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Abstract: 

Liquid-liquid phase separation (LLPS) is emerging as key physical principle for 

biological organization inside living cells, forming condensates that play important roles 

in the regulation of multiple functions. Inside living nuclei, transcription factor (TF) 

condensates regulate transcriptional initiation and amplify transcriptional output of 

expressed genes. Yet, the biophysical parameters controlling TF condensation are still 

poorly understood. Here we applied a battery of single molecule imaging tools, theory 

and simulations to investigate the physical properties of TF condensates of the 

Progesterone Receptor (PR) in vivo. Analysis of individual PR trajectories at different 

ligand concentrations showed marked signatures of a ligand-tunable and regulated LLPS 

process. Using a machine learning architecture, we uncovered that diffusion within 

condensates follows fractional Brownian motion, reflecting viscoelastic interactions 

between PR and chromatin within condensates. High density single molecule localization 

maps further revealed that condensate growth dynamics is dominated by Brownian 

motion coalescence (BMC) at shorter times, but deviate at longer timescales reaching a 

growth plateau with nanoscale condensate sizes. To understand our observations we 

developed an extension of the BMC model by including stochastic unbinding of particles 

within condensates. The model reproduced the BMC behavior together with finite 

condensate sizes a steady-state, fully recapitulating our experimental data. Our results are 

thus consistent with droplet growth dynamics being regulated by the escaping probability 

of TFs molecules from condensates. The interplay between condensation assembly and 

molecular escaping maintains an optimum physical condensate size. Such phenomena 

must have implications for the biophysical regulation of other TF condensates and could 

also operate in multiple biological scenarios.   
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Main Text 

Introduction 

Activities performed by living cells are generally achieved through the 

compartmentalization of their multiple components in space and time. Although 

traditionally cell compartments have been thought to be surrounded by membranes, 

recent evidence indicate that cells also organize membrane-less internal compartments 

through the physical process of liquid-liquid phase separation (LLPS)(1-4). LLPS creates 

transient chemically distinct compartments, also called biomolecular condensates, which 

might operate as versatile biochemical “hubs” inside the cell(1, 5). Phase separation is 

particularly relevant in the cell nucleus, where the condensation of numerous proteins on 

chromatin have been shown to regulate gene transcription and chromatin architecture at 

multiple temporal and spatial scales(6-8). Transcription factor (TF) condensates are 

proposed to regulate transcriptional initiation and amplify transcriptional output of 

expressed genes(5, 7, 9-11). Yet, despite its prevalence and biological significance, 

quantitative determination and understanding of the biophysical parameters controlling 

TF condensation in the nucleus of living cells is largely missing. 

Nuclear receptors are a family of TFs that have been widely studied as master regulators 

of gene transcription and genome topology in response to an external stimulus: a steroid 

hormone(12-14). Structurally, these TFs contain two intrinsically disordered regions that 

favor phase separation: the N-terminal domain and the hinge; as well as two highly 

structured regions: the DNA-binding domain and the ligand-binding domain(15). Ligand 

stimulation of several members of this family has been shown to trigger LLPS, forming 

nuclear condensates with different transcriptional roles(16-18). Since ligand addition 

allows accurate control of the onset for nucleation and condensate coarsening, nuclear 

receptors represent an ideal system to study inducible phase separation and to follow their 

temporal evolution in well-controlled and tunable experimental settings. 

From the theoretical side, phase separation is usually associated to the heterogeneous 

mixing of two components, either by spinodal decomposition (19), or nucleation(20). In 

general, entropy based models, as e.g. the Flory-Huggins model (21, 22), have been 

commonly used to understand phase separated systems in biological scenarios(23). 

Moreover, in recent years, several studies have addressed the temporal evolution of 

condensate nucleation and growth within the full complexity of living cells. For instance, 
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it has been shown that biocondensate nucleation and coarsening can be described by 

different physical mechanisms such as diffusion-limited growth, diffusion Ostwald 

ripening (OR), or Brownian motion coalescence (BMC)(24). The common physical 

property underlying these mechanisms is a dynamic power-law scaling behavior of the 

mean droplet sizes(24), with a final steady-state that results in a single condensate 

containing all phase separated molecules. However, consistent deviations from these 

LLPS growing mechanisms have been also reported and attributed to the occurrence of 

active nonequilibrium processes within living cells, such as RNA transcription(24) or the 

presence of obstacles such as chromatin(25). Hence, models able to predict and/or adapt 

classical phase separation properties to the living cell context are still under development. 

Here we investigate the physical properties of LLPS in transcriptional condensates of the 

nuclear Progesterone Receptor (PR) in vivo using an extensive combination of single 

molecule approaches, theory and simulations. Analysis of single PR trajectories showed 

a hormone-dependent bimodal distribution on the diffusion of the receptor associated to 

particles diffusing within and outside condensates. Using a deep learning method, we 

uncovered that diffusion within condensates is best described by means of fractional 

Brownian motion(26). High density single molecule localization maps as function of time 

further revealed a BMC-like growth process at shorter times, but that markedly deviated 

at longer timescales reaching a growth plateau on the condensate sizes at the nanoscale. 

To quantitatively understand our observations we developed an extension of the BMC 

model by including stochastic unbinding of particles within condensates. Our model is 

not only able to reproduce the usual BMC behavior, but importantly, it also reaches a 

steady-state with finite condensate sizes. As a whole, our single molecule experimental 

data and theoretical model is consistent with droplet growth dynamics being regulated by 

the escaping probability of TFs molecules from condensates.  

 

Single Particle Tracking of nuclear PR in vivo in response to a tunable stimulus 

As most nuclear receptors, PR contains an intrinsically disorder N-terminal domain 

region (Fig. S1) and thus, it is prone to phase separate. We first confirmed LLPS of PR 

in the nucleus of living breast cancer cells after hormone exposure using confocal 

microscopy. Condensates visibly formed minutes after adding the hormone (Video S1). 

However and contrary to a vast literature in the field, PR condensates remained relatively 

small in size, being clearly diffraction-limited. We thus turned to single molecule 
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approaches to effectively increase the spatial (~20 nm) and temporal (~15 ms) resolution 

providing dynamic information on the behavior of individual PR molecules in the 

nucleus. In particular, we applied single particle tracking (SPT) which has been widely 

used over the last decade to evaluate the lateral mobility of several TFs and DNA binding 

proteins in the nucleus of living cells at the single molecule level(13, 27-30). We 

generated a stable MCF7 breast cancer cell line expressing a SNAP-GFP-PRB (PR 

isoform B)(31). PR molecules were labeled with the SNAP-JaneliaFluor 549 (JF549) dye 

(32) and their diffusion inside the nucleus of living cells was recorded under highly 

inclined illumination at a frame rate of 15ms, as schematically illustrated in Fig. 1A. 

Individual JF549 localizations were reconnected to generate trajectories that were 

analyzed by computing the time averaged mean square displacement (tMSD) and the 

angular distribution over consecutive steps as shown in Fig. 1B (28, 29). The 

instantaneous diffusion coefficients for each trajectory were extracted by linear fitting of 

the 2nd and 4th points (D2−4) of the tMSD curve(33) and used to build up D2−4 histograms 

of hundreds of trajectories over different cells. In addition, the angular distribution 

provides information on the type of diffusion exhibited by a molecule while interacting 

with its environment. Whereas the angular distribution is uniform when molecules diffuse 

in a homogeneous environment, an asymmetric angular distribution with a preferred 

occurrence of angles at 180° reflects the presence of confinement or obstacles to the 

molecule diffusion(29). 

To investigate the PR lateral mobility in response to hormone, MCF7 cells were treated 

with a broad range of  concentrations of the progesterone derivative R5020 (10−12 M to 

10−8 M, for 1 hour), or with EtOH as a control(34). As shown in Fig. 1C, we mainly 

observe two populations in the distribution of D2−4 values across different concentrations, 

similar to other proteins that interact with chromatin(27, 28). Strikingly, instead of a 

gradual increase in the bound fraction of PRs that one would expect from a stochiometric 

occupancy of TFs to DNA binding sites with increasing ligand concentration, we found 

a sharp transition from freely to bound fraction taking place at a critical ligand 

concentration of 10−10 M (Fig. 1C). This sharp transition in PR mobility suggests that 

LLPS might be regulating the interaction between PR and chromatin.  

We further computed the distribution of angles between consecutive displacements for 

each individual trajectory on multiple cells and for different hormone concentrations. At 

hormone concentrations 10−10 M and below, diffusion is mainly isotropic and PR explores 
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all angles with equal probability (Fig. 1D). In strong contrast, above the critical 

concentration of 10−10 M, the angle distributions become highly anisotropic with an 

increased occurrence of angles at 180°, i.e., higher probability for PR molecules to bounce 

back to their prior position (Fig. 1D). To better quantify these results, we computed the 

degree of anisotropy as the fold increase of angles occurring at 180° ± 30° with respect 

to 0°± 30° (28). A sharp transition in anisotropy was retrieved above 10−10 M R5020 

concentration (Fig. 1E), alike to that at which the D2−4 sharp transition takes place. We 

interpret this preferential backward movement as evidence of confinement, and an 

indication of the bias in angles experienced by a particle inside a condensate when being 

constrained by the condensate boundaries. Altogether, our SPT results are consistent with 

a ligand-tunable and regulated LLPS process. 

 

Diffusion behavior of individual PR determined with machine learning 

Due to the short length of the SPT trajectories (usually less than 30 time segments), it is 

challenging to identify the diffusion behavior of PR inside living nuclei using 

conventional data analysis methods. We thus relied on a recently developed machine 

learning (ML) analysis(35). Using a combination of convolutional and recurrent neural 

networks (see Methods, Fig. S2) we: (1) identified the theoretical model that best 

describes the diffusion behavior of individual PR trajectories, and (2) determined the 

corresponding anomalous exponent a, defined as the scaling factor when fitting the tMSD 

to a power-law ~ ta. Here, a = 1 corresponds to Brownian diffusion, a < 1 to anomalous 

sub-diffusion, and a > 1 to super-diffusion. We first trained the algorithm with a set of 

simulated trajectories arising from various diffusion models related to many different 

experimental observations (see Methods). Remarkably, when applied to our single 

molecule experimental data, the ML algorithm revealed two main types of diffusion (Fig. 

S3) i.e., the vast majority of the trajectories were either classified as diffusing according 

to the annealed transit time model (ATTM)(36), or exhibiting fractional Brownian motion 

(FBM)(37). ATTM has been associated to the anomalous, non-ergodic and non-Gaussian 

motion of particles diffusing in a spatiotemporal heterogeneous medium, e.g. on cell 

membranes(38). FBM has been described as an extension of Brownian motion with 

correlated noise, often associated to diffusion in viscoelastic media(39). Note that, since 

the trajectories were normalized before entering the ML architecture (see Methods), the 

ML prediction is independent of the diffusion coefficient value. For each hormone  
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concentration, we computed the percentage of trajectories predicted as ATTM or FBM. 

At ligand concentrations below 10−10 M, 60% of the trajectories were classified as ATTM 

and 40% as exhibiting FBM (Fig. 2A). Notably, a sharp change in the diffusion behavior 

occurs at > 10−10 M R5020, with ~ 80% of the trajectories exhibiting FBM and ~ 20% 

ATTM (Fig. 2A). We further exploited the powerful discrimination capability of the ML 

algorithm to compute the D2−4 values of the trajectories assigned to each of the theoretical 

models. We found that FBM trajectories display a much lower lateral mobility as 

compared to those assigned to ATTM (Fig. 2B).  Together,  the sharp increase in the 

number of molecules exhibiting FBM together their lower mobility at ligand 

concentrations above 10−10 M suggest that PR diffusion behavior results from viscoelastic 

interactions between the receptor and chromatin within a condensate.  

Using a different ML architecture as described in Methods, we also predicted the a values 

for each of the observed trajectories. We found that FBM trajectories exhibit on average 

lower a values (~ 0.45) than ATTM trajectories (~ 0.75) (Fig. 2C). To assess the 

relationship between D and a, we generated scatterplots of these two parameters for 

different ligand concentrations (Fig. 2D). Strikingly, trajectories assigned to either ATTM 

or FBM form two differentiated clusters that can be readily classified by a support vector 

machine (SVM). The background color used in Fig. 2D shows the predictions of the 

SVM, demonstrating that D  and a are sufficient to separate the lateral diffusion behavior 

of individual PRs as a function of ligand concentration. Overall, the ML analysis 

accurately separates two PR populations diffusing in markedly different media; and most 

importantly, it reflects a critical ligand concentration at which a transition from unbound 

(ATTM) to chromatin-bound (FBM) takes place. 

 

Nanometer-scale temporal evolution of PR condensates in living nuclei 

Our single molecule mobility analysis is consistent with the emergence of PR condensates 

in living nuclei above a critical ligand concentration, but it does not provide direct 

information on the condensate sizes. To enquire on the relevant spatiotemporal scales 

involved in PR condensation and its temporal evolution we took advantage of the 

nanometer localization precision encoded in the SPT data. We used this information to 

generate 2D density maps of individual PR localization positions as the receptor 

dynamically explores the nuclear region(33). The 2D maps clearly show that hormone 

treatment (10−8 M, 60 min) leads to a strong accumulation of single molecule localization 
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events in small regions, as compared to control conditions (Fig. 3A). We further evaluated 

the lateral mobility inside condensates by reconnecting the localization positions over 

consecutive frames. Remarkably, PR trajectories within condensates reproduce the 

mobility, angle distribution, and FBM diffusion behavior of the slow population retrieved 

by standard SPT shown in Figs. 1 and 2 (Fig. S4). These results also confirm that the slow 

population retrieved from the SPT analysis corresponds to the diffusion of PR molecules 

inside condensates rather than to the diffusion of the condensate itself.  

To enquire on the physical mechanism that leads to PR condensation in the nucleus, we 

first relied on the fact that the 2D density maps also contain temporal information. We 

thus accumulated localizations for time intervals of 4.5 s (300 frames) to build up the 

temporal evolution of condensates during an observation time of 18 s, and used a cluster 

algorithm(40) (see Methods) to detect condensates formed by the local accumulation of 

individual localizations. We readily observed merging events of individual condensates 

in time (Fig. 3B), which were also confirmed by confocal video imaging at high temporal 

resolution of fully saturated GFP-labeled PR molecules (Fig. 3C). The merging of 

condensates is a first indication that its growth is dominated by a BMC process.  

Since PR condensation in our system can be accurately tuned by the time and amount of 

hormone addition, we took advantage of this property to further assess the condensate 

growth mechanism. For this, we generated 2D density maps of single molecule 

localizations over a time course of 60 min starting right after adding the hormone (10-8 

M). We cumulated localizations over 5 min intervals and used the cluster algorithm to 

generate distributions of condensate radii at each 5 min time point. Interestingly, we 

found a log-normal distribution of the condensate radii (Fig. 3D), similar to that described 

for systems undergoing LLPS under a BMC mechanism(24). Note that a similar size 

distribution was also observed in the absence of hormone (EtOH), indicating a preexisting 

population of small condensates, in agreement with our SPT data. In addition, we 

calculated the mean radius size of the condensates over time (Fig. 3E). Two distinct 

regimes can be clearly identified. During the first 30 min, the average radius grows 

following a power law, <R> ~ tb, with a fitted b = 0.3505. After 30 min, the system 

reaches a steady-state plateau in which the average size of condensates remains constant. 

The initial growth scaling exponent, the log-normal distribution of the condensates’ radii 
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as well as the presence of merging events, are all consistent with a BMC-based 

condensate growth mechanism(41). 

Intriguingly, whereas the classical BMC model predicts that condensates grow in time 

until forming a single droplet(41), our system clearly deviates at longer times from such 

prediction, reaching a plateau with condensates sizes around 70 nm (Fig. 3E). To 

understand such a nanoscale arrested growth, we took a closer look to our SPT data. 

Despite the short length of the trajectories, we could readily detect  the occurrence of 

escaping events, i.e., particles being able to exit the condensate (Fig. S5).  Such escaping 

behavior has been also recently observed on DNA repair condensates in living cells(42). 

These observations suggest that particle escaping could influence PR condensate growth 

at the steady-state in the nucleus.   

 

Particle escaping leads to nanoscale arrested growth of PR condensates 

To investigate if the presence of escaping events in a BMC scenario could lead to an 

arrested growth of condensates with a plateau on their sizes, we developed a theoretical 

model in which particles —PR dimers in our case, or other biological components in a 

general context— diffuse freely through the system, but also interact with each other in a 

non-trivial way. The model is based on the main principles of BMC: when two particles 

coincide (i.e., they contact each other), they interact together forming a condensate. 

Subsequent new interactions make the condensates to grow until reaching a phase 

separated system in which all the particles segregate from the environment forming a 

single condensate. To include the effect of particle escaping events in our model, we 

simulated a system of particles performing BMC-like condensate growth but 

incorporating a probability, Pu, that particles escape from condensates (see Methods). 

Compared to the classical BMC model (Fig. 4A, upper panels), the presence of escaping 

events (i.e., Pu > 0) prevents the system from reaching the single condensate state (Fig. 

4A, lower panels) resembling our experimental observations.  

We performed simulations considering that at each time step particles have a probability 

Pu of unbinding and exiting the droplet in which they are contained, and calculated the 

average size of the condensates <R> as a function of time (Fig. 4B). For BMC (namely 

Pu = 0), the system grows following the expected relation <R> » t1/3  with a final single 

condensate size (dotted line). For values of Pu > 0, condensate growth follows the same 
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power law scaling, but notably, the system reaches a plateau with a steady-state mean 

radius <R> ¥ of smaller size, akin to our experimental observations. The larger the 

escaping probability, the smaller the final radius of the condensates (Fig. S6). Using the 

simulations we also generated distributions of the steady-state condensate sizes for 

different Pu. An example of such distribution for Pu = 0.2 is shown in the inset of Fig. 4B, 

exhibiting the expected log normal distribution for BMC processes. Importantly, the 

steady-state size distribution derived from the simulations is qualitatively similar to that 

obtained from our experimentally generated 2D density maps (Fig. 3D).   

To further validate our model in terms of predictions that could be experimentally tested, 

we calculated from the simulations the percentage of condensed particles as function of 

time, for different Pu. For a standard BMC process (Pu = 0), in the state-state regime a 

single condensate will be formed, and accordingly, the percentage of condensed particles 

should reach ~ 100%. However, in a scenario in which particles have a certain probability 

from escaping a condensate, the balance between coalescing and escaping events should 

maintain the percentage of condensed particles constant after the initial growth period. 

Our model predicts that the percentage of condensed particles increases as  t 0.75 for 

shorter times and reaches a plateau with a constant percentage of condensed particles, 

whose value is again dependent on Pu (Fig. 4C). To experimentally test this prediction, 

we extracted the percentage of condensed particles from our experimental 2D density 

maps at different ligand exposure times (10-8 M hormone concentration). Remarkably, 

our experimental data show an increase in particle condensation at early growth times 

with an exponent similar as to the one predicted by our model, and most importantly, it 

also exhibits a plateau in the percentage of particles forming condensates after 30 min of 

hormone exposure (Fig. 4D). Hence, our model of BMC-condensate growth together with 

condensate particle escaping is able to recapitulate our experimental data and to make 

predictions fully testable at the single molecule level in living cells. 

Finally, we generated diffusion coefficient histograms from our simulations. As our 

experimental data are consistent with a BMC mechanism (i.e., condensate growth ~ t1/3) 

we considered the presence of Stokes drag, as it is usual in a BMC process. Hence, free 

particles (i.e., outside condensates) would diffuse with diffusion coefficient D, while 

condensates of size R would diffuse with diffusion coefficient Dr = D/R. Moreover, to 

account for the heterogeneities present in any biological scenario, we added a small 
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random noise to each D value. We generated in silico distributions of the D values at 

steady-state, for various Pu (i.e., accounting for the final condensate radius R and the 

percentage of free vs. condensed particles at each given Pu). As expected, Fig. 4E shows 

the appearance of two distinct distributions, with a peak at D = 1 corresponding to the 

diffusion of free particles and a second peak at lower D, which is an effect of the Stokes 

drag and hence corresponds to the condensates diffusion. Interestingly, decreasing Pu 

effectively increases the number and sizes of the condensates and reduces the number of 

free particles, resulting in an similar effect as to the increase of hormone concentration. 

Based on these results we suggest that at low hormone concentrations, the escaping 

probability of PR molecules from small condensates is large, leading to a large number 

of free, non-condensed particles. As hormone concentration increases beyond a critical 

value, the PR escaping probability reduces so that condensates grow reaching a finite 

stable size which is ultimately controlled by Pu. 

 

Discussion  

We have presented a single molecule study of the physical properties of transcriptional 

condensates in vivo. The inducibility of our system to undergo phase separation by means 

of hormone concentration and exposure time has allowed us to accurately tune the onset 

of phase separation as well as to thoroughly investigate the growth dynamics of nuclear 

PR condensates in living cells. Interestingly, we found that while growth dynamics of PR 

condensates is dominated by BMC at shorter times, condensates exhibited arrested 

growth reaching nanoscale sizes at longer timescales, clearly deviating from a classical 

BMC mechanism. To rationalize our results we proposed an extension of the BMC model 

by including stochastic unbinding of particles within condensates, i.e., introducing a 

probability that considers particle escaping from condensates. With this minimal 

consideration, our model fully reproduces the key features of an experimental system 

undergoing phase separation in vivo. Moreover, by modulating the probability of particle 

escaping, our model is able to predict the final condensate sizes, the population of 

molecules partitioning inside or outside condensates as well as their diffusion behavior. 

As a whole our experimental data and theoretical model are consistent with droplet 

growth dynamics being ultimately controlled by the escaping probability of transcription 

factors molecules within condensates. The interplay between condensation assembly and 

single molecule escaping thus maintain a preferred and maximum physical condensate 
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size. Particle escaping from condensates can account for an exquisite control of the 

condensate size in non-equilibrium systems such as the cell, as also recently observed in 

other biological scenarios such as DNA repair condensates(42). This mechanism might 

provide a delicate fine-tuning by the cell that prevents a single phase that would lead to 

transcription collapse or chromatin condensation.  

Recent SPT experiments showed that TFs transiently bind to DNA with rather short 

binding times (in the seconds scale)(13, 14). We propose that condensate formation might 

increase the likelihood that individual PRs rebind within short timescales to their 

corresponding DNA binding region. Such a condensate environment will thus increase 

the effective time that a given DNA region is bound by TFs. This hypothesis is further 

substantiated by our experimental data analyzed by machine learning, where FBM, 

traditionally associated to diffusion within viscoelastic media, was found to describe best 

PR low mobility diffusion. In conclusion, the exclusive combination of single molecule 

sensitive imaging techniques together with theory and simulations as reported here, 

brings a substantial step forward in understanding the behavior of individual proteins 

within condensates.  

TF condensation has been customary studied through ensemble or static measurements, 

mostly in in-vitro settings or in fixed cells. In contrast, the experiments and theoretical 

model presented here provide a general framework to investigate the dynamics of phase-

separation in living cells at the single molecule level. Moreover, our approach can be 

further extended to a wide range of biological systems as well as other soft-matter based 

interacting systems.  Overall, this work brings unique insights into phase separation in 

soft matter systems from both experimental and theoretical perspectives. 

 
Materials and Methods 
 

Plasmids. The original pGFP-PRB was a gift from Gordon Hager (National Cancer 

Institute, NIH, Bethesda, USA). This plasmid expresses the PR isoform-B under a 

tetracycline controllable promoter (TetOff system, Clontech). To perform the SPT 

experiments, a SNAP tag was introduced at the N-terminal to the GFP, using Gibson 

cloning (pSNAP-GFP-PRB). A Puromycin resistance plasmid (pPUR, Clontech, Cat No. 

631601) was used as a selection marker. All plasmids were linearized with ScaI before 

electroporation.  
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Cell culture and electroporation. MCF7 Tet-off cells (Clontech, Cat No. 631154) were 

grown on Dulbecco Modified Eagle Medium (DMEM) high-glucose media supplemented 

with 10% Tet-free Fetal Bovine Serum, 2mM L-glutamine, 1 mM sodium pyruvate, 100 

U  mL-1 penicillin and 100 µg mL-1 streptomycin. The cells were cultured at 37°C in a 

CO2/air (5%/95%) incubator. Cells were electroporated simultaneously with the pSNAP-

GFP-PRB and the pPUR, using a 10 to 1 ratio respectively. Electroporation was 

performed using the Amaxa Cell Line Nucleofector Kit V (Lonza) using the P-20 

program, following manufacturer’s instructions. After one week, cells were selected 

under 0.6 µg/ml Puromycin, to enrich for electroporated cells, and then sorted in single 

cell wells using GFP as a marker, in order to generate a stable cell line. 

Hormone stimulation and SNAP labeling. Two days before the microscopy, around 

200.000  cells were seeded in 35 mm glass bottom dishes. Sixteen hours before hormone 

stimulation, cells were washed with Phosphate-buffered saline solution, to eliminate 

traces of phenol red, and then changed to white DMEM media supplemented with 10% 

charcoal-treated FBS Serum, 2mM L-glutamine, 1 mM sodium pyruvate, 100 µg mL-1 

penicillin and 100 µg mL-1 streptomycin; from now on abbreviated as “charcoalized 

white DMEM”. The Janelia Fluor® 549 dye coupled to the SNAP substrate was kindly 

provided by Luke Lavis (Janelia Farm, Ashburn, Virginia, USA). Cells were incubated 

with 10 nM for SPT and 100 nM for 2D spatiotemporal maps of the SNAP JF-549 dye in 

charcoalized white DMEM for 30 min at 37°C. Subsequently the cells were washed three 

times with PBS, and then placed back in the incubator in charcoalized white DMEM for 

one hour washout at 37°C. After the JF549 SNAP labeling, hormone stimulation was 

done using R5020 (Promegestone) solubilized in ethanol, or control conditions with this 

solvent. To study the response to different concentrations of hormone, a series of dilutions 

were made freshly before the microscopy acquisition. Time course experiments were  

performed at a hormone concentration of 10-8 M and SPT tracking data were recorded at 

intervals of 5 min during a total observation time of 60 min.  

Experimental setups. SPT and 2D spatiotemporal density maps imaging were performed 

in a Nikon N-STORM 4.0 microscope system for localization-based super-resolution 

microscopy, equipped with a TIRF 100x, 1.49 NA objective (Nikon, CFI SR HP 

Apochromat TIRF 100XC Oil). The sample was illuminated by a continuous 561 nm 

laser line with a power of 30 mW before the objective in HILO-configuration. The 

emission fluorescence of the JF549 dye was collected through the objective and projected 
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into an EM-CCD Andor Ixon Ultra Camera at a framerate of 15 ms. The pixel size of the 

camera is 160 nm. During imaging, the temperature was kept at 37°C by an incubation 

chamber. GFP confocal line scanning microscopy was performed in a Leica TCS SP5 II 

CW-STED microscope using a 63x Oil, 1.4 NA objective (Leica HC PL APO 63x/1.40 

Oil CS), using a multiline Argon laser at 488 nm for excitation. The emission fluorescence 

was detected with a Hybrid detector (Leica HyD) in photon counting mode, using a 500–

550 nm filtering. The sample was kept at 37°C with 5% CO2 by an incubation chamber. 

For Fig. 3C, images of 256 x 256 pixels were acquired with pixel size of 80 nm and dwell 

time of 9 µs. Scanning was performed at 100 Hz, acquiring consecutive frames every 125 

ms. For the Supplementary Video 1, images of 322 x 200 pixels were acquired with a 

pixel size of 160 nm. Each frame in the movie has a total integration time of 15 s, and 

corresponds to the sum intensity projection from 100 images taken consecutively every 

150 ms, scanning at 700 Hz. 

Data analysis. To generate SPT trajectories, the nuclear region was segmented in the 

GFP channel intensity using Fiji. Individual tracks inside the nuclear region were 

analyzed using Trackmate(43). Particle detection was performed with a Difference of 

Gaussians, with an expected diameter of 0.6 µm and sub-pixel localization. Detected 

particles were first filtered based on the Signal to Noise Ratio of the input image and then 

based on quality score. The particles retained were then linked using a simple Linear 

Assignment Problem (LAP) tracker, with a 1 µm linking distance, 1 µm gap closing max 

distance and gap closing of two frames. Only tracks with more than 10 frames were 

considered for the analysis. 

To generate 2D spatiotemporal maps, the total single molecule localizations of JF549 

labeled PR molecules were detected by a custom Matlab Software over 5000 frames (75 

s) and projected into one single frame. Condensates were detected by applying a Density- 

Based Spatial Clustering of Applications with Noise (DB-SCAN) (40)over the entire 

frame with a threshold of 48 nm of interparticle distance and condensates containing a 

minimum number of particles of 5. The radius was extracted by considering the area of 

the condensate a circle. The percentage of free particles was estimated by the number of 

particles not detected within a cluster divided by the total number of particles within a 

given area. The escaping events analysis was performed by taking PR trajectories and 

detecting within each trajectory a cluster by the clustering algorithm. Only trajectories 

where there is clear escaping event where considered. Time-evolution 2D density maps 
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were generated by cumulating localization positions every 4.5 s, corresponding to 300 

frames, for a total duration of 18 s.  

Given a trajectory whose two dimensional position (x, y) is sampled at T discrete, regular 

time steps ti, its time averaged mean-square displacement (tMSD) was calculated 

using(44): 

tMSD	(∆)	=	 *
+,	∆

∑ ([𝑥(𝑡1 + ∆) − 𝑥(𝑡1)]2+,∆
16* + [𝑦(𝑡1 + ∆) − 𝑦(𝑡1)]2)        [1] 

where D is usually referred as the time lag. Even in the presence of anomalous diffusion, 

at short times the MSD is well represented by 

tMSD = 4DD+ offset,                                           [2] 

where D is the instantaneous diffusion coefficient. To extract D, we fit the tMSD between 

D = 2 to D = 4 and redefine it, as presented in main text, as D2−4. 

For a given time, t, and a time between frames, dt, we define the turning angle, qt, between 

consecutive trajectory segments, 𝑠 (𝑡, 𝑡 + 	𝛿𝑡) = 	 𝑟	(𝑡 + 𝛿𝑡) − 𝑟(𝑡),	as follows (45): 

𝜃> = 	 tan,* A
B⃗(>,>C	D>)	×	B⃗	(>CD>,>CFD>)
B⃗(>,>C	D>)	∙	B⃗	(>CD>,>CFD>)

H																																						[3]  

 

For our calculations, we consider the particle positions to be in 3D with the z component 

equal to zero. Using the above expression, the angles are defined between 0° and 360°. 

To calculate the anisotropy of the turning angles, the fold change between the number of 

angles from 180° ± 30° and 0° ± 30° was extracted(28). 

Machine learning architecture and analysis. A schematic pipeline of the machine 

learning (ML) method used in this study is presented in Fig. S2. The ML architecture is 

trained with a set of simulated trajectories, generate via the andi-datasets Python 

package(46). This tool allows to generate trajectories that are assigned to five different 

diffusion models. Moreover, trajectories with different anomalous exponents (0 < a < 1) 

can also be generated. The ML architecture can be trained separately to perform two 

different tasks: A) to classify the trajectories among a pool of different theoretical models; 

B) to regress the value of the anomalous exponent of each trajectory. Importantly, the 

training is done in a supervised way, i.e., we feed the trajectories to the machine, together 
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with their corresponding labels (either the diffusion models for A, or the exponents for 

B). As architecture, we use a combination of gated recurrent units (GRU) and 

convolutional neuronal networks (CNN), merged with a contact layer made of fully 

connected neurons as depicted schematically in Fig. S2. The GRU layers are able to learn 

long-term features, while the CNN are a good strategy to tackle short length 

correlations(47). By combining the two approaches, we are able to characterize 

trajectories of only 10 data points in a robust manner. 

In order to classify the experimental trajectories according to a given diffusion model, the 

last layer of the network consists in a soft-max layer of neurons, where is the number of 

models considered. The labels are encoded in a vector of elements, all equal to zero except 

the one encoding the model of the trajectory. The cost function to minimize is the 

Kullback-Leibler divergence which, for a set of trajectories 𝑋 = {𝑥*LLL⃗ , 	𝑥FLLLLL⃗ , … 𝑥NLLL⃗ 	},	compares 

the output vector of the machine 𝑓Q(𝑥1) to the label vector	𝑦⃗Q
(1) using 

𝐾𝐿 = ∑ 𝑓QT
1 (𝑥1) log X

	YL⃗Z
([)

\Z(][)
^                                           [4] 

 
 
To faithfully characterize the set of experimental trajectories, we first train a model to 

classify among four diffusion models: continuous-time random walk (CTRW)(48), 

fractional Brownian motion (FBM)(37), annealed transient time motion (ATTM)(36) and 

the scaled Brownian motion (SBM)(49). For each model, we generated trajectories with 

anomalous exponent 𝛼 ∈ [0.05, 1] in intervals of 0.05. We created a balanced dataset 

with 1000 trajectories per model and exponent, which in total sum up to 72000 

trajectories. We separated the dataset into two, a training set with 57600 trajectories and 

a test set with 14400. The latter was used to calculate the accuracy of the model, i.e., to 

prevent the appearance of over-fitting. Note that the input size of the machine is fixed, 

which means that all the input trajectories should have the same size. As the experimental 

dataset has trajectories of varying size, from 10 to 1000 points, we solve such problem 

by restricting them to 20 frames long. This procedure ensures that most of the trajectories 

are considered, while the length is sufficiently large for the machine to have good 

accuracy. The trained model then has a micro-averaged F1-score of 0.733. When applied 

to the experimental dataset, 90% of the trajectories were classified either as FBM or 

ATTM. 
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Since the vast majority of the trajectories were classified either as FBM or ATTM, we 

trained the machine only with these two models. This allows to increase the accuracy of 

the ML classification for 20 frame long trajectories. In this case, the F1-score attained is 

of 0.822 (compared to 0.733). The confusion matrix for this classification is shown in 

Fig. S3A. The results of the prediction on the experimental dataset are presented in the 

main text. 

For the anomalous exponent prediction, the output of the machine is a continuous value. 

Hence, the last layer of the neural network is a single neuron with a rectifier activation 

function (RELU). The loss function in this problem is the mean absolute error, 

𝑀𝑆𝐷 = ∑ (𝑦1 − 𝑓h(𝑥1))2T
1                                          [5] 

where 𝑦1 is the label corresponding the trajectory 𝑥1, and 𝑓h(𝑥1)  is the network prediction. 

The sum is done over the set of trajectories in the training dataset. In order to infer the 

anomalous exponent for each individual trajectory, we used a simpler version of the 

neural network, containing 2 GRU layers of 100 and 50 neurons each, whose output enters 

two fully connected layers of 64 neurons and sigmoid activation functions. The last layer 

contains a single neuron with RELU activation function. Between each fully connected 

layer, we proceeded with a 25% dropout. This network shows a mean absolute error of 

0.229 for trajectories of just 20 points. Note also that the predictions of the network are 

biased to increase the exponent, as shown in Fig. S3B. 

Theoretical model and simulations. Our theoretical model is based on the main 

principles of BMC, but with the addition of stochastic unbinding of particles from already 

formed condensates. In our system, particles diffuse performing Brownian motion 

through the system, but also interact with each other in a non-trivial way. When two 

particles coincide (i.e. they contact each other), they interact together forming a 

condensate. In a classical BMC process subsequent new interactions make the 

condensates grow until reaching a phase separated system in which all the particles 

segregate from the environment forming a single condensate. However in our case and 

motivated by our experimental observations we include an unbinding probability Pu, such 

that at any given time, particles can exit the droplet in which they are contained.   

The simulations consider the following free parameters:  

N: total number of particles;  
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r: effective radius of the particles. We consider that all particles in the system have the 

same effective size and that they have a circular shape. If two particles of size r  are closer 

than a distance 2r , they coalesce. When the two particles coalesce, the total area is 

conserved, such that the resulting droplet has area 2pr2 . Then, a droplet containing M 

particles has a total radius of  𝑅j = √𝑀𝑟	and area 𝐴j = 𝑀𝜋𝑟.  

L: length of the 2D squared box acting as environment. The area of the box is hence L2. 

We consider in this case periodic boundary conditions, i.e., any particle traversing one of 

the borders of the box is immediately transferred to the opposite side. Similar simulations 

were performed with reflecting boundary conditions with analogous results.   

D: Diffusion coefficient of single particles.  All particles (free as well as the condensate 

themselves) perform Brownian motion with the same diffusion coefficient D. Justified by 

the experimental results, as well as the theoretical considerations of BMC, we consider 

the presence of Stokes drag, i.e., a droplet of radius R  will decrease its diffusion 

coefficient following DR  = D/R. 

Pu :  Unbinding probability. At each time step, particles have a probability Pu of unbinding 

from the droplet in which they are contained. 

T: total number of time steps of the simulation.   

The caption of Figure 4 contains the specific values of the parameters used for the 

simulations presented. 

For simplicity, we usually consider r  = 1 and D  = 1. At the start of each simulation, all 

particles are distributed randomly, following a uniform distribution, all over the 

environment. The simulation then works as follows: 

1. At the beginning of each time step, for every droplet containing more than one particle, 

we check how many particles unbind. Each particle has a probability Pu  of escaping from 

the droplet it is contain. All particles that have unbind will not be able to bind until the 

next time step (i.e., will not be considered in Step 3). 

2. Each particle or droplet performs a spatial step, sampled from a Gaussian distribution 

of variance n2𝐷o; which effectively samples the steps of a Brownian particle with 

diffusion coefficient Dr. 
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3. We iterate over each particle and droplet and find those who are in contact. These are 

consider to coalesce, forming larger droplets. We consider that the center of the resulting 

droplet is at the center of mass of the coalescing particles and droplets. 

4. Repeat until doing T timesteps. 
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Figure Legends: 

 

 

 

Figure 1. Lateral diffusion of individual PR molecules in the nucleus of living cells. 

(A) Representative frame of a SPT video. Individual PR molecules (bright spots) were 

visualized in the nucleus (green outline) of MCF7 breast cancer cells, under a highly 

inclined illumination at 15 ms frame rate. Diffraction-limited single molecule 

localizations were tracked in successive frames to generate individual trajectories (super-

imposed color lines). (B) Schematic representation of the trajectory analysis. For each 

trajectory we extract the displacement between frames to generate individual tMSD plots 

as a function of the time lag and extract the diffusion coefficients (D2−4) for each trajectory 

(left, lower panel). In addition, we calculate the angles between successive steps to create 

polar histograms (right, lower panel). (C) Distribution of the D2−4 (µm2/s) values of 

individual PR trajectories exposed to increasing R5020 concentrations for 1 hour. EtOH 

corresponds to the control condition, i.e., in the absence of ligand. Y axis corresponds to 

the frequency of events. Vertical dash lines indicate D2−4 values 0.0061 (left line) and 0.5 

µm2/s (right line). Data extracted from at least 1000 trajectories belonging to at least 8 
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cells from 3 independent experiments. (D) Polar histograms of the angle between 

successive steps of diffusing PR under increasing R5020 concentrations. (E) Anisotropy 

values as a function of R5020 concentration for at least 8 cells analyzed. Results of a one-

way analysis of variance (ANOVA) test are shown as: n.s. for not significant, *** for p-

value< 0.001. 

 

 

 

 
 

Figure 2. Machine learning analysis of individual PR trajectories in living cells. (A) 

Percentage of trajectories associated to ATTM (blue) or FBM (yellow) by the ML 

algorithm as a function of ligand concentration. The shadow areas represent the error of 

the prediction, calculated by means of a confusion matrix (see Methods) (B) D2−4 (µm2/s) 

distributions for varying ligand concentrations, with trajectories associated to ATTM 

(blue) and FBM (yellow), as identified by ML. (C) Corresponding histograms of the ML 

predicted anomalous exponents. (D) Scatter plot of the D2−4 vs. anomalous exponent for 

every trajectory. Background color represents the prediction of a SVM trained on the data 

(see Methods). 
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Figure 3. Nanometer-scale spatiotemporal mapping of PR in living nuclei. (A) 2D 

density maps of individual PR localizations collected over 75 s on an area of 2.4 x 2.4 

µm2, after 1 hour of ligand stimulation (upper panel) and control (lower panel). Each map 

contains 1000 localizations. (B) Snapshots of two different condensates as they merge 

over the indicated time windows. The 2D maps have been generated by cumulating single 

molecule localizations in time windows of 4.5 s (300 frames). (C) Merging events of two 

different PR condensates (highlighted by orange and green arrows) visualized by confocal 

microscopy using GFP labeling conditions. (D) Distribution of PR condensate radius 

normalized to the mean radius, over a time course of 60 min after 10-8 M hormone 

stimulation. Each curve corresponds to a 5 min time point. The red curve corresponds to 

the size distribution in the absence of the hormone. (E) Mean condensate radius as 

function of time. At each time point, data correspond to several regions of interest (ROI) 

analyzed from two different cells and two separate experiments. 
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Figure 4. Extended BMC model including stochastic unbinding of PR molecules 

from condensates. (A) Snapshots of two simulations of the theoretical model, 

showcasing the temporal evolution of two systems, one with Pu = 0 (top) and one with Pu 

> 0 (bottom). (B) Mean radius size evolution as a function of time, for a system of N = 

20, L = N/0.05. Each color represents the result for a different Pu. The dotted line shows 

the expect BMC growth (<R> » t1/3). The horizontal dashed line shows the maximum 

mean size possible for the simulated system (<R>  =ÖN). The inset shows the steady-state 

normalized radius distribution for a system of N = 500 and L = N/0.01 for Pu = 0.2. (C) 

Percentage of particles forming condensates as function of time for different Pu values. 

(D) Experimental data showing the percentage of particles forming condensates as 

function of time. The data corresponds to the same experiments shown in Fig. 3D, E.  (E) 

Diffusion coefficient distributions resulting from the simulations, for free particles 

(centered around Log(D) = 0) and of condensates (left distribution) for four different Pu 

values. 
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Figure Legends: 

Figure 1. Lateral diffusion of individual PR molecules in the nucleus of living cells. 

(A) Representative frame of a SPT video. Individual PR molecules (bright spots) were 

visualized in the nucleus (green outline) of MCF7 breast cancer cells, under a highly 

inclined illumination at 15 ms frame rate. Diffraction-limited single molecule 

localizations were tracked in successive frames to generate individual trajectories (super-

imposed color lines). (B) Schematic representation of the trajectory analysis. For each 

trajectory we extract the displacement between frames to generate individual tMSD plots 

as a function of the time lag and extract the diffusion coefficients (D2−4) for each trajectory 

(left, lower panel). In addition, we calculate the angles between successive steps to create 

polar histograms (right, lower panel). (C) Distribution of the D2−4 (µm2/s) values of 

individual PR trajectories exposed to increasing R5020 concentrations for 1 hour. EtOH 

corresponds to the control condition, i.e., in the absence of ligand. Y axis corresponds to 

the frequency of events. Vertical dash lines indicate D2−4 values 0.0061 (left line) and 0.5 

µm2/s (right line). Data extracted from at least 1000 trajectories belonging to at least 8 

cells from 3 independent experiments. (D) Polar histograms of the angle between 

successive steps of diffusing PR under increasing R5020 concentrations. (E) Anisotropy 

values as a function of R5020 concentration for at least 8 cells analyzed. Results of a one-

way analysis of variance (ANOVA) test are shown as: n.s. for not significant, *** for p-

value< 0.001. 

Figure 2. Machine learning analysis of individual PR trajectories in living cells. (A) 

Percentage of trajectories associated to ATTM (blue) or FBM (yellow) by the ML 

algorithm as a function of ligand concentration. The shadow areas represent the error of 
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the prediction, calculated by means of a confusion matrix (see Methods) (B) D2−4 (µm2/s) 

distributions for varying ligand concentrations, with trajectories associated to ATTM 

(blue) and FBM (yellow), as identified by ML. (C) Corresponding histograms of the ML 

predicted anomalous exponents. (D) Scatter plot of the D2−4 vs. anomalous exponent for 

every trajectory. Background color represents the prediction of a SVM trained on the data 

(see Methods). 

Figure 3. Nanometer-scale spatiotemporal mapping of PR in living nuclei. (A) 2D 

density maps of individual PR localizations collected over 75 s on an area of 2.4 x 2.4 

µm2, after 1 hour of ligand stimulation (upper panel) and control (lower panel). Each map 

contains 1000 localizations. (B) Snapshots of two different condensates as they merge 

over the indicated time windows. The 2D maps have been generated by cumulating single 

molecule localizations in time windows of 4.5 s (300 frames). (C) Merging events of two 

different PR condensates (highlighted by orange and green arrows) visualized by confocal 

microscopy using GFP labeling conditions. (D) Distribution of PR condensate radius 

normalized to the mean radius, over a time course of 60 min after 10-8 M hormone 

stimulation. Each curve corresponds to a 5 min time point. The red curve corresponds to 

the size distribution in the absence of the hormone. (E) Mean condensate radius as 

function of time. At each time point, data correspond to several regions of interest (ROI) 

analyzed from two different cells and two separate experiments. 

Figure 4. Extended BMC model including stochastic unbinding of PR molecules 

from condensates. (A) Snapshots of two simulations of the theoretical model, 

showcasing the temporal evolution of two systems, one with Pu = 0 (top) and one with Pu 

> 0 (bottom). (B) Mean radius size evolution as a function of time, for a system of N = 

20, L = N/0.05. Each color represents the result for a different Pu. The dotted line shows 

the expect BMC growth (<R> » t1/3). The horizontal dashed line shows the maximum 

mean size possible for the simulated system (<R>  =ÖN). The inset shows the steady-state 

normalized radius distribution for a system of N = 500 and L = N/0.01 for Pu = 0.2. (C) 

Percentage of particles forming condensates as function of time for different Pu values. 

(D) Experimental data showing the percentage of particles forming condensates as 

function of time. The data corresponds to the same experiments shown in Fig. 3D, E.  (E) 

Diffusion coefficient distributions resulting from the simulations, for free particles 
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(centered around Log(D) = 0) and of condensates (left distribution) for four different Pu 

values. 
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Video S1.	Time lapse of inducible PR nuclear condensates. MCF7 cell-line expressing 

GFP-PRB before and after hormone stimulation. Before treatment with hormone the 

fluorescent signal of the GFP-PRB is homogeneous across the nucleoplasm. After 

hormone addition (R5020 10-8 M, black frames) the fluorescent signal distributes into 

condensates within 5 minutes of hormone exposure. Each frame has a total integration 

time of 15 s (see Methods). 

 
 
 
 
 
 
 
 
 
 
 

 
 
Figure S1. PONDR score of PR-B. (a) Prediction of Natural Disordered Regions 

(PONDR score) of PR-B generated at www.pondr.com. Note the different regions of PR-

B denoted as N-terminal domain (NTD), DNA-binding domain (DBD), the Hinge (H) 

and the ligand binding domain (LBD). The NTD is highly disordered (PONDR score > 

0.5) 
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Figure S2. Scheme of the machine learning procedure. (a) The machine learning (ML) 

architecture is trained with a dataset consisting on simulated trajectories. Once the 

training is complete, the machine can assign to every experimental trajectory an 

anomalous exponent and a diffusion model. 
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Figure S3. Error in the ML analysis. (A) Confusion matrix for the LSTM Fully 

convolutional network used for model classification. (B) Prediction error for the GRU 

network in the anomalous exponent prediction. For both cases, results were obtained 

using 7200 trajectories with T = 20, never seen by the machine, in order to avoid 

overfitting. 

 

 

 
 
 
 

 
 

Figure S4. 2D density maps confirms SPT data. (A) Distribution of the D2-4 values of 

PR trajectories inside condensates and corresponding. (B) Angle distribution between 

successive steps, and (C) ML trajectory assignment to the diffusion behavior.   
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Figure S5. Escaping events in PR trajectories detected by the clustering algorithm. 

Representative trajectories with escaping events from condensates detected by the 

clustering algorithm. Condensates are labeled with different colors and the beginning 

of each trajectory is marked with an arrow. 

 

 

 
Figure S6. Steady state mean size radius as a function of the unbinding probability 

Pu. Given is an average over 104 simulations. The gray region shows the variance 

between different simulations. The inset shows the complete range of Pu, showing that 

above a certain Pu, no condensates on average, are found. 
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