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Abstract 14 

The reliable mapping of species richness is a crucial step for the identification of areas of high 15 

conservation priority, alongside other value considerations. This is commonly done by overlapping 16 

range maps of individual species, which requires dense availability of occurrence data or relies on 17 

assumptions about the presence of species in unsampled areas deemed suitable by environmental 18 

niche models. Here we present a deep learning approach that directly estimates species richness, 19 

skipping the step of estimating individual species ranges. We train a neural network model based on 20 

species lists from inventory plots, which provide ground truthing for supervised machine learning. 21 

The model learns to predict species richness based on spatially associated variables, including 22 

climatic and geographic predictors, as well as counts of available species records from online 23 

databases. We assess the empirical utility of our approach by producing independently verifiable 24 

maps of alpha, beta and gamma plant diversity at high spatial resolutions for Australia, a continent 25 

with highly contrasting diversity patterns. Our deep learning framework provides a powerful and 26 

flexible new approach for estimating biodiversity patterns. 27 

  28 
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1 Introduction 29 

Since the very beginnings of biogeographic research, the estimation and extrapolation of species 30 

diversity has been of foremost interest (Humboldt, 1817; Arrhenius, 1921). It is well established that 31 

species diversity is distributed unevenly across space, generally following a latitudinal gradient, with 32 

increasing diversity from the poles toward the equator (MacArthur, 1965). On a regional level, it has 33 

been found that there are substantial differences in species richness among habitats, such as between 34 

a forested area and an open grassland (MacArthur, 1965). These observed spatial patterns have led to 35 

the formulation of three levels of species diversity: alpha, beta, and gamma diversity (Whittaker, 36 

1960). 37 

Alpha diversity (Whittaker, 1960) refers to diversity on a local scale, describing the species diversity 38 

(richness) within a functional community. For example, alpha diversity describes the observed 39 

species diversity within a defined plot or within a defined ecological unit, such as a pond, a field, or a 40 

patch of forest. The scale of such ecological units depends on the organism group of interest; while 41 

for birds a defined forest or grassland transect of several hundred m2 to several km2 may be 42 

appropriate to describe a species community, for insects this could be a single tree. For plants, alpha 43 

diversity is often equated to the count of species identified during the inventory of a vegetation plot 44 

of defined size (Revermann et al., 2016). 45 

Beta diversity, on the other hand, describes the amount of differentiation between species 46 

communities (Whittaker, 1960). Unlike the other levels of species diversity, the exact interpretation 47 

and quantification of beta diversity varies significantly across studies (see Tuomisto, 2010a, 2010b 48 

for a detailed review on this topic). Originally, beta diversity was defined as the ratio between 49 

gamma and alpha diversity (𝛽 = 𝛾/𝛼, sensu Whittaker, 1972). Today, one of the more commonly 50 

used measures of beta diversity is the Sørensen dissimilarity index (see Methods below for more 51 

detail), which captures spatial turnover as well as differences in diversity between sites (Koleff et al., 52 

2003). 53 

Gamma diversity describes the overall species diversity across communities within a larger 54 

geographic area (Whittaker, 1960). It is often summarized across biogeographic or political units, 55 

such as ecoregions or countries (Kier et al., 2005; Brummitt et al., 2021). Alternatively, studies 56 

commonly summarize gamma diversity within cells of a spatial grid of fixed cell-size (Goldie et al., 57 

2010; Thornhill et al., 2016). While alpha diversity represents the actual species diversity that can be 58 

measured at a given site, gamma diversity more broadly and loosely describes the diversity of species 59 

that can be found in the whole area. Gamma diversity is the most communicated level of species 60 

diversity when referring to biodiversity hotspots, with tropical regions, in particular the Neotropics, 61 

showing the globally highest gamma diversity values (Raven et al., 2020). Alpha diversity, on the 62 

other hand, shows different areas of maximum diversity, dependent on the size of the area surveyed, 63 

with temperate grasslands showing among the highest species richness on small plots (Wilson et al., 64 

2012). 65 

While alpha diversity can be directly counted for small plot sizes, for example during species 66 

inventories, this requires much effort and thus cannot be scaled up to large areas or whole continents. 67 

Therefore, many studies apply some form of modeling and estimation to derive diversity maps for 68 

larger areas. For example, gamma diversity is often inferred by modelling individual species 69 

distributions and adding these up to derive the total number of species that occur in a given area 70 

(Mutke and Barthlott, 2005; Barthlott et al., 2007). However, this approach has been shown to 71 

introduce substantial errors, when cross-checking the diversity predictions with actual species counts 72 
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in selected grid cells (Aranda and Lobo, 2011). A general shortcoming of these methods is that 73 

usually there is not sufficient data available to reliably model the individual ranges for each species. 74 

This problem intensifies with the size of the target group for which to estimate diversity patterns. In 75 

some cases, total species diversity is extrapolated for larger groups, based on a selected subset of taxa 76 

with good data coverage, under the simplistic assumption that the diversity patterns revealed by these 77 

taxa are representative for others (Kier et al., 2005), which is however often not the case (Ritter et al., 78 

2019). 79 

Alternative approaches have been applied to the task of diversity estimation and mapping, which skip 80 

the step of modelling individual species ranges. These often involve using occurrence records, floras, 81 

and checklists for large biogeographic regions (Mutke and Barthlott, 2005; Kreft and Jetz, 2007). 82 

While such approaches do not require to model distributions of individual species, they are 83 

particularly vulnerable to biases in data collection, as some taxa may be better represented in some 84 

checklists and biodiversity repositories than others. When models are applied, they usually assume a 85 

single diversity value within each of the regions analyzed, without accounting for fine-scale local 86 

fluctuations within these (sometimes large) areas. Although it may be possible to interpolate diversity 87 

values to a finer resolution using spatial autocorrelation of associated variables such as climatic 88 

predictors (Kreft and Jetz, 2007), such gap filling may be difficult to verify and often provides a false 89 

sense of confidence for data-poor regions.  90 

With the increasing availability of continental and global vegetation plot databases (Chytrý et al., 91 

2016; Bruelheide et al., 2019; Sabatini et al., 2021), a new data source with extended spatial coverage 92 

has become widely available for the task of large-scale diversity estimation. Recently, Večeřa et al. 93 

(2019) showed the potential of machine learning models (random forest models) to estimate the 94 

expected diversity for fixed size vegetation plots (alpha diversity), based on climatic and other 95 

predictors, when trained on alpha diversity data from vegetation plot databases. However, to our 96 

knowledge, available machine learning models cannot extrapolate vegetation plot data to larger areas 97 

and do not provide estimates of multiple metrics of biodiversity. 98 

Here we present a deep learning framework that uses neural network models (deep learning) to 99 

predict alpha, beta, and gamma diversity. Our approach requires neither geographic data of individual 100 

species, nor the manual extrapolation of species richness using methods such as species–area curves 101 

(Kier et al., 2005). Instead, our models inherently learn the species-area relationships, allowing 102 

prediction of the three diversity metrics at user-defined spatial scales. The models learn to predict 103 

plant diversity based on climatic and geographic predictors, measures of human impact, and 104 

sampling effort. 105 

We selected plot-based vegetation survey data from Australia (vascular plants; Tracheophyta) to 106 

empirically test the effectiveness of these neural network models to predict diversity patterns and 107 

validate our methodology. Australia, as an island continent, has the advantage of a clear delimitation 108 

of natural boundaries; it has high natural diversity and uneven biological sampling (González-Orozco 109 

et al., 2014; Cook et al., 2015; Laffan et al., 2016); high spatial heterogeneity with well-defined and 110 

contrasting biomes (Byrne et al., 2008, 2011; Macintyre and Mucina, 2021); a relatively well-111 

documented vascular flora with reliable national databases (https://avh.chah.org.au/; Sparrow et al., 112 

2021) that feed into the Global Biodiversity Information Facility (GBIF, gbif.org); good climatic data 113 

(http://www.bom.gov.au/climate/data/); and a large number of freely available plot-based vegetation 114 

records suitable for training deep learning frameworks (Sabatini et al., 2021). 115 

 116 
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2 Methods 117 

2.1 Vegetation plot data 118 

The values of alpha, beta, and gamma diversity used in this study to train the neural network models 119 

were derived from vegetation plot data (species inventories). We downloaded these data from the 120 

sPlotOpen database (Sabatini et al., 2021), only using plots where all vascular plants had been 121 

assessed. This resulted in a total of 7,896 vegetation plots for Australia (Fig. 1). For each vegetation 122 

plot, we compiled its area (in m2) and the list of species identified. From each of these sites we 123 

compiled measures for alpha, beta, and gamma diversity as described in more detail below (Fig. 1), 124 

which we used to train our models.  125 

Calculating gamma diversity required the definition of a surrounding area, preferably containing 126 

other vegetation plots, to determine the overall diversity found within the cumulative species lists of 127 

several neighboring vegetation plots (Fig. 2). To ensure that the same number of vegetation plots was 128 

used for calculating the gamma diversity of each site, we defined as the surrounding area a circle 129 

around each site encompassing exactly the N nearest neighbors (vegetation plots). The gamma 130 

diversity for each site was then determined as the number of unique species extracted from the 131 

species lists of the N nearest neighbors within the encompassing circle. After compiling diversity 132 

estimated for different values of N (Supplementary Figs. S1-S7), we chose an N of 50 for all models 133 

in this study, as this value led to the best compromise between a visually discernible spatial structure 134 

in the resulting beta and gamma diversity values, while also highlighting regional heterogeneity 135 

(Supplementary Fig. S3). 136 

The radius of this encompassing circle varied between sites, depending on the proximity of other 137 

vegetation plots relative to the given site. This radius was used as a feature in our models, allowing 138 

the neural network to learn the expected associations between gamma diversity and the size of the 139 

area for which it was calculated (the species-area curve), which we used later when making 140 

predictions with this model to adjust the spatial resolution of the predictions. 141 

Finally, beta diversity was calculated using the multiple-site implementation of the Sørensen 142 

dissimilarity index (𝛽𝑠𝑜𝑟), following the definition in (Baselga, 2010). For a given focal site j with N 143 

neighbors, we defined the focal site index as j=N+1. We iterated through the N neighboring sites (i) 144 

and applied the formula: 145 

 146 

with 147 

, 148 

where 𝑏𝑖𝑗 and 𝑏𝑗𝑖 are the number of species only present in site i and site j, respectively, 𝑆𝑖 is the total 149 

number of species in site i (alpha diversity from vegetation plot), and 𝑆𝑇 is the total number of 150 

species in all sites combined (gamma diversity). 151 

 152 

 153 
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2.2 Feature generation 154 

The alpha, beta, and gamma diversity metrics described above were used as labels to train three 155 

models based on a range of different features, one for each diversity metric. To ensure approximately 156 

equal size of all grid cells for the raster-based data used in this study, we transformed all spatial data 157 

into the cylindrical equal-area (CEA) projection, centered at 30 degrees latitude south of the equator. 158 

As a general measure of sampling effort, we compiled the number of recorded species occurrences, 159 

available on GBIF which were found in the vicinity of a given site. We first downloaded all non-160 

fossil vascular plant (Tracheophyta) occurrences for Australia from GBIF based on human 161 

observations and not flagged for geospatial issues (https://doi.org/10.15468/dl.kbq3d7). This includes 162 

both native and naturalized species, the latter having uneven spatial distributions related to broad 163 

disturbance histories in Australia (Leishman et al., 2017). This resulted in 13,580,191 occurrence 164 

records. We then discarded any records with non-binomial species names and cross-checked names 165 

of the remaining records against the World Checklist of Vascular Plants, a continuously updated 166 

collection of reviewed plant species names (Govaerts et al., 2021). This resulted in 12,622,786 167 

remaining GBIF records. For each site, we defined a 10×10 km window centered on the site’s 168 

coordinates; we then counted all GBIF occurrences within this window as a measure of sampling 169 

effort (Supplementary Fig. S8), as well as the number of species found in the GBIF records as a 170 

diversity proxy. Both counts were used as individual features in our models. 171 

We also compiled climatic and anthropogenic features for each site. First, we downloaded raster data 172 

for 19 bioclimatic variables (BIO1-BIO19) as well as data on elevation from the WorldClim database 173 

(worldclim.org, Fick and Hijmans, 2017). Second, we downloaded raster data on human footprint 174 

from wcshumanfootprint.org (Venter et al., 2016), which reflects the magnitude of human 175 

disturbance, including information on human population density, agricultural land use, presence of 176 

roads and several other data sources. There is a high coincidence between population density, 177 

agricultural development, and high biodiversity regions in Australia (Keith and Auld, 2017). All data 178 

rasters were downloaded at a resolution of 0.5 minutes of a degree (~1×1 km grid). The complete list 179 

of features (n=27) extracted for each site is shown in Table 1. All feature values were rescaled to 180 

range between 0 and 1 before being used as input in the neural network. 181 

2.3 Neural network architecture 182 

We built regression models using fully connected neural networks to learn and then infer species 183 

diversity based on the climatic, geographic, and human footprint features described above. While the 184 

values that can be used to train an NN regression model can theoretically take any range, it generally 185 

helps the model to converge when rescaling these values to a smaller range, approximately ranging 186 

between 0 to 1. We therefore rescaled our training labels by dividing the diversity values by the 187 

following scaling divisors, which were approximated to match the maximum values found in the 188 

training data for each diversity metric: alpha scaling divisor = 100, beta scaling divisor = 1, gamma 189 

scaling divisor = 800. 190 

Models differed in their number of hidden layers and number of nodes per layer (see model testing 191 

below, Table 2). Further, we applied different fractions of dropout in our models, which leads to 192 

randomly “dropping” the specified fraction of nodes in each hidden layer in each training epoch. This 193 

has the effect of reducing overfitting towards the training data, as the model is forced to rely less on 194 

individual highly optimized weights. We used the rectified linear units function (ReLU) as the 195 

activation function within each layer, and a softplus activation function for the output layer. The 196 
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softplus activation function in the output layer ensures that the output values (diversity estimates) are 197 

all within a positive range, while not imposing any restrictions on the possible maximum value. 198 

During training, the network was set to optimize for minimum mean absolute error (MAE) between 199 

the (rescaled) true diversity values and the network predictions. Of the 7,896 training instances 200 

(vegetation plot sites), we set aside 20% (1,579 instances) as an independent test set. We assigned 201 

another 20% (1,579 instances) of the data as a validation set, which we used to determine the optimal 202 

number of training epochs that minimizes the validation set MAE, while preventing overfitting 203 

towards the training data. All models were trained with the remaining 60% of the data (4,738 204 

instances), using a batch size of 40 instances. 205 

2.4 Model testing and evaluation 206 

We tested a range of different training configurations for each diversity metric, specifically testing 207 

different combinations of input features, different numbers of hidden layers and nodes per layer, and 208 

different dropout fractions (Table 2). Based on the diversity predictions for our independent test set, 209 

we calculated the mean absolute percentage error (MAPE) for each model, which differs from the 210 

MAE in being a relative error, scaled by the absolute values of the predictions. For each diversity 211 

metric we determined the best model configuration by picking the model with the lowest MAPE 212 

score. 213 

After identifying the most suitable settings through model testing, we retrained this best model for 214 

each diversity metric, using all 7,896 training instances. To avoid overfitting towards the training 215 

data, we trained these production models only until the optimal epoch determined during model 216 

testing. For each diversity metric we trained an ensemble of 50 models with different random starting 217 

seeds, using the best model settings. We averaged the predictions across all these 50 models for each 218 

diversity metric, and also calculated the coefficient of variation (standard deviation divided by mean) 219 

as a measure of variation of the predicted diversity values, representing uncertainty. 220 

2.5 Prediction data 221 

To produce the predictions of alpha, beta, and gamma diversity across Australia we defined a grid 222 

with a cell size of 10×10 km and extracted the 27 features for each of the cell centroids. We set the 223 

plotsize feature for all points to 500 m2 (most common vegetation plot size in training data, 224 

Supplementary Fig. S9). Therefore, the predicted alpha diversity values reflect the expected number 225 

of plant species to be found in a plot of size 500 m2. The radius feature, describing the size of the 226 

surrounding area around a point for which gamma diversity is estimated, was set to 5 km, to 227 

approximately match the size of the grid cells (10×10 km square). 228 

By adjusting the radius feature, our trained models can be used to predict beta and gamma diversity 229 

at user-defined spatial resolutions, as it can be adapted to match the given cell size. Similarly, 230 

adjusting the plot size feature allows us to predict alpha diversity for any given plot size. This enables 231 

great flexibility in predicting species diversity at different spatial resolutions of the prediction grid, 232 

while inherently accounting for species-area relationships, as these are learned by the model. For 233 

both, the radius feature as well as the plot size feature, the selected values for prediction should be 234 

chosen to be within the range of values present in the training data (Supplementary Fig. S9). 235 

 236 

 237 
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3 Results 238 

An overview of all tested models is shown in Table 2. The same model configuration was identified 239 

as the best model for beta and gamma diversity: all 27 features, 3 layers with 30, 15, and 5 nodes, 240 

respectively, and no dropout (dropout rate = 0). For alpha diversity, on the other hand, we identified 241 

as the best model the following configuration: 8 features (see Table 1), 2 layers with 30, and 5 nodes, 242 

and a dropout rate of 0.1. We identified the following training epochs as the stopping points for 243 

model training, as they constituted the best compromise between optimal model training and 244 

avoiding overfitting towards the training set (rounded to the nearest 50): 1500 epochs (alpha), 750 245 

epochs (beta), and 1700 epochs (gamma, see Supplementary Fig. S10). We used these numbers of 246 

training epochs for training of the 50 productions models for each diversity metric. 247 

The best alpha diversity model predicted the test set, consisting of approximately 1,600 vegetation 248 

plots, with a mean absolute percentage error (MAPE) of 58.72% (Fig. 3). This means that the 249 

predicted diversity for the average test set instance was within an approximately 60% range of the 250 

true diversity value. This comparably high prediction error is likely caused by the fact that the alpha 251 

diversity training instances show a complex spatial pattern, with no easily discernible areas of high or 252 

low diversity (Fig. 1). The fact that most of the training features are spatially autocorrelated (such as 253 

the BioClim climatic layers) makes it difficult for the model to deduct any meaningful signal from 254 

these features during training for predicting alpha diversity. The predictions made by an ensemble of 255 

50 trained alpha models show comparably large uncertainties in some areas (Fig. 4), with a median 256 

coefficient of variation across all cells of 0.30. The areas of highest uncertainty – exceeding the 257 

median value – are located mostly in the western half of Australia (grey areas in Fig. 4), presumably 258 

due to the limited training data from those regions (Fig. 1). 259 

The overall highest alpha diversity predictions are found along the eastern coast of Australia, from 260 

the northernmost tip of Queensland to the most southwestern part of Victoria (Fig. 4). A potential 261 

drop in alpha diversity is visible in the area around Cairns, extending about 100 km south from the 262 

city area, perhaps corresponding with the Burdekin-Lynd gap (Edwards et al., 2017), yet these grid 263 

cells are predicted with comparably high uncertainty, giving only weak support for this observed 264 

pattern. Other areas of medium to high alpha diversity inferred by our model are the top end of the 265 

Northern Territory, as well as the north Kimberley in northern Western Australia. 266 

The best beta diversity model showed an MAPE score of 7.21%, constituting a substantially higher 267 

accuracy compared to the alpha diversity model. Similarly, the median coefficient of variation across 268 

all prediction grid cells was very low with 0.09, indicating high consistency in the predicted diversity 269 

pattern. The high-uncertainty cells, identified as having a coefficient of variation above the median, 270 

largely overlap with those identified for the alpha diversity model, covering the majority of Western 271 

Australia (Fig. 4). Perhaps being the least intuitive of the three diversity metrics, areas with a high 272 

predicted beta diversity within our framework represent sites that are expected to show large 273 

differences in species composition between vegetation plots within the defined area (a given grid 274 

cell). 275 

Differently to alpha diversity, the majority of the eastern coastal areas show medium to low beta 276 

diversity values. Higher beta diversity is inferred for the southeastern part of Australia, particularly in 277 

higher elevations between Canberra and Melbourne. High species turnover is also inferred for the 278 

arid eastern desert of central Australia, as well as for south-western Australia. 279 
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With a MAPE score of only 6.09%, our gamma model performed the best out of the three different 280 

diversity metrics prediction models. The median coefficient of variation of gamma predictions across 281 

all of Australia was quantified at 0.37. As for the other two models, this variation was largely driven 282 

by high uncertainty grid cells in the western half of the continent (Fig. 4). Below we discuss the 283 

specific spatial diversity patterns present that were predicted by our models in more detail (see 284 

Discussion). 285 

When evaluating our model predictions on a per-biome basis, excluding high uncertainty predictions 286 

as identified in Fig. 4, we identify differences in predicted diversity between biome types (Fig. 5). 287 

For alpha and gamma diversity, we find the highest average diversity predictions for tropical forests, 288 

temperate forests, montane shrublands and grasslands, and tropical and subtropical grasslands and 289 

savannas. Our beta diversity estimates, on the other hand, show a rather uniform pattern across 290 

biomes, with the exception of montane grasslands and shrublands, which show the highest species 291 

turnover. The high beta diversity identified for the montane biome may be driven by the increased 292 

elevational gradients in this area, as species turnover has been found to be higher along elevational 293 

gradients (Venn et al., 2017; Albrecht et al., 2021). 294 

4 Discussion 295 

4.1 Using neural networks for diversity predictions 296 

Here we developed and applied a novel approach of estimating species diversity, using neural 297 

networks. We showcased our model, using vegetation plot data that is openly available through the 298 

sPlotOpen database for Australia, and showed that it can be used to accurately predict diversity on 299 

different scales (alpha, beta, and gamma) for any given point in Australia. This enables us to produce 300 

maps of species diversity at a wide range of spatial resolutions. The novelty of our approach, as 301 

compared to previous approaches of modelling species diversity, is that i) it does not require the 302 

modelling of distribution ranges for individual species (Mutke and Barthlott, 2005; Barthlott et al., 303 

2007), ii) it does not require an a priori definition of species-area relationships (Kier et al., 2005), iii) 304 

it does not require the assumption of monotonic and usually oversimplifying relationships (e.g. linear 305 

or exponential) between predictors and response variable (Cingolani et al., 2010), and iv) it allows 306 

the direct quantification of uncertainty in the predictions. 307 

Given these advantages, and the easy combination of different features of continuous or categorical 308 

nature, our deep learning model, represents a promising new tool for the task of predicting diversity. 309 

This study and other recent work (e.g., Večeřa et al., 2019) demonstrate how such models can be 310 

trained on readily available data from public databases. The accuracy of these models could be 311 

potentially further improved by compiling additional features deemed to be informative for the task 312 

of diversity prediction. Preferably such features should be based on data available in form of a spatial 313 

grids covering the entirety of the prediction area (in this case, Australia). Remote sensing data are a 314 

promising and potentially highly informative data source to fill up spatial gaps with increasingly 315 

detailed vegetation maps (Gholizadeh et al., 2020; Moat et al., 2021), and could be applied in future 316 

machine learning models for the task of diversity prediction. 317 

4.2 Correlation between diversity metrics 318 

Previous studies have found all three diversity metrics to be correlated (Cingolani et al., 2010). Here 319 

we find that the maps produced for alpha and for gamma diversity overall show similar diversity 320 

hotspots, while beta diversity shows a different spatial pattern (Figs. 4 and 5). There is a wide variety 321 

of definitions of beta diversity, some which are directly correlated to alpha and gamma diversity 322 
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(e.g., Whittaker’s original definition of 𝛽 = 𝛾/𝛼, sensu Whittaker, 1960). However, the Sørensen 323 

dissimilarity index 𝛽𝑠𝑜𝑟  used in this study does not display such a direct correlation to either alpha or 324 

gamma diversity, leading to the distinctly different spatial pattern observed in our predictions, which 325 

reflects the different patterns between this metric and the other two also observed in the training data 326 

(Fig. 1). 327 

While the patterns of alpha and gamma diversity inferred by our models are strongly correlated, they 328 

do differ in some areas. There is potential for areas with low gamma diversity to exhibit relatively 329 

high densities of species, leading to high alpha diversity estimates within smaller defined areas, such 330 

as the 500 m2 vegetation plots predicted by our models. This is particularly the case for vegetation 331 

types consisting of species with relatively small individual plant sizes (such as grasslands and 332 

shrublands), which in comparison with forests allow for a potentially denser accumulation of 333 

individuals. These differences in average plant size often lead to open habitat grasslands displaying 334 

comparatively high alpha diversity values, particularly on small plot sizes (Wilson et al., 2012). 335 

4.3 Spatial biases in training data 336 

Sampling biases pose a severe challenge for biodiversity reconstruction in countries of uneven spatial 337 

sampling, such as Australia (Piccolo et al., 2020). In our approach, we account for geographic bias in 338 

the training data by quantifying the uncertainty in the diversity predictions, which largely reflect 339 

those areas with little or no training instances. Additionally, we add the count of GBIF occurrence 340 

records in the surrounding of any given training instance as a measure of general sampling effort. 341 

Recent studies have addressed the issue of differences in sampling effort in more detail for defined 342 

regions and have pointed a way forward in addressing and accounting for this issue, using 343 

strategically sampled empirical data (Gioia and Hopper, 2017). However, such efforts are labor- and 344 

time-intensive and may not be feasible on continental scales. Alternatively, computational tools that 345 

can readily quantify spatial biases based on public database data are a promising way forward 346 

towards better accounting for the issue of spatial sampling biases (Zizka et al., 2021). 347 

4.4 Predicted diversity patterns for Australia 348 

Our model predictions of alpha and gamma diversity identify several vascular plant biodiversity 349 

hotspots for Australia, such as i) the tropical and subtropical forests in northeastern Queensland, ii) 350 

the temperate forests and the montane grasslands and shrublands of southeastern Australia, iii) the 351 

tropical savanna dominated ecosystems of the Northern Territory, and iv) northern Western Australia 352 

(Figs. 4 and 5). These areas of high vascular plant diversity largely correlate with findings of 353 

previous studies, e.g. (Steffen, 2009; Goldie et al., 2010; Yeates et al., 2014; Thornhill et al., 2016) 354 

and are highly correlated with broader climatic patterns (Ooi et al., 2017). 355 

One notable difference of our model predictions compared to previous work is the south-west of 356 

Western Australia, which is often inferred as a plant diversity hotspot (e.g. Myers et al., 2000; 357 

Steffen, 2009), but was predicted with comparably low alpha and gamma diversity by our models. 358 

This south-west Australian biodiversity hotspot may not have been predicted accurately – as also 359 

indicated by the large prediction uncertainty identified by our model – due to alternate evolutionary 360 

patterns in the region that have led to higher diversity than might otherwise be predicted in this very 361 

old and climatically buffered, infertile landscape (an OCBIL; see Hopper et al., 2016). It is also 362 

interesting to note that the models predict similar alpha diversity between the Kimberley region of 363 

Western Australia and the top end of the Northern Territory, as recent surveys demonstrate that this is 364 

indeed the case (R.L. Barrett & M.D. Barrett, unpubl. data). 365 
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Interestingly, our beta diversity model inferred high species turnover for the arid eastern desert of 366 

central Australia. While this region has the lowest estimates for alpha and gamma diversity, the 367 

species turnover (relative to the total diversity) is inferred to be among the highest on the continent, 368 

likely reflecting a complex mosaic of Mediterranean, temperate and arid vegetation types in this 369 

region (Fox, 2007). 370 
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11 Tables 397 

Table 1: Features used in the NN models.  398 

Index Feature name Data source Selected 27 Selected 8 Selected 6 

1 Longitude sPlotOpen X X 
 

2 Latitude sPlotOpen X X 
 

3 Sampling effort gbif.org X 
  

4 # of detected species gbif.org X 
  

5 Human footprint wcshumanfootprint.org X X X 
6 Elevation WorldClim X X X 
7 BIO1 (Annual mean temperature) WorldClim X X X 
8 BIO2 (Mean diurnal range) WorldClim X 

  

9 BIO3 (Isothermality) WorldClim X 
  

10 BIO4 (Temperature seasonality) WorldClim X 
  

11 BIO5 (Max. temp. warmest month) WorldClim X 
  

12 BIO6 (Min temp coldest month) WorldClim X 
  

13 BIO7 (Temperature annual range) WorldClim X 
  

14 BIO8 (Mean temp. wettest quarter) WorldClim X 
  

15 BIO9 (Mean temp. driest quarter) WorldClim X 
  

16 BIO10 (Mean temp. warmest quarter) WorldClim X 
  

17 BIO11 (Mean temp. coldest quarter) WorldClim X 
  

18 BIO12 (Annual precipitation) WorldClim X X X 
19 BIO13 (Precipitation wettest month) WorldClim X 

  

20 BIO14 (Precipitation driest month) WorldClim X 
  

21 BIO15 (Precipitation seasonality) WorldClim X 
  

22 BIO16 (Precipitation wettest quarter) WorldClim X 
  

23 BIO17 (Precipitation driest quarter) WorldClim X 
  

24 BIO18 (Precipitation warmest quarter) WorldClim X 
  

25 BIO19 (Precipitation coldest quarter WorldClim X 
  

26 Vegetation plot size Based on sPlotOpen data X X X 
27 Neighborhood radius Based on sPlotOpen data X X X 

 399 

  400 
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Table 2: Prediction accuracy for test set of all tested models. The last three columns show the mean 401 

average percentage error (MAPE) of the model predictions for an independent test set. The tested 402 

models differ in terms of the number of features (first column), number of layers and nodes per layer 403 

(second column), and the dropout rate (third column). The best models for each diversity metric are 404 

highlighted in bold. More detailed visualizations of the test set predictions for these best models are 405 

shown in Fig. 4. 406 

Features Nodes Dropout Alpha Beta Gamma 

6 30 0 0.6611 0.0750 0.1088 

6 30 0.1 0.7078 0.0773 0.1409 

6 30 0.3 0.7095 0.0779 0.1434 

6 30, 5 0 0.6440 0.0752 0.1013 

6 30, 5 0.1 0.6129 0.0761 0.1356 

6 30, 5 0.3 0.7103 0.0788 0.1457 

6 30, 15, 5 0 0.6570 0.0751 0.0823 

6 30, 15, 5 0.1 0.6111 0.0752 0.0951 

6 30, 15, 5 0.3 0.6725 0.0783 0.1312 

6 30, 20, 10, 5 0 0.6225 0.0743 0.0804 

6 30, 20, 10, 5 0.1 0.6542 0.0749 0.1012 

6 30, 20, 10, 5 0.3 0.6844 0.0794 0.1307 

8 30 0 0.6555 0.0742 0.1064 

8 30 0.1 0.7022 0.0753 0.1056 

8 30 0.3 0.6776 0.0763 0.1107 

8 30, 5 0 0.6301 0.0749 0.0851 

8 30, 5 0.1 0.5872 0.0757 0.1012 

8 30, 5 0.3 0.6740 0.0779 0.1298 

8 30, 15, 5 0 0.6179 0.0745 0.0673 

8 30, 15, 5 0.1 0.6335 0.0749 0.0911 

8 30, 15, 5 0.3 0.6606 0.0778 0.1173 

8 30, 20, 10, 5 0 0.6157 0.0741 0.0634 

8 30, 20, 10, 5 0.1 0.6047 0.0731 0.0877 

8 30, 20, 10, 5 0.3 0.7323 0.0788 0.1357 

27 30 0 0.6233 0.0732 0.0882 

27 30 0.1 0.6198 0.0741 0.0829 

27 30 0.3 0.6336 0.0750 0.0954 

27 30, 5 0 0.6073 0.0738 0.0835 

27 30, 5 0.1 0.5884 0.0736 0.0835 

27 30, 5 0.3 0.6157 0.0764 0.1016 

27 30, 15, 5 0 0.5921 0.0721 0.0609 

27 30, 15, 5 0.1 0.6165 0.0747 0.0819 

27 30, 15, 5 0.3 0.6343 0.0791 0.1145 

27 30, 20, 10, 5 0 0.5904 0.0722 0.0660 

27 30, 20, 10, 5 0.1 0.6153 0.0740 0.0987 

27 30, 20, 10, 5 0.3 0.6824 0.0786 0.1221 

 407 

  408 
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12 Figures 409 

 410 
Figure 1: Sites with vegetation plot data used in this study for model training and evaluation. Most 411 

of the vegetation plot sites used in this study (white points, 7,896 sites) are located in the easternmost 412 

two Australian states Queensland (northeast) and New South Wales (center east). Our uncertainty 413 

quantification (Fig. 4) addresses these spatial biases in the underlying data, showing higher 414 

prediction uncertainty in areas with low data coverage. The panels below the map show the compiled 415 

measure of alpha, beta, and gamma diversity for all vegetation plot sites. The satellite image of 416 

Australia was downloaded via ggmap (Kahle and Wickham, 2013). 417 

 418 

  419 
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 420 
Figure 2: Calculation of diversity measures from vegetation plot data. For a given vegetation plot 421 

(VP, solid red square, panel A) we identified the N nearest neighboring vegetation plots in space 422 

(N=3 in this example, represented by plots P1-P3). We exported the radius of the smallest circle 423 

encompassing all N neighbors as a feature for model training. Additionally, we exported the number 424 

of GBIF occurrences within a square of 10×10 km size around the given vegetation plot, as a 425 

measure of sampling effort in the general area. Having identified the nearest neighbors (P1-P3), we 426 

compared the species lists of these vegetation plots with the focal vegetation plot (VP, panel B). 427 

Alpha diversity represents the number of species found in the focal vegetation plot (VP), while 428 

gamma diversity represents the total diversity consisting of all species identified among the focal and 429 

neighboring vegetation plots. Beta diversity was calculated using the multiple-site Sørensen 430 

dissimilarity index (see Methods), based on the differences in species composition found among the 431 

selected vegetation plots.  432 
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 433 

 434 
Figure 3: Prediction accuracy of best models as determined on an independent test set. The scatter 435 

plots show the predicted diversity (y-axes) plotted against the true diversity (x-axes) for the best 436 

alpha, beta, and gamma diversity models. These estimates were made for a randomly selected and 437 

independent test set (N = 1,579 instances), exclusively consisting of instances that were not used 438 

during model training. The points are colored by the vegetation plot-size associated with each data 439 

point (see legend). The red diagonal line shows for reference the best-case scenario, if all labels were 440 

predicted 100% accurately. Histograms show the total distribution of values for the true diversity 441 

values (top) and the predicted diversity values (right). For each model we calculated the Mean 442 

Absolute Percentage Error (MAPE), shown in the top-right corner of each plot. 443 
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 445 
Figure 4: Neural Network predictions for alpha, beta, and gamma diversity of vascular plants. The 446 

NN models were trained separately on alpha, beta, or gamma diversity estimates, which we compiled 447 

from vegetation plot data (Fig. 1). The alpha diversity maps (left) show the expected number of 448 

vascular plant species expected to be found in a 500 m2 plot (most common plot-size found in the 449 

vegetation plot data, Supplementary Fig. S2). The beta diversity maps (center) quantifies the spatial 450 

turnover and differences in species compositions (Sørensen dissimilarity index, relative to the total 451 

diversity) between such 500 m2 plots within each grid cell (10×10 km). The gamma diversity maps 452 

show the total species richness within each grid cell. The top row shows the predictions averaged 453 

across an ensemble of 50 independently trained models, using different starting seeds. The center row 454 

shows the coefficient of variation for each grid cell, as a measure of prediction uncertainty. High 455 

values (dark grey/black) correspond to grid cells with less consistent diversity predictions. The 456 

bottom row shows the average diversity predictions for only those grid cells with the most consistent 457 

diversity predictions (coefficient of variation smaller than median across all grid cells), while high-458 

uncertainty grid cells are marked in grey. 459 
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 461 
Figure 5: Diversity predictions by biome. The violine plots show the range of diversity predictions 462 

across all grid cells within a given biome, excluding high uncertainty predictions (see. Fig. 4). The 463 

horizontal black lines inside the violine plots mark the mean estimate for each biome. The biomes, 464 

which are displayed on the map, were compiled from the Terrestrial Ecoregions of the World 465 

(TEOW) data (Olson et al., 2001). 466 
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