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Abstract The bacterium E. coli is widely used to produce recombinant proteins such
as growth hormone and insulin. One inconvenience with E. coli cultures is the secretion of
acetate through overflow metabolism. Acetate inhibits cell growth and represents a carbon
diversion, which results in several negative effects on protein production. One way to over-
come this problem is the use of a synthetic consortium of two different E. coli strains, one
producing recombinant proteins and one reducing the acetate concentration. In this paper,
we study a chemostat model of such a synthetic community where both strains are allowed
to produce recombinant proteins. We give necessary and sufficient conditions for the exis-
tence of a coexistence equilibrium and show that it is unique. Based on this equilibrium,
we define a multi-objective optimization problem for the maximization of two important
bioprocess performance metrics, process yield and productivity. Solving numerically this
problem, we find the best available trade-offs between the metrics. Under optimal operation
of the mixed community, both strains must produce the protein of interest, and not only
one (distribution instead of division of labor). Moreover, in this regime acetate secretion by
one strain is necessary for the survival of the other (syntrophy). The results thus illustrate
how complex multi-level dynamics shape the optimal production of recombinant proteins
by synthetic microbial consortia.

Keywords: Microbial consortia; Pareto optimality; Dynamical systems; Chemostat;
Production of recombinant proteins
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1 Introduction

Escherichia coli (E. coli) is one of the most widely used bacteria for large-scale production
of recombinant proteins such as insulin or the human growth hormone (Baeshen et al., 2015;
Huang et al., 2012). The preferred carbon source for E. coli, as for many other bacteria,
is glucose, supporting a faster growth rate compared to other sugars (Görke and Stülke,
2008; Wolfe, 2005). One problem with E. coli cultures grown on glucose is that fast growth
leads to the secretion of acetate, a phenomenon known as overflow metabolism (Basan et al.,
2015; Enjalbert et al., 2017). The resulting accumulation of acetate in the medium inhibits
growth and represents a diversion of carbon, thus resulting in several negative effects on
protein production (Eiteman and Altman, 2006; Luli and Strohl, 1990).

Different strategies have been proposed to overcome acetate formation. For example,
some strategies prevent acetate overflow by deleting genes in acetate metabolism or by
forcing cells to take up glucose at a rate below the overflow threshold (De Mey et al.,
2007; Eiteman and Altman, 2006). These strategies have several inconveniencies, including
suboptimal growth or secretion of other fermentation products. Other strategies aim to
remove acetate from the culture medium. Acetate removal can be done, for example, with
a dialysis reactor (Fuchs et al., 2002) or with macroporous ion-exchange resins (Huang
et al., 2012). A promising alternative, inspired by naturally occurring syntrophic microbial
consortia (Rosenzweig et al., 1994), consists in introducing an additional E. coli strain which
has been metabolically engineered to consume acetate (Bernstein et al., 2012).

Along these lines, in recent theoretical work Mauri et al. (2020) proposed a coarse-grained
mathematical model of a syntrophic consortium and investigated under which conditions it
could improve the production of recombinant proteins as compared to mono-cultures. The
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model accounts for two different E. coli strains growing together: one producing the protein
of interest (producers), and one reducing the presence of acetate (cleaners). As highlighted
by the authors, optimizing the production of recombinant proteins in such a mixed culture
may lead to gains in productivity (gram product per hour), but at the expense of diverting
subtrate away from the producer to the cleaner, thus leading to a lower process yield (gram
product per gram substrate). This trade-off between productivity and yield on the consor-
tium level is a generalization of a well-known trade-off on the level of individual species,
where high yield of protein production comes with an increased metabolic load that limits
growth and therefore productivity (Kurland and Dong, 1996; Wu et al., 2016). Optimiz-
ing the performance of microbial consortia is a challenge for current industrial applications
(Hays et al., 2015; Jagmann and Philipp, 2014; Pandhal and Noirel, 2014; Roell et al., 2019),
because it requires the simultaneous optimization of individual microbial species and their
interactions (Shong et al., 2012). Mathematical modeling is of great help in understanding
and optimizing such complex multi-level dynamical systems.

In this work, we propose a theoretical study on the coexistence and optimization of
a modified version of the above synthetic producer-cleaner consortium in which both E.
coli strains produce recombinant proteins. We hypothesize that this may alleviate the
productivity-yield trade-off in that some of the carbon diverted to the cleaners can be utilized
for protein production. We first propose an extension of the mathematical model of Mauri
et al. (2020) to account for the production of recombinant proteins by cleaners. Then, we
study conditions for a coexistence equilibrium. In general, the long-term coexistence of two
populations in a chemostat is not guaranteed. When two populations compete for a growth-
limiting substrate, only one population survives (Hardin, 1960). Recent work on syntrophic
relationships, in which one species produces an inhibitor (a metabolic by-product) that
serves as a nutrient for the other species, have shown that coexistence is possible (Harvey
et al., 2014; Heßeler et al., 2006; Sari et al., 2012; Stump and Klausmeier, 2016). The mixed
culture studied in this work accounts for competition and syntrophy, so that establishing
coexistence is not trivial. We determine necessary and sufficient mathematical conditions
for a coexistence equilibrium.

Based on this equilibrium, we define a multi-objective optimization problem (MOP) for
maximizing productivity and process yield. The solution of the MOP provides a graphical
description, known as Pareto optimal front, of the combinations of productivity and process
yield such that one metric cannot be improved without degrading the other (Miettinen,
2012). We show that, when cleaners are allowed to produce proteins as well, the Pareto
optimal front is pushed towards higher levels of productivity and process yield. That is,
the division of labor between a strain producing recombinant proteins and another strain
cleaning up acetate is suboptimal as compared to the distribution of the production task
over the two strains. Moreover, in order to attain the required growth rates along the Pareto
optimal front, the cleaners need to take up not only glucose but also acetate secreted by
the producers. In other words, the syntrophic relationship between the two strains is a
necessary property for optimal production.

Our paper is organized as follows. In Section 2, we describe the chemostat model of the
synthetic microbial community. In Section 3, we state Theorem 3.6 that gives necessary
and sufficient conditions for the existence of a unique coexistence steady state. In Section
4, we define the process yield and productivity associated with each coexistence steady
state. Then, we study the solutions of the multi-objective optimization problem (MOP) of
simultaneously maximizing the process yield and productivity. The paper includes four Ap-
pendices with proofs and details of the algorithms to numerically determine the coexistence
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Figure 1: Schematic diagram of a chemostat used for the production of recombinant proteins
(Hp +Hc). The chemostat is fed at a rate F with a glucose concentration Gin. The reactor
is emptied at the rate F keeping a constant volume V . The concentrations of producers
(Bp) and cleaners (Bc), glucose (G), and acetate (A) are homogeneous in the medium. The
dilution rate D is defined as F/V . See Table 1 for the units of the variables.

equilibrium and the solutions of the MOP.

2 Model description

The description of the model of the E. coli community follows that given by Mauri et al.
(2020). Consider a chemostat (see Figure 1) in which two different strains of E. coli grow.
We will refer to these strains as producers (with concentration Bp) and cleaners (with con-
centration Bc). Both E. coli strains can grow by taking up glucose (with concentration G).
The glucose uptake rates are denoted rgup,p and rgup,c for producers and cleaners, respectively.
The glucose uptake rate by producers is given by

rgup,p(G,A) = kg
G

G+Kg

Θa

A+ Θa
,

where kg is the maximal uptake rate of glucose, Kg is a half saturation constant, A is the
acetate concentration, and Θ is a constant representing the inhibitory effect of acetate. In
cleaners, the gene ptsG is deleted. This gene encodes a major subunit of the glucose uptake
system (Deutscher et al., 2006), so that its deletion reduces the glucose uptake rate. rgup,c
is then given by

rgup,c(G,A) = βrgup,p(G,A), (1)

where β ∈ [0, 1] is a dimensionless constant, reflecting the deletion of the gene ptsG. If β = 1,
the gene ptsG is present and both strains take up glucose at the same rate. The units of
the variables and rates are summarized in Table 1.

When the glucose uptake rate of E. coli is above a threshold rate l, then cells secrete
acetate through overflow metabolism (Basan et al., 2015). The overflow rates are denoted
by raover,p and raover,c for producers and cleaners, respectively. They are defined as

raover,p = kover max{0, rgup,p − l} and raover,c = kover max{0, rgup,c − l},
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Variables Unit Description
Bp gDW L−1 Biomass concentration of producers
Bc gDW L−1 Biomass concentration of cleaners
G g L−1 Concentration of glucose
A g L−1 Concentration of acetate
Hp gDW L−1 Concentration of recombinant proteins in producers
Hc gDW L−1 Concentration of recombinant proteins in cleaners
Rates
rgup,p h−1 Specific glucose uptake rate of producers
rgup,c h−1 Specific glucose uptake rate of cleaners
raup,p h−1 Specific acetate uptake rate of producers
raup,c h−1 Specific acetate uptake rate of cleaners
raover,p h−1 Specific acetate secretion rate of producers
raover,c h−1 Specific acetate secretion rate of cleaners

Table 1: Variables and rates in the model of producer-cleaner consortium given by the
system (8)-(9).

where kover is a proportionality constant. Note that the maximal glucose uptake rate of
cleaners is given by βkg. Thus, if

βkg ≤ l (2)

then cleaners cannot secrete acetate. This property is satisfied by the parameters in Table
2, in accordance with the fact that cleaners are primarily designed to remove acetate from
the medium.

In the presence of glucose, E. coli cells cannot grow on acetate, a phenomenon known
as Carbon Catabolite Repression (CCR) (Kremling et al., 2015; Wolfe, 2005). The uptake
rates of acetate are denoted by raup,p and raup,c for producers and cleaners, respectively. The
acetate uptake rate by producers is given by

raup,p(G,A) = ka
A

A+Ka
d(rgup,p(G,A)), (3)

where ka is the maximal acetate uptake rate, Ka is a half-saturation constant, and d is a
down-regulation function accounting for CCR. Before describing the function d, we define
raup,p. The assimilation of acetate by E. coli can be increased with a plasmid enabling the
inducible overexpression of the native gene acs, coding for the enzyme acetyl-CoA synthetase
(Lin et al., 2006). Hence, the uptake rate of acetate by cleaners is

raup,c(G,A) = ka
A

A+Ka
d(rgup,c(G,A)) + kAcs

A

A+KAcs
, (4)

where kAcs is the maximal acetate uptake rate due to overexpression of the gene acs and
KAcs is a half-saturation constant. Note that if cleaners are not genetically modified, then
β = 1 (see (1)) and kAcs = 0. In that case, both acetate and glucose uptake rates, are equal
for both strains.

The down-regulation function d represents the inhibitory effect of glucose uptake and
decreases as the glucose uptake rate increases. In the work of Mauri et al. (2020), the
down-regulation function is defined as

d̂(y) =
Θg

Θg + y
, y = rgup,p, r

g
up,c (5)
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Figure 2: Down-regulation function d compared to the down-regulation function Θg/(Θg +
y). Parameters are taken from Table 2.

with Θg a constant. We modify the description of the down-regulation function (5) as
follows:

d(y) = max

{
0, (1 + a)

Θg

Θg + y
− a
}
, y = rgup,p, r

g
up,c (6)

with a = Θg/l. The main motivation to describe d as in (6) arises from the following
property:

if y ≥ l, then d(y) = 0.1 (7)

This property states that if overflow metabolism occurs (i.e., the glucose uptake rate is
higher than l) then there is no acetate uptake, which is qualitatively consistent with CCR
(Wolfe, 2005). An important advantage of (6) is that it facilitates the mathematical analysis
of the model (see below). Figure 2 compares the two alternatives of d. In Appendix D, we
show that our optimization results are insensitive to this model change.

Both strains carry a plasmid for the expression of a recombinant protein. The concentra-
tion of proteins produced by producers and cleaners are denoted by Hp and Hc, respectively.
The fraction of biomass production assigned to the synthesis of recombinant protein is de-
termined by the (dimensionless) product yield constants Yh/p and Yh/c. In the model of
Mauri et al. (2020), cleaners cannot produce heterologous proteins and they mainly serve
to reduce the acetate concentration in the medium. In this new model, the carbon lost in
the form of acetate can be recovered by cleaners and transformed into recombinant protein.

The specific rate of biomass production per unit of biomass, including Bp and Hp, is
given by

fp(G,A) = Ygr
g
up,p(G,A)− Yaraover,p(G,A) + Yar

a
up,p(G,A),

with Ya and Yg yield coefficients. Note that Ygr
g
up,p and Yar

a
up,p are gains of carbon due to

glucose and acetate uptake, respectively, and Yar
a
over,p is a loss of carbon due to overflow

metabolism. Similarly, the specific rate of cleaner biomass production per unit of biomass
is given by

fc(G,A) = Ygr
g
up,c(G,A)− Yaraover,c(G,A) + Yar

a
up,c(G,A).

.

1This can be seen by noting that d is decreasing and that d(l) = 0.
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The evolution of Bp, Bc, G, and A is now defined by

dBp
dt

= (1− Yh/p)fp(·)Bp − kdegBp −DBp,

dBc
dt

= (1− Yh/c)fc(·)Bc − kdegBc −DBc,

dG

dt
= D(Gin −G)− rgup,p(·)Bp − rgup,c(·)Bc,

dA

dt
= −DA+ [raover,p(·)− raup,p(·)]Bp + [raover,c(·)− raup,c(·)]Bc,

(8)

and the evolution of the recombinant protein concentrations is given by

dHp

dt
= Yh/pfp(·)Bp − kdegHp −DHp,

dHc

dt
= Yh/cfc(·)Bc − kdegHc −DHc.

(9)

System (8)-(9) can be seen as an extension of the model of Mauri et al. (2020). Indeed, if
Yh/c = 0 and d is taken as (5), then (8)-(9) is equivalent to the model of Mauri et al. (2020).
Note that the model has been intentionally split into two subsystems, (8) and (9), such that
(8) is uncoupled from (9). To establish the existence of coexistence steady states, we only
need to study system (8), but for optimizing the production of recombinant proteins, we
must study both.

Figure 3 shows the steady-state solution of (8) obtained by simulation from three different
kinds of initial conditions: the absence of cleaners, the absence of producers, the presence
of both. These simulations suggest that (8) admits at most three non-trivial equilibria:

(I) An equilibrium with the presence of producers but absence of cleaners (see Figure
3A). In this equilibrium the acetate concentration in the bioreactor may be zero or
positive.

(II) An equilibrium with the presence of cleaners but absence of producers. Since cleaners
do not produce acetate (because (2) holds), the acetate concentration is zero.

(III) A coexistence equilibrium (see Figure 3C and 3D).

Note that, at equilibrium, the growth rate of any species present in the bioreactor (that is,
(1− Yh/p)fp − kdeg for the producer, and (1− Yh/c)fc − kdeg for the cleaner) must be equal
to D. We are especially interested in coexistence equilibria. We observe the existence of an
interval of values of D (shaded area), which depends on the values of Yh/p and Yh/c, such
that coexistence is possible. In the following section we determine necessary and sufficient
conditions for the existence of a coexistence equilibrium.
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Figure 3: Steady-state solutions of (8) obtained by simulation for different values of the
dilution rate and two different pairs of values for Yh/p and Yh/c. D

a is the dilution rate above
which acetate overflow occurs when producers grow individually. Dp and Dc are the dilution
rates at which producers and cleaners go extinct when growing individually. The dilution
rates Da, Dp, and Dc are formally defined in Propositions 3.1 and 3.4. The shaded area
represents the values of the dilution rate at which coexistence is possible. The darker shaded
area corresponds to values of D lower than Dc and the lighter shaded area corresponds to
values of D lower than Dp and higher than or equal to Dc. A. Bc(0) = 0, Bp(0) > 0 (absence
of cleaners). B. Bc(0) > 0, Bp(0) = 0 (absence of producers). C and D. Bc(0), Bp(0) > 0
(presence of producers and cleaners).
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Parameter Value Unit Description
kg 1.53 h−1 Maximal glucose uptake rate
Kg 0.09 g L−1 Glucose half-saturation constant
Θa 0.52 g/L Acetate inhibition constant
ka 0.97 h−1 Maximal acetate uptake rate
Ka 0.5 g L−1 Acetate half-saturation constant
Θg 0.25 g L−1 Glucose uptake inhibition constant
kover 0.17 −
l 0.7 h−1 Overflow metabolism threshold rate
Yg 0.44 gDW g−1 Yield coefficient
Ya 0.3 gDW g−1 Yield coefficient
β 0.26 −
kAcs 1.46 h−1

KAcs 0.012 g L−1

Yh/p 0 - 1
Yh/c 0 - 1
kdeg 0.0044 h−1 Degradation rate of producers
D - h−1 Dilution rate
Gin - g L−1 Input glucose concentration

Table 2: Parameters and their values taken from the work of Mauri et al. (2020).

3 Coexistence at steady states

In this section, we characterize the existence of coexistence equilibria of (8). We first present
some results on the existence of equilibria with the presence of only one bacterial population.
Then, based on these equilibria, we state the main result on coexistence. To state our results,
some assumptions are necessary. The first assumption is

Yg − koverYa > 0, (10)

which is verified by the parameters in Table 2. The assumption implies that the func-
tion g(G,A) := Ygr

g
up,p(G,A)− Yaraover,p(G,A) is strictly increasing with respect to G and

strictly decreasing with respect to A (Mart́ınez and Gouzé, 2021). This monotonicity of
g is necessary to prove the uniqueness of the equilibrium with producers and no cleaners
(Proposition 3.1). We also assume that

rgup,p(Gin, 0) > l, (11)

in agreement with the parameter values listed in Table 2. During long-term operation of
the bioreactor in presence of bacteria, the glucose concentration in the medium cannot be
higher than Gin. Then, if (11) does not hold (i.e., rgup,p(Gin, 0) ≤ l), overflow metabolism
is impossible in the long-term, and the dynamics of (8) is reduced to that of a classical
chemostat model with two competitors for one substrate (glucose) (Smith and Waltman,
1995). Note that assumptions (10) and (11) have been used by Mart́ınez and Gouzé (2021)
to study a simplified version of (8) without cleaners.

The following proposition characterizes the existence of steady states without cleaners.
The proof is adapted from Proposition 1 by Mart́ınez and Gouzé (2021), where a similar
result is presented, but in the absence of acetate consumption (raup,p = 0).
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Proposition 3.1 (Producer steady state). Assume that (10) and (11) hold. Let us define
Dp := (1− Yh/p)fp(Gin, 0)− kdeg. We have:

(a) If Dp > D, then (8) admits a unique equilibrium with the presence of producers and ab-
sence of cleaners, denoted by Ep = (Bpp , 0, G

p, Ap). Moreover, for Da = (1−Yh/p)Ygl−
kdeg we have:

(I) If Da > D, then Ap = 0 and rgup,p(G
p, 0) < l.

(II) If Da = D, then Ap = 0 and rgup,p(G
p, 0) = l.

(III) If Da < D, then Ap > 0 and rgup,p(G
p, Ap) > l.

(b) If Dp ≤ D, then (8) has no equilibrium with the presence of producers and absence of
cleaners.

Proof. See Appendix A.

Remark 3.2 (Acetate secretion). Proposition 3.1 shows the existence of a threshold dilution
rate characterizing the presence of acetate in the medium, denoted by Da (see Figure 3A).
As we will see later, a coexistence equilibrium for (8) is only possible if the dilution rate is
higher than Da. Proposition 3.1 also introduces Dp, the threshold dilution rate above which
producers grow extinct. No coexistence equilibrium is possible for dilution rates higher than
Dp.

Remark 3.3 (Acetate consumption). Note that there is no acetate consumption by the
bacteria at equilibrium (the acetate secreted, if any, is diluted out at the same rate). Indeed,
if D ≤ Da, there is no acetate, so there is trivially no acetate consumption. Conversely, if
D > Da, there is overflow metabolism. Then, using (7), we have that there is no acetate
consumption. The term raup,p has therefore no influence on the steady state of producers.
Thus, the non-trivial equilibrium determined by Mart́ınez and Gouzé (2021) is exactly the
same as the non-trivial equilibrium given by Proposition 3.1, even if the authors do not
consider acetate consumption.

To study the existence of equilibria with cleaners and no producers, we assume that (2)
holds. As discussed in Section 2, this implies that

raover,c(G,A) = 0, for all G,A ≥ 0.

This means that cleaners cannot secrete acetate. This assumption is qualitatively consistent
with the fact that cleaners are designed to mainly grow on acetate and is consistent with
the parameters from Table 2.

Proposition 3.4 (Cleaner steady state). Assume that (2) holds and let us define Dc =
(1− Yh/c)fc(Gin, 0)− kdeg. We have:

(a) If Dc > D, then (8) admits a unique equilibrium with the presence of cleaners and
absence of producers, denoted by Ec = (0, Bcc , G

c, 0).

(b) If Dc ≤ D, then (8) has no equilibrium with the presence of cleaners.

Proof. See Appendix A.

Remark 3.5 (Cleaner washout). Proposition 3.4 introduces the threshold dilution rate Dc

above which cleaners are washed out when grown without producers. As shown below, a
coexistence equilibrium is possible at dilution rates higher than Dc.
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The main result of this section characterizes the existence of coexistence steady states
for (8). This characterization is based on the positive steady states of the cleaners and
producers growing separately.

Theorem 3.6 (Coexistence steady states). Assume that (2), (10), and (11) hold. Let Dp

and Da be given by Proposition 3.1, and let Dc be given by Proposition 3.4.

(a) If D ≤ Da or D ≥ Dp, then there is no coexistence equilibrium.

(b) If Da < D < Dp and D < Dc then a (unique) coexistence equilibrium is possible, if and
only if

(1− Yh/p)fp(Gc, 0)− kdeg > D and (1− Yh/c)fc(Gp, Ap)− kdeg > D,

with Gp and Ap defined in Proposition 3.1, and Gc defined in Proposition 3.4.

(c) If Da < D < Dp and D ≥ Dc then a (unique) coexistence equilibrium is possible, if and
only if

(1− Yh/c)fc(Gp, Ap)− kdeg > D,

with Gp and Ap defined in Proposition 3.1.

Proof. See Appendix A.

Remark 3.7 (Competition and syntrophy). Note that the difference between cases (b) and
(c) in Theorem 3.6 is the value of the dilution rate with respect to Dc. If D < Dc (case
(b)), according to Proposition 3.4, in the absence of producers, cleaners survive on glucose
only and settle in an equilibrium. The presence of producers can be beneficial by providing
acetate, which is known as protocooperation (Roell et al., 2019), or harmful through glucose
competition. This can be observed in Figures 3B and 3D (right-hand side). When D is
higher than but close to Da, cleaners reach a higher density when grown alone than when
growing together with producers (competition). However, when D is lower than but close
to Dc, cleaners reach a lower density when grown alone than when growing together with
producers (protocooperation). Now, if D ≥ Dc (case (c)), cleaners go extinct when growing
alone. Therefore, if coexistence is possible, this is due to the syntrophic relationship in
which the producers provide acetate to cleaners. As we will see later, synthrophy seems to
play an important role in the performance of the system.

The following corollary gives a characterization of the existence of coexistence equilibria
based on dynamical properties of the non-coexistence equilibria.

Corollary 3.8. Assume that (10), (11), and (2) hold. Let Ep and Ec be the equilibria
given by Propositions 3.1 and 3.4, respectively, whenever they exist. Let Da be given by
Proposition 3.1 and assume that D > Da.

(a) If Ep does not exist, then there is no coexistence equilibrium.

(b) If Ep exists and Ec does not exist, then there is a unique coexistence equilibrium if and
only if Ep is hyperbolic and unstable.

(c) If Ep and Ec exist, then there is a unique coexistence if and only if Ep and Ec are
unstable and hyperbolic.

Proof. The statement follows from applying Lemmas A.7 and A.8 in Appendix A.
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Remark 3.9 (Dynamics on the boundary). According to Lemmas A.7 and A.8 in Appendix
A, if Ep and Ec exist, the Jacobian matrices associated with them each have three negative
eigenvalues. Therefore, the conditions in Corollary 3.8 state that the fourth eigenvalue must
be negative. In such conditions, from a stable manifold argument, Ep and Ec can only be
reached by solutions starting on R4

+/X, with X the set characterized by Bc > 0 and Bp > 0
(i.e., X = (0,∞)2 × R2

+). Thus, Ep and Ec, whenever they exist, must repel solutions
starting in X to ensure the existence of a coexistence equilibrium. This characterization
can be compared with some classical results from the theory of persistence (Smith and
Thieme, 2011), where the existence of a coexistence equilibrium can be determined from the
dynamics on the boundary R4

+/X (i.e., the set where Bc = 0 or Bp = 0).

We end this section with a lemma stating how to determine the protein concentrations
associated with the coexistence equilibrium given by Theorem 3.6.

Lemma 3.10. Let (B∗p , B
∗
c , G

∗, A∗) be a coexistence equilibrium of (8). Then, the protein
concentrations associated with this equilibrium are given by

H∗p =
Yh/p

1− Yh/p
B∗p and H∗c =

Yh/c

1− Yh/c
B∗c .

Proof. See Appendix A.

We conclude the section by observing that, for a fixed set of parameter values (e.g.,
those in Table 2), the stability of the above equilibria can be verified by the same numeri-
cal/algebraic methods utilized in Mauri et al. (2020).

4 Optimal performance at the coexistence equilibrium

The necessary and sufficient conditions given by Theorem 3.6 for the existence of a coex-
istence equilibrium allow for a proper study of the optimization of (8)-(9) at steady state.
While the statement of Theorem 3.6 ensures the existence of a non-empty region where
coexistence is possible, its proof indicates how to construct an efficient algorithm for deter-
mining numerically the coexistence equilibria (see Appendix B). In this section, we define a
multiobjective optimization problem (MOP) aiming to maximize the process yield (g prod-
uct per g substrate) and protein volumetric productivity g per L per h). The process yield
is especially relevant in a biotechnological context when the selling price of the product is
low, since the cost of glucose becomes a significant fraction of the value of the product.
Volumetric productivity determines the rate at which the product can be formed, and thus
dictates the overall volume needed for a given plant output (Van Dien, 2013).

The decision variables in the optimization problem are chosen to be the dilution rate
(D) and the product yield of each strain (Yh/p and Yh/c). The dilution rate is well-known to
be an important operational variable that is optimal at intermediate values (Doran, 1995).
Similarly, the choice of product yields is not trivial. Low values of Yh/p naturally lead to
low protein production, while high values lead to more recombinant proteins but poor cell
growth resulting again in low productivity. Another operational parameter is the input
glucose concentration Gin. However, as we will show later, performance always improves
with an increase of this parameter, making its choice trivial (see also the work of Mauri
et al. (2020)).

In mathematical optimization, the feasible region corresponds to the set of all possible
combinations of the decision variables. Since we are interested in coexistence equilibria,
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Figure 4: A. Region Ω represented by 3000 points. Gray points correspond to D ≥ Dc

and black points correspond to D < Dc (see Remark 3.7). The point v1 = (0.51, 0.34, 0.28)
maximizes productivity (Φ1) and v2 = (0.91, 0.88, 0.04) maximizes the process yield (Φ2).
The blue curve is such that its image through Φ is the POF. B. Function Φ evaluated at
the points represented in A. The blue curve is the POF.

we consider the feasible region Ω ⊂ R3
+, such that for any v := (Yh/p, Yh/c, D) ∈ Ω, (8)

admits a coexistence equilibrium. The region Ω can be determined by the conditions given
by Theorem 3.6 and it looks like a cone with a vertex close to (1, 1, 0) (see Figure 4). For
any v ∈ Ω, we will denote by H∗p (v) and H∗c (v) the protein concentrations associated with
producers and cleaners, respectively, at the coexistence steady state (see Lemma 3.10). We
define the objective function Φ : Ω→ R2

+ by

v = (Yh/p, Yh/c, D)
Φ−→
(
DH∗(v),

H∗(v)

Gin

)
,

where H∗(v) = H∗p (v)+H∗c (v). The quantities DH∗(v) and H∗(v)/Gin are the steady-state
productivity and process yield, respectively. We want to solve the following MOP:

maximize Φ(v) =

(
DH∗(v),

H∗(v)

Gin

)
subject to v ∈ Ω.

(12)

We look for Pareto optimal solutions, that is, solutions that cannot be improved in
any of the objectives (process yield or productivity) without degrading the other objective.
Generally, there is no single Pareto optimal solution optimizing both objectives, but a set of
Pareto optimal solutions called the Pareto optimal front (POF). The structure of the sets Ω
and Φ(Ω) plays an important role in the success of the employed numerical method to solve
(12). Pareto curves cannot be computed efficiently in many cases, especially in the non-
convex case where methods such as ε-constraint are necessary (Gunantara, 2018). Figure
4 reveals a favorable structure of Ω and Φ(Ω) (scatter plots) for applying the weighting
method (Miettinen, 2012). Accordingly, the problem (12) is transformed into the following
so-called weighting problem:

maximize λDH∗(v) + (1− λ)H
∗(v)
Gin

,

subject to v ∈ Ω,
(13)
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Figure 5: Influence of Gin on the POF. A. Decision variables which image through Φ is a
POF. B. POF for different values of Gin.

where λ ∈ [0, 1]. It is well known that if Ω and Φ(Ω) are convex, then v∗ is a Pareto optimal
solution if there is λ ∈ [0, 1] such that v∗ is a solution to the weighting problem (13) (see
Corollary 3.1.8 by Miettinen (2012)).

For any λ ∈ [0, 1], problem (13) is solved numerically with the interior point algorithm
implemented in the toolbox fmincon of MATLAB (Byrd et al., 1999). Before using fmincon,
some technical details must be addressed. For example, the feasible region must be a closed
set and the objective function must be continuous on this set. For ease of reading, we discuss
such technical details in Appendix C.

Figure 4 shows the POF obtained using the weighting method and the subset of Ω whose
image is the POF. From this figure we observe that:

(a) The weighting method accurately returns the POF.

(b) The set of all points v ∈ Ω such that Φ(v) belongs to the POF can be approximated
by the line joining the points v1 and v2, corresponding to maximum productivity and
maximum yield, respectively.

(c) Along the POF, the process yield decreases as the productivity increases.

Most importantly, regarding the syntrophy-competition relationship between both strains,
the image Φ of all points (Yh/p, Yh/c, D) ∈ Ω such that D < Dc is a dominated solution
(black points). In other words, if cleaners can survive when growing individually, then the
system is operated under suboptimal conditions (see Remark 3.7).

4.1 Impact of Gin

Figure 5 shows the effects of varying the input glucose concentration Gin. According to
Figure 5B, as Gin increases, the POF expands in such a way that the POF dominates the
POFs associated with lower values of Gin. This shows why Gin is not a relevant decision
variable for the MOP. The input glucose concentration must always be chosen as high as
possible. We note that the maximal process yield slightly increases (Φ2), while the maximal
productivity increases almost linearly with Gin (Φ1). Figure 5A shows that the values of
the decision variables associated with each POF are not much affected by the value of Gin.
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63%

39%

Monoculture
Consortium with non-producing

cleaners

Figure 6: Scatter plots showing the performance of two alternative production methods,
compared with Pareto-optimal performance of the consortium with producers and clean-
ers both synthezising the target protein. (A) Monoculture of producers: scatter plot of
(DHp

p , H
p
p/Gin), with Hp

p the protein concentration associated with the non-trivial equi-
librium given by Proposition 3.1. Black points correspond to D > Da and gray points
correspond to D ≤ Da. The continuous line is the POF given by Figure 4. (B) Consortium
of producers and non-producing cleaners: scatter plot of Φ with the protein yield Yh/c fixed
to 0. The scatter plot corresponds to Φ(p) with v ∈ Ω ∩ {v;Yh/c = 0} and, as in panel A,
the continuous line is the POF from Figure 4. Black points correspond to D < Dc and gray
points correspond to D ≥ Dc.

4.2 Comparison with the monoculture

The potential of a consortium over a monoculture, in terms of productivity, has been demon-
strated experimentally by Bernstein et al. (2012) and theoretically by Mauri et al. (2020),
but limited to the case that only producers synthesize the target protein. Figure 6A con-
firms those findings in the more general case of both species contributing to the synthesis
process, showing that productivity can increase 63% in case of a consortium of producers
and cleaners. However, it also shows that the monoculture can reach a higher process yield,
although of course at the expense of low productivity.

4.3 Cleaners must produce proteins for a better performance

In contrast with the work of Mauri et al. (2020), where cleaners cannot produce proteins,
model (8)-(9) accounts for the production of recombinant proteins by cleaners. The question
is whether there is a significant difference in terms of productivity when cleaners can produce
proteins. To answer this question, we compare the POF obtained in Figure 4 with a scatter
plot of the feasible objective region Φ(Ω) restricted to Yh/c = 0 (see Figure 6B). In other
words, the scatter plot shows the different process yields and productivities that can be
reached when cleaners are only dedicated to remove acetate. The first observation is that
allowing cleaners to produce proteins increases the process yield by 39% for a productivity
of 1.04 g L−1 h−1, which is the maximal productivity for Yh/c = 0. This increase is mainly
explained by the fact that, when cleaners produce proteins, the problem of carbon diversion
is addressed, that is, acetate secreted by producers is not wasted but transformed into
proteins by cleaners.
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5 Discussion and conclusions

5.1 Characterization of coexistence

We have established necessary and sufficient conditions for coexistence in a microbial con-
sortium to synthesize recombinant protein. This consortium comprises two E. coli strains,
the producer and the cleaner. Producers grow primarily on glucose while cleaners grow
primarily on acetate that is secreted by producers as a fermentation by-product.

Conditions for coexistence are determined from analyzing the equilibria that each popu-
lation can reach when growing separately. An important necessary condition for coexistence
is that the producer secretes acetate at equilibrium, otherwise glucose is the only limiting re-
source and coexistence is impossible because of the competitive exclusion principle (Hardin,
1960). Assuming that this necessary condition holds, one simple description of our main
result is obtained from the dynamical properties of the non-trivial equilibria on the bound-
ary (i.e., equilibria in which only one strain is present). If each non-trivial equilibrium on
the boundary repels solutions such that both strains grow, then coexistence is possible (see
Corollary 3.8).

Another convenient description of our main result follows from an invasion analysis
(Chesson, 2000). In our case, an invasion analysis amounts to choosing the E. coli strains
one at time as the invader. The invader density is set to zero and the other strain, the
so-called resident, is allowed to reach equilibrium. If the invader is then allowed to grown
and attains a positive growth rate, we say that the invader has succeeded. If both strains
can succeed as an invader, then they are said to coexist. The conditions for coexistence in
our main result, Theorem 3.6, ensure the success of each strain as invaders. For example, in
case (b) of the theorem, each strain reaches a non-trivial equilibrium when playing the role
of resident, corresponding to the satisfaction of the two inequalities defining the necessary
and sufficient conditions for this case.

The predominant inter-species interaction during coexistence can be competition, proto-
cooperation, or syntrophy (Roell et al., 2019). From Theorem 3.6, we distinguish two cases
in which coexistence is possible. In case (b), cleaners can survive growing separately, that
is, producers are not necessary for the survival of cleaners. In this case, when both strains
are grown together, producers may have either a positive or negative effect on cleaners. If
producers secrete acetate at a low rate, then both populations strongly compete for glucose,
which results in low growth of cleaners. Note that coexistence is possible because of acetate
secretion, but the culture is dominated by competition. When the culture is operated at
conditions close to washout of the monoculture of cleaner, then producers enhance cleaner
growth by supplying acetate. This is known as protocooperation (Roell et al., 2019). In case
(c) of Theorem 3.6, cleaners cannot survive growing individually. Coexistence is possible
due to a syntrophic relationship in which the survival of cleaners critically depends on the
secretion of acetate by producers.

The range of conditions allowing coexistence is affected by the metabolic burden of
recombinant protein production (Kurland and Dong, 1996; Wu et al., 2016), which is in
our case modulated by the values of the production yield parameters Yh/p and Yh/c. A
necessary condition for coexistence is that the monoculture of producers secretes acetate at
equilibrium. Since the growth rate at equilibrium equals the dilution rate, and the secretion
of acetate is directly related to the growth rate, this necessary condition can be put in terms
of the dilution rate. Indeed, as shown in Proposition 3.1, the dilution rate must be higher
than a threshold rate denoted by Da and lower than a critical rate denoted Dp. It can be
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proven from the definitions of Dp and Da in Proposition 3.1 that

Dp −Da = (1− Yh/p)(Yg − koverYa)[rgup,p(Gin, 0)− l].

This shows how increasing Yh/p decreases the range of dilution rates for which coexistence
is possible.

5.2 Optimization: Coexistence, distribution of labor, and syntro-
phy

Using our results on the coexistence of the consortium, we numerically solved the multiob-
jective optimization problem (MOP) of maximizing both the process yield and productivity
at the coexistence equilibrium. The performance of the consortium depends on different
operational and strain design parameters. We chose as decision variables the dilution rate,
a funtamental parameter of bioreactor operation, and product yields of the two strains, key
parameters in the design and bioengineering of the synthetic community.

A first important question is whether the coexistence equilibrium is advantageous from
a biotechnological point of view. As shown in Figure 6A, the E. coli consortium can reach
a higher productivity than the monoculture of producers. However, the monoculture can
reach a higher process yield. This is because of the inherent inefficiency associated with
the loss of carbon through the intermediate resource (acetate). Indeed, the highest process
yields for the monoculture are obtained in the absence of overflow metabolism (gray points
in Figure 6A). One important observation is that all the elements of the Pareto optimal front
are obtained when coexistence requires syntrophy, that is, when cleaners need the producers
to survive. While this property holds in the case of the parameter values for the E. coli
consortium (Mauri et al., 2020), we were not able to prove if it is a structural property of
the system.

Division of labor refers to the execution of different tasks by different species in a consor-
tium that are specialized for their respective tasks (Roell et al., 2019) and is often proposed
as an effective design strategy in synthetic biology (Tsoi et al., 2018). Accordingly, Mauri
et al. (2020) assumed that the production of proteins is the task of only one species, the
producers. Another example is provided by Liu et al. (2018) who consider a syntrophic E.
coli co-culture where only one strain synthesizes salidroside, the product of interest. Our
results suggest that sharing the synthesis of the product of interest among the different
species or strains enables higher yield and productivity. If only producers synthesize pro-
teins, then the carbon lost through overflow metabolism is not eventually transformed into
proteins. Alternatively, if only cleaners synthesize proteins, then carbon is inherently lost to
producers through glucose competition. Distributing the task of producing proteins over the
two strains reduces the loss of resources at the expense of increasing the metabolic burden
of both populations. As a consequence, the trade-off between yield and productivity must
be optimized simultaneously for both strains, leading to a global multi-level optimization
problem. The example illustrates that, while division of labor may have advantages in terms
of modularity and conceptual simplicity, it is not always optimal.
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A Proofs

In this appendix we present the proofs of all the statements in Section 3 and we also present
a series of technical results needed for their proofs. Throughout the appendix, we assume
that (10), (11), and (2) hold.

Proof. (of Proposition 3.1) First, note that if (11) holds, then raup,p(Gin, 0) = 0 and raover,p(Gin, 0) =
kover(r

g
up,p(Gin, 0)− l). Consequently,

Dp = (1− Yh/p)[αrgup,p(Gin, 0) + koverYal]− kdeg, (14)

with α = Yg − koverYa > 0 (see (10)). We also note that (see (11)):

Dp −Da = (1− Yh/p)α[rgup,p(Gin, 0)− l] > 0,

hence Dp > Da. Now, the steady states of (8) in absence of cleaners are given by the
solution of the following system

0 = (1− Yh/p)fp(·)− kdeg −D,

0 = D(Gin −G)− rgup,p(·)Bp,

0 = −DA+ [raover,p(·)− rgup,p(·)]Bp.

(15)

Following the same arguments of Proposition 1 by Mart́ınez and Gouzé (2021), it is possible
to show that

(1) If D ≥ Da, then any solution of (15) satisfies rgup,p(G,A) ≥ l.

(2) If D < Da, then any solution of (15) satisfies A = 0 and rgup,p(G,A) < l.

If (1) holds, according to the property (7), we have that raup,p(G,A) = 0. Consequently, (15)
is equivalent to

0 = (1− Yh/p)[αrgup,p(G,A) + kYal]− kdeg −D,

0 = D(Gin −G)− rgup,p(G,A)Bp,

0 = −DA+ raup,p(G,A)Bp.

(16)

Again, following the proof of Proposition 1 by Mart́ınez and Gouzé (2021), we have that

G = Gin − βgBp, βg =
D + kdeg − kover(1− Yh/p)Yal

D(1− Yh/p)α
, (17)

A = βaBp, βa =
(1− Yh/p)Ygβg − 1− kdeg

D

(1− Yh/p)Ya
. (18)
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Replacing (17) and (18) in the first equation of (16), we obtain the following equation for
Bp:

(1− Yh/p)[αrgup,p(Gin − βgBp, βaBp) + koverYal]− kdeg −D︸ ︷︷ ︸
g(Bp)

= 0 (19)

Since g is strictly decreasing, g(0) = Dp −D, and

g(Gin/βg) = (1− Yh/p)koverYal − kdeg −D
< (1− Yh/p)Ygl − kdeg −D
= Da −D
< 0,

we conclude that (19) admits a unique solution Bpp > 0 if D < Dp, and has no positive
solution if D ≥ Dp. In particular, this proves (b).

If (2) holds, then A = 0 and raover,p(G,A) = 0. Replacing A and raover,p(G,A) by 0 in
(15), we obtain

0 = (1− Yh/p)Ygrgup,p(G, 0)− kdeg −D︸ ︷︷ ︸
h(G)

,

0 = D(Gin −G)− rgup,p(G, 0)Bp.

(20)

As in a classical chemostat model (note that G 7−→ h(G) is strictly increasing), (20) admits
a unique positive steady state if, and only if, h(Gin) > 0. Since D < Da and (11) holds, we
have

h(Gin) > (1− Yh/p)Ygrgup,p(Gin, 0)− kdeg −Da

= Dp −Da

> 0.

This completes the proof.

Proof. (of Proposition 3.4) Any equilibrium in absence of producers is a solution of

0 = (1− Yh/p)fc(·)− kdeg −D,

0 = D(Gin −G)− rgup,c(·)Bc,

0 = −DA− rgup,c(·)Bc.

(21)

It is clear that A = 0. Consequently, we have

0 = (1− Yh/p)Ygrgup,c(G, 0)− kdeg −D︸ ︷︷ ︸
h(G)

,

0 = D(Gin −G)− rgup,c(G, 0)Bc.

(22)

As in a classical chemostat model (Smith and Waltman, 1995), we have that (22) admits
a solution, which is unique, if and only if h(Gin) > 0. The rest of the proof follows from
noting that h(Gin) = Dc −D.

Lemma A.1. Let Da and Dp be defined by Proposition 3.1. If D ≤ Da and (1 − Yh/p) 6=
β(1− Yh/c), or D ≥ Dp, then (8) has no coexistence equilibrium.
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Proof. If D ≤ Da, we claim that there is no coexistence equilibrium with acetate. Indeed,
by contradiction, if (B∗p , B

∗
c , G

∗, A∗) is a coexistence equilibrium of (8) with A∗ > 0, from
the fourth equation in (8) we obtain that

−DA∗ + [raover,p(G
∗, A∗)− raup,p(G∗, A∗)]B∗p − raover,c(G∗, A∗)B∗c = 0,

and therefore
raover,p(G

∗, A∗) ≥ DA∗/B∗p > 0. (23)

This implies that overflow metabolism occurs, hence, using (7), we have that there cannot
be acetate uptake, raup,p(G

∗, A∗) = 0. From the first equation in (8) and the definition of a
coexistence equilibrium, we have that

(1− Yh/p)(Yg − koverYa)raover,p(G
∗, A∗) +Da −D = 0. (24)

However, Da ≥ D and (1− Yh/p)(Yg − koverYa)raover,p(G
∗, A∗) > 0, which contradicts (24).

This proves that any coexistence equilibrium has no acetate. Therefore, any coexistence
equilibrium is of the form (B∗p , B

∗
c , G

∗, 0) satisfying

0 = ((1− Yh/p)Ygrgup,p(G∗, 0)− kdeg −D)B∗p ,

0 = ((1− Yh/c)βYgrgup,p(G∗, 0)− kdeg −D)B∗c ,

0 = D(Gin −G∗)− rgup,p(G,∗ 0)Bp − βrgup,p(G∗, 0)Bc.

(25)

However, this implies that Bp = 0 or Bc = 0. Thus, there cannot be a coexistence
equilbrium when D ≤ Da. This completes the proof.

Lemma A.2. If (8) admits a coexistence equilibrium, say (B∗p , B
∗
c , G

∗, A∗), then

0 < A∗ and rgup,p(G
∗, A∗) > l.

Proof. Let us assume thatD > Da and that (8) admits a coexistence equilibrium (B∗p , B
∗
c , G

∗, A∗).
If A∗ = 0, from the differential equation for A in (8), we obtain raover,p(G

∗, 0) = 0 and con-
sequently rgup,p(G

∗, 0) ≤ l. This implies that (see ODE for Bp):

(1− Yh/p)Ygrgup,p(G∗, 0)− kdeg = D > Da = (1− Yh/p)Ygl − kdeg.

Hence, rgup,p(G
∗, 0) > l, which is a contradiction. Therefore A∗ must be positive, which

implies that raover,p(G
∗, A∗) > 0 (same argument used to obtain (23)).

To continue studying the existence of a coexistence equilibrium, it is convenient to define
two functions, γ and φ.

From Lemma A.1, coexistence is possible only when D ∈ (Da, Dp), with Da and Dp

defined in 3.1. Under such conditions, overflow metabolism occurs at any equilibrium with
producers (see Proposition 3.1 and Lemma A.2). Therefore, the glucose uptake rate (rgup,p)
at any equilibrium with the presence of producers (Bp > 0) has the same value and is
obtained from the following equation

(1− Yh/p)[Ygrpup,p − kover(rpup,p − l)]−D − kdeg = 0. (26)
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Let us define the function γ : (Da, Dp)→ R+ by

γ(D) = rgup,p, (27)

with rgup,p given by (27). It can be shown that

γ(D) =
D −Da

(Yg − koverYa)(1− Yh/p)
. (28)

We also define the function φ : R+ → R by

φ(A) := (1− Yh/c)
(
Ygβγ(D) + ka

A

Ka +A
d(βγ(D)) + kAcs

A

KAcs +A

)
− kdeg −D. (29)

Note that if A∗ is the acetate concentration at a coexistence equilibrium, then φ(A∗) = 0 .

Lemma A.3. Let Da and Dp be defined by Proposition 3.1. If D ∈ (Da, Dp), then (8)
admits at most one coexistence equilibrium. Moreover, if a coexistence equilibrium exists,
say (B∗p , B

∗
c , G

∗, A∗), then

0 < A∗ < Ap, 0 < G∗ < Gp, φ(Ap) > 0 and φ(0) < 0,

where Gp and Ap are defined in Proposition 3.1.

Proof. Let us assume that (8) admits a coexistence equilibrium (B∗p , B
∗
c , G

∗, A∗). From the
equation for Bp in (8), we have rgup,p(G

∗, A∗) = γ(D), with γ defined by (27). From the
definition of Gp and Ap, we also have rgup,p(G

p, Ap) = γ(D). Similarly, we obtain that

raover,p(G
p, Ap) = raover,p(G

∗, A∗) = γover(D) := kover(γ(D)− l).

Now, we prove that A∗ < Ap. By contradiction, assume that Ap ≤ A∗. Using the
monotonocity of rup,p and the fact that rgup,p(G

p, Ap) = rgup,p(G
∗, A∗), we obtain that

Gp ≤ G∗. From the third equation in (8) we obtain that:

D(Gin −Gp)− γ(D)Bpp = 0 < rgup,c(G
∗, A∗)B∗c = D(Gin −G∗)− γ(D)B∗p ,

from where 0 ≤ D(G∗ −Gp) < γ(D)(Bpp −B∗p) which implies

Bpp > B∗p . (30)

From the fourth equation in (8) we obtain that:

−DAp + γover(D)Bpp < raup,c(G
∗, A∗)B∗c = −DA∗ + γover(D)B∗p ,

from where 0 ≤ D(A∗−Ap) < γover(D)(B∗p −Bpp) which implies B∗p > Bpp . This contradicts
(30). Then, Ap > A∗ and consequently Gp > G∗. Now, from the equation for Bc in (8),
we obtain φ(A∗) = 0, with φ defined by (29). Since φ is strictly increasing, we have the
uniqueness of Ac. The rest of the proof is straightforward.

Lemma A.4. Let Dp and Da be defined in Proposition 3.1 and assume that Da < D <
Dp. Let Dc and Gc be defined by Proposition 3.1 and assume that D < Dc. If (1 −
Yh/p)fp(G

c, 0)− kdeg ≤ D, then (8) has no coexistence equilibrium.
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Proof. Let us assume that (8) admits a coexistence equilibrium (B∗p , B
∗
c , G

∗, A∗). By defi-
nition we have

(1− Yh/c)fc(Gc, 0)− kdeg = D
(1− Yh/c)fc(G∗, A∗)− kdeg = D.

(31)

From Lemma A.3, we have that A∗ > 0, hence raup,c(G
∗, A∗) > 0. Recalling the definition

of fc, from (31) we have that

Ygr
g
up,c(G

c, 0) = Ygr
g
up,c(G

∗, A∗) + Yar
a
up,c(G

∗, A∗)
> Ygr

g
up,c(G

∗, A∗).

Consequently rgup,c(G
c, 0) > rgup,c(G

∗, A∗). Since rgup,c is proportional to rgup,p, we have that
rgup,p(G

c, 0) > rgup,p(G
∗, A∗). Now it is not difficult to show that

fp(G
c, 0) = αrgup,p(G

c, 0) + koverYal > αrgup,p(G
∗, A∗) + koverYal = fp(G

∗, A∗).

Now, if (1 − Yh/p)fp(G
c, 0) − kdeg ≤ D, then (1 − Yh/p)fp(G

∗, A∗) − kdeg < D which
contradicts the definition of the coexistence equilibrium.

Lemma A.5. Let Dp, Da, and Ap be given by Proposition 3.1. If Da < D < Dp, then (8)
admits a coexistence equilibrium if and only if

φ(Ap) > D and φ(0) < 0. (32)

Proof. From Lemma A.3 we have that (32) is a necessary condition for the existence of a
coexistence equilibrium. We prove here that it is also a sufficient condition. If (32) holds,
since φ is strictly increasing, there exists a unique A∗ ∈ (0, Ap) such that φ(A∗) = 0. From
the first equation in (8), we have ϕ(G) = 0 with ϕ(G) = (1 − Yh/p)fp(G,A∗) − kdeg − D.
It is clear that ϕ is strictly increasing and that ϕ(0) = −D − kdeg < 0 and ϕ(Gp) >
(1 − Yh/p)fp(Gp, Ap) − kdeg − D = 0. Consequently, there is a unique G∗ ∈ (0, Gp) such
that ϕ(G∗) = 0. It remains to prove the positiveness of the unique solution of the following
linear system for (Bp, Bc):

0 = D(Gin −G∗)− rgup,p(G∗, A∗)Bp − rgup,c(G∗, A∗)Bc,

0 = −DA∗ + raover,p(G
∗, A∗)Bp − raup,c(G∗, A∗)Bc.

(33)

This system can be rewritten as

Bp =
raup,c(G

∗, A∗)Bc +DA∗

raover,p(G
∗, A∗)

and

Gin −G∗ −A∗
rgup,p(G

∗, A∗)

raover,p(G
∗, A∗)︸ ︷︷ ︸

κ

=
1

D

(
rgup,c(G

∗, A∗) +
raup,c(G

∗, A∗)rgup,p(G
∗, A∗)

raover,p(G
∗, A∗)

)
Bc.

Since Ap > A∗ and Gp > G∗, we have that

κ > Gin −Gp −Ap
rgup,p(G

∗, A∗)

raover,p(G
∗, A∗)

.

Finally, since rgup,p(G
∗, A∗) = rgup,p(G

p, Ap), from (15) we conclude that κ = 0. Then (33)
has a positive solution.
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Proof. (of Theorem 3.6) Part (a) follows directly from Lemma A.2. Let us assume that
Da < D < Dp. Using Lemma A.5, the proof of parts (b) and (c) follows from proving that

(I) If D < Dc and (1− Yh/p)fp(Gc, 0)−D − kdeg > 0, then φ(0) < 0,

(II) If D ≥ Dc, then φ(0) < 0,

(III) If (1− Yh/c)fc(Gp, Ap)− kdeg −D > 0, then φ(Ap) > 0.

For (I), from the hypotheses, we have that (1 − Yh/p)fp(Gc, 0) − kdeg > Da. Using the
definition of Da we obtain Ygl < fp(G

c, 0), and hence

l < rgup,p(G
c, 0). (34)

Now, from the definition of Gp and Ap (see ODE for Bp), and from the hypotheses, we have
that

(1− Yh/p)fp(Gp, Ap) = D + kdeg < (1− Yh/p)fp(Gc, 0). (35)

Since γ(D) = rgup,p(G
p, Ap) and rgup,p(G

c, 0) > l, from (35) we conclude that

γ(D) < rgup,p(Gc, 0), (36)

From the definition of Gc and (36) we obtain that

(1− Yh/c)Ygβγ(D) < (1− Yh/c)Ygβrgup,p(Gc, 0) = kdeg +D,

which implies φ(0) < 0.
For (II), we note that

fc(Gin, 0) = Ygβr
g
up,p(Gin, 0) > Ygβr

g
up,p(G

p, Ap) = Ygβγ(D),

which implies
φ(0) < (1− Yh/c)fc(Gin, 0)− kdeg −D = Dc −D < 0.

Finally, for (III), it is straightforward to verify that

φ(Ap) = (1− Yh/c)fc(Gp, Ap)− kdeg −D > 0.

This completes the proof.

The following lemma, shows that the equilibrium with producers given by Proposition
3.1 is locally stable when seen as an equilibrium of (8) without cleaners.

Lemma A.6. Assume that D > Da. Let Ep = (Bpp , 0, G
p, Ap) be the equilibrium given by

Proposition 3.1. Then (Bpp , G
p, Ap) is locally stable with respect to the following system:

dBp
dt

= (1− Yh/p)fp(·)Bp − kdegBp −DBp,

dG

dt
= D(Gin −G)− rgup,p(·)Bp,

dA

dt
= −DA+ [raover,p(·)− raup,p(·)]Bp.

(37)
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Proof. The proof follows the same idea of the proof of Proposition 2 by Mart́ınez and Gouzé
(2021). Along the proof, we will write r instead of rgup,p. According to Proposition 3.1,
(Bpp , G

p, Ap) is in the region {(Bp, G,A) ; r(G,A) ≥ l}. Therefore, using the definition of
rgover,p and the property (7), we can study the local stability of (Bpp , G

p, Ap) in the following
system

dBp
dt

= α′r(·)Bp + ηBp −DBp,

dG

dt
= D(Gin −G)− r(·)Bp,

dA

dt
= −DA+ kover(r(·)− l)Bp,

(38)

with α′ = (1−Yh/p)(Yg−koverYa) and η = (1−Yh/p)koverYal−kdeg. The change of variables
U = Bp + α′G and W = Bp + (1− Yh/p)YgG+ (1− Yh/p)YaA leads (38) to

dBp
dt

= α′r̂(·)Bp + ηBp −DBp,

dU

dt
= ηBp +D(α′Gin − U),

dW

dt
= D(Y ′gGin −W )− kdegBp,

(39)

with

r̂(Bp, U,W ) = r

(
1

α′
(U −Bp),

1

Y ′a

(
W −

Y ′g
α′
U

)
+
kover
α′

Bp

)
, (40)

Y ′g = (1 − Yh/p)Yg, and Y ′a = (1 − Yh/p)Ya. The characteristic polynomial associated with
the Jacobian matrix of (39) is given by

p(λ) = det

 α′Bpp
∂r̂

∂Bp
− λ α′Bpp

∂r̂

∂U
α′Bpp

∂r̂

∂W
η −D − λ 0

−kdeg 0 −D − λ

 .
It can be shown that p(λ) can be written as

p(λ) = −(D + λ)det

 α′Bpp
∂r̂

∂Bp
− λ Bpp

(
η
∂r̂

∂U
− kdeg

∂r̂

∂W

)
α′ −D − λ

 .
Thus, one root of p is −D and the other two roots are the eigenvalues of the matrix

J =

 α′Bpp
∂r̂

∂Bp
Bpp

(
η
∂r̂

∂U
− kdeg

∂r̂

∂W

)
α′ −D

 .
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We note that:
∂r̂

∂Bp
= − 1

α

∂r

∂G
+
kover
α′

∂r

∂A
< 0,

∂r̂

∂U
=

1

α′
∂r

∂G
−

Y ′g
α′Y ′a

∂r

∂A
> 0,

∂r̂

∂W
=

1

Y ′a

∂r

∂A
< 0.

Using the fact that D > Y ′g l, we have

det(J)
Bp

p
= D

(
∂r

∂G
− kover

∂r

∂A

)
︸ ︷︷ ︸

>0

+
(
η
Y ′g
Y ′a

+
kdeg
Y ′a

)
∂r
∂A − η

∂r
∂G

> Y ′g l
(
∂r
∂G − kover

∂r
∂A

)
+
(
η
Y ′g
Y ′a

+
kdeg
Y ′a

)
∂r
∂A − η

∂r
∂G

= (Y ′g l − η) ∂r∂G + (−Y ′gY ′alkover + ηY ′g + α′kdeg)
1
Y ′a

∂r
∂A

= (α′ + kdeg)
∂r
∂G − kover

∂r
∂A

> 0.

Therefore det(J) > 0. Now, it is clear that Tr(J) < 0, hence the eigenvalues of J have
negative real part, and all the roots of p have negative real part. This completes the
proof.

Lemma A.7. Assume that Da < D < Dp and let Ep be given by Proposition 3.1. Then
the Jacobian matrix associated with (8) evaluated at Ep has three eigenvalues with negative
real part, and one eigenvalue is given by:

(1− Yh/c)fc(Gp, Ap)− kdeg −D.

Proof. The evolution of Bp, Bc, G, and A is given by

dBp
dt

= α′rgup,p(·)Bp + ηBp −DBp,

dBc
dt

= (1− Yh/c)fc(·)Bc −DBc,

dG

dt
= D(Gin −G)− rgup,p(·)Bp − rgup,c(·)Bc,

dA

dt
= −DA+ kover[r

g
up,p(·)− l]Bp − raup,c(·)Bc,

(41)

with α′ = (1−Yh/p)(Yg−koverYa) and η = (1−Yh/p)koverYal+kdeg. The Jacobian matrix,
J , associated with (41) evaluated at Ep takes the following form
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0 0 α′Bp

∂rgup,p
∂G

α′Bp
∂rgup,p
∂A

0 (1− Yh/c)fc − kdeg −D 0 0

−rgup,p −rgup,c −D −Bp
∂rgup,p
∂G

−Bp
∂rgup,p
∂A

kover(r
g
up,p − l) −raup,c koverBp

∂rgup,p
∂G

−D + koverBp
∂rgup,p
∂A

 .

Using the properties of the determinant, we have that one eigenvalue is (1−Yh/c)fc(Gp, Ap)−
kdeg − D, while the other three eigenvalues are exactly the same as those of the Jacobian
matrix associated with (37) and evaluated at (Bpp , G

p, Ap). From Lemma A.6, we conclude
that these three eigenvalues are negative. Thus, Ep is unstable and hyperbolic, if and only
if, (1− Yh/c)fc(Gp, Ap)− kdeg −D < 0.

Lemma A.8. Assume that D < Dc and let Ec be the equilibrium given by Proposition 3.4.
Then the Jacobian matrix associated with (8) evaluated at Ec has three eigenvalues with
negative real part, and one eigenvalue given by

(1− Yh/p)fp(Gc, 0)− kdeg −D.

Proof. The Jacobian matrix of (8) evaluated at Ec is given by

J =



(1− Yh/p)fp − kdeg −D 0 0 0

0 0 (1− Yh/p)Bc
∂fc
∂G

(1− Yh/p)Bc
∂fc
∂A

−rgup,p −rgup,c −D −Bc
∂rgup,c
∂G

−Bc
∂rgup,c
∂A

kover(r
g
up,p − l) 0 0 −D −Bc

∂raup,c
∂A

 .

The characteristic polynomial associated with J takes the following form

p(λ) = (λ1 − λ)det


−λ (1− Yh/p)Bc

∂fc
∂G

(1− Yh/p)Bc
∂fc
∂A

−rgup,c −D −Bc
∂rgup,c
∂G

− λ −Bc
∂rgup,c
∂A

0 0 −D −Bc
∂raup,c
∂A

− λ

 ,
with λ1 = (1− Yh/p)fp(Gc, 0)− kdeg −D. Then we can write

p(λ) = (λ1 − λ)(λ2 − λ)det(J ′ − λI),

with λ2 = −D −Bc
∂raup,c
∂A

< 0 and

J ′ =

 0 (1− Yh/p)Bc
∂fc
∂G

−rgup,c −D −Bc
∂rgup,c
∂G

 .
Since Tr(J ′) < 0 and det(J ′) > 0, J ′ has two negative eigenvalues. Thus, Ec is hyperbolic
and unstable if and only if λ1 > 0.
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Proof. (of Lemma 3.10) Note that the variables Up :=
Yh/p

1−Yh/p
Bp−Hp and Uc :=

Yh/c

1−Yh/c
Bc−

Hc satisfy the following differential equations:

dUp
dt

= −(kdeg +D)Up and
dUc
dt

= −(kdeg +D)Uc.

We conclude the proof noting that Up and Uc asymptotically approach zero.

B Algorithm to find the coexistence equilibrium

Let Da and Dp be given by Proposition 3.1. From now on, we assume that D ∈ (Da, Dp),
otherwise there is no coexistence equilibrium (see Theorem 3.6). The first step is to deter-
mine the equilibrium Ep = (Bpp , 0, G

p, Ap) given by Proposition 3.1. The instructions on
how to do so are dictated by the proof of Proposition 3.1. Indeed, Bpp is obtained as the
solution of

g(Bp) = 0, (42)

with g defined by (19). This equation has a unique solution on the interval [0, Gin/βg], with
βg defined in (17). Moreover, g(0) > 0 and g(Gin/βg) < 0, which provides an interval to
look for the solution. Thus, equation (42) can be easily solved, for example, with the solver
fzero in MATLAB. The values of Ap and Gp are obtained from

Gp = Gin − βgBpp and Ap = βaB
p
p ,

where βa is defined in (18).
We also need the value of Gc, the glucose concentration associated with the equilibrium

Ec given by Proposition 3.4. Let Dc be given by Proposition 3.4. If D < Dc, then Gc is the
unique solution of (1−Yh/c)fc(G, 0)−kdeg−D = 0. This equation is easily solved explicitly.
If D ≥ Dc, we will take Gc as Gin. This is useful to distinguish the cases (b) and (c) in
Theorem 3.6.

Now, to determine the coexistence equilibrium we use the following algorithm:

1) Determine c1 = (1−Yh/p)fp(Gp, Ap)−kdeg−D and c2 = (1−Yh/c)fc(Gc, 0)−kdeg−D.

2) If c1 ≤ 0 or c2 ≤ 0, then there is no coexistence equilibrium. The algorithm ends.
However, if c1 and c2 are positive, go to the next step.

3) Find A∗ ∈ [0, Ap] as the unique solution of φ(A) = 0, with φ defined by (29). Note that
φ(0) < 0 and φ(Ap) > 0.

4) Find G∗ ∈ [0, Gin] as the unique solution of ϕ(G) = 0 with ϕ(G) := (1−Yh/p)fp(G,A∗)−
kdeg −D. Note that ϕ(0) < 0 and ϕ(Gin) > 0.

5) Find B∗p and B∗c as the unique solution of the following linear system:[
rgup,p(G

∗, A∗) rgup,c(G
∗, A∗)

raover,p(G
∗, A∗) raup,c(G

∗, A∗)

] [
Bp
Bc

]
=

[
D(Gin −G∗)

DA∗

]
.
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C Algorithm to solve the MOP

Problem (13) is solved numerically with the interior point algorithm implemented in the
toolbox fmincon of MATLAB (Byrd et al., 1999). To use fmincon, the objective function
must be continuous on the feasible region which must be a closed set. In the following, we
rewrite (13) in the standard form to use fmincon.

We recall the set Ω defined in Section 4. Consider the compact set Ω̄ ⊂ R+
3 which can

be described such that each element p = (Yh/p, Yh/c, D) on Ω̄s satisfies

D ≤ Dp,
D ≥ Dc,
D ≥ Da,
D ≤ (1− Yh/p)fp(Gc, 0)− kdeg,
Yh/p, Yh/c ∈ [0, 1].

or

D ≤ Dp,
D < Dc,
D ≥ Da,
D ≤ (1− Yh/c)fc(Gp, Ap)− kdeg,
D ≤ (1− Yh/p)fp(Gc, 0)− kdeg,
Yh/p, Yh/c ∈ [0, 1].

where Da, Dp, Gp, and Ap are given by Proposition 3.1, and Dc and Ac are given by
Proposition 3.4. To extend the definition of Φ (defined in Section 4) on the boundary of Ω̄
note that:

• If D ≥ Dc, then cleaners can never survive (Proposition 3.4). Hence, we expect that
solutions of (8) converges either to (Bpp , 0, G

p, Ap) or to (0, 0, Gin, 0).

• There is no element of the boundary satisfying D = Da. Indeed, as in the proof of
Theorem 3.6, it can be proven that if D < Dc, (34) holds. Now, in Ω̄, we have that
D ≤ (1−Yh/p)fp(Gc, 0)−kdeg. Combining this equation with (34), it is straightforward
to show that D > Da.

• If D < Dc and D = Dp, then there is no equilibrium with producers.

• If D < Dc, D < Dp and D = (1 − Yh/p)fp(Gc, 0) − kdeg, then the equilibrium with
producers is unstable.

Then we define

Φ̂ =


(DHp

p , H
p
p/Gin) if D < Dp and D ≥ Dc,

(0, 0) if D = Dp and D ≥ Dc,
(DHc

c , H
c
c/Gin) if D = (1− Yh/p)fp(Gc, 0)− kdeg and D < Dc,

(DHp
p , H

p
p/Gin) if D = (1− Yh/c)fc(Gp, Ap)− kdeg and D < Dc,

where Hp
p and Hc

c are the protein concentration associated with producers and cleaners,
respectively. Then, we solve numerically the following problem instead of (13):

max λΦ̂(v) + (1− λ)Φ̂(v)
Av ≤ b
c(v) ≤ 0
ub ≤ v ≤ up,

(43)

where

A =

[
fp(Gin, 0) 0 1
−Ygl 0 −1

]
, b =

[
fp(Gin, 0)− kdeg

kdeg − YGl

]
, lb =

 0
0
0

 ,
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Figure 7: Scatter plot of Φ using the steady states of model (8)-(9) with d replaced by (5).
The continuous line is the POF obtained in Figure 4

ub =

 1
1

fp(Gin, 0)− kdeg,

 , and c(v) =

[
v3 + kdeg − (1− v1)fp(G

c(v), 0)
v3 + kdeg − (1− v2)fc(G

p(v), Ap(v))

]
.

Gc(v) is defined as Gin when v3 ≥ Dc.

D Robust choice of the down-regulation function

Let us assume that in (8) the down-regulation function d is replaced by d̂, defined in (5). We
then run long-term simulations of (8)-(9) until a steady state is detected (which is always
the case).2 Then, we evaluate the the process yield and the productivity of the system at the
time at which steady state has been reached. Figure 7 shows the result of this experiment
for 1000 different values of (Yh/p, Yh/c, D). As we can see, the POF obtained when d is given
by (6) represents a good approximation of the POF when d is given by (5). This shows
that the choice of d in this paper is adequate to study the model proposed by Mauri et al.
(2020).
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Fuchs C, Köster D, Wiebusch S, Mahr K, Eisbrenner G, Märkl H (2002) Scale-up of dialysis
fermentation for high cell density cultivation of Escherichia coli. J Biotechnol 93(3):243–
251

Görke B, Stülke J (2008) Carbon catabolite repression in bacteria: many ways to make the
most out of nutrients. Nat Rev Microbiol 6(8):613–24

Gunantara N (2018) A review of multi-objective optimization: Methods and its applications.
Cogent Eng 5(1):1502242

Hardin G (1960) The competitive exclusion principle. Science 131(3409):1292–1297

Harvey E, Heys J, Gedeon T (2014) Quantifying the effects of the division of labor in
metabolic pathways. J Theor Biol 360:222–242

Hays SG, Patrick WG, Ziesack M, Oxman N, Silver PA (2015) Better together: engineering
and application of microbial symbioses. Curr Opin Biotechnol 36:40–49

Heßeler J, Schmidt JK, Reichl U, Flockerzi D (2006) Coexistence in the chemostat as a
result of metabolic by-products. J Math Biol 53(4):556–584

Huang CJ, Lin H, Yang X (2012) Industrial production of recombinant therapeutics in
Escherichia coli and its recent advancements. J Ind Microbiol Biotechnol 39(3):383–399

Jagmann N, Philipp B (2014) Design of synthetic microbial communities for biotechnological
production processes. J Biotechnol 184:209–218

Kremling A, Geiselmann J, Ropers D, de Jong H (2015) Understanding carbon catabolite
repression in Escherichia coli using quantitative models. Trends Microbiol 23(2):99–109

Kurland C, Dong H (1996) Bacterial growth inhibition by overproduction of protein. Mol
Microbiol 21(1):1–4

30

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 12, 2022. ; https://doi.org/10.1101/2022.01.12.476046doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.12.476046
http://creativecommons.org/licenses/by/4.0/


Lin H, Castro NM, Bennett GN, San KY (2006) Acetyl-CoA synthetase overexpression in
Escherichia coli demonstrates more efficient acetate assimilation and lower acetate accu-
mulation: a potential tool in metabolic engineering. Appl Microbiol Biotechnol 71(6):870–
874

Liu X, Li XB, Jiang J, Liu ZN, Qiao B, Li FF, Cheng JS, Sun X, Yuan YJ, Qiao J,
et al. (2018) Convergent engineering of syntrophic Escherichia coli coculture for efficient
production of glycosides. Metab Eng 47:243–253

Luli GW, Strohl WR (1990) Comparison of growth, acetate production, and acetate in-
hibition of Escherichia coli strains in batch and fed-batch fermentations. Appl Environ
Microbiol 56(4):1004–1011
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