salmonella Pathogenicity Island 1 (SPI1) and SPI4 in Salmonella enterica
Serovar Typhimurium. Infect. Immun. 76, 1024–1035 (2008).

24. Saini, S. & Rao, C. V. SprB Is the Molecular Link between Salmonella Pathogenicity Island 1
(SPI1) and SPI4. J. Bacteriol. 192, 2459–2462 (2010).

25. Banda, M. M., Manzo, R. & Bustamante, V. H. HilD induces expression of a novel
Salmonella Typhimurium invasion factor, YobH, through a regulatory cascade involving
SprB. Sci. Rep. 9, 12725 (2019).

26. Ellermeier, C. D., Ellermeier, J. R. & Slauch, J. M. HilD, HilC and RtsA constitute a feed
forward loop that controls expression of the SPI1 type three secretion system regulator hilA
in Salmonella enterica serovar Typhimurium. Mol. Microbiol. 57, 691–705 (2005).

27. Shimada, T., Fujita, N., Yamamoto, K. & Ishihama, A. Novel Roles of cAMP Receptor
Protein (CRP) in Regulation of Transport and Metabolism of Carbon Sources. PLOS ONE 6,
e20081 (2011).

28. Erhardt, M. & Dersch, P. Regulatory principles governing Salmonella and Yersinia virulence.
Front. Microbiol. 6, (2015).

29. Kary, S. C. et al. The Global Regulatory Cyclic AMP Receptor Protein (CRP) Controls
Multifactorial Fluoroquinolone Susceptibility in Salmonella enterica Serovar Typhimurium.
Antimicrob. Agents Chemother. 61, (2017).

30. Tanasic, D. et al. Silver-, calcium-, and copper molybdate compounds: Preparation,
antibacterial activity, and mechanisms. Biointerphases 12, 05G607 (2017).

31. KEGG PATHWAY: Quorum sensing - Salmonella enterica subsp. enterica serovar

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2022. ; https://doi.org/10.1101/2022.01.11.475931doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?broken=E1SZse
https://www.zotero.org/google-docs/?broken=E1SZse
https://www.zotero.org/google-docs/?broken=E1SZse
https://www.zotero.org/google-docs/?broken=hipcfx
https://www.zotero.org/google-docs/?broken=hipcfx
https://www.zotero.org/google-docs/?broken=pd8g3H
https://www.zotero.org/google-docs/?broken=2h931p
https://www.zotero.org/google-docs/?broken=2h931p
https://www.zotero.org/google-docs/?broken=2h931p
https://www.zotero.org/google-docs/?broken=CF3tyU
https://www.zotero.org/google-docs/?broken=b0CSNS
https://www.zotero.org/google-docs/?broken=b0CSNS
https://www.zotero.org/google-docs/?broken=rSV2cM
https://www.zotero.org/google-docs/?broken=rSV2cM
https://www.zotero.org/google-docs/?broken=rSV2cM
https://www.zotero.org/google-docs/?broken=m9YEZe
https://www.zotero.org/google-docs/?broken=m9YEZe
https://www.zotero.org/google-docs/?broken=I7xAIO
https://www.zotero.org/google-docs/?broken=I7xAIO
https://www.zotero.org/google-docs/?broken=7uR6m8
https://www.zotero.org/google-docs/?broken=7uR6m8
https://www.zotero.org/google-docs/?broken=SqQeDo
https://www.zotero.org/google-docs/?broken=SqQeDo
https://www.zotero.org/google-docs/?broken=SqQeDo
https://www.zotero.org/google-docs/?broken=Gxjlf1
https://www.zotero.org/google-docs/?broken=Gxjlf1
https://www.zotero.org/google-docs/?broken=Gxjlf1
https://www.zotero.org/google-docs/?broken=ok8jEv
https://www.zotero.org/google-docs/?broken=ok8jEv
https://www.zotero.org/google-docs/?broken=ekrY6U
https://www.zotero.org/google-docs/?broken=ekrY6U
https://www.zotero.org/google-docs/?broken=ekrY6U
https://www.zotero.org/google-docs/?broken=q2FqRd
https://www.zotero.org/google-docs/?broken=q2FqRd
https://www.zotero.org/google-docs/?broken=4o4Ks4
https://www.zotero.org/google-docs/?broken=4o4Ks4
https://www.zotero.org/google-docs/?broken=4o4Ks4
https://www.zotero.org/google-docs/?broken=1DjHAR
https://www.zotero.org/google-docs/?broken=1DjHAR
https://www.zotero.org/google-docs/?broken=1DjHAR
https://www.zotero.org/google-docs/?broken=19V9VP
https://www.zotero.org/google-docs/?broken=19V9VP
https://www.zotero.org/google-docs/?broken=19V9VP
https://www.zotero.org/google-docs/?broken=z6HWXK
https://www.zotero.org/google-docs/?broken=z6HWXK
https://www.zotero.org/google-docs/?broken=hjCeTR
https://www.zotero.org/google-docs/?broken=hjCeTR
https://www.zotero.org/google-docs/?broken=hjCeTR
https://www.zotero.org/google-docs/?broken=MLDrly
https://www.zotero.org/google-docs/?broken=MLDrly
https://www.zotero.org/google-docs/?broken=xMWfUn
https://doi.org/10.1101/2022.01.11.475931
http://creativecommons.org/licenses/by-nc/4.0/


Typhimurium LT2. https://www.kegg.jp/pathway/stm02024+STM1257.
32. Benoit, S. L. et al. Nickel chelation therapy as an approach to combat multi-drug resistant

enteric pathogens. Sci. Rep. 9, 13851 (2019).
33. MacKenzie, K. D. et al. Bistable Expression of CsgD in Salmonella enterica Serovar

Typhimurium Connects Virulence to Persistence. Infect. Immun. 83, 2312–2326 (2015).
34. MICROME_RNAseq_from_single_carbon_sources (ID 258617) - BioProject - NCBI.

https://www.ncbi.nlm.nih.gov/bioproject/PRJEB4981.
35. Han, K. H. et al. Isolation of Salmonella enterica subspecies enterica serovar Paratyphi B

dT+, or Salmonella Java, from Indonesia and alteration of the d-tartrate fermentation
phenotype by disrupting the ORF STM 3356. J. Med. Microbiol. 55, 1661–1665.

36. Matamouros, S. & Miller, S. I. S. Typhimurium strategies to resist killing by cationic
antimicrobial peptides. Biochim. Biophys. Acta 1848, 3021–3025 (2015).

37. Ramachandran, G., Perkins, D. J., Schmidlein, P. J., Tulapurkar, M. E. & Tennant, S. M.
Invasive Salmonella Typhimurium ST313 with Naturally Attenuated Flagellin Elicits Reduced
Inflammation and Replicates within Macrophages. PLoS Negl. Trop. Dis. 9, e3394 (2015).

38. Saini, S., Slauch, J. M., Aldridge, P. D. & Rao, C. V. Role of Cross Talk in Regulating the
Dynamic Expression of the Flagellar Salmonella Pathogenicity Island 1 and Type 1 Fimbrial
Genes. J. Bacteriol. 192, 5767–5777 (2010).

39. Singer, H. M., Kühne, C., Deditius, J. A., Hughes, K. T. & Erhardt, M. The Salmonella Spi1
Virulence Regulatory Protein HilD Directly Activates Transcription of the Flagellar Master
Operon flhDC. J. Bacteriol. 196, 1448–1457 (2014).

40. Swords, W. E., Cannon, B. M. & Benjamin, W. H. Avirulence of LT2 strains of Salmonella
typhimurium results from a defective rpoS gene. Infect. Immun. 65, 2451–2453 (1997).

41. Luo, Y. et al. Comparative Genome Analysis of the High Pathogenicity Salmonella
Typhimurium Strain UK-1. PLoS ONE 7, e40645 (2012).

42. Owen, S. V. et al. Characterization of the Prophage Repertoire of African Salmonella
Typhimurium ST313 Reveals High Levels of Spontaneous Induction of Novel Phage BTP1.
Front. Microbiol. 8, 235 (2017).

43. Hiley, L., Fang, N.-X., Micalizzi, G. R. & Bates, J. Distribution of Gifsy-3 and of Variants of
ST64B and Gifsy-1 Prophages amongst Salmonella enterica Serovar Typhimurium Isolates:
Evidence that Combinations of Prophages Promote Clonality. PLOS ONE 9, e86203 (2014).

44. Brown, N. F. et al. Salmonella Phage ST64B Encodes a Member of the SseK/NleB Effector
Family. PLoS ONE 6, e17824 (2011).

45. Herrero-Fresno, A., Leekitcharoenphon, P., Hendriksen, R. S., Olsen, J. E. & Aarestrup, F.
M. Y. 2014. Analysis of the contribution of bacteriophage ST64B to in vitro virulence traits of
Salmonella enterica serovar Typhimurium. J. Med. Microbiol. 63, 331–342.

46. Centers for Disease Control and Prevention (U.S.). Antibiotic resistance threats in the
United States, 2019. https://stacks.cdc.gov/view/cdc/82532 (2019) doi:10.15620/cdc:82532.

47. Drug-Resistant Nontyphoidal Salmonella. 2.
48. Corona, F. & Martinez, J. L. Phenotypic Resistance to Antibiotics. Antibiotics 2, 237–255

(2013).
49. Andino, A. & Hanning, I. Salmonella enterica: Survival, Colonization, and Virulence

Differences among Serovars. Sci. World J. 2015, 520179 (2015).
50. Frye, J. G. & Jackson, C. R. Genetic mechanisms of antimicrobial resistance identified in

Salmonella enterica, Escherichia coli, and Enteroccocus spp. isolated from U.S. food
animals. Front. Microbiol. 4, 135 (2013).

51. Wang, X. et al. Antibiotic Resistance in Salmonella Typhimurium Isolates Recovered From
the Food Chain Through National Antimicrobial Resistance Monitoring System Between
1996 and 2016. Front. Microbiol. 10, 985 (2019).

52. Penesyan, A., Gillings, M. & Paulsen, I. T. Antibiotic Discovery: Combatting Bacterial
Resistance in Cells and in Biofilm Communities. Molecules 20, 5286–5298 (2015).

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2022. ; https://doi.org/10.1101/2022.01.11.475931doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?broken=xMWfUn
https://www.zotero.org/google-docs/?broken=TQuzLg
https://www.zotero.org/google-docs/?broken=TQuzLg
https://www.zotero.org/google-docs/?broken=BvOCYg
https://www.zotero.org/google-docs/?broken=BvOCYg
https://www.zotero.org/google-docs/?broken=0BqOFh
https://www.zotero.org/google-docs/?broken=0BqOFh
https://www.zotero.org/google-docs/?broken=QmMIql
https://www.zotero.org/google-docs/?broken=QmMIql
https://www.zotero.org/google-docs/?broken=QmMIql
https://www.zotero.org/google-docs/?broken=ABvAQn
https://www.zotero.org/google-docs/?broken=ABvAQn
https://www.zotero.org/google-docs/?broken=wFIhD8
https://www.zotero.org/google-docs/?broken=wFIhD8
https://www.zotero.org/google-docs/?broken=wFIhD8
https://www.zotero.org/google-docs/?broken=ZPdRdI
https://www.zotero.org/google-docs/?broken=ZPdRdI
https://www.zotero.org/google-docs/?broken=ZPdRdI
https://www.zotero.org/google-docs/?broken=xCTEvm
https://www.zotero.org/google-docs/?broken=xCTEvm
https://www.zotero.org/google-docs/?broken=xCTEvm
https://www.zotero.org/google-docs/?broken=1w58L6
https://www.zotero.org/google-docs/?broken=1w58L6
https://www.zotero.org/google-docs/?broken=rs8zdh
https://www.zotero.org/google-docs/?broken=rs8zdh
https://www.zotero.org/google-docs/?broken=j7EMwe
https://www.zotero.org/google-docs/?broken=j7EMwe
https://www.zotero.org/google-docs/?broken=j7EMwe
https://www.zotero.org/google-docs/?broken=YtY82A
https://www.zotero.org/google-docs/?broken=YtY82A
https://www.zotero.org/google-docs/?broken=YtY82A
https://www.zotero.org/google-docs/?broken=peQ4lr
https://www.zotero.org/google-docs/?broken=peQ4lr
https://www.zotero.org/google-docs/?broken=AvtVfF
https://www.zotero.org/google-docs/?broken=AvtVfF
https://www.zotero.org/google-docs/?broken=AvtVfF
https://www.zotero.org/google-docs/?broken=t4WdFM
https://www.zotero.org/google-docs/?broken=t4WdFM
https://www.zotero.org/google-docs/?broken=iMA770
https://www.zotero.org/google-docs/?broken=jUHEKg
https://www.zotero.org/google-docs/?broken=jUHEKg
https://www.zotero.org/google-docs/?broken=5yEmIx
https://www.zotero.org/google-docs/?broken=5yEmIx
https://www.zotero.org/google-docs/?broken=OSqRRo
https://www.zotero.org/google-docs/?broken=OSqRRo
https://www.zotero.org/google-docs/?broken=OSqRRo
https://www.zotero.org/google-docs/?broken=W1wpxl
https://www.zotero.org/google-docs/?broken=W1wpxl
https://www.zotero.org/google-docs/?broken=W1wpxl
https://www.zotero.org/google-docs/?broken=9h1tWW
https://www.zotero.org/google-docs/?broken=9h1tWW
https://doi.org/10.1101/2022.01.11.475931
http://creativecommons.org/licenses/by-nc/4.0/


53. Sastry, A. V. et al. Independent component analysis recovers consistent regulatory signals
from disparate datasets. PLOS Comput. Biol. 17, e1008647 (2021).

54. Seemann, T. snippy: fast bacterial variant calling from NGS reads.
https://github.com/tseemann/snippy

55. Croucher, N. J. et al. Rapid phylogenetic analysis of large samples of recombinant bacterial
whole genome sequences using Gubbins. Nucleic Acids Res. 43, e15 (2015).

56. Ziemann, M., Kaspi, A. & El-Osta, A. Digital expression explorer 2: a repository of uniformly
processed RNA sequencing data. GigaScience 8, giz022 (2019).

57. McConn, J. L., Lamoureux, C. R., Poudel, S., Palsson, B. O. & Sastry, A. V. Optimal
dimensionality selection for independent component analysis of transcriptomic data.
http://biorxiv.org/lookup/doi/10.1101/2021.05.26.445885 (2021)
doi:10.1101/2021.05.26.445885.

58. Pedregosa, F. et al. Scikit-learn: Machine Learning in Python. Mach. Learn. PYTHON 6.
59. Hyvarinen, A. Fast and robust fixed-point algorithms for independent component analysis.

IEEE Trans. Neural Netw. 10, 626–634 (1999).
60. Ester, M., Kriegel, H.-P. & Xu, X. A Density-Based Algorithm for Discovering Clusters in

Large Spatial Databases with Noise. 6.
61. Kanehisa, M., Furumichi, M., Sato, Y., Ishiguro-Watanabe, M. & Tanabe, M. KEGG:

integrating viruses and cellular organisms. Nucleic Acids Res. 49, D545–D551 (2020).
62. Huerta-Cepas, J. et al. Fast Genome-Wide Functional Annotation through Orthology

Assignment by eggNOG-Mapper. Mol. Biol. Evol. 34, 2115–2122 (2017).
63. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 49, D480–D489

(2020).
64. Karp, P. D. et al. The BioCyc collection of microbial genomes and metabolic pathways. Brief.

Bioinform. 20, 1085–1093 (2017).
65. Gene Ontology Resource: 20 years and still GOing strong | Nucleic Acids Research | Oxford

Academic. https://academic.oup.com/nar/article/47/D1/D330/5160994.
66. Waskom, M. L. seaborn: statistical data visualization. J. Open Source Softw. 6, 3021 (2021).
67. Rychel, K. et al. iModulonDB: a knowledgebase of microbial transcriptional regulation

derived from machine learning. Nucleic Acids Res. 49, D112–D120 (2021).

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2022. ; https://doi.org/10.1101/2022.01.11.475931doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?broken=P0Yski
https://www.zotero.org/google-docs/?broken=P0Yski
https://www.zotero.org/google-docs/?broken=UphK2O
https://www.zotero.org/google-docs/?broken=IO2nYM
https://www.zotero.org/google-docs/?broken=IO2nYM
https://www.zotero.org/google-docs/?broken=aXSIae
https://www.zotero.org/google-docs/?broken=aXSIae
https://www.zotero.org/google-docs/?broken=OcZpqJ
https://www.zotero.org/google-docs/?broken=OcZpqJ
https://www.zotero.org/google-docs/?broken=OcZpqJ
https://www.zotero.org/google-docs/?broken=OcZpqJ
https://www.zotero.org/google-docs/?broken=YFkwgX
https://www.zotero.org/google-docs/?broken=6qBJTa
https://www.zotero.org/google-docs/?broken=6qBJTa
https://www.zotero.org/google-docs/?broken=MWMI6k
https://www.zotero.org/google-docs/?broken=MWMI6k
https://www.zotero.org/google-docs/?broken=7jinoi
https://www.zotero.org/google-docs/?broken=7jinoi
https://www.zotero.org/google-docs/?broken=eL2G6L
https://www.zotero.org/google-docs/?broken=eL2G6L
https://www.zotero.org/google-docs/?broken=h0Fb58
https://www.zotero.org/google-docs/?broken=h0Fb58
https://www.zotero.org/google-docs/?broken=as1pDW
https://www.zotero.org/google-docs/?broken=as1pDW
https://www.zotero.org/google-docs/?broken=pe7lqo
https://www.zotero.org/google-docs/?broken=pe7lqo
https://www.zotero.org/google-docs/?broken=sdsc7B
https://www.zotero.org/google-docs/?broken=100TTA
https://www.zotero.org/google-docs/?broken=100TTA
https://doi.org/10.1101/2022.01.11.475931
http://creativecommons.org/licenses/by-nc/4.0/

