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Abstract—The tremendous success of graphical neural net-
works (GNNs) has already had a major impact on systems
biology research. For example, GNNs are currently used for drug
target recognition in protein-drug interaction networks as well
as cancer gene discovery and more. Important aspects whose
practical relevance is often underestimated are comprehensibility,
interpretability, and explainability. In this work, we present a
graph-based deep learning framework for disease subnetwork
detection via explainable GNNs. In our framework, each patient
is represented by the topology of a protein-protein network
(PPI), and the nodes are enriched by molecular multimodal
data, such as gene expression and DNA methylation. Therefore,
our novel modification of the GNNexplainer for model-wide
explanations can detect potential disease subnetworks, which is of
high practical relevance. The proposed methods are implemented
in the GNN-SubNet Python program, which we have made
freely available on our GitHub for the international research
community (https://github.com/pievos101/GNN-SubNet).

Index Terms—multi-omics, graph neural networks, explainable
Al (xAl), disease subnetwork

I. INTRODUCTION

Graph Neural Networks (GNNs) have attracted much at-
tention in general [1], [2], and in bioinformatics [3] and
biomedical research in particular [4]].

Recently, significant research efforts have been made to ap-
ply Deep Learning (DL) methods to graphs [3]]. This progress
resulted in useful advances in graph analysis techniques, which
are useful in many biomedical applications [6]], e.g. to use
graph-based deep learning models for protein-drug interaction
detection [7]].

A very recent work presents graph-based frameworks for
detecting novel cancer genes by using GNNs for node clas-
sification [8]]. The authors label genes of a protein-protein
interaction (PPI) network according to their cancer relevance
(relevant or not). DL-based node classification is applied to
predict whether or not unlabeled proteins are relevant to
cancer.

A key feature of GNNs is that they enable the integration
of knowledge graphs [9]] into the algorithmic pipeline, such
as ontologies [[10]], [11] and/or PPI networks [[12]], [[13]. This
feature allows a domain expert to integrate human experience,
human conceptual knowledge and contextual understanding
into the machine learning architectures. Such a human-in-the-
loop (expert-in-the-loop) [14] can sometimes - of course not
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always - help to obtain more robust, reliable and also more
interpretable results [15] [L6]. It should be emphasized that
robust, explainable, and trustworthy solutions are among the
major goals of the AI community for the near future [17].

Such solutions are of practical relevance in critical areas
where we suffer from low data quality, especially where we
just do not have the i.i.d. data we actually need. Therefore,
the use of Al in areas that impact human life (e.g. agri-
culture, climate, health, ...) has led to an increased demand
for trustworthy Al This is especially true in sensitive areas
such as biomedicine, where traceability, transparency and
interpretability are not ends in themselves, but are now even
mandatory due to regulatory requirements [18]. Finally, the
“why” [19] is often more important to science than a pure
result. Consequently, both explainability and robustness can
promote reliability and trust and ensure that humans remain
in control and thus that human intelligence is supported by
artificial intelligence and by no means replaced [20]].

In our work, we place a particular emphasis on the integra-
tion of PPI networks for disease subnetwork detection. Most
existing methods for disease subnetwork detection rely on un-
supervised clustering and/or community detection algorithms
to detect modules with correlated node features.

We believe that functional subnetworks [21] with high
classification accuracy, where node features are not necessar-
ily correlated, may contain an additional set of biologically
relevant disease modules. While conventional feature selection
methods can be used for this task, most of them are not directly
applicable to graph-structured data. This is where we come
in, as an exception is our proposed method [22], where we
introduce a greedy decision forest for subnetwork detection.
To demonstrate the applicability of this approach, we enriched
the nodes of a PPI network with multi-omic features. Decision
trees are derived from this network using random walks. The
decision trees evolve on this network to a minimal set of high-
performance subnetworks. In this work, while we pursue a
similar research goal, we further use powerful graph deep
learning architectures and explainable Al methods [23] for
DL-based disease subnetwork detection. To the best of our
knowledge, this is novel and thus represents the first work
that uses explainable Al for disease subnetwork discovery.

This paper is organized as follows: First, a brief summary of
the proposed methodology for disease subnetwork detection is
given. Section 3 describes the methodology, the GNN methods
used and the validation data in detail. Section 4 presents the
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results obtained using synthetic datasets as well as multimodal
human cancer data. Section 5 discusses the work presented and
possible future research directions.

II. NEwW APPROACH

In this work, we propose explainable GNNs for the detection
of disease subnetworks. We have formulated the subnetwork
detection task as a graph classification problem, where graph
topologies are the same for all instances, but the node feature
values vary. The following methodology is presented.

Each patient is represented by the graph topology of a PPI
network, where proteins are reflected by the nodes and the
edges indicate a functional relationship between these proteins.
The nodes of the patient-specific graphs are enriched by multi-
omic feature values, such as mRNA gene expression and DNA
methylation. Following, we perform graph classification in
order to classify patients into a cancer-specific group and a
randomized cancer group. As a consequence, a GNN model
is trained on domain-knowledge induced trajectories, which
may result in more reliable and interpretable outcomes [24].

In order to ultimately uncover the decisions of the GNN
classifier, we utilize a modified version of the GNNexplainer
algorithm, by optimizing a model-wide node feature mask
(see ’Materials and Methods’ section for details). From the
obtained node importance values we compute edge relevant
scores. We assign these values as edge-weights to the PPI
Network and apply weighted community detection algorithms.
The detected communities with high edge importance scores
represent the potential disease subnetworks.

III. MATERIALS AND METHODS
A. GNN architecture

We have employed a GNN classifier as evaluated and im-
plemented by [25]. The authors propose a Graph Isomorphism
Network (GIN) architecture that has been proven to have better
classification performance than other GNN architectures.

One of the first GNN architectures that was invented was
basically dealing with the graph in a similar way as a CNN
processes images or any kind of typical grid-structured data
[26]. In the same way that CNN filters are convoluted with
a portion of the input, the same applied to the Graph Con-
volutional Networks (GCN). The main difference lies in the
fact that in GCNs the portion of the input is a subgraph (k-hop
neighborhood) “around” a central node, whereas in a CNN the
neighborhood of the central element is structured as a grid.

In figure [2] the CNN’s and GNN’s basic aggregation opera-
tion involving information from the neighborhood is depicted.
Mathematically, this can be described by the following oper-
ation:

(¥ = AGGREGATE) ({hg’H) ‘u€ N(v)}) 1)

where k is the number of aggregation iterations and equals
to the number of hops of the neighborhood A that will be
considered. The aggregation operation uses all features of the
neighboring nodes (denoted with w); those can be of any form
and can numerically encode several characteristics like size,

color, shape and so on. As CNNs that process images typically
aggregate three values (RGB) of each neighboring pixel, the
GNN will aggregate any number of features representing any
feature selected by the domain expert and the data scientist.
Those features are denoted with i and are also called embed-
dings.

After the aggregation operation, the combine operation
provides the new values for the features of node v [2}

h{k) = COMBINE™® (th—U, afﬁ) 2)

Those two operations, namely aggregate and combine are
performed several times. The initial values of the features
are replaced with new, informed ones that help the task at
hand. Typically, GNNs can be used for node classification,
link prediction and graph classification. Node as well as graph
classification use the end values of the node features after the
last application of aggregate and combine.

Until now, the way aggregate and combine are implemented
is not fully addressed. The underlying operation in the GCN
[26]] is an element-wise mean pooling followed by a Rectified
Linear Unit (ReLU) nonlinear activation function. The re-
searchers that invented GIN [25] have proven that aggregations
that are implemented by the mean () and max () function
cannot distinguish between very simple graph structures;
therefore, they are not adequate for computing embeddings,
especially when the task is graph classification. Figure 3] shows
three pairs of graphs that GNN architectures that use mean ()
and max () cannot differentiate. In the first pair, all nodes have
the same values h; in their features. In this case, both the mean
and the maximum value over an arbitrary number of nodes in
the neighborhood will be the same. In the second case, the
maximum of hy, ho, hg equals the maximum of hy, hs, hs, hs.
By the same means, the maximum in the third case will fail
for the same reason as in the second case. Furthermore, the
mean will be the same because 3 (hy+hs3) = +(2-hy+2-h3).

Therefore, the researchers came up with the idea of using
the sum () function as an aggregator. In all cases depicted in
figure 3] the sum of the feature values of the graphs being
compared is different. That shows the extended ability of the
GIN architecture to discriminate more powerfully than any
other GNN architecture.

As far as the combining step is concerned, the GIN ar-
chitecture learns a function with the use of Multilayer Per-
ceptrons (MLPs). This provides the necessary flexibility for
injectiveness, maximum possible discrimination ability as well
as the property of mapping similar graph structures to nearby
embeddings. The overall equation of aggregation and combine
steps in GIN is provided by the following equation [3}

hk) = MLP““)((l +e®) pl g Y h;’H)) 3)
ueN (v)

More information about the derivation of [3} as well as
theoretical basis can be found in [25]. The exact architecture
that was used for the proposed application consists of five
Multilayer Perceptrons (MLPs). Each of those perceptrons is
preceded with a pooling layer and succeeded with a batch
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Fig. 1.

Illustration of patient classification into a cancer-specific and randomized cancer group using explainable Graph Neural Networks. Each patient

is represented by the topology of an protein-protein interaction network (PPI). Nodes are enriched by multi-omic features from gene expression and DNA
Methylation (colored circles). The topology of each graph is the same for all patients, but the node feature values vary, reflecting the cancer-specific molecular

patterns of each patient.

Fig. 2. On the left side of the figure, the input and output grid of a two-
dimensional convolution operation with a kernel of size 3 x 3, zero padding,
and stride 1 is depicted. The kernel itself is not shown in the figures. The
kernel slides over parts of the input grid. On the right side, the two-hop
neighborhood of the centre node (marked with black color) is painted gray.
The features of the neighboring nodes will be used to define updated values
for the features of the currently processed node.

normalization layer. Following those, there are five fully con-
nected layers. Within the fully connected layers, each neuron
is connected to all neurons in the layer before and after that
layer. The MLPs consist of three layers, of which two are
fully connected layers and layer for batch normalization layer.
Batch normalization applies a transformation that maintains
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Fig. 3. Three pairs of small graphs that GNN architectures that use mean ()
and max () functions for aggregation cannot differentiate.

the mean output close to zero and the output standard deviation
close to one. This technique helps to compensate the vanish-
ing/exploding gradients problem to a certain extend [27]].

B. Explainable Al for disease subnetwork detection

In recent years, parallel to the development of different
Graph Neural Network architectures, several strategies were
invented to explain their decision process. Most of them are
built on the assumption that a part of the input was the most
important for the prediction in a similar way that the explana-
tion for an image classification CNN will point out the areas
in the image that were decisive and will ignore the ones that
contain background. Explainable AI methods usually search
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for relevant subgraphs and their motifs [28], [29], walks [30]
or even try to create Probabilistic Graphical Models [31], [32]]
which are causal structures, out of counterfactual examples
that are computed by informed optimization problems [33]].

GNNE«xplainer is used to compute the important subgraph
G of the computation graph G. of an input graph G that
is going to be explained. This is achieved by graph masking
as well as node feature masking, where the goal is to learn
to mask the relevant part of the computation graph as well
as the decisive node features. Those masks are found by
an optimization algorithm that iteratively tries to find the
substructure that maximizes the mutual information w.r.t. the
prediction score. Equation [] shows the optimization rule,
where Xg is a subset of the the features of the nodes in the
subgraph Gg. Y represents the predicted label distribution;
thereby the optimization process as a whole uses the change
of the predicted label’s distribution as “guidance”.

rrézisx MI (Y(Gs, Xs)) = H(Y) - H(Y|G = Gs,X = XS)
“)

The random variables are denoted with bold letters, whereas
instantiations (possible outcomes) thereof with non-bold let-
ters.

In this work we employ a simplified version of the GNNex-
plainer with an induced sampling scheme. Since we apply the
explanations on a graph classification task, where all graphs
have the same topology, the equation [ can be re-written as

where G is the original graph. We employ a node mask on X
such that a subset of nodes in X g can be inferred to maximize
mutual information with a minimal set of features. To make
the optimization process more efficient and tractable, the re-
searchers came up with several constraints and improvements.
For more details please see [28]. Accordingly, we solve the
following optimizing function by gradient decent.

c
mj@n; 1y = ] logPs(Y = |G, X = X x o(N)), (6)

where N € RY*#V gpecifies the learned feature node mask
passed through the sigmoid function 0. X x o(N) is the row-
wise multiplication of X, where the rows reflect the nodes
and the columns are representing the features. The number of
nodes in X can be constrained; this is a configurable parameter
in the implementation provided in the github repository. In the
above expression ¢ denotes one of the possible C classes of a
classification class.

GNNexplainer allows for node feature masks as well es edge
masks. The GNNexplainer, however, may not be applicable for
model-wide explanations [29]. This is due to the fact that it
optimizes a specified node and edge mask with regard to a
single input graph. As a consequence, explanations may not
reflect the global decisions made by the GNN classifier [29].
In fact, the mentioned problematic was recently addressed by

a method called PGExplainer [29]. However, the PGExplainer
explicitly works on edge masks and thus requires the GNN
model to internally adjust edge weights, which was not appli-
cable in our case. Thus, we propose a slight modification of
the GNNexplainer for model-wide explanations.

We randomly sample graphs from the input space, while
optimizing one single node feature mask N € R1#V After a
certain number of epochs the sampling scheme is repeated. As
a result, the values of the node feature mask converge to global
node importance values. This approach is very much related to
classical feature selection. Instead of inferring explanations for
a single instance, we provide feature importance values for the
whole set of samples. The proposed important node attributes
may be an efficient technique for GNN-based dimension
reduction, so that reduced subnetworks could provide more
parsimonious models which to this end may generalize better
on unseen test data.

Ultimately, disease subnetworks are detected with the fol-
lowing approach. First, we assigned edge relevant scores
by calculating the average node feature importances of two
connected nodes, inferred by our modified GNNexplainer. The
obtained edge-specific scores are used to weight the edges of
the PPI network. Following, a louvain method [34] for commu-
nity detection was applied to the weighted input graphs. The
detected communities are ranked according to their average
edge importance scores. The top-ranked community represents
the detected disease subnetwork.

C. Sanity checks on synthetic data

We have validated our approach on synthetic Barabasi
networks. We have generated 1000 networks comprising of
30 nodes each. Node feature values were generated from
a normal distribution with N(x = 0,0). For each of the
500 networks we sampled two node feature values from
N(p=-1,0),and N(p = 1, o) respectively for the other 500
networks. We assigned these feature values to two randomly
selected connected nodes. We have evaluated whether and
to what extend the GNNexplainer explanations successfully
uncover the selected edge and the corresponding nodes. We
varied the o values and on the stability and robustness of
the explanations. Results of these sanity checks are shown in
Figure [5] and Table [[] of the "Materials and Methods’ Section.

D. TCGA human cancer data

We have downloaded molecular multi-modal data from the
linkedomics.org server [35]. The authors provide harmonized
multi-omics data sets retrieved from The Cancer Genome
Atlas (TCGA) database (https://www.cancer.gov/tcga) , which
represents one of the largest collections of multi-omics data
sets. It contains molecular and genetic profiles for over 33
different cancer types from 20,000 individual tumor samples
[36]. Here, we analyzed three different cancer types, namely
Kidney Renal Clear Cell Carcinoma (KIRC), Breast Invasive
Carcinoma (BRCA), and Lung Adenocarcinoma (LUAD),
for which we detect cancer-specific subnetworks which are
substantially different from a randomized control group. The
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control group consists of 200 randomly sampled patients
across randomly selected cancer types.

We have downloaded gene expression (HiSeq) and DNA
methylation (HM450K) to enrich the nodes with feature
values. We harmonized the data sets such that for every
patient multi-source informations is available. Furthermore, we
filtered for cancer-relevant genes as proposed by [8]. Genes
with missing values at least for one patient were removed
from the analyses. The obtained numerical data matrices were
normalized using min-max normalization.

The protein-protein interaction network was retrieved from
the STRING database [37]. We only kept nodes for which
both, mRNA gene expression data and DNA methylation data
was available. We deleted edges with relevance scores lower
than the 95-percentile. In case this filtering resulted in a multi
graph, we kept the sub-network with the highest number of
nodes.

IV. RESULTS
A. Synthetic data sets

Results obtained from synthetic data indicate that the pro-
posed GNNexplainer node feature mask successfully uncovers
the GNN black-box decisions. Figure [] shows an example of
a simulated Barabasi graph whose node features are generated
with N(u = 0,0 = 0.1). The graph consists of 30 nodes
and 209 edges. We simulated 1000 graphs with that exact
same topology with varying the node feature values. The
features values of the selected edge 4-5 was generated from
N(p=—1,0 =0.1) for 500 graphs, and N(u = 1,0 = 0.1)
for the other 500 graphs. The sampling induced variation of the
GNNexplainer detects the selected edge, inferring the highest
score of 0.95 for it (see Figure [d] Notably, the selected edge is
detected even though it is not placed within a highly connected
community. This observation suggests that the GNN classifier
as well as the explainer are not biased towards nodes with
high edge degree.

We repeated the analyses with varying graph topologies and
variable o values of the selected edge node features. As can
be seen from Figure 5] the selected edge is within the top-
2 ranked edges in all cases, when o values are lower than
0.5. For o > 0.5, the accuracy of the GNN classifier reduces
significantly, and explanations get worse accordingly. For o =
0.3 a single outlier run with low coverage can be observed.
However, the median coverage values are still at 100%. Table
[ shows the median coverage values for the top-1 ranked edges
as well as the accuracy of the GNN classifier. As expected,
the more noise it added to the synthetic data, the lower is the
accuracy of the GNN classifier.

Interestingly, explanations in the case of ¢ = 0.3 are at
100% while the overall accuracy of the GNN model is at
98%. The better accuracy of the explanations is due to the
fact that the GNNexplainer perturbates the features such as
the predicted class becomes more likely. We believe that our
modified GNNexplainer can also be used as a dimension
reduction algorithm, where the most important nodes are
filtered and a new classifier is trained on this reduced set.
Further investigations are needed to elaborate on this potential
capacity.
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Fig. 4. Barabasi graph. Shown is a simulated barabasi graph with 30 nodes
and 29 edges. The edges are labeled by the importance scores obtained from
our modified GNNexplainer. Selected edge is 4-5 with the highest score of
0.93.
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Fig. 5. Results on synthetic Barabasi graphs. Shown is the coverage, which
is measured by the number of times the selected edge is ranked within the
top-k elements. The edge importance values are calculated based on the
GNNexplainer with induced sub-sampling.

B. Application to TCGA cancer data

The accuracy of the employed GNN model on the cancer
data sets is shown in Table ] The models were trained using
a validation set, and we applied an early stopping criteria. Test
performance is reported based on a 80% — 20% train-test data
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TABLE 1
PERFORMANCE OF THE GNN CLASSIFIER AND ITS EXPLANATIONS

Noise (c)  Accuracy of GNN classifier = Coverage of GNNexplainer
oc=0.1 100% 1
c=0.3 98% 1
oc=0.5 91% 0.94
oc=0."7 79% 0.75
oc=1 70% 0.44
TABLE II

ACCURACY OF THE GNN CLASSIFIER ON TCGA CANCER DATA

Cancer type mRNA  DNA Methylation  Multi-Omics

KIRC 0.63 0.75 0.89
BRCA 0.54 0.66 0.77
LUAD 0.60 0.91 0.88

split. The number of epochs was set to 20, and we kept the
model with lowest loss value on the validation set. This model
was finally applied to the hold-out test data set.

We could observe that in two out of three cases incorporat-
ing multiple biological sources was beneficial. An exception
was LUAD. The GNN model performed best when it was
trained exclusively on DNA Methylation data (see Table [II).
Interestingly, mRNA as a single-source node feature performed
worse than DNA Methylation for all analyzed cancer types.
This observation might indicate that KIRC, BRCA, and LUAD
have similar mRNA gene expression levels, but differ mostly
due to epigenetic factors. It would require a further in-depth
analysis in order to proof this hypothesis, and this is out of
scope for this article. Overall, the performance was best for
the KIRC data set, with an accuracy of 0.89, for which we
did further investigations.

We applied our modified GNNexplainer to the KIRC GNN
model in order to verify the most important network regions
for classification. From initially 2049 genes and 13588 edges,
we have detected 36 modules in total. The top-ranked module,
according to its average edge importance score, is shown
in Figure [f] The module consists of eight genes, namely
GLE1, POLR2A, SMO, SORL1, TNS1, TRIM25, UBRS, and
UTRN. These genes are connected by 22 edges. The genes
SORL1, SMO, and POLR2A have the highest connectivity
with four edges, where POLR2A has the highest average
edge importance with 0.88. The POLR2A gene is essential
for cell survival, and is almost always co-deleted with TP53
in many human cancers, including colorectal, breast, ovarian,
kidney, liver, and pancreatic cancer [38]. POLR2A was very
recently indentfied as a potential binding protein POLR2A of
ARGLUI, a potential therapeutic target gene [39].

As can be seen from Figure [] The edge between TRIM25
and POLRS2A has the highest edge importance with 0.9.
TRIM25 has an important RNA-binding role in antiviral
defense [40]. We did not find any indication of a special
importance of the interactions between POLR2A and TRIM25
within the current cancer literature. However, the fact that both
are binding genes makes an in-depth analyses intriguing.

V. DI1SCUSSION AND CONCLUSION

In this article we have introduced a framework for the detec-
tion of disease subnetworks. We argued that the incorporated
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Fig. 6. Kidney cancer disease subnetwork. Shown is the top-ranked

community inferred by our proposed explainable GNN pipeline. Edge weights
are calculated using the GNNexplainer with induced sub-sampling.

PPI knowledge-graph restricts the deep model to learn on more
reliable and biological meaningful trajectories compared to
classical deep learning approaches. This is important and it
may fasten the way towards the discovery of novel biomarker.

We have introduced a simple modification of the GNNex-
plainer program such that it computes model-wide explana-
tions. This was realized by randomly sampling networks from
the input space, while optimizing a single node mask. From
this node mask edge relevance scores were computed and
were assigned as edge weights to the PPI network. Disease
subnetworks are finally inferred by a weighted community
detection algorithm.

We have demonstrated PPI disease subnetwork detection
from patients suffering kidney cancer. Each patient was mod-
eled as a PPI network comprising multi-omic node features
from mRNA gene expression and DNA methylation data.

Finally, we have implemented our proposed methodology
within the GNN-SubNet program. We plan to develop this
program further and add features from various angles. For
instance, several additional GNN-based explainer will be
incorporated. Explainer like PGM-Explainer and GNN-LRP
are of particular interest. The PGM-Explainer is able to
demonstrate the dependencies of explained features in form
of conditional probabilities [33], which may contribute to
better causal understanding of the explanations. The GNN-
LRP method explains the GNN classifier using higher-order
expansions [30]. A main advantage compared to other methods
is that it is capable of reporting on both, positive contribution
as well as negative contribution of features to a particular
prediction. All this together could help to increase the inter-
pretability of the detected disease subnetworks.

The explanations of different explainer may differ with
regard to their quality and the introduced application. An in-
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depth comparison is needed which to this end may help for
more specialized methods tailored towards a specific applica-
tion domain.

There are many opportunities for future work. Biomedical
experts are increasingly faced with high-dimensional data sets,
accelerated by the trend toward precision medicine. Although
human experts excel at pattern recognition in dimensions of
less than three, most biomedical data exist in dimensions much
greater than three, making human manual analysis difficult,
even virtually impossible. Biomedical experts are therefore
less and less able to deal with such data in their daily routine,
which requires efficient, usable, and useful methods, algo-
rithms, and tools to interactively gain insight into such data. A
synergistic combination of graph theory [41]], topological [42]
and entropy [43] analysis methods seems to be very promising
for the future [44].

ABBREVATIONS

e CNN = Convolutional Neural Network

e GNN = Graph Neural Network

e GIN = Graph Isomorphism Network

e MLP = Multi Layer Perceptron

o Al = Attificial Intelligence

o XAI = Explainable Artificial Intelligence
e DT = Decision Tree

o DF = Decision Forest

e« TCGA = The Cancer Genome Atlas

o PPI = Protein-Protein Interaction Network
o KIRC = Kidney Renal Clear Cell Carcinoma
e BRCA = Breast Invasive Carcinoma

o LUAD = Lung Adenocarcinoma

o ReLU = Rectifiec Linear Unit
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