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Abstract
Motivation: Cell-cell communications regulate internal cellular states, e.g., gene expression and cell
functions, and play pivotal roles in normal development and disease states. Furthermore, single-cell RNA
sequencing methods have revealed cell-to-cell expression variability of highly variable genes (HVGs),
which is also crucial. Nevertheless, the regulation on cell-to-cell expression variability of HVGs via cell-cell
communications is still largely unexplored. The recent advent of spatial transcriptome methods has linked
gene expression profiles to the spatial context of single cells, which has provided opportunities to reveal
those regulations. The existing computational methods extract genes with expression levels influenced by
neighboring cell types. However, limitations remain in the quantitativeness and interpretability: they neither
focus on HVGs nor consider the effects of multiple neighboring cell types.
Results: Here, we propose CCPLS (Cell-Cell communications analysis by Partial Least Square regression
modeling), which is a statistical framework for identifying cell-cell communications as the effects of multiple
neighboring cell types on cell-to-cell expression variability of HVGs, based on the spatial transcriptome
data. For each cell type, CCPLS performs PLS regression modeling and reports coefficients as the
quantitative index of the cell-cell communications. Evaluation using simulated data showed our method
accurately estimated the effects of multiple neighboring cell types on HVGs. Furthermore, applications
to the two real datasets demonstrate that CCPLS can extract biologically interpretable insights from the
inferred cell-cell communications.
Availability: The R package is available at https://github.com/bioinfo-tsukuba/CCPLS. The data are
available at https://github.com/bioinfo-tsukuba/CCPLS_paper.
Contact: haruka.ozaki@md.tsukuba.ac.jp
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
Cell-cell communications regulate internal cellular states, e.g., gene
expression and cell functions, and play pivotal roles in normal development
and disease states (Sharpe and Pauken, 2018; Snijder and Pelkmans,
2011; Pelkmans, 2012). For example, in tumor progression, programmed
cell death ligand 1 (PD-L1) is expressed in a tumor cell that binds to
the programmed cell death protein 1 (PD-1) of T cells, thus regulating
T cell gene expression and weakening the anti-tumor growth response
(Shimizu et al., 2020). The PD-1 pathway inhibitors block this cell-
cell communication and thus stop the growth of tumor cells (Sharpe and

Pauken, 2018). Accordingly, it is essential to elucidate gene expression
regulation via cell-cell communications in order to understand and control
complex multicellular systems (Sharpe and Pauken, 2018; Snijder and
Pelkmans, 2011; Pelkmans, 2012).

Single-cell RNA sequencing (scRNA-seq) methods have been used to
study complex multicellular systems. These technologies have revealed
cell-to-cell expression variability of highly variable genes (HVGs) even in
the same cell type, which is crucial in the normal development and disease
states (Ben-Moshe and Itzkovitz, 2019; Satija et al., 2015; Stuart et al.,
2019). Nevertheless, the regulation on cell-to-cell expression variability of
HVGs via cell-cell communications has not been well characterized (Ben-
Moshe and Itzkovitz, 2019; Satija et al., 2015; Stuart et al., 2019). Instead
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of the expression of HVGs, the expression of ligand and receptor genes
have been the focus of the computational tools to infer potential cell-cell
communications using scRNA-seq data: these tools compare expression
levels of ligand and receptor genes between cell-type pairs (Armingol et al.,
2020; Hou et al., 2020; Nagai et al., 2021). However, such approaches
have several limitations regarding incompleteness of knowledge on the
ligand-receptor pairs, potential crosstalks among ligands and receptors,
and unavailability of spatial contexts of cells (Armingol et al., 2020;
Hou et al., 2020; Nagai et al., 2021). Moreover, the ligand-receptor
expression approach cannot directly provide insights into the effects of
cell-cell communications in most of the HVGs in the same cell type. It is
desirable to focus on the regulation on cell-to-cell expression variability
of HVGs via cell-cell communications.

As another remarkable aspect, intracellular gene expression regulation
is a multiple-input and multiple-output (MIMO) system, and a quantitative
understanding is of critical importance (Akimoto et al., 2013; Janes et al.,
2005). The regulation via cell-cell communications can also be considered
a MIMO system, in which the degree of neighboring cell-type existence
regulates the intracellular gene expression values. As an example of the
PD-1 pathway, antigen-presenting cells and the tumor cells cooperatively
regulate the gene expression of T cells, and the balance of such regulation
is crucial to cell fate decisions (Sharpe and Pauken, 2018). Besides cell-
cell communications via known molecular interactions, the cases in which
the gene expression in a cell is affected by the spatial arrangement and
combinations of the neighboring cells can be interpreted as MIMO systems
(Colombo and Cattaneo, 2021; Haanen, 2017; Hui and Bhatia, 2007 ). It is
essential to develop computational methods for estimating such a MIMO
system of cell-cell communications by using spatial spatial contexts of
cells.

The recent advent of spatial transcriptome methods has linked gene
expression profiles to the spatial context of single cells, which has
provided opportunities to reveal the regulation on cell-to-cell expression
variability of HVGs via cell-cell communications (Cho et al., 2021; Eng
et al., 2019; Hu et al., 2021b; Marx, 2021). Nevertheless, there is no
computational methods based on spatial transcriptome data for estimating
regulation on cell-to-cell expression variability of HVGs as a MIMO
system of cell-cell communications (Arnol et al., 2019; Dries et al.,
2021b; Hu et al., 2021a; Rao et al., 2021; Svensson et al., 2018; Tanevski
et al., 2022; Velten et al., 2022; Zhu et al., 2021), which could limit
quantitativeness and interpretability. For example, Giotto findICG extracts
genes with expression levels that are influenced by the neighboring cell
types; however, it neither considers the cooperation of neighboring cell
types nor quantifies the degree of regulation with each neighboring cell
type (Dries et al., 2021b). Other existing methods focus on the spatial
gene expression variability itself or gene-gene relationships and do not
focus on the effect of neighboring cell types on gene expression variability
(Arnol et al., 2019; Dries et al., 2021b; Hu et al., 2021a; Rao et al., 2021;
Svensson et al., 2018; Tanevski et al., 2022; Velten et al., 2022; Zhu et al.,
2021). Moreover, these tools do not explicitly focus on HVGs. Thus, there
is a need to develop methods to estimate the MIMO system of cell-cell
communications that focus on HVGs.

Here, we propose CCPLS (Cell-Cell communications analysis by
Partial Least Square regression modeling), which is a statistical framework
for identifying the MIMO system of cell-cell communications, i.e.,
regulation on cell-to-cell expression variability of HVGs by multiple
neighboring cell types, based on the spatial transcriptome data at a single-
cell resolution. CCPLS performs PLS regression modeling for each cell
type and reports the estimated coefficients as the quantitative index of
the cell-cell communications from each neighboring cell type. Evaluation
using simulated data showed our method accurately estimated the effects
of multiple neighboring cell types on HVGs. Furthermore, by applying
CCPLS to the two real datasets, we demonstrate CCPLS can be used

to extract biologically interpretable insights from the inferred cell-cell
communications.

2 Materials and Methods

2.1 Problem definition

Spatial transcriptome data at a single-cell resolution consist of a gene
expression matrix, a coordinate matrix, and a cell-type label vector. Let
N be the number of cells, G be the number of genes, and M be the
number of cell types. The gene expression matrix Y ∈ RN×G contains
the expression value yi,g for each cell i (1 ≤ i ≤ N ) and gene g (
1 ≤ g ≤ G). The coordinate matrix P ∈ RN×2 contains the two-
dimensional spatial coordinate of cells (pi,1, pi,2) (1 ≤ i ≤ N). The
cell-type label vector L = {li|li ∈ {1, ...,M}} contains the cell-type
label li of the M unique cell types. We assume the existence of highly
variable genes (HVGs) specific to cell typem (1 ≤ m ≤M ), i.e., h(m),
which is estimated from the expression matrix Y(m) containing cells i
(1 ≤ i ≤ N(m)) of cell type m (Stuart et al., 2019; Hafemeister and
Satija, 2019).

CCPLS does not estimate cell-cell communications via ligand-receptor
interactions but estimates the effect on the gene expression of a cell type
due to the arrangement and combination of neighboring cell types as a
MIMO system. There are two key assumptions of CCPLS: (i) the cell-
cell communications are composed of the linear sum of the effects of
neighboring cell types; (ii) the effects of neighboring cell types are the
same within each cell type. Accordingly, CCPLS aims to extract HVGs
h(m) whose expression values are significantly explained by a linear sum
of the effects by neighboring cell types f as follows:

y
(m)
i,h =

∑
f

x
(m)
i,f w

(m)
f,h + εi,h ,

where h ∈ h(m), w(m)
f,h denotes coefficient, x(m)

i,f denotes neighboring
cell-type score, and εi,h is the residue term.

Simultaneously, CCPLS aims to estimate the coefficient w(m)
f,h as

the direction and degree of regulation via cell-cell communications by
neighboring cell types f for each HVG h in a manner specific to cell type
m.

2.2 CCPLS

2.2.1 Methods overview
The core of CCPLS is PLS regression modeling performed by setting
HVG expression values y(m)

i,h as responsive variables and neighboring

cell-type scores x(m)
i,f as explanatory variables for the each cell type m.

After the statistical evaluation, CCPLS performs HVGs h(m) clustering,
which is reported with filtered coefficients as the direction and degree
of regulation in the cell-cell communication. The input data for CCPLS
are the expression matrix Y, the coordinate matrix P, and the cell-type
label vector L. CCPLS consists of six main steps as described in sections
2.2.2-2.2.7, respectively.

Except for the calculation of neighboring cell-type scores, CCPLS is
principally based on existing procedures. In other words, by calculating
the neighboring cell-type scores, CCPLS realizes a multiple regression
approach for estimating the MIMO system of cell-cell communications.

A schematic illustration of the MIMO system of cell-cell
communications is shown in Figure 1a, while Figure 1b illustrates the
workflow of CCPLS.

2.2.2 Step (i): Extraction of HVG
CCPLS divides the input expression matrix Y into each cell type Y′(m),
the expression matrix comprised of cells i for each unique cell type m.
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Fig. 1. Overview of CCPLS. (a) Schematic illustration of the multiple-input and multiple-output (MIMO) system of cell-cell communications that CCPLS aims to identify. (b) Workflow
of CCPLS.

CCPLS filters out the genes with an expression value of 0 in all the
cells within cell type m from Y′(m), which is subsequently normalized
and for each transformed gene z-score. Simultaneously, CCPLS extracts
cell-type-m-specific HVG h(m) and preprocessed HVG expression value
y
(m)
i,h (h = 1, . . . , H) and matrix Y(m) ∈ RN(m)×H (Hafemeister and

Satija, 2019; Stuart et al., 2019).

2.2.3 Step (ii): Calculation of neighboring cell-type score
For each cell type m, CCPLS calculates the degree of neighboring cell-
type existence x(m)

i,f , denoted as the neighboring cell-type score, by using
the coordinate matrix P and cell-type label vector L. CCPLS calculates

un-preprocessed neighboring cell-type score x
′(m)
i,f based on a function

that decays with distance between two cells i and j as follows:

x
′(m)
i,f =

∑
j

bi,f,jexp(−
disti,j

dist0
) ,

where the bi,f,j is the binary value indicating whether the cell type lj of
cell j (1 ≤ j ≤ N, j 6= i) belongs to cell type f , and the disti,j is
the Euclidean distance calculated from the coordinates of the two cells i
and j. The value of dist0 is the constant set as the minimum value of the
Euclidean distance of all the combinations of two cells in the coordinate
matrixP. CCPLS performs z-score transformation on the un-preprocessed

neighboring cell-type score x
′(m)
i,f for each neighboring cell type f and

calculates the preprocessed neighboring cell-type score matrix X(m). As
described here, CCPLS employs a Gaussian kernel similar to the previous
studies (Arnol et al., 2019; Dang et al. (2020)).
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2.2.4 Step (iii): PLS regression modeling
For each cell type m, CCPLS performs PLS regression modeling
(Höskuldsson, 1988). CCPLS employs PLS regression because its
advantage is the capability of handling the “small N, large P” problem
which is one of the characteristics of the spatial transcriptome data (Abdi,
2010; Nagasawa et al., 2021). The PLS regression model can be understood
as two steps regression model (Akimoto et al., 2013; Höskuldsson, 1988).

The first step can be considered as consisting of the development of
outer relations (X and Y metric individually). These data matrices are
decomposed into latent variables plus a residue matrix. The sub-matrices
can be represented as the product of the scores and the loadings which can
be re-grouped in independent matrices as follows:

X = TPᵀ + E,

Y = UQᵀ + F,

where T ∈ RN×C and U ∈ RN×C are the score matrices, and PL×C

and Q ∈ RH×C are the loading matrices, for the X and Y matrices,
respectively.C is the component number for PLS regression . The matrices
E ∈ RN×L and F ∈ RN×H correspond to the residues associated with
the PLS regression modeling.

The second step is a linear inner relation linking between T and U,

U = TD + H,

where D ∈ RC×C is the diagonal matrix and H ∈ RN×C denotes the
residue matrix. Here, PLS regression modeling yields by,

Y = XW + G,

where W ∈ RL×H is the matrix of coefficients

W = XᵀU(TᵀXXᵀU)−1TᵀY,

and G ∈ RN×H is the residue matrix.
For the each cell type m, CCPLS estimates this coefficient matrix

W(m) by the Y(m) and X(m). W(m) consists of the each coefficients
w

(m)
f,h (1 ≤ f ≤M , h ∈ {h(m)}), which are the direction and degree of

regulation in the cell-cell communications which CCPLS aims to estimate.
The each coefficient consists of each component c as the equationw(m)

f,h =

Σcw
(m)
f,h,c.

CCPLS uses component number C that minimizes the Mean Squared
Error (MSE) of 10-folds cross-validation (Bengio and Grandvalet, 2004).

2.2.5 Step (vi): Filtering of coefficients
For each cell type m, CCPLS performs two-step filtering, a t-test of
factor loadings, and a non-parametric test of the coefficients w(m)

f,h

(Yamamoto et al., 2014). In each step, the p-values are false discovery rate
(FDR)-adjusted by the Benjamini-Hochberg (BH) method, respectively
(Benjamini and Hochberg, 1995). The first step filtered out coefficients
in each component wf,h,c while remaining summed coefficients wf,h =

Σcwf,h,c with small values. Based on this tendency, CCPLS employed
the two steps filtering. See text S1 in the Supplementary Information for
the detailed procedures.

2.2.6 Step (v): Clustering of HVGs
For each cell type m, CCPLS performs HVG clustering by the k-means
method on the filtered coefficients (Yuan and Yang, 2019). The cluster
number k is determined by the Silhouette method (Yuan and Yang, 2019).
The minimum and the maximum integer values of k are set as 2 and 15,
respectively. Before clustering, CCPLS filters out the HVGs whose filtered
coefficients are all zero.

2.2.7 Step (vi): Report
CCPLS outputs a heat map and bipartite graph. The heat map reports the
filtered coefficients for each combination of HVGs h and neighboring cell
types f . The bipartite graph visualizes the relationship between the HVG
clusters and the neighboring cell types f , where the widths of edges are
the averaged values of the filtered coefficients of each HVG cluster.

2.3 Datasets

2.3.1 Simulated dataset
For the evaluation of CCPLS performance, we first simulated a dataset
according to the following procedures. To realistically simulate the cell
positions and ratio of cell types, our simulation experiments were based
on the seqFISH+ real dataset (Eng et al., 2019).

We used the coordinate matrix P of the seqFISH+ real dataset.
To simplify the cell types, we prepared a cell-type label vector L by
substituting cell types A-D as the cell-type label vector of the seqFISH+
real dataset. We set four cell types as inputs and four HVG clusters as
outputs, which contained 500 genes, respectively (Fig. 2a). HVG cluster
1 was a multiple-input case, while clusters 2-3 were single-input cases.
HVG cluster 4 was not affected by neighboring cell types.

We simulated the preprocessed expression value of cell type A
according to the equation ý(A)

i,h =
∑

f x
(A)
i,f w

(A)
f,h + αei,h. We prepared

coefficientw(A)
f,h according to Table 1, in which the coefficient iswmax or

0. We calculated the preprocessed neighboring cell-type score x(A)
i,f using

the prepared coordinate matrix P and the cell-type label vector L. We
simulated the term ei,h as Gaussian noise, with a mean of 0 and standard
deviations of each respective HVG estimated by Mean-CV regression
modeling of the seqFISH+ real dataset, which was then multiplied by the
constant α, which were used for the evaluation of CCPLS performance
(Fig. 2 and Fig. S1). Note that we did not perform experiments in count
scale, which was originally un-recommended in the literature (Oshlack
and Wakefield, 2009; Van Verk et al., 2013), and instead simulated scaled
data.

For further evaluation, instead of the Gaussian noise term ei,h,
we simulated another noise term e

′
i,h as noise derived from a gamma

distribution (Fig. S2a). We simulated e
′
i,h for each gene h by using a

gamma distribution whose parameters were based on the seqFISH+ real
dataset. This noise matrix was log-scaled and z-score normalized as e

′
i,h.

In section 3.1, we present the application of CCPLS to this simulated
dataset, including an evaluation of the results of cell type A. We first set
the wmax and α to 1 in Figure 2a and then changed in Figure S1a. Next,
we changed the noise term ei,h with e

′
i,h (Fig. S2). See text S2 in the

Supplementary Information for the detailed procedures.

Table 1. Coefficients w(A)
f,h in the simulation experiments

Neighboring HVG cluster HVG cluster HVG cluster HVG cluster
cell type 1 2 3 4

A wmax 0 0 0
B 0 wmax 0 0
C wmax 0 wmax 0
D 0 0 0 0

2.3.2 SeqFISH+ real dataset
For the demonstration of CCPLS with a real dataset, we selected
the seqFISH+ mouse somatosensory cortex dataset provided by Giotto
(https://rubd.github.io/Giotto_site/articles/mouse_seqFISH_cortex_200914)
(Dries et al., 2021b). This seqFISH+ dataset profiled 10,000 genes in
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Fig. 2. Evaluation using the simulated data. (a) Schematic illustration of the simulation settings. (b) Heat map generated by CCPLS. The color of the heat map indicates the coefficient.
Rows and columns correspond to neighboring cell types and highly variable genes (HVGs), respectively. (c) Bipartite graph generated by CCPLS. The width of each edge indicates the
average coefficients for each combination of HVG clusters and neighboring cell types. (d) Performance indexes and comparison with Giotto findICG. The calculated indexes are as follows:
adjusted rand index, Pearson correlation coefficient, precision, and recall of each HVG cluster. Red and green indicate CCPLS and Giotto findICG results, respectively.

523 cells with 12 distinct cell types at a single-cell resolution by using a
super-resolved imaging technique (Eng et al., 2019).

In section 3.2, we describe the results of applying CCPLS to this
seqFISH+ real dataset. We further assigned the contributor cell types,
which were the common neighboring cell types in each HVG cluster.
We performed Gene Ontology (GO) enrichment analysis for each HVG
cluster to investigate the associated biological insights. See text S2 in the
Supplementary Information for the detailed procedures.

2.3.3 Seq-Scope real dataset
For the demonstration of CCPLS with a real dataset, we selected the Seq-
Scope colon dataset, which can be acquired from the repository of Deep
Blue Data (https://doi.org/10.7302/cjfe-wa35) (Cho et al., 2021). This Seq-
Scope dataset profiled 10,806 genes in 4,489 cells with nine distinct cell
types at a single-cell resolution by using Illumina flow-cell-based spatial
barcoding techniques (Cho et al., 2021).

In section 3.3, we describe the results of applying CCPLS to this Seq-
Scope real dataset, including the assignment of contributor cell types and
GO enrichment analysis according to the same procedure referred to in
section 2.3.2.

3 Results

3.1 CCPLS yields an accurate estimation of cell-cell
communications

To evaluate CCPLS performance, we prepared simulated data with
parameters based on the seqFISH+ real dataset and then applied CCPLS
to this simulated data as described in Section 2.3.1 (Fig. 2a). We obtained
a heat map and bipartite graph, which indicate the coefficient as the
direction and degree of regulation in the cell-cell communication for each
combination of HVGs and neighboring cell types by CCPLS (Fig. 2 b-
c). Cell types C and B exhibited upregulation of HVG clusters 1 and
2, respectively (Fig. 2 b-c), while cell types A and C cooperatively
up-regulated HVG cluster 3 (Fig. 2b-c). Three cell types, A, B, and
C, exhibited upregulation of HVG cluster 4, whose degree of cell-cell
communications was relatively low (Fig. 2c).

We assigned the estimated HVG clusters 1-4 with the predefined
clusters. The estimated HVG clusters 1, 2, and 3 corresponded to the
predefined HVG clusters 3, 2, and 1, respectively. The estimated HVG
cluster 4 was assigned as “others”. Note that CCPLS did not report
HVGs whose filtered coefficients were all zero, which corresponded
to the predefined HVG cluster 4 in this case. Based on the cluster
assignment, we calculated ten indexes for performance evaluation (Fig.
2d). All the calculated indexes for CCPLS results were greater than
0.97, which indicated that CCPLS estimated the prepared coefficients and
the predefined HVG clusters with high performance. We also compared
CCPLS with the existing method Giotto findICG, which was outperformed
by CCPLS in this simulation experiment (Dries et al., 2021b) (Fig. 2d).
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Fig. 3. Application to the seqFISH+ real dataset. (a) Schematic illustration of the seqFISH+ dataset. (b) Overlap of highly variable genes (HVGs) between cell types. Rows and columns
both correspond to cell types. The color of the heat map indicates the ratio of the overlapping HVGs. iNeuron: inhibitory neuron, endothelial: endothelial cells, eNeuron: excitatory neuron,
mural: mural cells, Olig: oligodendrocyte. (c) Heat map of oligodendrocyte precursor cells (OPCs) generated by CCPLS. Rows correspond to neighboring cell types. Columns correspond to
HVGs. The color of the heat map indicates the coefficient. (d) Bipartite graph of OPCs generated by CCPLS. The width of the edge indicates the averaged coefficients for each combination
of HVG clusters and neighboring cell types. (e) Gene Ontology (GO) enrichment of HVG clusters 1 and 2 for OPCs. The top 10 GO terms are indicated. (f) Schematic illustration of the
obtained biological insights on OPCs.

In HVG cluster 1 of the multiple-input case, the performance between the
two methods was most different. Note that we did not compare CCPLS
to the other methods, which do not estimate the effect of neighboring cell
types (Arnol et al., 2019; Dries et al., 2021b; Hu et al., 2021a; Rao et al.,
2021; Svensson et al., 2018; Tanevski et al., 2022; Velten et al., 2022; Zhu
et al., 2021) (Table S1).

Next, we examined the performance limits of CCPLS by changing
wmax and α, the parameters for adjusting the degree of the cell-cell
communications and Gaussian noise, respectively (Fig. S1a). According
to the same procedures shown in Figure 2, we calculated the ten indexes
(Fig. S1b). In each wmax, these 10 indexes decreased when α increased.
These ten indexes were greater than 0.97 for conditions 1-5 and 7, which
indicated the estimations were successful. In conditions 6 and 8, these ten
indexes were relatively lower and moderate. The estimation failed under
only condition 3, for which the eight indexes were less than 0.02 (Fig.
S1b).

We further investigated the difference between the failed and successful
conditions by calculating the index of variance proportion (V P ) as the
ratio of the variance derived from the regression model term not but the
Gaussian noise term. In each wmax, V P decreased when α increased,
which indicated that the higher α conditions were more severe, such that
the variance associated with cell-cell communications was more difficult to

distinguish from noise (Fig. S1c). The V P of the failed conditions were
less than 0.04, while the V P of the successful conditions were greater
than 0.61. The estimation did not work well under excessively severe
V P conditions, while CCPLS estimated the prepared coefficients and the
predefined HVG clusters with high performance in the relatively higher
V P cases. Note that CCPLS did not estimate any HVGs and cell-cell
communications from randomly generated data (data not shown).

We also generated another simulated dataset by replacing Gaussian
noise ei,h with noise derived from gamma distribution e

′
i,h (See section

2.3.1) and evaluated the performance of CCPLS on the Gamma-noise
simulated dataset. The result showed similar performance and tendency
with the cases by using Gaussian noise (Fig. S2).

These simulation experiments showed that CCPLS yielded an accurate
estimation of the MIMO system of cell-cell communications.

3.2 Application to seqFISH+ real dataset reveals
biologically consistent insights associated with
oligodendrocyte differentiation

To demonstrate CCPLS with a real dataset, we applied CCPLS to the
seqFISH+ real dataset (Eng et al., 2019; Dries et al., 2021b). Procedures
were as described in Section 2.3.2. Before we applied CCPLS, we
examined the overlap of the extracted HVGs among all 12 of the cell
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Fig. 4. Application to the Seq-Scope real dataset. (a) Schematic illustration of the Seq-Scope dataset. (b) Overlap of highly variable genes (HVGs) between cell types. Rows and columns
both correspond to cell types. The color of the heat map indicates the ratio of the overlapping HVGs. (c) Heat map of the immature B cell generated by CCPLS. Rows correspond to
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(f) Schematic illustration of the obtained biological insights on the immature B cell.

types in the seqFISH+ real dataset (Fig. 3b). The mean value of the
ratio of the overlapping HVGs was 0.25. The majority of the HVGs were
different in each comparison, which indicated that the HVGs were uniquely
characterized for each cell type.

To estimate the cell-cell communications associated with these HVGs
for each cell type, we applied CCPLS. We obtained the HVGs and the cell-
cell communications for six cell types out of all twelve cell types (Fig. 3c-d
and S2-3). Focusing on the oligodendrocyte precursor cells (OPCs), two
HVG clusters were estimated (Fig. 3c-d). We assigned the contributor cell
types, which indicated that three cell types (astrocytes, oligodendrocyte
(Olig), and OPCs) cooperatively up-regulated HVG clusters 1 and 2 in the
OPCs.

In addition, we performed GO enrichment analysis to investigate
associated biological insights. The GO enrichment analysis was performed
on the mixed gene list of HVG clusters 1 and 2, as HVG clusters 1
and 2 have the same contributor cell types. The GO enrichment of HVG
clusters 1 and 2 in OPCs indicated the 25 enriched GO terms (Fig. S5).
The top 10 GO terms are indicated in Figure 4e (Fig. 3e). GO terms
related to differentiation were enriched, such as “glial cell differentiation,”
indicating that differentiation of OPCs was induced by communicating
with astrocytes, Olig, and OPCs itself (Fig. 3f). Additionally, we plotted
the positions of the cells in the 2D space and showed the expression level

of Mag gene, which is a genes annotated with the GO term “glial cell
differentiation” (Fig. S3). This visualization showed that the OPCs near
astrocytes, Olig, and OPCs showed high expression of Mag genes.

These obtained insights were principally consistent with previous in
vivo mice experiments showing that astrocytes induce the differentiation
of OPCs into oligodendrocytes (Nutma et al., 2020) (Fig. 3f). In contrast,
when we applied Giotto findICG (Dries et al., 2021b) on the SeqFISH+
dataset, few overlaps were observed between the detected genes by Giotto
findICG and CCPLS (Fig. S4). Moreover, for the cell type pairs where the
receiver cell type is OPCs and the neighboring cell type is astrocyte, Olig,
or OPCs itself, we found no GO enrichment in the genes detected by Giotto
findICG (data not shown). Furthermore, these genes showed fewer overlap
with the genes annotated with the GO term “glial cell differentiation” than
CCPLS (Fig. S5). Considering that CCPLS can handle combinations of
neighboring cell types, these results suggest that CCPLS detects cell-cell
communications that cannot be detected by Giotto findICG.

The heat map, bipartite graph, contributor cell type assignment,
and GO enrichment analysis results for all cell types are shown in the
Supplementary Information (Fig. S6-9, respectively). This application to
the seqFISH+ real dataset indicated the capability of CCPLS to extract
biologically interpretable insights.
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3.3 Application to Seq-Scope real dataset suggests
epithelial cell development in immature B cell

For the further demonstration of CCPLS using a real dataset, we applied
CCPLS to the Seq-Scope real dataset (Cho et al., 2021). The procedures
followed are as described in Section 2.3.3. Before we applied CCPLS,
we examined the overlapping of the extracted HVGs between all nine
cell types in the Seq-Scope real dataset (Fig. 4b). The mean value of the
ratio of the overlap HVG was 0.31. The majority of the HVGs differed
between each comparison, which indicated that the HVGs were uniquely
characterized for each cell type.

To estimate cell-cell communications associated with these HVGs for
each cell type, we applied CCPLS. We obtained the HVGs and the cell-cell
communications for eight cell types out of all nine cell types (Fig. 4c-d and
S6-7). Focusing on the immature B cell, nine HVG clusters were estimated
(Fig. 4c-d). We assigned the contributor cell types, which indicated that
the immature B cell and the Fibroblast cell types cooperatively down-
regulated HVG cluster 1 in the immature B cell. In HVG clusters 2 to 9,
there was one contributing cell type associated with up-regulation. The
contributor cell types in clusters 2 to 9 were immature B cell, DCSC, IgA
B cell, Macrophage, Smooth Muscle, Stem, Paneth-like, and IgG B cell,
respectively.

In addition, we performed GO enrichment analysis to investigate
potential biological insights. The GO enrichment of cluster 4 for the
immature B cell indicated, among the eight enriched GO terms, “epithelial
cell development” was the most enriched term (Fig. 4e). We further plotted
the positions of the cells in the 2D space and visualized the expression level
of Gpx1 gene, a gene annotated with the GO “epithelial cell development”,
in B cell-Immature (Fig. S10), showing that the B cell-Immature cells
on the boundary between B cell-Immature and B cell-IgA showed high
expression of Gpx1 genes.

These results suggested that epithelial cell development of the
immature B cell occurred through communicating with IgA B cells (Fig.
4f), which have not been reported previously to the best of our knowledge
(Goto, 2019) and would be deserving of further investigation. In contrast,
when we applied Giotto findICG (Dries et al., 2021b) on the Seq-Scope
dataset, less than 30 percent of genes were overlapped on average (Fig.
S11). For the cell type pairs where the receiver cell type is immature B cell
and the neighboring cell type is IgA B cell, we found no GO enrichment
in genes detected by Giotto findICG (data not shown). Furthermore, we
examined the number of overlap between genes of GO “epithelial cell
development”, genes detected by CCPLS, and genes detected by Giotto
findICG in those cell type pairs (Fig. S12), revealing the genes annotated
wtih the GO term “epithelial cell development” were detected by only
CCPLS (15 of 15 genes).

The heat map, bipartite graph, contributor cell type assignment, and
GO enrichment analysis results for all the cell types are shown in the
Supplementary Information, respectively (Fig. S13-16). The application
to the Seq-Scope real dataset demonstrate the capability of CCPLS to
extract biologically interpretable insights.

4 Discussion
In this study, we propose CCPLS (Cell-Cell communications analysis by
Partial Least Square regression modeling), which is a statistical framework
for identifying the MIMO system of cell-cell communications, i.e., gene
expression regulation by multiple neighboring cell types, based on the
spatial transcriptome data at a single-cell resolution. CCPLS estimates
regulation on cell-to-cell expression variation of HVGs via cell-cell
communications not limited to ligand-receptor pairs. The core of CCPLS
is PLS regression modeling performed by setting the HVGs expression
values as the responsive variables and the neighboring cell-type scores as

the explanatory variables for each cell type. After the statistical evaluation,
CCPLS performs HVG clustering, which is reported with coefficients
as the direction and degree of regulation in the cell-cell communication.
Evaluation using simulated data showed accurate estimation by CCPLS.
The application of CCPLS to the two real spatial transcriptome datasets
demonstrated the capability to extract biologically interpretable insights.

CCPLS differs from the existing method Giotto findICG in that CCPLS
quantitatively evaluates cell-cell communications as a MIMO system by
including cooperation of neighboring cell types, which may have revealed
the biological insights derived from the applications to the two real datasets.
In the simulation experiments, CCPLS outperformed Giotto findICG,
especially with regard to HVG cluster 1, which is a multiple-input case.

The application of CCPLS to the seqFISH+ real dataset showed that
the differentiation in the OPCs occurred through communicating with
astrocytes, Olig, and OPCs itself, which was principally consistent with
previous in vivo mice experiments and not identified by Giotto findICG
(Dries et al., 2021b; Nutma et al., 2020). The application to the Seq-
Scope real dataset suggested that epithelial cell development is induced in
the immature B cell by communicating with the IgG B cells, which has
not been reported previously to the best of our knowledge (Goto, 2019).
Accordingly, further experimental follow-up studies are merited. Other
existing methods, which do not focus on the effect of neighboring cell
types, may have missed these findings (Arnol et al., 2019; Dries et al.,
2021b; Hu et al., 2021a; Svensson et al., 2018; Tanevski et al., 2022;
Velten et al., 2022; Zhu et al., 2021). As another characteristic, CCPLS
focuses on HVGs not limited to ligand-receptor pairs, which may have
also enabled it to reveal the biological insights noted above.

The exploration of cell-cell communications in combination with
spatial transcriptome data is still largely incomplete. CCPLS would be
effective for exploring drug targets as in the case of the PD1 pathway,
which led to a breakthrough drug discovery (Sharpe and Pauken, 2018).
For example, the treatment of cold tumors, which are composed of tumor
cells under a severe microenvironment with few neighboring T cells, is still
considered to be a particular challenge (Haanen, 2017). The severe tumor
progression possibly derived from the cold tumor-specific combinations
of HVGs and neighboring cell types, which thus may be candidates for
drug targeting. Specifically, CCPLS would be suitable in cases where cell
arrangement causes gene expression changes.

The limitations and perspectives in this study are as follows. The first
is the model assumption of CCPLS. In this study, we assumed that highly
variable genes can be explained by a linear combination of neighboring
cell-type scores. Several studies exemplify changes in gene expression is
associated with or induced by the placement of surrounding cell types in
multicellular systems (Colombo and Cattaneo, 2021; Haanen, 2017; Hui
and Bhatia, 2007). Such a method of detecting the effect of surrounding
cell types on gene expression could be biologically useful. For CCPLS, we
decided to assume a linear combination of neighboring cell-type scores is
a simple model, which is easy to interpret and computationally tractable.
However, it is possible that the refinement of the mathematical model of
the effect of cell type on gene expression (e.g., nonlinear relationships
among cell types) is an important issue to be addressed in the future.

The second is the potential modifications of CCPLS. Although CCPLS
employed PLS regression, the other sparse regression can be candidates
such as lasso or ridge regression, whose implementations and evaluations
are an intended focus of our future work (Tibshirani, 1996). CCPLS
employed a Gaussian kernel for calculating the neighboring cell-type score
similar to the previous studies (Arnol et al., 2019; Dang et al., 2020).
However, the other kernels such as Matern kernel or exponential kernel can
be possible, whose implementations and evaluations are also an intended
focus of our future work (Pustokhina et al., 2021). CCPLS selected dist0
as the minimum value of the Euclidean distance of all the combinations of
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two cells, while the other selection procedures may work. The selection
of parameter dist0 is also one of our future works.

The third is the incorporation of cell-cell communications other than
the neighboring cell effects. CCPLS explicitly handles combinations of
neighboring cell types as advantages compared to the existing methods
(Arnol et al., 2019; Dries et al., 2021b; Hu et al., 2021a; Rao et al., 2021;
Svensson et al., 2018; Tanevski et al., 2022; Velten et al., 2022; Zhu et al.,
2021) (Table S1), while CCPLS neither extracts nonlinear relationships
nor estimates the cell-cell communications derived from factors beyond
the neighboring cell-type score, such as ligand-receptor pairs and cell-
cell communications via long-range effect (Dries et al., 2021a; Fechner
and Goodman, 2018; Longo et al., 2021; Palla et al., 2022; Rao et al.,
2021; Sapir and Tzlil, 2017). Handling molecular pathways involved in
the MIMO system is an intended focus of our future work.

The fourth is the extension of CCPLS to other types of spatially
resolved omics data. CCPLS does not receive as input spatial transcriptome
data with a multiple-cell resolution as is characteristic of 10x Genomics
Visium and Slide-seq datasets (Rodriques et al., 2019; Stickels et al., 2021;
Asp et al., 2020). Expansions of CCPLS to address these limitations are an
intended focus of our future work. In addition, the responsive expression
values can be replaced by the other omics data such as spatial metabolome
or proteome data, which is also an intended focus of our future work
(Alexandrov, 2020; Bhatia et al., 2021; Dyring-Andersen et al., 2020;
Geier et al., 2020; Liu et al., 2020; Seydel, 2021).

Currently, collaborative consortiums are accumulating large-scale
spatial transcriptome data (BRAIN Initiative Cell Census Network
(BICCN), 2021; Zhang et al., 2021; Regev et al., 2017), and CCPLS
can be readily applied to these large-scale datasets. CCPLS is provided as
a package in the R statistical computing environment, and its calculation
time was less than 10 minutes for each demonstration presented in this
study. In summary, CCPLS provides novel insights into regulation on
cell-to-cell expression variability of HVGs via cell-cell communications.
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